A Lightweight Approach to Network
Positioning

Bernard Wong, Emin Giin Sirer
Dept. of Computer Science, Cornell University, [thaca, NY 14853

Abstract— This paper describes a peer-to-peer overlay network
for performing location-aware node and path selection in large-
scale distributed systems. Our system, Meridian, provides a simple,
lightweight and scalable framework for keeping track of location-
information for participating nodes. The framework is based on
local, relative coordinate systems in multi-resolution rings, direct
measurement with scalable node-to-node handoff, and gossip pro-
tocols for dissemination. Large scale simulations and an implemen-
tation deployed on PlanetLab show that the framework can locate
the closest node to given target with less than a Sms median error,
and the simplicity of the approach lends itself to a compact imple-
mentation.

I. INTRODUCTION

Selecting nodes based on their position in the network
is a commonly encountered problem in many distributed
systems. Recent work has focused on network embed-
dings, which map high-dimensional network measure-
ments into an address in a smaller Euclidian space. For
instance, recent work in network positioning [26, 11, 24,
36,34,28,10,27] maps a large vector of node-to-node la-
tency measurements into a single point in a d-dimensional
space.

The driving application for much of this work is to find
the closest peer to a reference node in a given, possibly
very large, set of peers. Finding the closest peer is a basic
operation in content distribution networks (CDNs) [20],
large-scale multiplayer games [23], and some peer-to-
peer overlays [19,21,7, 6]. Efficiently discovering the
closest peer can significantly reduce latency, bandwidth,
and network load; for instance, a geographically dis-
tributed peer-to-peer web crawler can reduce crawl time
and minimize network load by delegating the crawl to the
peer closest to each target web server. The state-of-the-
art approach to locating the closest server in a scalable
manner is to explicitly compute a network embedding for
all server nodes and the target location, and then to route
through a CAN-like [29] substrate to the node closest to
the target. This approach incurs errors in the embedding
stage and requires a heavyweight overlay in the routing
stage that, to date, has not been implemented or deployed.

This paper introduces a lightweight and scalable frame-
work for finding the closest node to a given target point
in a distributed system. Called Meridian, this system is
based on a loosely-structured overlay network, uses di-
rect measurements instead of a network embedding, and
builds many local coordinate systems instead of an ab-

solute coordinate space'. It performs network position-

ing simultaneously with query routing to efficiently find
the closest node in a set of peers without explicitly per-
forming an embedding into a global coordinate system. It
is robust in the presence of churn, supports hosts behind
firewalls, and incurs errors comparable to the published
error rates for network embedding schemes.

Meridian is composed a routing scheme based on mul-
tiresolution rings, an algorithm for maximizing the ge-
ographic diversity in each ring, and a lightweight and
scalable gossip protocol for membership updates. Each
Meridian node keeps track of a fixed number of peers and
organizes them into concentric rings of exponentially in-
creasing radii. A query is matched against the relevant
nodes in these rings, and optionally forwarded to a subset
of the node’s peers. A scalable gossip protocol is used to
notify other nodes of membership in the system.

We evaluate Meridian through both large-scale simu-
lations based on actual inter-node latency data collected
from the Internet, and a full implementation deployed on
PlanetLab [2]. Our simulations are based on node-to-
node round-trip latency measurements for 4000 nodes and
16 million node pairs on the Internet using the King [17]
measurement technique. We use this large-scale data set
to evaluate the Meridian approach and show that Merid-
ian is fast, scalable and accurate. We measure the accu-
racy of our system using a relatively smaller deployment
on 166 PlanetLab nodes. The Meridian approach lends
itself to a relatively simple implementation. The whole
implementation is only 2500 lines, with most of the line
count stemming from support for firewalled hosts, and is
structured as a self-contained module that can be linked
into applications.

