arXiv:2003.05111v1 [cs.NI] 11 Mar 2020

Constellation: A High Performance Geo-Distributed
Middlebox Framework

Milad Ghaznavi

University of Waterloo
eghaznav@uwaterloo.ca

Bernard Wong
University of Waterloo
bernard@uwaterloo.ca

Abstract

Middleboxes are increasingly deployed across geographically
distributed data centers. In these scenarios, the WAN latency

between different sites can significantly impact the perfor-

mance of stateful middleboxes. The deployment of middle-

boxes across such infrastructures can even become imprac-

tical due to the high cost of remote state accesses.

We introduce Constellation, a framework for the geo dis-
tributed deployment of middleboxes. Constellation uses asyn-
chronous replication of specialized state objects to achieve
high performance and scalability. The evaluation of our im-
plementation shows that, compared with the state-of-the-
art [80], Constellation improves the throughput by a factor
of 96 in wide area networks.

1 Introduction

Middleboxes, such as firewalls, load balancers, and intrusion
detection systems are pervasive in computer networks [20,
32, 64, 68]. The network function virtualization vision en-
ables middleboxes to be flexibly deployed across a network
and provisions new instances on demand. Middleboxes may
have multiple instances to satisfy traffic demand and share
state across instances to cooperatively process traffic.

Although the instances of a middlebox are typically de-
ployed in the same data center, there has been an increasing
demand for deploying middlebox instances across wide area
networks [3, 21, 34, 58]. This growth stems from the trend
towards building multi-data center applications, which ne-
cessitates global scale network management.

In many cases, even though the instances are connected
by high latency wide area links, it is still necessary for them
to share state [2, 22, 54, 61, 81]. Examples include distributed
rate limiters that share traffic information to monitor and
limit the traffic of multi-data center applications [61], intru-
sion detection systems with instances across a large ISP net-
work that share statistics to detect attacks [22, 54, 81], and
proxies in a content delivery network that actively share
their health statuses [78].
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Existing middlebox frameworks that support state shar-
ing have focused on optimizing for local area network de-
ployments [38, 47, 63, 80]. Full control over routing allows
these frameworks to maintain affinity between traffic flows
to middlebox instances. This results in fewer remote accesses
since per-flow state remains mostly local to an instance [47,
63, 80]. However, in wide area networks, traffic can span
multiple administrative domains, giving a middlebox frame-
work much less control over routing. Asymmetric routing
and multipath protocols [57, 74] compound this issue be-
cause a single flow may traverse multiple instances, thus
requiring state sharing to process such flows. The result is
more remote accesses to shared state across wide area links,
which increases packet latency and reduces middlebox through-
put. These frameworks use synchronous state access for cor-
rectness, which is only practical within a local area network
as it can add a network roundtrip delay to each packet.

In this paper, we introduce Constellation, a framework for
geo-distributed middlebox deployments. Constellation pro-
vides a state management system that is highly scalable and
performant even when middlebox instances are deployed
across wide area networks. It separates the middlebox state
from its application logic and abstracts shared state using
convergent state objects, which can be independently updated
yet still converge. Transparent to the middlebox application
logic, Constellation asynchronously replicates state objects
to other middlebox instances. Replication makes the state
local to each instance, and convergence allows a middlebox
instance to mutate state with only lightweight coordination.

Asynchronous replication of convergent state enables more
flexible load balancing. Replication subsumes the need for
flow-instance affinity, and enables any middlebox instance
to process any packet with high performance, as the instance
already has the required state. Replication also provides seam-
less dynamic scaling since traffic load can be rebalanced among
instances without waiting for state migration.

Standard conflict free replicated data types (CRDTs) [66,
67] are convergent objects that can be used to represent the
shared state for a class of common middleboxes. However,
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Figure 1: NFV environment: An orchestrator distributes
the traffic workload among multiple middlebox instances.

to support middleboxes such as intrusion detection systems
and network monitors [25, 31, 35, 52, 53], we also develop
new CRDTs including a counting bloom filter and count-
min sketch. These CRDTs rely on an ordering property that
is provided by our framework. Moreover, state updates in
some middleboxes may necessitate violating CRDT proper-
ties. To address this limitation, we introduce derivative state
objects to support packet processing where the same set of
objects are always accessed together. This is commonly used
in network address translators and load balancers.

