R3S: RDMA-based RDD Remote Storage for Spark

Xinan Yan, Bernard Wong, and Sharon Choy
David R. Cheriton School of Computer Science
University of Waterloo
{xinan.yan, bernard, s2choy}@uwaterloo.ca

ABSTRACT

In the past few years, Spark has seen rapid adoption by or-
ganizations that require high-performance data processing.
This growth stems from its significant performance improve-
ment over past frameworks such as Hadoop and MapRe-
duce. Spark achieves its performance improvement by ag-
gressively storing intermediate computation in memory in
order to avoid slow disk accesses. However, Spark’s perfor-
mance advantage disappears when Spark nodes do not have
enough local memory to store the intermediate computa-
tions, requiring results to be written to disk or recomputed.

In this paper, we introduce R3S, an RDMA-based in-
memory RDD storage layer for Spark. R3S leverages high-
bandwidth networks and low-latency one-sided RDMA oper-
ations to allow Spark nodes to efficiently access intermediate
output from a remote node. R3S can use this flexibility to
treat the memory available on the different machines in the
cluster as a single memory pool. This enables more effi-
cient use of memory and can reduce job completion time.
R3S can also work together with the cluster manager to add
storage-only nodes to the Spark cluster. This can benefit
workloads where adding memory has a far larger impact on
performance than adding processing units. Our prototype
reduces job completion time by 29% compared to Spark us-
ing Tachyon as the RDD storage layer on a machine learning
benchmark.

CCS Concepts

eSoftware and its engineering — Reflective middle-
ware; Distributed memory; Cloud computing;

Keywords
Spark; RDMA; Adaptive Storage

1. INTRODUCTION

Data-processing on Big Data sources is typically organized
into multiple computational stages, where each stage corre-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ARM 2016, December 12-16, 2016, Trento, Italy
© 2016 ACM. ISBN 978-1-4503-4662-7/16/12. .. $15.00
DOL: http://dx.doi.org/10.1145/3008167.3008171

sponds to a single iteration through a distributed compu-
tation framework such as Hadoop [1] and, more recently,
Spark [15]. The increasing popularity of Spark is primarily
due to its performance advantages over other frameworks.
In contrast to Hadoop, where computation stages can only
communicate by reading and writing files in a distributed
file system, intermediate computations in Spark can be per-
sisted in memory. This subtle but powerful change allows
stages in Spark to reuse computations without requiring any
slow accesses to persistent storage.

However, Spark’s dependence on persisting intermediate
computations in memory increases the memory require-
ments necessary to achieve good performance. Insufficient
memory can cause significant slowdowns as intermediate
computations will have to be either re-fetched from disk or
completely recomputed. Even with sufficient memory, the
increased memory requirements can affect performance by
increasing JVM garbage collection (GC) latency [9].

Efforts have been made to use external storage systems,
such as Tachyon [9], to store Spark’s resilient distributed
datasets (RDDs). This approach persists RDDs off-heap in
local memory, which reduces Spark’s GC time. It also allows
Spark executors on the same machine to share a single pool
of memory. However, when local memory is full, Tachyon
will store RDD partitions to secondary storage systems (e.g.
disks and SSDs). Workloads with non-uniform memory re-
quirements can cause some nodes in the cluster to exhaust
their local memory, requiring writes to disks and SSDs, while
leaving other nodes with memory available.

In this paper, we introduce R3S, an RDMA-based RDD
remote storage system for Spark. Similar to Tachyon, R3S is
an external RDD storage system that reduces garbage collec-
tion overhead by storing RDDs off the Java heap. However,
unlike Tachyon, R3S provides significantly more flexibility in
RDD partition placement. R3S manages all of the memory
available on the Spark executors as a single memory pool.
When local memory is exhausted, RDD partitions can be
saved on a remote node’s memory. R3S aims to choose a
partition’s storage location that minimizes partition fetch-
ing time in subsequent computation stages. Our prototype
actively monitors the amount of memory available on each
Spark executor, and selects a storage location for a parti-
tion based on this information. We plan to also use other
sources of feedback from the system, such as dependency in-
formation from the Spark scheduler and the rate of memory
consumption on each Spark executor, to further improve our
partition placement algorithm.