The next section describes the architecture and oper-
ation of the Meridian overlay. The system is simple,
loosely-structured, and entails modest resources for main-
tenance. Section III shows how this system dynamically
routes queries to the the closest server to a given node.
Section IV evaluates the proposed system with measure-
ments from a large-scale network study. Although less
general than GNP combined with CAN, we show that

1We use the term “location” to refer to a node’s position in the Inter-
net as defined by its roundtrip latency to other nodes. While Meridian
does not assume that there is a well-defined location for all nodes, our
illustrations depict a single point in a two-dimensional space for clarity.

25

Percentage

0 50 100 150 200 250 300 350 400 450 500
Pairwise distance (ms)

Fig. 1. Pair-wise latency histogram at 25ms intervals for 4000 geo-
graphically diverse DNS servers.

Meridian incurs errors less than those incurred by GNP
in the network embedding phase.

II. FRAMEWORK

The basic Meridian framework is based around three
mechanisms: a loose routing system based on multi-
resolution rings on each node, an adaptive ring member-
ship replacement scheme that maximizes the usefulness
of the nodes populating each ring, and a gossip protocol
for node discovery and dissemination.

A. Multi-Resolution Rings

Each Meridian node keeps track of a small, fixed num-
ber of other nodes in the system, and organizes this list of
peers into concentric, non-overlapping rings. The ith ring
has inner radius r; = as®~! and outer radius R; = as?,
for i > 0, where « is a constant, and ry = 0 for the in-
nermost ring. Each node keeps track of a finite number
of rings; all rings ¢ > ¢* for a system-wide constant ¢*
are collapsed into a single, outermost ring that spans the
range [as’ , 00).

Meridian nodes measure the distance d; to a peer j,
and place that peer in the corresponding ring ¢ such that
r; < d; < R;. This sorting of neighbors into con-
centric rings is performed independently at each node
and requires no fixed landmarks or distributed coordina-
tion. There is an upper limit of £ on nodes kept in each
ring, where peers are dropped from overpopulated rings;
consequently, Meridian’s space requirement per node is
O(1).

The rationale for exponentially growing ring radii is
derived in part from the observed distribution of inter-
node distances on the Internet and in part from the types
of location-related queries that the Meridian framework
is expected to handle. Figure 1 shows a histogram of
16 million pair-wise node distance measurements from
DNS servers on the Internet. The number of nodes that
are at a given distance from a node drops exponentially
with distance. An exponentially increasing radius makes

Fig. 2. Each Meridian node keeps track of a fixed number of other nodes
and organizes these nodes into concentric, non-overlapping rings of
exponentially increasing radii. Within a given ring, a set of nodes
that span a large amount of space (dark) are more desirable than a
more limited subset (light).

the total number of rings per node manageably small and
1* clamps the total number of rings at a constant. The
ring structure also recognizes the decreasing importance

of fine grain distance partitioning for far away nodes.

B. Ring Membership Management

The number of nodes per ring, k, represents an inher-
ent tradeoff between accuracy and overhead. A large k
increases a node’s information about its peers and helps it
make better choices when routing queries. On the other
hand, a large k also entails more state, more memory and
more bandwidth at each node. Within a given ring, node
choice has a significant effect on the performance of the
system. For instance, if the nodes within a given ring are
clustered together, their utility is very small, despite their
additional cost. A key principle, then, is to promote geo-
graphic diversity within each ring.

Meridian achieves geographic diversity by periodically
reassessing ring membership decisions and replacing ring
members with alternatives that provide greater diversity.
Within each ring, a Meridian node not only keeps track
of the k primary ring members, but also a constant num-
ber [of secondary candidates. Periodically, all k£ + [ring
members measure their distances to all other members of
the same ring. A node ¢ will thus obtain its distance d;'- to
another node j, for all 0 < 4,5 < k 4 I. These measure-
ments are combined together to yield coordinates for each
node in a Lipschitz embedding [3]. In a Lipschitz embed-
ding, the coordinates of node ¢ simply consist of the tuple
< di,d,...,dj_, >, where d = 0. A Lipschitz embed-
ding is trivial to construct and, unlike a GNP coordinate,
is precise — embedding error is zero since all distances are
preserved and there is no mapping from high-dimensional
data to a lower number of dimensions. Having computed
the Lipschitz coordinates for all of its members in a ring,
a Meridian node can then determine the subset of £ nodes