The properties of convergent state objects offer unique
opportunities for us to build an efficient and reliable multi-
cast state replication layer. Using the idempotence and com-
mutativity properties of state objects, this layer coalesces
state updates for more efficient utilization of wide area net-
work bandwidth. It also provides higher tolerance for strag-
gler instances, as they can receive and apply batched up-
dates to reduce bandwidth and processing resources com-
pared with executing uncoalesced operations.

We implemented Constellation using Click [48], and eval-
uated our framework by comparing its performance with
S6 [80], the state-of-the-art middlebox framework for local
area networks. Our results show that Constellation scales
linearly with throughput and experiences no overhead due
to network end-to-end latency. Over wide area networks,
Constellation can process 96X the bandwidth of S6, which
was not designed to tolerate latency. In local area networks,
Constellation can process up to 11x the bandwidth of S6,
which comes from eliminating the heavyweight mechanisms
that S6 uses to hide remote state accesses (see § 6). Finally,
we show that the complexity of our middleboxes is similar
to synchronous approaches when compared to S6.

2 Background and Motivation

Figure 1 shows a typical network function virtualization (NFV)
environment, where an orchestrator manages middlebox in-
stances deployed on servers and the network connecting
these servers. In response to traffic load, the orchestrator

dynamically adds or removes middlebox instances, and in-
stalls forwarding rules in the network to redistribute traffic.

The above operations are sufficient to scale stateless mid-
dleboxes, e.g., firewalls that pass or block individual pack-
ets based on static rules. However, scaling stateful middle-
boxes becomes challenging, since in addition to the afore-
mentioned operations, the middlebox state must be migrated
simultaneously with the new workload distribution [58, 63,
80].

2.1 Middlebox State

Stateful middlebox instances maintain dynamic state regard-
ing traffic flows, which changes how they process packets [40,
62, 71]. For example, stateful firewalls filter packets based on
information collected about flows [23].

The middlebox state consists of partitionable and shared
state. The partitionable state is accessed by a single instance,
for example the cache in a web proxy [16]. Shared state can
be for a single flow or a collection of flows processed across
middlebox instances, and multiple instances query and mu-
tate them. For example, IDS instances read and update port-
counts per external host to detect attacks.

2.2 Recent Work: State Management for LAN
Existing frameworks that manage shared state are optimized
for local area networks and support synchronous accesses
to state [38, 46, 47, 63, 80]. State sharing using this model
leads to remote accesses that incur performance cost rela-
tive to the network latency.

Two main approaches exist. One approach separates mid-
dlebox state into a remote data store [46, 47]. Remote state
accesses increase packet latency and can reduce throughput
by ~60% [46], because extra CPU and bandwidth resources
are consumed for remote I/Os. Another approach [38, 63, 80]
distributes state across middlebox instances. An instance
must query remote instances for non-local state [80]. Fre-
quent remote accesses can significantly degrade performance.
Full control over routing allows the existing frameworks to
reduce remote accesses by consistently routing a traffic flow
to the same instance so that the flow state remains local to
that instance.

Synchronous remote accesses of shared state lead to de-
creased performance for both approaches. These frameworks
introduce several optimizations to maintain performance of
their middlebox implementations. The state-of-the-art frame-
work, S6 [80], masks the overhead of remote accesses using
concurrency. An instance creates a microthread per packet
to enable context switching to other packets while waiting
on synchronous requests. However, as we will discuss in
§ 6.2, our results show that the overhead of using a microthread
per packet halves the maximum throughput of the frame-
work.
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Figure 2: Firewall and asymmetric routing: A source
creates a connection with a destination. The request and re-
sponse streams of this connection take separate paths and
pass through two firewall instances.

Another optimization is to trade consistency for perfor-
mance. An instance caches state and performs reads and
writes locally [47, 80]. To avoid permanent divergence, cached
state copies must be merged periodically. Doing so naively
can result in the consistency anomalies, such as lost updates.