One of the enabling technologies for this approach is one-

sided RDMA, which allows low-latency remote access to a re-
mote node’s memory without requiring any interactions with
the node’s CPU. Using one-sided RDMA significantly re-
duces the overhead of storing and retrieving RDD partitions
from a remote node. Furthermore, by eliminating CPU in-
volvement, it opens up the possibility of allocating memory-
only virtual machine instances from cloud providers. These
instances can be allocated and added to the global memory
pool when memory is exhausted, and may be more cost-
effective than allocating normal virtual machine instances
for workloads where adding CPUs to an existing cluster will
only minimally impact the completion time. R3S determines
which instance type to add based on the estimated improve-
ment in completion time per dollar from adding an instance,
which can be calculated offline based on past executions of
the workload or online using runtime system statistics.

We have implemented a prototype of R3S on top of an
RDMA-based key-value store [13]. Our benchmark results
show Spark jobs that retrieve RDD partitions from remote
memory using RDMA complete in 41% and 71% of the time
compared to retrieving the partitions from a hard disk and
an SSD respectively.

2. BACKGROUND AND RELATED WORK

Big Data Infrastructure: As data set sizes continue to
grow, large-scale data processing frameworks become in-
creasingly more popular. MapReduce [4] and Hadoop [1]
are currently the most commonly used scalable distributed
programming frameworks. In these frameworks, computa-
tion is divided into a series of stages, and each stage consists
of a pair of function calls (map and reduce). The output of
one stage is used as the input of later stages, and communi-
cation between stages rely on reading and writing to shared
files in a distributed file system. Although using shared files
to communicate between stages is simple and ensures per-
sistence of the intermediate output, it requires reading and
writing to a slow persistent storage medium.

Spark [15, 2] addresses the performance problem of us-
ing files to communicate between stages by introducing
an immutable data abstraction called Resilient Distributed
Dataset (RDD) for storing intermediate data. By tracking
the lineage of its RDDs, Spark can ensure that, in the event
of a node failure, missing RDD partitions can be regener-
ated without restarting the computation from the beginning.
This property reduces the need to store intermediate output
persistently, allowing Spark to store RDDs in memory when
space allows.

Storing Spark RDDs: As illustrated in Figure 1, a Spark
executor, which takes RDD partitions as its input and gen-
erates RDD partitions as its output, has a BlockManager
to determine where to retrieve or store a given RDD par-
tition. When storing an RDD partition, the BlockManager
can choose to store it either in local memory, on disk, or in
an external storage system. If it decides to store the par-
tition in memory, it must then choose to either store it as
a native Java object, or as a serialized object that is more
space efficient but requires deserialization before it can be
used.

Although storing RDD partitions in local memory pro-
vides better performance than storing them on disk, perfor-
mance can significantly degrade when storing a large number
of partitions in memory due to long Java GC delays required

Spark Executor

BlockManager

RDD Partitions
Storage Systems

R
Memory 1 External Storage Systems

1 (Off-Heap) 1

1 1

1 1

: TaChyon :
\ 1

Figure 1: RDD Storage in Spark

to reclaim unused memory. Efforts have been made to use
external storage systems to store Spark’s RDDs off the Java
heap in order to reduce GC overhead. Tachyon [9] is cur-
rently the most commonly used external RDD storage sys-
tem. Although a typical Spark+Tachyon deployment has
Tachyon running on every Spark node, Tachyon will store
partitions to a lower tier storage system when local mem-
ory is exhausted instead of storing the partitions at another
Tachyon node. R3S is an external RDD storage system for
Spark that uses RDMA to retrieve and store RDD parti-
tions from remote nodes in order to more efficiently utilize
the available memory across the entire deployment.

Spark Dynamic Resource Allocation: Spark supports
dynamic resource allocation using coarse-grained cluster
managers such as YARN [14] and Mesos [6]. In response
to changes to its workload, Spark can add more executors
or remove idle ones by allocating or deallocating resources
from the cluster manager. Each executor is given the same
amount of memory and the same number of cores in order to
avoid creating stragglers due to computational imbalances.

However, many workloads that generate a significant
amount of intermediate data benefit far more from an in-
crease in memory than an increase in the number of CPU
cores. Therefore, allocating additional executors to satisfy
memory requirements would result in an inefficient alloca-
tion of CPU resources. In a cloud computing environment
where multiple applications and tenants are sharing the
same resources, the underutilized CPU cores allocated to
an executor would increase cost without providing a good
return on investment. Our approach supports allocating
storage-only R3S nodes with minimal CPU allocations but
large memory allotments. A storage-only R3S node would
provide a cost effective way for memory hungry workloads to
allocate more memory without incurring the cost of allocat-
ing unnecessary CPU cores. The existing Spark executors
would be able to transparently access the storage-only R3S
nodes through the external storage system interface; the R3S
module in Spark redirects fetch and store requests for RDD
partitions to the appropriate node as selected by the R3S
storage scheduler.