that provide the most geographic diversity. We quantify
geographic diversity through the hypervolume of the k-
polytope formed by the selected nodes. For small k, it
is possible to determine the maximal hypervolume poly-
tope with k vertices by considering all possible polytopes;
instead, we take a simple, greedy approach that works
well in practice for large k. A node starts out with the
k + [polytope, and iteratively drops the vertex (and cor-
responding dimension) whose absence leads to the small-
est reduction in hypervolume until £ vertices remain. The
remaining vertices are designated the new primary mem-
bers for that ring, while the remaining / nodes become
secondaries. This computation can be performed in lin-
ear time using standard computational geometry tools [8].
The ring membership management occurs in the back-
ground and its latency is not critical to the correct opera-
tion of Meridian.

C. Gossip Based Node Discovery

The use of a gossip protocol to perform node discovery
allows Meridian nodes to be loosely connected, highly
robust and allows membership change propagation to be
inexpensive. Our gossip protocol is based on an anti-
entropy push protocol [14], but relaxed to remove the
need for comparison of ring sets between two gossiping
nodes. This relaxation is possible as our goal is not for
each node to discover every node in the system, but sim-
ply for each node to discover a diverse set of other nodes.

Our gossip protocol works as follows:

1. Each node A randomly picks a node B from each of
its rings.

2. A sends a gossip packet to B containing a randomly
chosen node from each of A’s rings.

3. On receiving the packet, node B determines its la-
tency to A and to each of the nodes contained in the
gossip packet from A through direct probes.

4. After sending a gossip packet to a node in each of its
rings, node A waits until the start of the next gossip
period and then begins again from step 1.

In step 3, node B sends probes to A and to the nodes
in the gossip packet from A regardless of whether B has
already discovered these nodes. This is to ensure that stale
latency information can be replaced, as latency between
nodes on the Internet changes dynamically. The newly
discovered nodes are placed on B’s rings as secondary
members, subject to FIFO replacement.

The period between gossip cycles is initially set to a
small value in order for new nodes to quickly propagate
their arrival to the existing nodes. The new nodes grad-
ually increase their gossip period to the same length as
the existing nodes. The choice of a gossip period depends
on the expected rate of latency change between nodes and
expected churn in the system.

Client node

Initial node 4
Closest node B

Ring member of 4
Ring member of B
Forwarding of query
Latency probe

Fig. 3. A client sends a find closest peer request to an arbitrary Merid-
ian node A, which determines its latency d to the client and probes
its ring members between ¢ and 3¢ to determine their distances to
the client. The request is forwarded to the closest node thus discov-
ered, and the process continues recursively until no closer node is
detected.

ITII. ROUTING

Meridian locates the closest peer by performing a
multi-hop search where the node at each hop exponen-
tially reduces the distance to the target. This is similar
to searching in structured peer-to-peer networks such as
Chord [35], Pastry [31] and Tapestry [38], where each
hop brings the query exponentially closer to the destina-
tion, though in Meridian the routing is performed using
physical latencies instead of numerical distances in a vir-
tual identifier space. Meridian uses an acceptance thresh-
old 8, which serves a purpose similar to the routing base
in structured peer-to-peer systems; namely, it determines
the reduction in distance at each hop.

When a Meridian node receives a client request to find
the closest peer, it determines the latency d between itself
and the client. Once the latency is determined, it locates
its corresponding ring j and simultaneously queries all
nodes in that ring, as well as all nodes in the adjacent
rings 7 — 1 and j + 1 whose distances to the origin are
within % to 37‘1. These nodes measure their distance to the
target and report the result back to the source. Nodes that
take more than 2d to provide an answer are ignored, as
they cannot be closer to the target than the source.

The route acceptance threshold is met if one or more
of the queried peers is closer than 3 times the distance
to the client, and the client request is forwarded to the
closest peer. If no peers meet the acceptance threshold,
then routing stops and the closest peer currently known is
chosen. Figure 3 illustrates the process.