These optimizations complicate the middlebox design. To
achieve acceptable levels of performance and scalability, de-
velopers may need to use a combination of these mecha-
nisms. Reasoning about their correctness is complicated; an
incorrect usage can be a source of subtle bugs in middlebox
applications.

2.3 Geo-distributed Middleboxes

Middleboxes are increasingly being deployed across wide
area networks, e.g., ISP networks, multiple data centers, and
content delivery networks. In such deployments, middlebox
instances share state to cooperatively process traffic.

For example, rate limiter instances monitor and limit traf-
fic loads from multiple locations in a content delivery net-
work [61, 78]. They share their state so that they can limit
the global traffic load of multi-data center applications [61]
and control the impact of traffic spreaders [78].

IDS instances deployed across an ISP network [22] share
their local statistics to detect intrusions [22, 54, 81]. Using
network-wide statistics collected from different network lo-
cations is essential to detect attacks, such as port scanning
and denial of service [54, 69, 77, 81]. Moreover, multiple NAT
instances share the same flow table to translate network ad-
dresses across an ISP network [1].

In the CoDeeN peer-to-peer content delivery network [78],
distributed proxies share their health status. To handle a
cache miss, a proxy redirects a content request to another
peer that is healthy based on this information.

These middlebox deployments face two challenges. The
first challenge is due to characteristics of wide area network
traffic. Traffic can span multiple administrative domains with
less control over routing. This increases shared state hin-
dering scalability and performance. Moreover, asymmetric
routing and multipath routing [57, 74, 75] undermine the
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State Location Latency Throughput
Local Machine 1-10X ns [24] 100 M-1 G
Remote LAN  10-100x ps [36,59] 10 k-100 k
Remote WAN  10-100X ms [28,49] 10-100

Table 1: Time to access state in different locations: The
throughput of remote state across a wide area network can
be as low as 10 to 100 accesses per second.

flow-instance affinity. In asymmetric and multipath routing,
a traffic flow, e.g., sub-flows of a MPTCP session [57], may
traverse different paths and consequently different middle-
box instances. For a correct operation, the instances must
share even per-flow state.

Figure 2 shows an example asymmetric routing scenario
where the traffic of a connection passes through two fire-
wall instances. A firewall commonly allows connections to
initiate only from protected zones, e.g., “Source” in Figure 2.
State sharing among firewall instances is essential, since the
second instance allows the response stream only if the first
instance shares that it has observed the request stream [2,
39].

The second challenge is wide area network latency mak-
ing state sharing extremely costly. Table 1 lists the access
times to shared state when it is stored locally, or remotely
over alocal and wide area networks. Existing frameworks [46,
47, 80], designed for infrequent state sharing in local area
networks, cannot tolerate frequent state sharing over net-
works with higher latency [26, 28, 49, 55].

3 Design Overview

Table 2 shows a list of popular middleboxes with a selection
of their state. This list is not exhaustive but provides a rep-
resentative set of abstract data types used by middleboxes.
To better understand the needs of middleboxes in wide area
networks, we start by examining the needs of these popular
middleboxes.

3.1 Study of Common Middleboxes

Our study reveals two key observations. First, most mid-
dleboxes maintain shared state for collecting traffic statis-
tics, resource ownership, and resource usage. Second, mid-
dleboxes mostly operate on relativity small shared state and
trade off precision for higher scalability and performance [22].
A corollary is that most operations on shared state are sim-
ple even when the middleboxes are not [46, 47].