Remote Direct Memory Access (RDMA): With falling
memory prices and the prevalence of RDMA-capable net-
works, there is an emerging class of computation platforms
and in-memory storage systems [5, 12, 8, 13] that lever-
age RDMA to increase request throughput and reduce la-
tency. RDMA has also been used to replace TCP in order

to improve Spark’s network I/O operations [11]. R3S builds
on Nessie [13], an RDMA-based in-memory key-value store
(RKVS), to retrieve and store RDD partitions from remote
nodes using RDMA. Unlike other RKVSes, Nessie uses one-
sided RDMA for both read and write operations. This ap-
proach significantly reduces the CPU requirements of the
server, which is a key-enabler for creating storage-only R3S
nodes. R3S extends Nessie by supplying a partition sched-
uler that determines where partitions should be stored, and
which partitions should be evicted to disk when there is in-
efficient memory to store all partitions in memory.

3. PARTITION PLACEMENT

In this section, we first model the relationship between job
completion time and RDD partition location. Based on this
model, we outline our RDD placement approach with the
goal of minimizing job completion time for a given workload
and a fixed amount of resources.

3.1 Cost Model

A Spark deployment consists of a collection of Spark ex-
ecutors that work concurrently on different parts of the prob-
lem to complete a computation stage. In our simplified cost
model, a Spark job consists of one or more computation
stages that execute sequentially. Therefore, the completion
time of a job is the sum of the completion time of its stages.
Given n Spark executors for a stage, a stage’s completion
time Tsiage is defined as follows:

Tstage = maz{t;|i = 1,2,...,n} (1)

where ¢; is the running time of Spark executor i for this
stage. Given this definition, reducing a stage’s completion
time requires reducing the running time of the slowest Spark
executor.

A Spark executor’s running time is in part determined
by the amount of time required to fetch RDD partitions
generated from previous stages. Fetching RDD partitions
from disk or recomputing RDD partitions can significantly
increase a Spark executor’s running time. We define F'T; as
the time that executor ¢ needs to fetch the RDD partitions
that it requires to perform its computation for a given stage.
Therefore, t; can be defined as a function of F'T;:

t; = f(FT;) (2)

In our model, RDD partitions can be located either in local
memory (LM), remote memory (RM), or on local disk (LD).
We define the time required to fetch an RDD partition from
each as FTrn, FTry, and FTp where FTpy < FTry <
FTrp. Similarly, we define the number of RDD partitions
that executor ¢ needs to fetch from each storage location
as LM;, RM;, and LD;. From these definitions, we can
compute F'T; using the following equation:

FTZ':LMZ'-FTLAI+RMi-FTRM+LDi'FTLD (3)

In general, minimizing FT; for Spark executor ¢ requires
fetching RDD partitions from local memory whenever pos-
sible. This is limited by the amount of memory available at
each executor. When local memory is exhausted, an RDD
placement algorithm should aim to increase the probability
of allowing executors to fetch RDD partitions from remote
memory instead of from local disk.

Reducing stage completion time also requires placing
RDD partitions in a manner that avoid stragglers. Ideally,

all executors use the same amount of time to fetch RDD
partitions and have approximately the same running time.
To achieve this, an RDD placement algorithm should aim
to have executors fetch partitions from remote memory and
local disks approximately the same number of times by allo-
cating memory fairly across all executors that require more
memory than is available locally.

3.2 Partition Placement Approach

Given the cost model in Section 3.1, we propose an RDD
partition placement scheme that reduces the partition fetch-
ing time (FT) for Spark executors. Because fetching a par-
tition from remote memory or from a local disk results in
a significant increase in fetching time, our approach always
attempts to store partitions in local memory. If a partition
needs to be placed in remote memory, we select the executor
that has the most available memory. Without knowing more
information about the workload, this choice minimizes the
likelihood that the partition will be replaced later.

In the event that memory from all executors is exhausted,
our placement approach replaces the partition that is owned
by the executor with the largest memory footprint and oc-
cupies remote memory. R3S aims to balance the amount of
remote memory allocated to the executors in order to avoid
creating stragglers. Finally, given a set of candidate parti-
tions, our approach uses LRU to determine the partition to
replace.