Meridian is agnostic to the choice of a route acceptance
threshold 3, where 0 < 8 < 1. A smaller 3 value reduces

30
' 2000 Nodss:‘ Median error (‘ms) — B
4000 Nodes: Median error (ms) ------

Error (ms)
=
T
|

!L‘;;";‘:;.‘,';'_';‘;:;‘:'_::::;;:" P 1
0 10 20 30 40 50 60 70
Nodes/Ring

Fig. 4. The error drops sharply and flattens out at thirty-two nodes per
ring for both curves.

the hop count, as fewer peers can satisfy the requirement,
but introduces additional error as the route may be pre-
maturely stopped before converging to the closest peer. A
larger 8 may reduce error at the expense of increased hop
count.

IV. EVALUATION

We first evaluate Meridian through large scale simu-
lations based on inter-node latency data collected from
4000 Internet hosts. We collected pair-wise round trip
latency measurements between 4000 DNS servers, span-
ning 16 million node pairs, using the King technique [17].
The study was replicated 9 times from 9 different Plan-
etLab [2] nodes across North America, with the median
value of the 10 runs taken for the round-trip time of each
pair of nodes. The system was configured with k = 32
nodes per ring, I = k, ¢* = 9 rings per node, size of the
innermost ring s = 2ms, @ = 1lms, § = %, and probe
packet size of 100 bytes for 25000 queries. The 95% con-
fidence interval is shown for each of the mean values that
are presented. All references to latency in this section are
in terms of round trip time.

The accuracy, as well as bandwidth consumption, of
Meridian depends critically on k, the number of primary
nodes per ring. Figure 4 plots the error, defined as the
distance between the closest node determined by Merid-
ian and the closest node determined through global infor-
mation, as a function of the number of nodes per ring. It
shows that even modest choices for & yield high accuracy.

High accuracy must also be coupled with low latency
for interactive applications that have a short lifetime per
query and low tolerance for initial setup time. Figure 5
plots the latency, measured as the sum of the maximum
latency probe at each hop plus the hop latency, versus the
number of nodes per ring. It shows that the majority of
queries can be completed in less than 200ms at a system
size of 4000 nodes.

Bandwidth consumed per query is one of the most sig-
nificant limiting factors limiting the scalability of the sys-

800
Median node i\‘nding latency (‘ms) ==
Average node finding latency (ms) —+—

700 | q
600 [q
500 | q

400 [T

Latency (ms)

300 | q

200 | . q

100 L L L L L L

Nodes/Ring

Fig. 5. Increasing the number of nodes per ring introduces a small
corresponding increase in the average node finding latency, where
the median latency is relatively unaffected.

tem, as it determines the aggregate network load posed by
Meridian. Figure 6 shows that the total bandwidth con-
sumed per query query grows sub-linearly with system
size, with 4000 nodes requiring only 10.5 KB per query.

V. IMPLEMENTATION

We have implemented and deployed Meridian on
PlanetLab. The implementation is small, compact and
straightforward; it consists of approximately 2500 lines
of C++ code. Most of the complexity stems from support
for firewalled hosts.

Hosts behind firewalls and NATSs are very common on
the Internet, and a system must support them if it expects
large-scale deployment over uncontrolled, heterogenous
hosts. Meridian supports such hosts by pairing each fire-
walled host with a fully accessible peer, and connecting
the pair via a persistent TCP connection. Messages bound
for the firewalled host are routed through its fully acces-
sible peer — a ping, which would ordinarily be sent as a
direct UDP packet or a TCP connect request, is sent to
the proxy node instead, which forwards it to the desti-
nation, which then performs the ping to the originating
node and reports the result. A node whose proxy fails
is considered to have failed, and must join the network
from scratch to acquire a new proxy. Since a firewalled
host cannot directly or indirectly ping another firewalled
host, firewalled hosts are excluded from ring membership
on other firewalled hosts, but included on fully-accessible
nodes. Since routing through another host increases the
latency of a query, Meridian adds a constant y to packet
timeouts to compensate (for a total of 2d + -y); in our im-
plementation, y = 2d.