Purpose of sharing state: Middleboxes collect statistics about
traffic for detection and mitigation purposes. As shown in
Table 2, an IDS/IPS track statistics of traffic connections and
sessions to detect abnormal or malicious communications.
The instances of a signature based IDS need to share their
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Middlebox State Purpose Shared Abstract data type Size (B)
Session context Session inspection v Map 96xc
Connection context Connection inspection v Map ~250Xc
IDS/IPS . )
[15, 19, 31, 50, 52] Bloom filter String rule matching X Bloom filter 6250
> T T " Flow size distribution  Traffic summaries v Count-min sketch 20 k-200 k
Port scanning counter Port scan detection v Counters 112Xn
Firewall Flow table Stateful firewall/dynamic rules v Map 32Xc
[10, 14, 23, 39, 76] Connection context Connection inspection v Map 264Xc
Network monitor Traffic dispersion graph Anomaly detection v Graph 256Xn
[41, 43,44,69]  Heavy hitters Tracking top elephant flows v/ Count-min sketch -
Server pool Available backend servers X - 20xn
Load balancer
7,13, 32] Server pool usage Usage of backend servers v Vector 28%n
T Flow table Connection/Session persistence v’ Map 28x%c
NAT [14, 21] Available address pool Tracking available addresses v’ Set 80xc
’ Flow table Address mapping v Map 74%c
Stored entries Metadata of cached contents X Map 104xc
Web proxy o .
17, 35] Cache contents Caching in memory or storage X - Available storage
’ Cache digests Compact cache summary v Counting bloom filter 20xc

Table 2: Examples of common middleboxes: A list of common middlebox applications are shown. For “Size (B)”, ¢ and
n are respectively the number of connections/sessions and hosts/servers. Note that we provide a representative set of state
for each middlebox, and the they are not exhaustive. Moreover, for each middlebox application, we list the state of multiple
implementations, and a single implementation does not necessarily include all the presented state.

statistics to detect advanced attacks that can exploit multi-
path routing in a wide area network. These attacks split
their signatures across multiple paths to circumvent tradi-
tional signature based detection approaches [54]. A state-
ful firewall inspects the collected statistics to block mali-
cious connections and maintain dynamic rules for outgo-
ing connections. As mentioned before, the firewall instances
may be required to share their state to handle asymmetric
flows [2]. A network monitor maintains a traffic dispersion
graph that embodies the communications between network
nodes. A network wide representation can monitor thou-
sands of hosts to detect large scale attacks [44, 73].
Middleboxes also track resource ownership and usage for
resource management purposes. As shown in Table 2, a load

balancer manages backend servers, and distributes load among

them based on their usage. A NAT manages a set of avail-
able public addresses and allocates these addresses among
network flows. NAT instances in an ISP network share their
state to correctly route asymmetric flows [1].

Shared state implementation: Shared state tends to be
small, which reduces communication overheads between in-
stances [54] and per-packet processing costs. For the mid-
dleboxes shown in Table 2, to serve millions of flows, the
shared state requires only few 100 MB of the memory. For
example, the most memory intensive middleboxes are web

proxies that keep a large cache local to each instance [16].
Advanced proxies share a compact summary of their cached
contents [35] to allow redirecting content requests to nearby
instances. This improves the quality of service in serving
content requests in a content delivery network.

Although many middleboxes make complex decisions based
on shared state, their operations on shared state are sim-
ple. Others have also observed that middleboxes operate on
shared state with a simple set of operations [46, 47]. For ex-
ample, an IDS collects lightweight packet summaries, but
performs complex detection operations locally. Rate limiter
instances share their observed flow rates [61] and use prob-
abilistic analysis to shape traffic of multiple data centers.

Middleboxes collect approximate statistics when collect-
ing precise statistics leads to high memory or processing
overheads. They sometimes use compact and approximated
statistics for a faster request serving. As shown in Table 2,
IDSes and network monitors often use count-min sketches
or bloom filters, which are probabilistic data structures, to
track top heavy hitters. Web proxy uses cache digests to
quickly check local contents when serving requests.

3.2 Constellation Design Choices
Our observations lead us to design Constellation. Constel-
lation is a geo-replicated middlebox framework that deploy
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a cluster of middlebox instances distributed across a wide
area network. Constellation provides for the management
of shared state across the entire deployment.

Constellation separates the design of middleboxes into
middlebox logic and middlebox state to hide the complexity
of state sharing from the middlebox logic. Transparent to
the logic, Constellation asynchronously replicates updates
to shared state from each middlebox instance. Using conver-
gent state, Constellation eliminates most of the complexity
of managing asynchrony. Our key design choices are as fol-
lows.

