Domino: Using Network Measurements to Reduce State
Machine Replication Latency in WANs

Xinan Yan
xinan.yan@uwaterloo.ca
University of Waterloo

ABSTRACT

This paper introduces Domino, a low-latency state machine replica-
tion protocol for wide-area networks. Domino uses network mea-
surements to predict the expected arrival time of a client request to
each of its replicas, and assigns a future timestamp to the request
indicating when the last replica from the supermajority quorum
should have received the request. With accurate arrival time pre-
dictions and in the absence of failures, Domino can always commit
a request in a single network roundtrip using a Fast Paxos-like
protocol by ordering the requests based on their timestamps.

Additionally, depending on the network geometry between the
client and replica servers, a leader-based consensus protocol can
have a lower commit latency than Fast Paxos even without conflict-
ing requests. Domino supports both leader-based consensus and
Fast Paxos-like consensus in different cycles of the same deploy-
ment. Each Domino client can independently choose which to use
based on recent network measurement data to minimize the com-
mit latency for its requests. Our experiments on Microsoft Azure
show that Domino can achieve significantly lower commit latency
than other consensus protocols, such as Mencius, Fast Paxos, and
EPaxos.

CCS CONCEPTS
« Computer systems organization — Reliability.

ACM Reference Format:

Xinan Yan, Linguan Yang, and Bernard Wong. 2020. Domino: Using Network
Measurements to Reduce State Machine Replication Latency in WANS. In
Proceedings of CONEXT 20. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3386367.3431291

1 INTRODUCTION

Many critical infrastructure services use consensus protocols to
replicate their state across geo-distributed nodes, allowing them
to remain available even in the event of a region-wide system
outage. A drawback of state replication is that a majority of the
replicas must receive the same state update request and agree on its
position in the request log before it can be committed, with most
protocols relying on a leader to establish a request ordering. As a
result, a distributed service that modifies its state from more than

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CoNEXT °20, December 1—4, 2020, Barcelona, Spain

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7948-9/20/12...$15.00
https://doi.org/10.1145/3386367.3431291

Linguan Yang
l69yang@uwaterloo.ca
University of Waterloo

351

Bernard Wong
bernard@uwaterloo.ca
University of Waterloo

one location will typically have to wait two wide-area network
roundtrips for each request: one roundtrip for a service node to
send its request to the leader and receive a response, and a second
roundtrip for the leader to disseminate the request to the other
replicas.

Fast Paxos [21] extends Paxos [18, 19] by introducing a fast path
that can, in some cases, reduce the number of wide-area network
roundtrips from two to one by having the service nodes send their
requests directly to all of the replicas. A simple approach for us-
ing Fast Paxos to implement state machine replication is to run a
separate Fast Paxos instance for each position in the request log.
Without a leader or some other mechanism to order the requests,
each replica would have to independently decide which log position
to accept each request. A service node knows its request will be
committed if a supermajority! of the replicas accept the request
at the same position. Unfortunately, replicas may accept concur-
rent requests at different log positions, forcing Fast Paxos to run a
recovery protocol [21] (i.e., the slow path) to choose a request for
each conflicting position. This will cause high latency, especially in
wide-area networks (WANS).

Furthermore, depending on the geographic locations of the clients
and replicas in a WAN, a leader-based replication protocol may have
lower commit latency than Fast Paxos. This is because, in Fast Paxos,
a client has to wait for the responses from at least a supermajority
of replicas while a leader-based protocol requires agreement from
only a majority of replicas.

In this paper, we introduce Domino, a state machine replication
(SMR) protocol that uses network measurements to reduce commit
latency. It supports both Fast Paxos-like consensus and leader-
based consensus in different cycles of the same deployment. Clients
perform periodic network latency measurements to the replicas,
and the replicas also collect network latency data to each other and
return those results to their clients. Each client uses their collected
latency data to independently choose which consensus protocol to
use for their requests.

Unlike in other consensus protocols, when clients use the Fast
Paxos-like consensus in Domino, ordering is not determined by the
request’s arrival time at the servers, but instead by a client-provided
timestamp that corresponds to a unique, empty and uncommitted
log entry. The timestamp indicates when a request should have
arrived at a supermajority of the servers. A request that arrives
at a server after its timestamp will not be counted, although the
protocol may still choose to accept that request if enough other
servers received the request before its timestamp. Because clients
can select unique timestamps corresponding to unique log entries,
Domino can always complete its Fast Paxos-like consensus in a

! A supermajority of 2f + 1 replicas consist of at least [%f‘l +1 replicas, and a common
alternative is 2f + 1 out of total 3f + 1 replicas [21].

https://doi.org/10.1145/3386367.3431291
https://doi.org/10.1145/3386367.3431291
https://doi.org/10.1145/3386367.3431291
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

CoNEXT 20, December 1-4, 2020, Barcelona, Spain

single roundtrip for a request as long as its timestamp has not
expired, and in the absence of failure.

Selecting any sufficiently large timestamp for a request would
offer the same commit latency. However, a timestamp that is too far
in the future would increase execution latency. Although execution
latency can be masked through application-level reordering, exces-
sive execution latency should nevertheless be avoided as they can
introduce user-perceptible artifacts. To address this, when using
Fast Paxos-like consensus, a future timestamp is chosen to repre-
sent the time when the last replica from the supermajority quorum
should have received the request. Given accurate network latency
predictions, this approach ensures that the request is not rejected,
while providing similar execution latency to other consensus pro-
tocols.

This approach introduces a number of challenges. It requires ac-
curate latency predictions. We show, through extensive experiments
performed on Azure, that wide-area network latencies are relatively
stable and can be predicted by keeping only a small history of previ-
ous network measurements. Our fine-grained timestamp-based log
will also introduce many empty log entries, and it is expensive to
have a dedicated replica propose no-op values for these entries. To
reduce this overhead, Domino replicas optimistically accept no-ops
without receiving no-op proposals once a log entry has expired.

This paper makes three main contributions:

e By leveraging network measurements, Domino introduces
a practical way of using Fast Paxos to implement SMR in
WAN:S, where it can commit requests within one network
roundtrip in the common case.

e To achieve low commit latency, Domino uses both a Fast
Paxos-like protocol and a leader-based protocol. Domino
clients can independently choose which to use based on
network measurement data.

e Our experiments on Microsoft Azure show that Domino
achieves significantly lower commit latency than Mencius
and EPaxos.

2 RELATED WORK

Many systems (e.g., [1, 12, 14]) use consensus protocols to repli-
cate their system state. Replicas in these systems are in different
geographic locations to ensure the systems remain available even
in the event of a region-wide failure. One of the most commonly
used consensus protocols is Paxos [18, 19], which requires 2f + 1
replicas to tolerate up to f simultaneous replica failures. A common
way of using Paxos to implement state machine replication is to
store received operations in a log, and have each replica execute
committed operations in log order. Paxos guarantees that replicas
have the same operation committed at each log entry. In the com-
mon case, it requires one network roundtrip for a client to send
its request to and receive a response from a replica. It requires a
second network roundtrip to select an operation for a log entry and
a third roundtrip to enforce consensus on the operation.

To eliminate the roundtrip required to select an operation for
a log entry, Multi-Paxos [30] and Raft [28] adopt a leader to re-
ceive and order clients’ operations. The leader will replicate the
operations and the ordering to other replicas. After the replication
completes, the leader will notify clients that their operations are

352

Yan et al.

accepted. Viewstamped Replication (VR) [23, 27] is a replication
protocol that can provide similar guarantees to Paxos. VR uses a pri-
mary replica to order operations, and it also requires two network
roundtrips to commit an operation.

Fast Paxos [21] can in some cases achieve lower end-to-end
latency than Multi-Paxos by allowing a client to send an operation
to every replica instead of sending it only to the leader. If at least
[% f1+ 1 replicas (i.e., a supermajority) accept the operation at the
same log entry, the client can learn that the operation has been
accepted in just one roundtrip, which is the fast path. However,
if there are concurrent operations, a supermajority may not be
formed for any operation at a log entry. In this case, Fast Paxos runs
a recovery protocol (i.e., the slow path) to choose one operation for
the log entry. Falling back to the slow path will introduce additional
latency.