We deployed the Meridian implementation over 166
PlanetLab nodes. We benchmark the system with 800
target web servers drawn randomly from the Yahoo web
directory, and examine the latency to the target from the
node selected by Meridian versus the optimal obtained by
querying every node. Overall, median error in Meridian is

Average Bandwidth Consumed (KB)

4 L L L L L L L
0 500 1000 1500 2000 2500 3000 3500

System size

4000

Fig. 6. Bandwidth requirements per query increase sub-linearly with
system size.

only 1.435ms, well within the simulation results, and cor-
responds to a 10.2% deviation from the optimal. To put
these numbers in perspective, Figure 7 illustrates the per-
centage error of Meridian compared with the embedding
error of several virtual coordinate systems. We assume
that these systems incur no error in the routing phase, ei-
ther through full-knowledge of the network (O(N) state)
or through a CAN-like substrate. Although the systems
are not directly comparable due to different data sources,
the graph shows the percentage error of the different sys-
tems are within the same order of magnitude of each
other.

VI. RELATED WORK

The closest server selection problem has been the focus
of much prior work. Dynamic server selection [4] pro-
poses to probe all of the servers and pick the one with the
lowest latency; a simple approach that scales linearly with
the number of servers. A detailed simulation study [18]
examines schemes, such as anycast, BGP-polling, and tri-
angulation, to locate the nearest node; these schemes re-
quire infrastructural changes. IDMaps [16] can estimate
the approximate distance between two IP addresses based
on strategically placed tracer nodes, which require infras-
tructural changes to deploy, without direct measurement.
Beaconing [22] leverages the triangle inequality to find
the closest node to a given target; the beacon nodes re-
quire O(n) state. Binning [30] proposes to store distances
to well-known landmarks in DNS, and use them for geo-
graphic query resolution.

Recent work on network positioning can be catego-
rized roughly into the landmark based systems such as
GNP [26], ICS [24], Virtual Landmarks [36], Light-
house [28], PIC [10] and NPS [27], and the simulation
based systems such as Vivaldi [11] and BBS [34]. Both
types can accurately embed nodes into a Euclidean co-
ordinate space, which allows the distance between any
two nodes to be determined without direct measurement.
These coordinates are general, but need to be coupled

(%)

Median Error

0 L L L
Vivaldi VL

Meridian GNP

Fig. 7. Meridian’s positioning error is comparable to the embedding
error in network embedding systems. Sources: GNP Figure 12 of
[26], Vivaldi Figure 5 of [11], and Virtual Landmarks Figure 9 of
[36].

with a geographically organized P2P substrate such as
CAN [29] for scalable, position-based node discovery.
There are inherent embedding errors in each of these sys-
tems, and the use of a substrate, such as CAN, signifi-
cantly increases the complexity of the overall system.

Proximity based neighbor selection [7, 6] performs a
proximity search using the node entries in the route table
of a structured P2P system. The time and space complex-
ity of two similar techniques are discussed in [19] and
[21], but these techniques have not been evaluated with a
large scale data set or implemented.

VII. SUMMARY

This paper describes Meridian, a lightweight and scal-
able framework for network proximity problems on the
Internet. Meridian is based on a loosely structured over-
lay network. It uses direct measurements instead of coor-
dinates to perform location-aware query routing without
incurring the complexity and overhead of an embedding
into an absolute coordinate system.

Both large-scale simulations and an actual implemen-
tation indicate that the system is effective — it incurs error
comparable to or less than systems based on absolute em-
bedding, is decentralized, requires relatively modest state
and bandwidth, and locates nodes quickly. The imple-
mentation is compact, and the system can be incorporated
easily into CDNs, online games, and other distributed sys-
tems where finding the closest node to a target is an es-
sential building block. Overall, Meridian gains its high
accuracy and simplicity from its use of many local co-
ordinate systems, its resilience from a loosely structured
overlay, and its performance from its use of geographic
routing among multi-resolution rings. We are currently
examining whether the lightweight approach advocated
in this paper can be applied to other positioning-related
problems.