We use the following notation to formally outline our ap-
proach: given Spark executor i, M; is its assigned maximum
amount of local memory; U; is the amount of unused local
memory; L; is the amount of local memory that it uses; R;
is the amount of remote memory that it uses; Q; is the total
amount of memory that it uses. Q; is the sum of L; and R;
as shown in the following equation:

Qi=L;+ R; (4)

When Spark executor ¢ stores an RDD partition, our ap-
proach decides the partition’s storage location as follows:

e If I.; < M;, the partition is stored to local memory.

o If Ly == M; and >, Qi < Y1, Mj, the partition
is persisted to the memory of Spark executor r that is
determined by the following equation:

U’r = m(l.’L‘{U]|_] = 1?2a "‘7n7j # 7’} (5)

o If Ly == M; and > | Q: >= >, M;, the partition
is stored to the remote memory that remotely stores
the data of Spark executor k, which is determined by:

Qr =maz{Q;lj =1,2,...,n} (6)

The data of executor k will be evicted and be stored
to its disk.

Under the first condition of the above three listed ones,
data eviction may be required on local memory. The evicted
data belongs to Spark executor m that is determined by
using Equation 6. In this case, if memory is available in the
cluster, the evicted data is stored on a Spark executor that
is determined by Equation 5. Without available memory,
the evicted data is stored to the disk of Spark executor m.

A workload’s runtime information can also be used to im-
prove the effectiveness of our partition placement scheme.
For example, we can estimate the fetching order of RDDs

Spark Cluster

Host A Host B Host C
Spark Spark Not
Executor Executor Collocated
(a) (b) with Spark
e o v Cluster
RDD
Partitions
— RDD RDD
R3S Partitions | | pag Partitions
Node Node
U} (1

RDD Partitions

Figure 2: An Example of an R3S Deployment

by analyzing the dependency DAG between RDDs from the
Spark scheduler. By knowing the fetching order, we can re-
duce partition fetching time by keeping partitions that will
likely be requested in the near future in local memory. Fur-
thermore, if we can use runtime information to estimate the
memory requirements of a Spark executor for a stage, we can
use this information to reserve local memory at each Spark
executor. Without local memory reservations, a Spark ex-
ecutor may write to a remote location that will later ex-
perience local memory pressure, resulting in eviction of its
data. Our future work includes further exploring the use of
dynamic feedback in our partition placement algorithm.

4. RESOURCE ALLOCATION

Many applications repeat Spark jobs regularly with new
or updated input. For example, an application that aggre-
gates statistical data at the end of each business day per-
forms the same task each time it runs. This provides us with
the opportunity to perform offline analysis to determine the
resource requirements of a job’s different stages. Specifi-
cally, offline analysis can determine the amount of memory
required at each stage to ensure that the vast majority of
RDD partition retrievals are from local and remote memory
instead of from disk.

Given a large budget to execute a job, a sufficient num-
ber of Spark executors, each of which has a fixed alloca-
tion of CPU cores and memory, can be allocated for each
stage to meet the stage’s memory requirements, which is
pre-determined by using offline analysis. Additional Spark
executors can be allocated to further reduce job completion
time. We can determine which stage to add an executor by
determining the marginal job completion time reduction per
dollar (MJCT/$) from adding one executor for each stage,
and choosing the stage with the highest MJCT/$.

In the case where there is insufficient budget to allocate
only Spark executors to meet memory requirements, R3S
storage-only nodes can be allocated in place of executors in
order to reduce cost. However, R3S must satisfy the con-
straint that each stage must have at least one executor. We
use the same MJCT/$ metric to determine which stage to
select, and we allocate storage-only nodes in place of execu-
tors until we meet or come under our budget.

For other applications where historical information is not
available, we can perform online analysis to estimate the
memory and CPU requirements of each stage. The analy-
sis takes into account online system and workload statistics,
such as CPU utilization, data size, and RDD dependencies,
in generating its estimate. R3S uses this estimate to cal-

[Spark Connection Layer J

Persist

RDD
Partitions Fetch
R3S RDD
Storage Scheduler Partitions
[Nessie Connection Layer }

Figure 3: Architecture of an R3S Node

culate the MJCT/$ of both an executor and a storage-only
node.