Generalized Paxos [20] can accept concurrent operations that
have no conflicts in one consensus instance, but it still has to order
conflicting operations. EPaxos [26] allows a client to send an oper-
ation to any replica. It can commit the operation in two network
roundtrips, but it may require an additional network roundtrip to
commit conflicting operations. Furthermore, to achieve its optimal
performance, EPaxos requires an application to specify its definition
of operation interference, which is not feasible for all applications.
By pre-partitioning log entries, Mencius [24] allows each replica to
serve as the leader for one partition of log entries. In both Mencius
and EPaxos, a client will experience at least two WAN roundtrips
to commit an operation if it is not co-located with a replica.

CAESAR [11] is a multi-leader Generalized Consensus proto-
col for WANS . To establish a request ordering, CAESAR requires
a quorum of nodes to agree on the delivery timestamp of an op-
eration. However, if a node receives concurrent conflicting oper-
ations out of timestamp order, it has to wait until it finalizes the
decisions of larger timestamp operations, which results in higher
latency. Gryff [13] introduces consensus-after-register timestamps
to order read-modify-write and read/write operations, leveraging
the advantages of consensus and shared register protocols to re-
duce tail latency. However, it still requires 3 network roundtrips
to commit read-modify-write operations when there are conflicts.
SDPaxos [31] separates ordering from replication. Although repli-
cation is entirely decentralized, it uses a centralized ordering server
to finalize the order of operations, which may be a performance
bottleneck.

NetPaxos [15, 16] proposes to implement Paxos in a software-
defined network with P4 switches. It also introduces an architecture
to achieve agreement in Fast Paxos by requiring network mes-
sages to arrive at replicas in the same order. SpecPaxos [29] and
NOPaxos [22] can achieve low latency by ordering network mes-
sages. However, all of these systems require specialized networking
hardware and cannot be used in wide-area deployments.

3 INTER-DATACENTER NETWORK DELAYS

Modern cloud providers, such as Microsoft Azure [9], AWS [3], and
GCP [8], support private network peering between virtual machines
in different datacenters. In such a private network, network traffic
only traverses the cloud provider’s backbone infrastructure instead
of being handed off to the public Internet, which should reduce the

Domino: Using Network Measurements to Reduce State Machine Replication Latency in WANs

CoNEXT 20, December 1-4, 2020, Barcelona, Spain

@ n 0
E>18 E>90 £ >206
> > 205
T 73 & 88 3 %04
g 7 g 87 2 203

71 86 o
o o 202
2 70 £ 85 £ 201
5 69 5 84 £ 200
S~ 68 I | 1/ [NNVN 0 0 NN NN S 83 S 199
g :z g i --
~ < 3
L 65 “I ‘MHM\ 1 Ihl I IM\]] I \]H \‘\ | H I < 80 ¥ 196
g 64 JLL LA VAR Wt 111 S 79 2 195 |
£ <63 . : ; . ; ; ; g <781 : : : : : : : B <194
= 0 200 400 600 800 1000 1200 1400 = 0 200 400 600 800 1000 1200 1400 z 0 200 400 600 800 1000 1200 1400

Time (1 min) Time (1 min) Time (1 min)
0 1000 2000 3000 4000 5000 0 500 1000 1500 2000 2500 3000 3500 4000 0 1000 2000 3000 4000 5000
Number of Measured Delays per 1 min Number of Measured Delays per 1 min Number of Measured Delays per 1 min
(a) WA (b) PR (c) NSW

Figure 1: Network roundtrip delays from VA

o
o
©

o o o
w n v
N S o

o
o
o

s Hll v MJt ma

12 17.5 23 285 34 395 45 50.5 56
Time (s)

Network Roundtrip Delay (ms)

}uﬂnﬁ

Network roundtrip delays between VA and WA

o
>
©

.5

Figure 2:

~ 100 -»-- Window Size 100ms
£ g0} - Window Size 200ms
% 80} —— Window Size 400ms
“é 70 —— Window Size 600ms
_g 60} ~*-- Window Size 800ms
% 50b " Window Size 1000ms
] pr
& 40
E 30t
‘,6- 20t
O 10t
%10 20 30 40 50 60 70 80 90 100

n-th Percentile Value in Network Measurements

Figure 3: Correct prediction rate

variability of network delays. In this section, we will describe our
network delay measurements between datacenters on Azure, and
show that recent network measurements can be used to estimate
the one-way delays between datacenters.

Our measurements include 6 Azure datacenters in different
global locations, Washington (WA), Virginia (VA), Paris (PR), New
South Wales (NSW), Singapore (SG), and Hong Kong (HK). We
use a Standard_D4 v3 VM instance at each datacenter, and each
instance runs a client and a server. We implement the client and
server in the GO language, and we use gRPC [17] to provide com-
munication between a client and server. Our measurements last for
24 hours. For every 10 ms, a client invokes an RPC request to the
server in every other datacenter. The server returns its timestamp
in its RPC response, and the client records the RPC completion

353

time. The measured delay includes the network roundtrip delay
between the client and server and the RPC processing delay. Since
each VM instance is under light load in our measurements, the RPC
processing delay is negligible compared to the network propagation
delay between datacenters. In the rest of this section, we assume
the measured delay is equivalent to the network roundtrip delay.

Figure 1 shows the network roundtrip delay from VA to WA,
PR, and NSW, respectively. The variance of the network roundtrip
delay is relatively small compared to the minimum measured delay
which is dominated by the network propagation delay. The net-
work roundtrip delays between other datacenters show a similar
pattern in our measurements. We have also measured the network
roundtrip delays between 9 datacenters at different locations in
North America, and the results also show a small variance of net-
work delays between these datacenters. The data traces and the
scripts to parse the traces are publicly available online [4-6].

As shown by our measurements, the network roundtrip delay
between datacenters is relatively stable in most cases. We next look
more closely at whether recent network delay information would
be a good source to estimate the current network roundtrip delay.
Figure 2 shows the distribution of our measured delays from VA to
WA for a 1 min duration starting from the 12th hour in our mea-
surements. Each box in the figure consists of the measured delays
in the past one second, and two adjacent boxes have an overlap of
half a second. The whiskers represent the 5th and 95th percentile
network roundtrip delay. As shown in the figure, the variance of
the network roundtrip delays is small during a short period of time.
Our analysis demonstrates that the network roundtrip delay be-
tween datacenters is relatively stable, and it is possible to predict
the current behaviour of the network based on recent network
measurement data.

Stable network delays are important since Domino clients need
to predict the arrival time of their requests at the replicas when they
uses Domino’s Fast Paxos-like consensus. Clients perform periodic
one-way delay (OWD) measurements to the replicas, and use the
n-th percentile value in the past time period (i.e., window size) to
predict request arrival times. We will describe the details of our
OWD measurement scheme in Section 5.4. As Domino only requires
a request to arrive at a replica before the request’s timestamp to
achieve low commit latency, we consider an arrival-time prediction

CoNEXT 20, December 1-4, 2020, Barcelona, Spain

R2
(Follower)

20 ms

25 ms

R1
(Leader)

R3

35ms (Follower)

Figure 4: Multi-Paxos (30 ms) versus Fast Paxos (35 ms)

to be correct as long as the actual arrival time is equal to or smaller
than the predicted timestamp.

For our data traces from VA to WA, Figure 3 shows the correct
prediction rate using different window sizes and percentile values
for estimating a request’s arrival time. The figure shows that using
the 95th percentile latency with a small window size of one second
is sufficient to achieve a high prediction rate. We further analyze
the effectiveness of our approach across different physical paths
and latencies by breaking down the results by the geographical
regions of the client and server. We find that the correct prediction
rate ranges from 93.86% (NSW to PR) to 94.86% (SG to HK) and is
largely independent of where the client and server are located.

4 IMPACT OF NETWORK GEOMETRY

Depending on the network geometry, some clients may have lower
commit latency by using Fast Paxos than a leader-based protocol,
and some other clients may have the opposite results even in the
absence of conflicting requests. This is because a Fast Paxos client
must receive a response from a supermajority of replicas, whereas a
Multi-Paxos leader only needs to receive a response from a majority
of replicas. Figure 4 shows an example where Multi-Paxos has lower
commit latency than Fast Paxos, even if Fast Paxos successfully
uses its fast path to commit client requests. In this example, the
commit latency for Multi-Paxos is only 30 ms as it only requires
agreement from R1 and R2, while the commit latency for Fast Paxos
is 35 ms as it requires agreement from all three replicas.