(11

(21

(3]
(4]

(51
(6]

(71

(81
91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

REFERENCES

D. Andersen, H. Balakrishnan, M. Kaashoek, and R. Morris. Re-
silient Overlay Networks. In Proceedings of the Eighteenth Sym-
posium on Operating Systems Principles, Banff, Canada, October
2001.

A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir,
L. Peterson, T. Roscoe, T. Spalink, and M. Wawrzoniak. Operat-
ing System Support for Planetary-Scale Network Services. In Pro-
ceedings of Networked System Design and Implementation 2004,
San Francisco, CA, March 2004.

J. Bourgain. On Lipschitz embedding of finite metric spaces in
Hilbert space. Israel Journal of Mathematics, 52:46-52, 1985.

R. Carter and M. Crovella. Server Selection Using Dynamic Path
Characterization in Wide-Area Networks. In Proceedings of IEEE
INFOCOM 1997, Kobe, Japan, April 1997.

R. Carter and M. Crovella. On the Network Impact of Dynamic
Server Selection. Computer Networks, 31:2529-2558, 1999.

M. Castro, P. Druschel, Y. Hu, and A. Rowstron. Exploiting net-
work proximity in peer-to-peer overlay networks. In Technical
Report MSR-TR-2003-82, Microsoft Research, 2002.

M. Castro, P. Druschel, Y. Hu, and A. Rowstron. Proximity neigh-
bor selection in tree-based structured peer-to-peer overlays. In
Technical Report MSR-TR-2003-52, Microsoft Research, 2003.
U. G. Center. QHull. UIUC Geometry Center, QHull Computa-
tional Geometry Package, http://www.ghull.org, July 2004.

Y. Chu, S. Rao, and H. Zhang. A Case for End System Multi-
cast. In Proceedings of ACM SIGMETRICS 2000, Santa Clara,
CA, June 2000.

M. Costa, M. Castro, A. Rowstron, and P. Key. PIC: Practical
Internet Coordinates for Distance Estimation. In Proceedings of
ICDCS, Tokyo, Japan, March 2004.

R. Cox, F. Dabek, F. Kaashoek, J. Li, and R. Morris. Practical, Dis-
tributed Network Coordinates. In Proceedings of Hotnets 2003,
Cambridge, MA, November 2003.

W. Cui, I. Stoica, and R. Katz. Backup Path Allocation Based
On A Correlated Link Failure Probability Model In Overlay Net-
works. In IEEE International Conference on Network Protocols,
Paris, France, November 2002.

F. Dabek, M. Kaashoek, D. Karger, R. Morris, and I. Stoica.
Wide-area cooperative storage with CFS. In Proceedings of the
Eighteenth Symposium on Operating Systems Principles, Banff,
Canada, October 2001.

A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry. Epidemic algorithms for
replicated database maintenance. In Proceedings of the sixth an-
nual ACM Symposium on Principles of Distributed Computing,
Vancouver, BC, August 1987.

Z. Fei, S. Bhattacharjee, E. Zegura, and M. Ammar. A Novel
Server Selection Technique for Improving the Response Time of
a Replicated Service. In Proceedings of IEEE INFOCOM 1998,
San Francisco, CA, March 1998.

P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and
L. Zhang. IDMaps: A global Internet host distance estimation
service. IEEE/ACM Transactions on Networking, 9:525-540, Oc-
tober 2001.

K. Gummadi, S. Saroiu, and S. Gribble. King estimating La-
tency between Arbitrary Internet End Hosts. In Proceedings of
ACM SIGCOMM Internet Measurement Workshop 2002, Mar-
seille, France, November 2002.

J. Guyton and M. Schwartz. Locating Nearby Copies of Repli-
cated Internet Servers. In Proceedings of ACM SIGCOMM 1995,
Boston, MA, September 2002.

K. Hildrum, J. Kubiatowicz, S. Rao, and B. Zhao. Distributed Ob-
ject Location in a Dynamic Network. In Proceedings of 14th An-
nual ACM Symposium on Parallel Algorithms and Architectures,
Winnipeg, Manitoba, Canada, August 2002.