Another factor that affects MJCT/$ is the cost of an in-
stance. A cloud provider may sell an instance with a large
amount of memory but minimal CPU allocation at a sig-
nificant discount compared to one of its regular instances.
This would encourage the use of storage-only nodes. In-
stance pricing can change rapidly in spot pricing markets, in
which prices change in response to changes in demand. R3S
can reactively take advantage of price volatility by actively
monitoring the spot pricing market to adjust its MJCT/$
estimates.

Allocating storage-only nodes also enables flexible re-
source allocation within a cluster. For example, in a multi-
application cluster, a computation-intensive application may
require a large number of CPUs but only consume a small
amount of memory. Therefore, there is an excess of memory
available that Spark would be unable to completely use since
it cannot allocate memory independently of CPU. Storage-
only nodes in R3S break that dependency, allowing Spark
to take advantage of CPU and memory imbalances in multi-
application clusters.

S. R3S ARCHITECTURE

R3S is an external RDD storage system for Spark. Similar
to Tachyon [9], R3S is a Spark plugin that persists RDDs,
so that they are stored off the JVM heap, which reduces the
GC time. GC time can be significant when processing large
workloads that require hundreds of gigabytes of memory on
each Spark node. However, unlike Tachyon, R3S manages all
of the allotted memory in its deployment as a single memory
pool. This allows RDD partitions to be persisted to remote
memory in R3S. R3S uses Nessie [13] as the backend storage
system for its memory pool.

An R3S deployment consists of a group of R3S nodes,
where each R3S node provides storage for RDD partitions.
An R3S node may or may not be collocated with a Spark
node. Figure 2 illustrates an R3S deployment in a shared
cluster environment, where some R3S nodes are collocated
with the Spark cluster. In this example, Hosts A and B are
two machines that belong to the Spark cluster, whereas host
C does not. R3S nodes I, IT and III are deployed on hosts
A, B and C respectively. Spark executors a and b use R3S
nodes I and II to locally store RDDs. Furthermore, R3S
node 111 is not collocated with any Spark node; nonetheless,
it may be used by other Spark executors to store RDDs. An
RDD partition can be persisted to any of these R3S nodes;
however, a Spark executor does not need to be aware of the
R3S node that its RDD partitions are persisted to.

Figure 3 shows the three main components of an R3S
node:

e Spark Connection Layer (SCL)
e R3S Storage Scheduler (RSS)

e Nessie Connection Layer (NCL).

SCL implements Spark’s RDD storage layer interface. As
RDD partitions are generated, they are sent to the SCL for
persistence. The SCL queries its local RSS instance, which is
responsible for determining the storage location of an RDD
partition. Furthermore, each local RSS instance tracks local
memory usage, where some memory may be used by remote
Spark executors. Each R3S deployment has a master RSS
that is a global scheduler. This master RSS is responsible
for determining where to store RDD partitions, and decid-
ing if eviction of RDD partitions is necessary, which we have
described in Section 3. In order to facilitate global schedul-
ing of RDD partitions, the RSS master requires the memory
usage of each Spark executor at each R3S node. This infor-
mation is acquired by either informing the master once an
RDD partition has been persisted or by having the master
pull information from each local RSS instance.

After determining the RDD partition’s storage node from
the RSS, the SCL forwards the RDD partition to the storage
node’s NCL instance. An R3S node has a single Nessie node,
and it’s NCL instance connects to its own Nessie node. Each
RDD partition is stored as a key-value pair in Nessie, where
the key is its partition identifier. Transferring data over the
network to store RDD partitions does not introduce signif-
icant overhead because data persistence is a non-blocking
operation in Spark. In the future, we plan to have the SCL
forward the RDD partition to a local NCL instance with
the desired location as a parameter. This would enable us
to take advantage of the one-sided RDMA write support in
Nessie.

To retrieve an RDD partition, the SCL forwards the re-
quest to its local instance of the NCL. The NCL retrieves
the RDD partition from Nessie. The RSS is not involved
in RDD partition retrieval as the RDD partition’s location
is maintained by Nessie. Furthermore, the NCL also takes
advantage of Nessie’s one-sided RDMA read operation to
reduce the CPU requirements of fetching an RDD partition
from remote memory.