In a deployment where replicas are located at every datacenter,
a client for a multi-leader consensus protocol (e.g., EPaxos and
Mencius) can always send requests locally to a replica located in
the same datacenter. These requests can be committed in one WAN
roundtrip and experience lower commit latency than using Fast
Paxos. However, as the number of datacenters increases, fully repli-
cating data to every datacenter can be prohibitively expensive. Also,
the latency to replicate requests would increase with the number
of replicas since a quorum of replicas are needed to complete the
replication. A study [10] from Facebook shows that many of its
applications will maintain three or five data replicas while requests
can originate from datacenters in other geographic regions.

Given our delay measurement data in Section 3, we analyze how
often a client can have lower commit latency by using Fast Paxos
than Multi-Paxos and Mencius. Our analysis consists of 6 Azure
datacenters and uses the average network roundtrip delays between
the datacenters, which are shown in Table 1.

In our analysis, we use three datacenters for the locations of
three replicas, and we use one datacenter for a client. We iterate

354

Yan et al.

WA PR NSW SG HK

VA 67 80 196 214 196
WA - 136 175 163 141
PR - - 234 149 185
NSw - - - 87 117
SG 35

Table 1: Network roundtrip delays (ms)

over all possible locations of the replicas and the client to compare
the commit latency of the three protocols. We randomly select a
replica to be the leader for Multi-Paxos, and we make the client send
its request to the closest replica in Mencius. Our results show that
Fast Paxos has lower commit latency than Mencius and Multi-Paxos
for 32.5% and 70.8% of the cases, respectively.

These results show that the best consensus protocol to use de-
pends on the network geometry. Instead of simply using one proto-
col, Domino adopts both Fast Paxos and a leader-based protocol,
and allows a client to dynamically choose which protocol to use
based on network measurement data.

5 DOMINO

Domino is a protocol for state machine replication (SMR) in WANS.
It aims to achieve low commit latency, where operations are repli-
cated and ordered but may not yet have been executed. Commit
latency is important to most use cases of SMR while execution la-
tency is only important to some use cases. For example, a common
use of SMR is to order and execute operations in logging systems
that modify the state machine, but often have no return values.
For such an operation, a client would only need to wait until it
is committed. The execution of the operation can be performed
asynchronously. Furthermore, execution latency can be masked in
many ways, such as through application-level reordering.

To achieve low commit latency, Domino has two subsystems,
Domino’s Fast Paxos (DFP) and Domino’s Mencius (DM), which
execute in parallel. Each subsystem independently commits client
requests, and Domino applies a global order for all of the com-
mitted requests in both DFP and DM. This section will first de-
scribe Domino’s assumptions, and then it will give the details of
the Domino protocol.

5.1 Assumptions

Domino has the following requirements and usage model assump-
tions.

Fault tolerance. Domino targets the crash failure model. It
requires 2f + 1 replicas to tolerate up to f simultaneous replica
failures.

Inter-datacenter private network. Domino assumes that repli-
cas and clients (i.e., application servers) are connected within an
inter-datacenter private network. This is practical in modern data-
centers. Microsoft Azure, for example, provides global virtual net-
work peering [2] to connect virtual machines across datacenters in
a private network, and the network traffic is always on Microsoft’s
backbone infrastructure instead of being handed off to the pub-
lic Internet. Such a network provides more stable and predictable
network delays between datacenters than the public Internet.

Domino: Using Network Measurements to Reduce State Machine Replication Latency in WANs

Asynchronous FIFO network channels. Domino requires a
FIFO network channel between replicas. To achieve this, Domino
uses TCP as its network transport protocol.

Clock synchronization. Domino assumes that clients and repli-
cas have loosely synchronized clocks. A network time protocol, like
NTP [25], can achieve loosely clock synchronization in WANs. A
severe clock skew will only affect Domino’s performance instead
of correctness.

5.2 Overview of Domino

A deployment of Domino consists of a set of replica servers (i.e.,
replicas) that are running in datacenters. Domino uses a request
log to store client operations that it applies to the replicated state
machine. At a log position, Domino runs one consensus instance
to ensure that the same request is in the same log position across
all replicas. Consensus instances will run in parallel, and they can
use different consensus protocols.

Domino pre-classifies its log positions into two subsets, and
it uses two different subsystems, Domino’s Fast Paxos (DFP) and
Domino’s Mencius (DM) to manage the two subsets, respectively.
DFP uses a Fast Paxos consensus instance (i.e., DFP instance) for
each of its log positions, and DM uses an extension of Mencius for
its log positions. Domino’s log order defines a global order for DFP’s
and DM’s consensus instances. DFP and DM can independently
commit client requests in their log positions.

Domino’s clients are application servers that are also running in
datacenters, and a client can be in a different datacenter from the
replicas. A client uses a Domino client library to propose a request.
In the rest of this paper, a client refers to a Domino client library
unless specified otherwise.

In order to achieve low commit latency, Domino clients estimate
the commit latency of using DFP and DM and select the one with the
lower latency. A client periodically measures its network roundtrip
delays and estimates its one-way delays to the replicas. It will use
its measurements to estimate the commit latency of using DFP and
DM. We will describe the details of choosing DFP and DM later in
Section 5.6.

5.3 Domino’s Fast Paxos

In this section, we introduce Domino’s Fast Paxos (DFP), a practical
way of using Fast Paxos to implement state machine replication.
In order to achieve low commit latency, DFP aims to increase the
likelihood that DFP instances succeed in using the fast path to
commit client requests. DFP makes a client estimate the arrival
time of its request to a supermajority of replicas, and it assigns
this future timestamp to the request. By ordering requests based
on their timestamps, replicas will accept the requests in the same
order, and DFP will commit the requests via the fast path.

Instead of dynamically ordering requests based on their times-
tamps, DFP pre-associates each of its log positions with a real-clock
time (i.e., timestamp) in an ascending order. When a replica receives
a client request, it will try to accept the request by using the con-
sensus instance at the log position that has the request’s timestamp.
DFP by default uses nanosecond-level timestamps, where there will
be one billion log positions within a single second. The probability
that two concurrent requests have the same timestamp is low when

355

CoNEXT 20, December 1-4, 2020, Barcelona, Spain

Client Replica Rt ReplicaR, Replica Ry
(Coord.)
@ propose
(©) accept
® accept
@ accept

ot pathm
succeeds ® commit

Figure 5: DFP’s fast path

the target throughput is only tens of thousands requests per second.
This reduces the likelihood that two requests collide in one consen-
sus instance, in which case DFP has to use the slow path to commit
the requests. As a result, this increases the chances DFP commits
requests via the fast path and achieves low commit latency.

5.3.1 Common Cases. When a client proposes a request, it will
assign the request with a timestamp indicating a DFP’s log position.
The timestamp is the request’s arrival time at a supermajority of the
replicas. We will describe how a client uses network measurements
to estimate its request’s arrival time at replicas in Section 5.4.

The client will send its request and the assigned timestamp
to every replica. Once a replica receives the request, it uses the
timestamp to identify the log position for the request. It will serve
as an acceptor in the consensus instance for that position to accept
the request. DFP makes the client serve as a learner of the consensus
instance. DFP also has a replica, the DFP coordinator, to be the
learner of all of its consensus instances. The DFP coordinator is
the replica that is required by Fast Paxos’ coordinated recovery
protocol [21] to handle request collisions. We will describe the
collision handling later in Section 5.3.3.

As shown in Figure 5, we will use an example to describe the
message flow of a DFP instance when the fast path succeeds. In
our description, we use circled numbers (e.g., (1)) to refer to the
corresponding numbered points in the message flow illustrated in
Figure 5. In the example, there are a total of three replicas. A client
sends ((1) its request to every replica.

Once a replica receives the request, it accepts the request and
sends ((2) - (9)) its acceptance decision to the client and the coor-
dinator. When the client receives the acceptance decision from at
least a supermajority of the replicas, it learns that DFP commits its
request, which costs only one network roundtrip time.

When the coordinator learns the same result as the client, it
commits (not executes) the request in its log. It also asynchronously
notifies ((5)) the other replicas to commit the request. The replicas
will commit the request once they receive the notification.