K. Johnson, J. Carr, M. Day, and M. Kaashoek. The measured per-
formance of content distribution networks. In Proceedings of the
Sth International Web Caching and Content Delivery Workshop,
Lisbon, Portugal, May 2000.

D. Karger and M. Ruhl. Finding Nearest Neighbors in Growth-
restricted Metrics. In Proceedings of the 34th Annual ACM Sym-

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

posium on Theory of Computing, Montreal, Quebec, Canada, May
2002.

C. Kommareddy, N. Shankar, and B. Bhattacharjee. Finding Close
Friends on the Internet. In Proceedings of ICNP 2001, Riverside,
CA, November 2001.

R. Lawrence. Running Massively Multiplayer Games as a Busi-
ness. In Keynote: In Proceedings of Networked System Design and
Implementation 2004, San Francisco, CA, March 2004.

H. Lim, J. Hou, and C. Choi. Constructing Internet Coordi-
nate System Based on Delay Measurement. In Proceedings of
ACM SIGCOMM Internet Measurement Conference 2003, Miami,
Florida, October 2003.

P. Maniatis, M. Roussopoulos, T. Giuli, D. Rosenthal, M. Baker,
and Y. Muliadi. Preserving peer replicas by rate-limited sampled
voting. In Proceedings of the Nineteenth Symposium on Operating
Systems Principles, Bolton Landing, NY, October 2003.

T. Ng and H. Zhang. Predicting Internet Network Distance with
Coordinates-Based Approaches. In Proceedings of IEEE INFO-
COM 2002, New York, NY, June 2002.

T. Ng and H. Zhang. A Network Positioning System for the Inter-
net. In Proceedings of USENIX 2004, Boston, MA, June 2004.
M. Pias, J. Crowcroft, S. Wilbur, T. Harris, and S. Bhatti. Light-
houses for Scalable Distributed Location. In Proceedings of 2nd
International Workshop on Peer-to-Peer Systems, Berkeley, CA,
Feburary 2003.

S. Ratnasamy, P. Francis, M. Hadley, R. Karp, and S. Shenker.
A Scalable Content-Addressable Network. In ACM SIGCOMM
2001, San Diego, CA, August 2001.

S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Topologically-Aware Overlay Construction and Server Selection.
In Proceedings of IEEE INFOCOM 2002, New York, NY, June
2002.

A. Rowstron and P. Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In Pro-
ceedings of Middleware 2001, Heidelberg, Germany, November
2001.

A. Rowstron and P. Druschel. Storage management and caching
in PAST, a large-scale, persistent peer-to-peer storage utility. In
Proceedings of the Eighteenth Symposium on Operating Systems
Principles, Banff, Canada, October 2001.

S. Savage, A. Collins, and E. Hoffman. The End-to-End Effects of
Internet Path Selection. In Proceedings of ACM SIGCOMM 1999,
Cambridge, MA, September 1999.

Y. Shavitt and T. Tankel. Big-Bang Simulation for Embedding
Network Distances in Euclidean Space. In Proceedings of IEEE
INFOCOM 2003, San Francisco, CA, April 2003.

1. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan.
Chord: A Scalable Peer-to-peer Lookup Service for Internet Ap-
plications. In Proceedings of ACM SIGCOMM 2001, San Diego,
CA, August 2001.

L. Tang and M. Crovella. Virtual Landmarks for the Internet. In
Proceedings of ACM SIGCOMM Internet Measurement Confer-
ence 2003, Miami, Florida, October 2003.

H. Weatherspoon, T. Moscovitz, and J. Kubiatowicz. Introspective
Failure Analysis: Avoiding Correlated Failures in Peer-to-Peer
Systems. In Proceedings of International Workshop on Reliable
Peer-to-Peer Distributed Systems, Osaka, Japan, October 2002.
B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infrastruc-
ture for fault-tolerant wide-area location and routing. In Technical
Report UCB/CSD-01-1141, UC Berkeley, April 2001.