6. IMPLEMENTATION

We have implemented a prototype of R3S that can be
integrated into Spark v1.5 or higher. Like Tachyon, R3S
connects with Spark as a plugin by implementing Spark’s
EzternalBlockManager interface. To persist RDDs into R3S,
Spark applications just need to specify R3S as the RDD ex-
ternal storage system in their configuration files and use the
corresponding RDD storage level, OFF_HEAP, to persist
RDDs. The RSS master is implemented in Java and runs as
an independent process in our prototype. The RPC commu-
nication between the RSS master and a local RSS instance
uses Apache Thrift [3].

As Nessie is implemented in C++ and a Spark executor
runs in a JVM, the NCL uses Java Native Interface (JNI)
to allow RDD partitions in a JVM to be stored in Nessie.
To reduce the memory-copy overhead of passing a serialized

3 System Initialization &xx1 1 RDD-computation Job &3 51 RDD-fetching Jobs

@
S
15}

7
el
2
8400 | I
8 X 16% Reduction
S300 -
Py
£
= 200
=
§
5100
5 (RS
S R
MDS Tachyon(Memory Only) R3S(Nessie)

(a) 100% RDD Partitions Stored in Local Memory

2800 | =
2
§700 X

e | 29%
i 400 Reduction

MOS MDS(HDD) MDS(SSD) Tachyon(HDD) Tachyon(SSD) R3S(Nessie)

(b) 50% RDD Partitions Stored in Local Memory

Figure 4: Logistic regression benchmark results. MOS and
MDS denote memory-only with serialization and memory
and disk with serialization, respectively.

RDD partition (i.e. a byte array) through JNI, the NCL di-
rectly reads or writes data in JVM memory space by passing
the array’s starting address as a pointer into the JNI code.

7. PRELIMINARY EVALUATION

In this section, we present some preliminary results that
demonstrate the advantages of using R3S to store Spark’s in-
termediate computation data. In particular, our evaluation
focuses on the reduction of job completion time when RDD
partitions are persisted to remote memory. We first intro-
duce our experimental setup. We then describe our logistic
regression workload, which belongs to SparkBench [10]. Fi-
nally, we present the results of our experiments.

7.1 Experiment Setup

Our test environment consists of 4 machines that are con-
nected to a 40 Gbps network. Each machine has two 6-core
Intel E5-2630v2 CPUs. In order to simulate a shared cluster
environment, two machines are set to form a Spark cluster.
We deploy Spark 1.5.1 and HDFS 2.4 on this cluster. Spark
executors run on these two machines, and they are config-
ured to have the same amount of memory for all experi-
ments. The remaining two machines do not belong to the
aforementioned Spark cluster. Instead, these machines run
non-Spark jobs that utilize most of their CPU; however, a
large amount of memory on these machines remain unused.

The benchmark input data, which we describe in detail
in the following section, is stored in HDFS. To maintain
a reasonable execution time, the input data size is 3.2 GB.
From this, our benchmark generates a 5 GB RDD. The RDD
has 5000 partitions, where each partition is about 1 MB. The
benchmark requires less than 40 MB of shuffle data, which
is negligible in terms of memory usage. In our evaluation,
we compare Tachyon (0.7.1) and R3S, where each system is
deployed on all four machines.

7.2 Logistic Regression Benchmark

Logistic regression is widely used as a classifier for data
prediction [7, 10] in machine learning applications. The lo-
gistic regression benchmark begins by pre-processing input
data from HDFS and then storing the output in memory.
Subsequent jobs use the stored data to train a machine learn-
ing model. If we do not limit the number of iterations, the
benchmark finishes after executing 53 Spark jobs. The first
job counts the input data, and the second job pre-processes
the data and stores the output as an RDD. These two jobs
are presented as one RDD-computation job. The remaining
51 jobs read the stored RDD and use it for further training,
which are referred to as RDD-fetching jobs.

Our experiments compare three RDD storage approaches:
R3S, Tachyon and Spark’s memory and disk with serializa-
tion (MDS). Figure 4(a) shows the benchmark’s completion
time when all RDD partitions are stored in the Spark ma-
chines’ local memory. MDS has the longest completion time
due to Java GC overhead in the Spark executors. Both R3S
and Tachyon persist RDDs off the JVM heap of Spark ex-
ecutors, which results in smaller GC overhead. Figure 4(a)
also shows that R3S achieves a shorter job completion time
when compared with Tachyon. This is because Tachyon uses
file streaming to read an RDD partition, which is inefficient
at reading a large number of small RDD partitions.