5.3.2 Filling Empty Log Positions. Since DFP makes clients choose
log positions for their requests, there will be positions that no
client will choose. DFP will fill these empty positions with a special
operation, no-op, which has no effect on the state machine. One

CoNEXT 20, December 1-4, 2020, Barcelona, Spain

approach is to use a dedicated proposer to propose no-ops for
unused log positions. However, it is challenging for the proposer
to determine when to propose a no-op for a log position because
the proposer might have an out-of-date log status, and the no-op
may collide with a concurrent client’s request. Also, it is expensive
to propose a no-op for every empty log position.

To reduce the collisions between no-ops and client requests, DFP
leverages clock time to fill no-ops at empty log positions that clients
are unlikely to use. As a client always uses a future timestamp for
its request, it is unlikely that a replica will receive a request that
has timestamp smaller than its current clock time. When it is time
T, a replica will accept no-ops for all empty positions that have
a smaller timestamp than T without receiving a no-op proposal.
This avoids the need to propose a no-op to every replica since the
no-ops accepted by different replicas are identical.

It will be expensive for a replica to send an acceptance message
to the DFP coordinator for each no-op since there could be many
empty log positions. To reduce the number of messages for no-ops,
DFP borrows ideas from Mencius. In Mencius, a replica uses a log
index to indicate that it has accepted no-ops for all of the empty
log positions until that index. By leveraging FIFO network channel,
the replica only needs to send the index to other replicas.

In DFP, since each log position has a timestamp, a replica uses
its current time, T, to indicate that it has accepted no-ops for all
of the empty log positions that have a timestamp smaller than T.
Because the network channel provides FIFO ordering, when the
replica sends T to the DFP coordinator, it has already notified the
coordinator about all of the accepted client requests at log positions
that have a timestamp smaller than T. Also, the coordinator can
use T to infer the log positions at which the replica has accepted
no-ops.

Instead of using a special message for T, a replica can piggyback
T on any message that it sends to the DFP coordinator. Additionally,
each replica periodically sends the DFP coordinator a heartbeat
message that includes its current time.

5.3.3 Handling Incorrect Estimations and Collisions. In DFP, it is
possible that a client’s request arrives at a replica after its estimated
arrival time due to a number of factors, such as route changes,
network congestion, packet loss, and clock skew. When a request
arrives at a replica later than its timestamp, the replica has already
accepted a no-op at the request’s target log position. This is equiv-
alent to a collision of two concurrent requests at a log position.
Such a collision may cause the fast path to fail, since the fast path
requires a supermajority of replicas to agree on the same request
for a log entry.

When the fast path fails due to request collisions, DFP uses the
coordinated recovery protocol [21] to commit requests. Figure 6
shows an example in which a client request arrives at a replica
later than its timestamp. In this example, the client sends (1) a
request to every replica. Before its request arrives at replica R3, R3
has passed the request’s timestamp and accepts ((2)) a no-op at
the request’s target log position. Although R; and Ry both accept
((3), () the request, there is no supermajority formed because
Rs rejects ((5)) the request. In this case, the client waits for the
slow-path response from the DFP coordinator.

356

Yan et al.
Clienty ReplicaR1 ReplicaR, Replica Ry
(Coord.)
(@) propose A
> ® accept
— > no-op
@ accept A
< (@ accept A
- ® reject A
wait for | ropose A
slow path @p P >
accept A
accept A (@ p © acoept A
slow path i
result commit A:

Figure 6: DFP’s slow path

By following the recovery protocol, the coordinator will use the
slow path to accept ((6), (7)) the request. The coordinator will send
((®) the slow-path result to the client, and it will asynchronously
ask every replica to commit the request.

As DFP uses nanosecond-level timestamps to identify log posi-
tions, it is unlikely that two clients assign the same timestamp for
their requests when the target throughput is tens of thousands of
requests per second. If there is a fixed set of clients, pre-sharding
timestamps among the clients can be used to completely avoid colli-
sions between client requests. For example, with only one thousand
clients, each client can replace the three least significant digits in
its timestamps with its ID. In this case, each client can still send up
to one million requests per second with unique timestamps, which
will be far beyond the target throughput in many systems.

When the set of clients is dynamic, it is possible but rare that
two clients assign the same timestamp for their requests, which
will collide at a log position. In this case, DFP can only commit one
of the requests at the position. If a supermajority of replicas have
accepted a request, DFP will commit the request via the fast path.
Otherwise, DFP will fall back to its slow path to commit one of the
requests by following the recovery protocol. The DFP coordinator
will propose the other request through Domino’s Mencius.

5.4 Estimating Request Arrival Time for DFP

In DFP, a client assigns its request with a timestamp indicating
when the request should arrive at a supermajority of the replicas.
The client will estimate its request’s arrival time at each replica,
and it will set the request’s timestamp to be the the gth smallest
arrival time, where q is the supermajority quorum number.

To estimate a request’s arrival time at a replica, a client will add
its current time and its predicted network one-way delay (OWD) to
the replica. A naive approach to predict the OWD is to take half of
a network roundtrip time (RTT). However, in networks where the

Domino: Using Network Measurements to Reduce State Machine Replication Latency in WANs

from\to VA WA PR HK SG NSwW
VA - 12.11 7.82 3449 34.64 49.51
WA 5.36 - 489 29.15 27.87 38.05
PR 9.42 12.31 - 329 33.74 44.29
HK 9.76 3.08 2.34 - 452 22.22
SG 5.79 3.25 5.42 6.44 - 21.29
NSW | 234397 700.7 105.86 48.7 20.38 -

Table 2: 99th percentile misprediction value (ms) by using
half-RTTs

from\to | VA WA PR HK SG NSW
VA - 5.26 542 5.12 6.24 5.72
WA 5.24 - 436 4.74 5.83 5.8
PR 55 458 - 5.03 6.15 545
HK 531 5.09 4.61 - 594 542
SG 586 5.62 571 591 - 5.9
NSW 5.25 451 431 497 5.87 -

Table 3: 99th percentile misprediction value (ms) by using
Domino’s OWD measurement technique

forward and reverse paths between a client and replica are mostly
disjoint, this approach may significantly under or over estimate
the request arrival time at the replica. The request may also arrive
at a replica later than its timestamp due to clock skew, or when a
replica experiences a large request processing delay.

To improve the estimation accuracy of a request’s arrival time
at a replica, we propose to use both network measurements and
replicas’ time information to predict OWDs. Specifically, when a
replica responds to a client’s probing message, it piggybacks its
current timestamp on the response. The client will calculate the
OWD to the replica by taking the difference between the replica’s
timestamp and the probing message’s sending timestamp. It will
predict the request arrival time to the replica by taking the n-th
percentile of the OWD values that it collected in the past time
period.

By using the data traces from Azure that we described in Sec-
tion 3, we compare the arrival-time prediction accuracy between
using half-RTTs and our timestamp-based approach to estimate
OWDs. In our analysis, we estimate a request’s arrival time by using
the 95th percentile value from the calculated OWDs in the last one
second. We only consider requests that arrive at replicas after their
timestamps since DFP may need to fall back to its slow path to com-
mit these requests. We define a request’s misprediction value as the
difference between its estimated arrival time, and the actual arrival
time at the replica. Table 2 and Table 3 show the 99th percentile mis-
prediction value by using half-RT Ts and our approach, respectively.
The results are broken down by the geographical regions of the
endpoints. Our approach has a 99th percentile misprediction value
of up to 6.24 ms, compared to more than 2 s when using half-RTTs.
Even discounting this possible outlier for the half-RTT approach,
the 99th percentile misprediction value to NSW from any other
region is still more than 21 ms.

To accurately predict a request’s arrival time at a replica, we
need to account for both the OWD and clock skew between the

357

CoNEXT 20, December 1-4, 2020, Barcelona, Spain

client and replica. However, instead of separating the two factors,
our arrival time measurements include both network delays and
clock skew between a client and replica, and we use our previous
arrival time measurements to predict the current arrival time of a
request at a replica. Therefore, stable clock skew should not affect
our arrival time prediction accuracy.

In order to account for the misprediction values shown in Table 3
and other external factors, such as network congestion and packet
loss, a client can artificially increase the request timestamps by a
fixed amount. For example, a client can increase its request times-
tamp by 8 milliseconds to account for the maximum 99th percentile
misprediction value (6.24 ms) found in our data trace. This will
not increase DFP’s commit latency since each replica accepts the
request immediately after receiving the request. However, using a
large additional delay will increase the execution latency, which
we will describe later in Section 5.7.

Furthermore, if a client’s requests are frequently committed via
DFP’s slow path for an extended period of time, the client can
switch over to using Domino’s Mencius (DM) to reduce the commit
latency. Part of our future work is to design a feedback control
system that monitors DFP’s fast path success rate and have clients
adaptively adjust their request timestamps or switch between DFP
and DM.

5.5 Domino’s Mencius

Depending on the network geometry, some clients may have lower
commit latency by using a leader-based protocol than using DFP.
To achieve low commit latency for these clients, Domino introduces
Domino’s Mencius (DM), a multi-leader protocol that is a variant of
Mencius. DM runs in parallel with DFP, and they manage different
subsets of the log positions in Domino’s request log. Domino makes
a client choose to use DFP or DM in order to achieve low commit
latency.

DM pre-shards its log positions to associate each replica with a
different set of the positions. A replica will serve as the (DM) leader
of the consensus instances for its associated log positions. When
a client uses DM, it sends its request to a DM leader, which will
accept the request to one of its associated empty log positions.

The log positions of DM and DFP are interleaved in Domino’s
request log. When few clients use DM, there will be empty DM
positions between committed DFP positions. DM should also fill
no-ops at empty log positions at the same rate as DFP. To achieve
this, Domino arranges its log positions as follows. Between any
two adjacent DFP log positions, there is a DM log position that is
associated with each DM leader. Domino also pre-associates these
DM log positions with the same timestamp as the DFP log position
that is immediately after them. When it is time T, a DM leader will
fill no-ops at all of its associated log positions that have a timestamp
smaller than T. Each DM will piggyback T on its periodic heartbeat
message to every other replica.

In DM, a client simply sends its request to a DM leader with-
out assigning a timestamp for the request. Instead, DM delays the
timestamp assignment at the leader. When the leader receives the
request, it assigns the request with a future time indicating when
it should have replicated the request to a majority of the replicas.

CoNEXT 20, December 1-4, 2020, Barcelona, Spain

The leader will use network measurements to predict this replica-
tion latency, which we will describe in Section 5.6. The leader will
add its current time and its predicted replication latency to assign
a timestamp to the request, and it will accept the request to the
corresponding log position. The leader will ask other replicas to
accept the request. Once a majority of the replicas (including the
leader) accept the request, the leader will commit the request in the
log and notify the client and the other replicas.

5.6 Choosing between DFP and DM

In Domino, a client measures the roundtrip time to the replicas
in order to estimate the commit latency of DFP and DM. It will
then use the subsystem that has a lower estimated commit latency.
A Domino client will periodically send probing messages to each
replica to measure the network roundtrip time and estimate one-
way delay. By default, it will use the 95th percentile roundtrip time
from measurements collected within the last second to estimate
commit latencies.

With the delays to each replica, the potential commit latency
of using DFP will be the network roundtrip delay to the furthest
replica in the closest supermajority of the replicas. We use g to
denote the supermajority quorum number, which is f% f1+1out
of total 2f + 1 replicas. The client sorts its roundtrip delays to the
replicas, where D; denotes the ith lowest roundtrip delay. Therefore,
the estimated commit latency of using DFP, Latprp, will be Dg.

To estimate DM’s commit latency, the client needs to know L,
which denotes the replication latency when replica r is the leader,
for each replica. To predict L,, replica r estimates its delay to every
other replica in the same way as a client, and sets the network delay
to itself to be zero. The replica sorts its roundtrip delays to every
replica, and L, will be Dy, where m is the majority quorum number
(i.e., f + 1). Each replica will piggyback its estimated latency for
replication on the reply to the client’s probing messages.

On the client side, the estimated commit latency of using DM,
Latppyr, will be min{E, + L, }, where E, is the network roundtrip
delay to replica r, and r = 1,2,..., 2f + 1. The client will compare
the estimated commit latency of using DFP and DM, and it will use
the one with the lower commit latency. If the client decides to use
DM, it will send its requests to the replica that achieves Latpyy.

In Domino, probing messages can be piggybacked on any other
messages between clients and replicas. However, by having each
client independently measure network delays, the number of prob-
ing messages will increase with the number of clients. If there
are many clients in one datacenter, we can reduce the number of
probing messages by having one dedicated proxy to measure and
estimate the network delays to replicas. A client (or a replica) in
the datacenter can query the proxy for delay estimation. In this
case, a proxy that is not co-located with a replica will send a total
of (2f + 1)R probing messages per second, where R is the probing
rate. A proxy that is co-located with a replica will send total 2fR
probing messages per second to the other replicas.

5.7 Executing Client Requests

Domino will execute committed requests in their log order. Al-
though Domino can commit requests at different log positions in
parallel, Domino will only execute a committed request once it has

358

Yan et al.

committed and executed requests (including no-ops) at all of the
previous log positions.

As replicas follow wall clock time to fill no-ops at empty log
positions, they might not be able to execute a committed request
until the time passes the request’s timestamp because of empty log
positions before that timestamp. As a result, in DFP, if a client uses
a large additional delay to increase its request timestamp, this delay
will increase the execution latency of this request. However, using
a small additional delay (e.g., a couple of ms) will only introduce
negligible execution delays compared to the propagation delay in
WAN:S. Also, this could effectively reduce the delays caused by
DFP’s slow path, which could be hundreds of ms.

Furthermore, in DFP, replicas wait for the coordinator’s notifi-
cation to commit a request at a log position. This may introduce
delays for a replica to execute requests at the following DM log
positions, which it has committed earlier. Making every replica be
a learner in DFP will reduce this delay.

5.8 Handling Failures

Domino uses one consensus instance at each log position. The
consensus protocol Domino uses for each instance ensures that it
selects the same request across all working replicas even with up to
f replica failures. As Domino statically partitions the log for DFP
and DM, DFP and DM independently manage their log partitions
and handle their failures. The failure handling in DFP and DM is
the same as the failure handing in Fast Paxos [21] and Mencius [24],
respectively.

When there is a replica failure, by following the failure handling
protocol in [24], DM will select one of the remaining replicas to
manage the log positions that are associated with the failed replica.
In DFP, when there are f replica failures, the number of remaining
replicas is insufficient to form a supermajority. In this case, DFP can-
not use the fast path to commit client requests although it can still
continue to commit requests by falling back to the slow path [21].
Additionally, Domino clients will not receive replies from the failed
replicas for their probing messages. The clients will predict large
network delays to these replicas after a timeout, and will use DM
instead of DFP to achieve lower commit latency.

6 IMPLEMENTATION

We have implemented a prototype of Domino in the GO language,
which consists of approximate 6 thousand lines of code and is
publicly available online [6]. We use gRPC [17] to implement the
network I/O operations between clients and servers (i.e., replicas),
including the network delay measurements. We do not implement
fault tolerance in our prototype.

Since Domino has many empty log positions to store no-ops,
this would cost significant amount of storage space. To reduce the
storage overhead, we compress its continuous no-op log entries
into one entry in both DFP and DM by using a binary tree data
structure for uncommitted log entries. We use a list-based data
structure to store the continuous committed log positions from the
beginning of the log, and we remove the positions with no-ops to
further reduce storage cost.

We have also implemented a state machine replication proto-
col that uses standard Fast Paxos under the same implementation

Domino: Using Network Measurements to Reduce State Machine Replication Latency in WANs

TX CA IA WA WY IL QC TRT
VA | 27 59 31 67 46 26 38 29
TX | - 33 22 42 23 30 51 43
CA| - - 41 23 24 48 67 59
A | - - - 3 14 8 32 22
WA| - - - - 21 43 68 57
WY| - - - - - 24 46 36
L|- - - - - - 23 14
oc| - - - - - - - 1

Table 4: Network roundtrip delays (ms) in NA

framework of Domino. We will refer this protocol as Fast Paxos in
our evaluation.

7 EVALUATION

In our evaluation, we compare Domino, Fast Paxos [21], Men-
cius [24], EPaxos [26], and Multi-Paxos [30]. We use the open-
source implementation of Mencius, EPaxos, and Multi-Paxos in [7,
26]. Our evaluation consists of three main parts:

(1) Experiments on Microsoft Azure compare the commit la-
tency and the execution latency of the different protocols.