Figure 4(b) compares Spark’s completion time when us-
ing different RDD storage systems. In this experiment, each
Spark executor persists 50% of its RDD partitions to local
memory, which is approximately 1.25GB. Memory-only with
serialization (MOS) is the slowest RDD storage mechanism
requiring 3371 seconds to complete. Using MOS, RDD par-
titions are dropped after local memory is full. Re-computing
the dropped partitions from the input is slower than fetch-
ing RDD partitions from disk. The benchmark completes in
approximately 40% less time when using an SSD compared
to a hard disk. Storing RDD partitions in remote mem-
ory with R3S results in about 30% reduction in benchmark
completion time when compared to using an SSD.

8. CONCLUSION

This paper introduces R3S, an RDMA-based remote stor-
age system to improve memory utilization across a cluster
by allowing RDD partitions to be stored at remote loca-
tions from its Spark executor and retrieved through high-
performance one-sided RDMA operations. The R3S par-
tition placement approach aims to reduce partition fetch-
ing time for Spark executors by storing partitions in local
memory whenever possible, storing them at remote execu-
tors with the most memory available when local memory
is exhausted, and balancing the memory footprint among
the executors when memory across the cluster is exhausted.
We also introduce storage-only nodes that can efficiently
replace Spark executors in budget-constrained situations.
Compared with Tachyon, our experimental results show that
storing data to remote memory with R3S achieves a 29%
reduction in completion time for a logistic regression bench-
mark.

9. ACKNOWLEDGMENTS

This work is supported by the Natural Sciences and En-
gineering Research Council of Canada. We would like to
thank the anonymous reviewers for their valuable feedback.

We would also like to thank Benjamin Cassell, Jonathan Ma,
Zhenyu Bai for their help with Nessie and the Spark bench-
mark, and Jack Ng for his technical advice on the project.

10. REFERENCES

[1] Apache. Hadoop. https://hadoop.apache.org.

[2] Apache. Spark. https://spark.apache.org.

[3] Apache. Thrift. https://thrift.apache.org.

[4] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In Proceedings of
OSDI. USENIX, 2004.

[5] A. Dragojevi¢, D. Narayanan, O. Hodson, and
M. Castro. Farm: Fast remote memory. In Proceedings
of NSDI. USENIX, 2014.

[6] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,
A. D. Joseph, R. Katz, S. Shenker, and I. Stoica.
Mesos: A platform for fine-grained resource sharing in
the data center. In Proceedings of NSDI. USENIX,
2011.

[7] G. James, D. Witten, T. Hastie, and R. Tibshirani.
An Introduction to Statistical Learning: With
Applications in R. Springer, 2014.

[8] A. Kalia, M. Kaminsky, and D. G. Andersen. Using
rdma efficiently for key-value services. In Proceedings
of SIGCOMM. ACM, 2014.

[9] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and
I. Stoica. Tachyon: Reliable, memory speed storage for
cluster computing frameworks. In Proceedings of
SOCC. ACM, 2014.

[10] M. Li, J. Tan, Y. Wang, L. Zhang, and V. Salapura.
Sparkbench: A comprehensive benchmarking suite for
in memory data analytic platform spark. In
Proceedings of the 12th International Conference on
Computing Frontiers. ACM, 2015.

[11] X. Lu, M. Wasi-ur Rahman, N. Islam, D. Shankar,
and D. Panda. Accelerating spark with rdma for big
data processing: Early experiences. In Proceedings of
the 22nd Annual Symposium on High-Performance
Interconnects. IEEE, 2014.

[12] C. Mitchell, Y. Geng, and J. Li. Using one-sided rdma
reads to build a fast, cpu-efficient key-value store. In
Proceedings of ATC. USENIX, 2013.

[13] T. Szepesi, B. Wong, B. Cassell, and T. Brecht.
Designing a low-latency cuckoo hash table for
write-intensive workloads using RDMA. In Proceedings
of the International Workshop on Rack-scale
Computing, Amsterdam, The Netherlands, 2014.

[14] V. K. Vavilapalli, A. C. Murthy, C. Douglas,

S. Agarwal, M. Konar, R. Evans, T. Graves, J. Lowe,
H. Shah, S. Seth, B. Saha, C. Curino, O. O’Malley,
S. Radia, B. Reed, and E. Baldeschwieler. Apache
hadoop yarn: Yet another resource negotiator. In
Proceedings of SOCC. ACM, 2013.

[15] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and
I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of NSDI. USENIX, 2012.