(2) Microbenchmark experiments demonstrate that Domino re-
sponds to network delay variance in order to achieve low
commit latency.

(3) Experiments within a private computer cluster compare the
peak throughput of the different protocols.

7.1 Experimental Settings

Our evaluation mirrors the workload from EPaxos [26], where the
state machine is a key-value store, and a client only performs write
operations. Such a workload represents applications that only repli-
cate operations that change the replicated state. An example would
be a logging system that mostly processes write operations. Fur-
thermore, many applications handle reads outside of the replication
protocol by reading data directly from a replica instead of ordering
reads together with writes. This optimization can improve read
performance at the cost of potentially reading stale data. There-
fore, from the perspective of the replication protocol, workloads
from applications that employ this type of read optimization are
effectively write-only.

Our experiments use the following default settings, unless spec-
ified otherwise. Our workload consists of one million key-value
pairs. The size of a key or a value is 8 B, and a request’s size will be
16 B, which is the same as the request size in [26]. In each experi-
ment, replicas are selected from a fixed set of datacenters. A client
is selected from the same fixed set of datacenters and does not have
to be co-located with a replica. Each client sends 200 requests per
second. The requests select keys based on a Zipfian distribution,
where the alpha value is 0.75.

In Domino, a client (or a replica) periodically sends a probing
request to every (other) replica for measuring network delays. The
probing interval is 10 ms in our experiments. A replica also sends a
heart beat to other replicas every 10 ms, which can be piggybacked

359

CoNEXT 20, December 1-4, 2020, Barcelona, Spain

—— Fast Paxos 1 client - Multi-Paxos 1 client
---- Fast Paxos 2 clients —— Multi-Paxos 2 clients
O]:ék — :,'._._.. :,>>,
I i
L 0.8 £ :’1
a [H !
© 0.6 i !
0.5 7 it !
0.4 i ;
I ;
0.2 ! !
] i !
0.0 . . A . H L R
0 20 40 60 80 100 120 140

Commit Latency (ms)

Figure 7: Fast Paxos versus Multi-Paxos

on the probing messages. Furthermore, a client (or a replica) esti-
mates its delay to a replica as the 95th percentile delay in its probing
results within the last time period, i.e., the window size. The win-
dow size is 1 s by default. We have measured Domino’s commit
latency with different probing intervals (from 5 ms to 100 ms) and
window sizes (from 0.1 s to 2.5 s). We find that Domino’s commit
latency is not sensitive to these parameters in our deployments
on Azure. For example, a 5 ms probing interval has a marginally
lower 99th percentile commit latency than a 100 ms interval, but
the median and 95th percentile commit latency for both probing
intervals are nearly identical.

In our experiments, by default, each Domino client introduces
no additional delay to increase its request timestamps. For Mencius
and EPaxos, a client always sends its requests to the closest replica
that is pre-configured based on our network delay measurements.

Our evaluation runs every experiment 10 times. Each experiment
lasts 90 s, and we use the results in the middle 60 s. We combine the
results from the 10 measurements for CDF and box-and-whisker
figures. For figures that have error bars, we use the average result
from the measurements, and the error bar is a 95% confidence
interval.

7.2 Experiments on Microsoft Azure

We deploy Domino, Fast Paxos, Mencius, EPaxos, and Multi-Paxos
on Microsoft Azure to evaluate their commit latency and execution
latency. Our deployment uses the Standard_D4_v3 VM instance
that has 4 vCPUs and 16 GB memory, and an instance runs one
client or one server (i.e., one replica).

To evaluate the performance of the protocols under different
locations of datacenters in WANSs, our experiments consist of two
settings, North America (NA) and Globe. NA has 9 datacenters in
North America, which are Virginia (VA), Texas (TX), California
(CA), Iowa (IA), Washington (WA), Wyoming (WY), Illinois (IL),
Quebec City (QC), and Toronto (TRT). Globe has 6 datacenters that
are globally distributed, which include VA, WA, Paris (PR), New
South Wales (NSW), Singapore (SG), and Hong Kong (HK). Table 4
and Table 1 (in Section 4) show the average network roundtrip
latency between datacenters for NA and Globe, respectively.

We first show that Fast Paxos [21] could experience high latency
when there are only a small number of concurrent clients. Because
of the high latency of Fast Paxos, we will focus on comparing
Domino with Mencius [24], EPaxos [26], and Multi-Paxos [30] in
the rest of our evaluation.

CoNEXT 20, December 1-4, 2020, Barcelona, Spain Yan et al.
ool e oled ——— ole : —
i ! P I f |
[-1] ' 0.8 ;i p 0.8 b
! r E a
w 0.6 g7 - w 0.6 i - w 0.6 :
8 0.5 i —— Domino 8 0.5 —— Domino 8 0.5 —— Domino
0.4 _J!'— ----- Mencius 04r [e Mencius 04r F G0 - Mencius
- EPaxos | | 7 & e EPaxos -~ EPaxos
02 ——= Multi-Paxos 02 ——- Multi-Paxos 02 & ——- Multi-Paxos
009 100 150 200 0.9 100 150 200 0.0 100 200 300 400 500

Commit Latency (ms)

(a) NA with 3 replicas

Commit Latency (ms)

(b) NA with 5 replicas

Commit Latency (ms)

(c) Globe with 3 replicas

Figure 8: Commit latency on Azure

using p50th in network measurements
using p75th in network measurements
using p90th in network measurements |
using p95th in network measurements ~
using p99th in network measurements

4001

300

30E08

200

100

2 4 8
Additional Delay (ms)

12

99th Percentile Commit Latency (ms)

Figure 9: 99th percentile commit latency

7.2.1 Fast Paxos Commit Latency. This section compares Fast Paxos
and Multi-Paxos when there are a small number of clients. In this
experiment, we use 4 datacenters, WA, VA, QC, and IA from our
NA setting. We deploy 3 replicas in WA, VA, and QC, respectively.
WA hosts the Fast Paxos coordinator (for the slow path) and the
Multi-Paxos leader.

We first run one client in IA to evaluate the commit latency of
Fast Paxos and Multi-Paxos. Figure 7 shows that Fast Paxos can
achieve approximately 65 ms lower median commit latency than
Multi-Paxos when there is only one client. This is because Fast
Paxos always uses its fast path to commit requests when there
are no concurrent clients. We also run two clients in IA and WA,
respectively, to compare the two protocols. As shown in Figure 7,
when there are two concurrent clients, Fast Paxos has higher com-
mit latency than Multi-Paxos. In this experiment, the two clients’
requests arrive at replicas in different orders, and Fast Paxos has to
use its slow path to commit requests, which causes high latency. In
Multi-Paxos, the two clients experience different commit latency
because they have different network delays to the leader. The client
that is co-located with the leader in WA has an average of approx-
imate 65 ms commit latency, while the other client in IA sees an
average of about 100 ms commit latency.

Although Fast Paxos can achieve low latency when there is a
single client, our experiments show that Fast Paxos would fall back
to its slow path and experience high latency compared to Multi-
Paxos even if there are only a small set of concurrent clients in
different datacenters. In the rest of our evaluation, we show that
Domino can still achieve low commit latency for concurrent clients
in different datacenters.

360

7.2.2 Domino Commit Latency. To compare the commit latency
of Domino with other protocols, we first use our NA setting with
9 datacenters, and each datacenter runs one client. This setting
represents applications that are deployed within a geographical
region or a continent.

Figure 8 (a) shows the commit latency when there are 3 replicas
in WA, VA, and QC, respectively, in which WA hosts the Multi-
Paxos leader and the Domino’s Fast Paxos coordinator (for the slow
path). Domino achieves the lowest commit latency in the median
(48 ms) and the 95th percentile (70 ms) compared with EPaxos
(64 ms and 87 ms), Mencius (75 ms and 94 ms), and Multi-Paxos
(107 ms and 134 ms). This is because 5 out of the 9 clients decide to
use DFP, and Domino can commit their requests via the fast path
in most cases, which only requires one network roundtrip. The 4
clients in WA, VA, QC, and TRT choose to use DM because they are
either co-located with a replica in a datacenter or very close to a
replica, and they will have lower commit latency by using DM than
DFP in Domino. EPaxos has higher commit latency than Domino
because every client has to wait for two network roundtrips to learn
that its request is committed. Mencius has higher commit latency
than EPaxos because a replica delays committing a request at a
consensus instance (not executing yet) until it commits all previous
instances. Multi-Paxos has the highest commit latency out of the
four protocols since clients have to send their requests to the leader
instead of a close replica.

Also, we compare the commit latency of the four protocols when
there are 5 replicas. We extend the replica settings by adding two
replicas in CA and TX, respectively. Figure 8 (b) shows that Domino
can still achieve the lowest commit latency at the median and the
95th percentile out of the four protocols. In this setting, 5 clients
are co-located with replicas in a datacenter, and they use DM. The
other 4 clients use DFP, and Domino can commit their requests via
the fast path in most cases. Our experiments show that it is rare
that the fast path fails in Domino, where a client’s request arrives
at replicas later than the predicted time, and Domino has to use a
slow path to commit the request.

We further evaluate the four protocols when datacenters are
globally distributed. This represents applications that have global
users and are deployed in datacenters in different continents. In
this experiment, we use the Globe setting with 6 datacenters. Each
datacenter runs one client. There are 3 replicas in WA, PR, and
NSW, where WA hosts Domino’s Fast Paxos coordinator and the
Multi-Paxos leader.

Domino: Using Network Measurements to Reduce State Machine Replication Latency in WANs

CoNEXT 20, December 1-4, 2020, Barcelona, Spain

n
£ 400
ol e~ ol P —— -
g i 7 S
08 0.8 1 §2oo [E_‘ oo oo
1
596 . 506 i : 5
O 0. —— Domino-8ms - O 0. o —— Domino-8ms - F=}
0.4 ---- Mencius 0.4 (_) /U R Mencius §100
0.2 EPaxos 0.2 }' EPaxos X
: i ——- Multi-Paxos : o —— Multi-Paxos 061 3 4 & 12 16 24 36
D i A
005 1600 200 300 400 500 005 500 400 600 800 Additional Delay (ms)

Execution Latency (ms)

(a) Zipfian alpha = 0.75

Figure 10: Execution latency on Azure

Figure 8 (c) shows the four protocols’ commit latency with our
Globe setting. Domino has lower commit latency than the other
three protocols from the median to the 95th percentile. For example,
Domino achieves approximate 86 ms lower commit latency than
EPaxos at the 95th percentile. This is because the 3 clients in VA,
SG, and HK choose to use DFP, and Domino can commit their
requests via the fast path in most cases. Mencius has higher 95th
percentile commit latency than Multi-Paxos because of unbalanced
loads across replicas. Domino has similar commit latency to EPaxos
below the median. This is because half of the clients are co-located
with replicas, and they choose to use DM, which has lower commit
latency than DFP. In the rest of our experiments on Azure, we will
use the client and replica settings in Figure 8 (c).

We also evaluate Domino’s commit latency by using different
percentile values from network measurements to estimate network
delays, and using additional delays to increase DFP request times-
tamps. As shown in Figure 9, when there is no additional delay,
using a higher percentile value from network measurements can
achieve lower 99th percentile commit latency. This is because a high
percentile delay increases the probability that a request arrives at
replicas before its timestamp, and Domino will commit the request
via the fast path. The figure also shows that increasing DFP request
timestamps by a fixed amount can also reduce the 99th percentile
commit latency.

Although increasing timestamps can reduce the probability that
Domino uses its slow path, and it introduces no delays to commit
requests via the fast path, using an unnecessary large timestamp
could introduce delays to the execution latency.

7.2.3 Execution Latency. In this experiment, when a Domino client
uses DFP, it increases its request timestamp by 8 ms to reduce ex-
ecution latency, unless specified otherwise. This is because our
analysis in Section 5.4 shows that the 99th percentile mispredic-
tion value for request arrival time at replicas is up to 6.24 ms in
this setting. Figure 10 (a) shows the execution latency of different
protocols when client requests have few conflicts. As shown in the
figure, at label (1), about one third of Domino’s requests have higher
execution latencies than the other three protocols. This is because
a Domino replica executes committed requests following the times-
tamp order, and Domino may delay executing a DM-committed
request after learning the commit of a previous request using DFP.
At label (2), EPaxos has the lowest execution latency since it can
execute requests out of order when request conflicts are rare. Fi-
nally, at label (3), Domino has the lowest 95th execution latency

361

Execution Latency (ms)

(b) Zipfian alpha = 0.95

Figure 11: Impact of additional de-
lays (for increasing DFP request times-
tamps) on execution latency

among the four protocols because Domino has a high success rate
of committing requests via the fast path. Correspondingly, Mencius
experiences a high 95th execution latency because of its execution
delay for concurrent requests. EPaxos has higher 95th execution
latency than Domino and Multi-Paxos because of its delays for exe-
cuting conflicting requests. Multi-Paxos’ execution latency largely
depends on its commit latency, and it experiences higher 95th exe-
cution latency than Domino.

We further evaluate the execution latency of the four protocols
by increasing the amount of contention between requests. With
Zipfian alpha increasing from 0.75 to 0.95, Figure 10 (b) shows
that, at label (4), EPaxos experiences significantly higher execution
latency. Request contention has no effect on Domino and Multi-
Paxos because they execute committed requests in the log order.
As shown at label (5), the contention has a small effect on Mencius
because of its out-of-order execution.

Furthermore, we evaluate the impact of introducing additional
delays (for increasing DFP request timestamps) on Domino’s execu-
tion latency, as shown in Figure 11. In the figure, the middle line in
a box is the median execution latency, and the whiskers show the
5th and 95th percentile execution latency, respectively. When there
is no additional delay, Domino would experience higher execution
latency than using small additional delays to increase DFP request
timestamps. This is because a DFP request may arrive at a replica
later than the estimated time, and DFP may use the slow path to
commit the request. As Domino interleaves DFP and DM log posi-
tions, a DFP slow-path committed request will delay the execution
of its following requests in timestamp order. Using a small delay
to increase DFP request timestamps will significantly reduce the
execution latency because it decreases the likelihood that Domino
uses the slow path. However, using a large delay will increase the
overall execution latency. As shown in the figure, by increasing the
additional delay from 8 ms to 36 ms, the median execution latency
increases by about 23 ms.

7.3 Microbenchmark Experiments

As the network environment on Microsoft Azure is relatively stable,
we use microbenchmark experiments with emulated network delays
to evaluate how Domino responds to network delay variance. We
run our microbenchmark experiments in our private computer
cluster, where each machine has 12 CPU cores and 64 GB memory. In
our experiments, we use the Linux traffic control utility to emulate
artificial network delays between clients and replicas.

CoNEXT 20, December 1-4, 2020, Barcelona, Spain

_.100 P \‘
a] '.
= 80 frmmmmmmmmeen / \
9 { 3 '
S 60p--~---m-mmm-- ! (3) _
< (2)
3 40
=
£ (1)
§ 20 : .
o — Domino ----- Mencius
% 10 20 30 40 50
Time (s)
(a) Between a client and replica
) !
£®0] (6) '.
?60 (4) i(5) J—___
g
8 a0
=
€
€20
S —— Domino ----- Mencius
% 10 20 30 40 50
Time (s)

(b) Between replicas

Figure 12: Change of network delays

We evaluate how a Domino client adaptively chooses between
DM and DFP based on its network measurements in order to achieve
low commit latency. In this experiment, there are three replicas
and one client, and we emulate a network environment where the
network delay between a client and a replica (or between replicas)
could significantly change, e.g., due to a routing change. To improve
the clarity of the figures, the client only sends one request per
second. Experiments at higher request rates show similar results.
Also, we only show Mencius in our figures as other protocols have
similar performance to Mencius in this specific setting.

We first set the network roundtrip delay to be 30 ms between any
two nodes. There is one replica, R, which is the pre-assigned coordi-
nator for the client in Mencius. In the beginning, at label (1), Domino
has lower commit latency than Mencius because the client chooses
to use DFP. At about 15 s, i.e., label (2), the network roundtrip delay
between the client and R changes to 50 ms. In this case, the latency
of both Domino and Mencius increases. Mencius could achieve
lower latency (60 ms) than the 80 ms latency in the figure if it
could detect the delay change and use a different coordinator. The
Domino client keeps using DFP as it has lower latency (50 ms) than
using DM. At label (3), the roundtrip delay between the client and
R increases to 70 ms. The Domino client begins to use DM, which
has lower commit latency (60 ms) than using DFP (70 ms). It uses a
DM leader other than R in this case.

Figure 12 (b) shows that Domino also responds to network delay
changes between replicas. We change the initial settings such that
the network roundtrip delay between the client and a replica (other
than R) is 70 ms. In this setting, at label (4) in the figure, Domino
and Mencius have the same commit latency in the beginning as
DM is preferable to DFP. At label (5), the network roundtrip delay

362

Yan et al.
T
c
it
© 60000
(%]
-
]
)
$ 40000
o
g
520000
o
ey
(=]
=1
g 0 : : :
-E Domino Mencius EPaxos Multi-Paxos

Figure 13: Peak throughput with 3 replicas

between R and both of the other two replicas, M and N, increases
to 60 ms. Domino has lower latency than Mencius since the client
uses M or N as the DM leader. Later at label (6), the roundtrip delay
between M and N increases to 60 ms. Domino begins to use DFP
which has lower commit latency than using DM.

7.4 Experiments within a Cluster

We evaluate the throughput of Domino by running experiments
within our private computer cluster due to the expenses of using
Microsoft Azure. In the cluster, each machine has 12 CPU cores and
64 GB memory, and the machines are connected through a 1 Gbps
network switches. In our experiments, each replica runs on a single
machine.

Figure 13 shows the peak throughput of Domino, Mencius, EPaxos,
and Multi-Paxos, when there are three replicas. Domino can achieve
a peak commit throughput of about 65K requests per second (rps),
which is comparable to Mencius (56K rps) and EPaxos (57K rps).
Domino has higher throughput than Mencius because our imple-
mentation has more parallelism between its I/O operations and
computation. Multi-Paxos has the lowest peak throughput (36K rps)
among the four protocols because all client requests have to go to
the leader.

8 CONCLUSION

In this paper, we have presented Domino, a low-latency state ma-
chine replication protocol in WANs. Domino uses network mea-
surements to make its Fast Paxos-like consensus protocol commit
client requests in one network roundtrip in the common case. It
also runs a leader-based consensus protocol in parallel in the same
deployment, and allows a client to use network measurement data
to decide which consensus protocol to use in order to achieve low
commit latency. Our experiments on Microsoft Azure show that
Domino can achieve lower commit latency than other protocols,
such as Mencius and EPaxos.

ACKNOWLEDGMENTS

We would like to thank our shepherd and the anonymous reviewers
for their valuable feedback. We would also like to thank Srinivasan
Keshav and Kenneth Salem for their comments on Domino’s pro-
tocol design. This work was supported by the Natural Sciences
and Engineering Research Council of Canada (NSERC), Canada
Foundation for Innovation, Ontario Research Fund, and a grant
from the Waterloo-Huawei Joint Innovation Lab.

Domino: Using Network Measurements to Reduce State Machine Replication Latency in WANs

REFERENCES

(1]

[12]

[13]

2019. CockroachDB. https://github.com/cockroachdb/cockroach.

2019. Virtual Network Peering in Microsoft Azure. https://docs.microsoft.com/en-
us/azure/virtual-network/virtual-network-peering-overview.

2020. Amazon AWS. https://aws.amazon.com/.

2020. Data Trace for Inter-Region Latency on Azure for the Globe Set-
ting. https://rgw.cs.uwaterloo.ca/BERNARD-domino/trace-azure-globe-6dc-24h-
202005170045-202005180045.tar.gz.

2020. Data Trace for Inter-Region Latency on Azure for the NA Set-
ting. https://rgw.cs.uwaterloo.ca/BERNARD-domino/trace-azure-na-9dc-24h-
202005071450-202005081450.tar.gz.

2020. Domino. https://github.com/xnyan/domino.

2020. EPaxos. https://github.com/efficient/epaxos.

2020. Google Cloud Platform. https://cloud.google.com/.

2020. Microsoft Azure. https://azure.microsoft.com.

Muthukaruppan Annamalai, Kaushik Ravichandran, Harish Srinivas, Igor
Zinkovsky, Luning Pan, Tony Savor, David Nagle, and Michael Stumm. 2018.
Sharding the Shards: Managing Datastore Locality at Scale with Akkio. In OSDL
Balaji Arun, Sebastiano Peluso, Roberto Palmieri, Giuliano Losa, and Binoy
Ravindran. 2017. Speeding up Consensus by Chasing Fast Decisions. In DSN.
Jason Baker, Chris Bond, James C. Corbett, JJ Furman, Andrey Khorlin, James
Larson, Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh.
2011. Megastore: Providing Scalable, Highly Available Storage for Interactive
Services. In Proceedings of the Conference on Innovative Data system Research
(CIDR).

Matthew Burke, Audrey Cheng, and Wyatt Lloyd. 2020. Gryff: Unifying Consen-
sus and Shared Registers. In NSDL

[14] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher

Frost,]J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,
Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,
Ruth Wang, and Dale Woodford. 2012. Spanner: Google’s Globally-distributed
Database. In OSDL

CoNEXT 20, December 1-4, 2020, Barcelona, Spain

Huynh Tu Dang, Marco Canini, Fernando Pedone, and Robert Soulé. 2016. Paxos
Made Switch-y. SIGCOMM Comput. Commun. Rev. 46, 2 (2016).

Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone, and Robert
Soulé. 2015. NetPaxos: Consensus at Network Speed. In Proceedings of the 1st
ACM SIGCOMM Symposium on Software Defined Networking Research (SOSR).
Google. 2019. gRPC-go. https://github.com/grpc/grpc-go.

Leslie Lamport. 1998. The Part-time Parliament. ACM Trans. Comput. Syst. 16, 2
(1998).

Leslie Lamport. 2001. Paxos Made Simple. Technical Report, Microsoft (2001).
Leslie Lamport. 2005. Generalized Consensus and Paxos. Technical Report,
Microsoft (2005).

Leslie Lamport. 2006. Fast Paxos. Distributed Computing 19 (October 2006).
Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan R. K.
Ports. 2016. Just Say No to Paxos Overhead: Replacing Consensus with Network
Ordering. In OSDL

Barbara Liskov and James Cowling. 2012. Viewstamped Replication Revisited.
Technical Report MIT-CSAIL-TR-2012-021. MIT.

Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. 2008. Mencius: Building
Efficient Replicated State Machines for WANs. In OSDL

David L. Mills. 1991. Internet Time Synchronization: the Network Time Protocol.
IEEE Transactions on Communications 39, 10 (1991).

Tulian Moraru, David G. Andersen, and Michael Kaminsky. 2013. There is More
Consensus in Egalitarian Parliaments. In SOSP.

Brian M. Oki and Barbara H. Liskov. 1988. Viewstamped Replication: A New Pri-
mary Copy Method to Support Highly-Available Distributed Systems. In PODC.
Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable
Consensus Algorithm. In USENIX ATC.

Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr. Sharma, and Arvind Krishna-
murthy. 2015. Designing Distributed Systems Using Approximate Synchrony in
Data Center Networks. In NSDL

Robbert Van Renesse and Deniz Altinbuken. 2015. Paxos Made Moderately
Complex. ACM Comput. Surv. 47, 3 (2015).

Hanyu Zhao, Quanlu Zhang, Zhi Yang, Ming Wu, and Yafei Dai. 2018. SDPaxos:
Building Efficient Semi-Decentralized Geo-replicated State Machines. In SoCC.

	Abstract
	1 Introduction
	2 Related Work
	3 Inter-Datacenter Network Delays
	4 Impact of Network Geometry
	5 Domino
	5.1 Assumptions
	5.2 Overview of Domino
	5.3 Domino's Fast Paxos
	5.4 Estimating Request Arrival Time for DFP
	5.5 Domino's Mencius
	5.6 Choosing between DFP and DM
	5.7 Executing Client Requests
	5.8 Handling Failures

	6 Implementation
	7 Evaluation
	7.1 Experimental Settings
	7.2 Experiments on Microsoft Azure
	7.3 Microbenchmark Experiments
	7.4 Experiments within a Cluster

	8 Conclusion
	Acknowledgments
	References