Asynchronous state replication: Constellation replicates
middlebox state to all instances asynchronously. Each mid-
dlebox instance collects and sends its updates of shared state
to all other instances in near real time, and they apply these
updates to their state locally. All instances access shared
state locally without querying remote instances.

Asynchronous access to local state allows middlebox in-
stances to share state over high latency links of a wide area
network. Replication also supports flexible load distribution
and seamless dynamic scaling by subsuming the need for
flow-instance affinity. If a middlebox instance is overwhelmed,
traffic can be immediately rerouted to an existing instance
that is underutilized. In removing an excess instance, the
orchestrator can reassign traffic load from this instance to
another without waiting for state migration.

Storing a replica of shared state requires more memory
than that of existing frameworks, but the overhead is not
substantial. As we observed in § 3.1, many middleboxes op-
erate on lightweight shared state with small memory re-
quirement. Even larger memory usage does not change the
cost of running middleboxes in the cloud, where compu-
tation to memory ratios are fixed. Middlebox applications
already require substantial compute resources that usually
goes hand-in-hand with more than enough memory.

Asynchronous state replication also trades the consistency
of state across instances for performance. For many cases,
our state model framework automatically resolves inconsis-
tencies using convergent state objects.

Convergent state objects: Constellation provides a set of
state objects to develop the middlebox state. These objects
are guaranteed to be convergent, i.e., middlebox instances
will observe the same local value for a state object after they
receive and perform the same set of state updates applied in
other instances. Convergence eliminates complexities that
may arise due to asynchronous state replication assuring de-
velopers about the correctness of shared state.

As we discussed in § 3.1, most middleboxes perform sim-
ple operations on shared state. For these middleboxes, Con-
stellation’s builtin convergent state objects can be used to
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Figure 3: Constellation Middlebox Framework

implement their shared state. For more complex cases, Con-
stellation provides mechanisms for developers to customize
state objects to reconcile conflicting state updates.
Asynchronous state replication even when using conver-
gent state objects may introduce some artifacts. We discuss
these artifacts and their impact on middleboxes in § 5.2.

Centralized orchestration: A logically centralized orches-
trator [5, 11, 12, 27] monitors traffic load, scales the number
of instances according to load variations, and distributes the
load among the instances. Constellation does not involve
the orchestrator in state replication to avoid creating a po-
tential performance bottleneck.

4 Constellation Middlebox Framework
Constellation is designed to allow developers to create geo-
distributed middlebox applications with seamless scalabil-
ity and network latency tolerance. Figure 3 shows a middle-
box instance and the main components of the Constellation
framework. Our framework works as follows.

The middlebox logic registers a set of state objects that
model the middlebox state. The state objects provide APIs
to access and mutate state, which are used by the middlebox
logic during its packet processing (discussed in § 4.1).

Constellation internally tracks local state updates by record-
ing them into its log store. The state synchronization compo-
nent replicates the recorded state updates to other instances
concurrent with packet processing. All other instances will
apply state updates received by the state synchronization
component to their local state objects (discussed in § 4.2).

During adding or removing of middlebox instances, Con-
stellation adjusts the membership of the middlebox cluster
while keeping other instances to process traffic. Constella-
tion selects only one existing instance as a source of the state
in bringing a new instance up-to-speed; other instances ex-
perience almost no performance disruption by this member-
ship change (discussed in § 4.3).

4.1 State Objects
A state object encapsulates a set of variables and operations
to access and update their values. Operations are designed
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to guarantee that state objects remain convergent, which
simplifies reasoning about asynchronous state replication.

To ensure convergence, Constellation uses data structures
based on CRDTs [66, 67] for its state objects. Two general
types of CRDTs exist [66]: 1) state based CRDTs where a state
update is performed completely local, and the entire state
object is disseminated for state synchronization; ii) an oper-
ation based CRDTs where operations are propagated. Due
to the high bandwidth overhead of state based CRDTs, we
opt for operation based CRDT.

For convergence, each instance sends its local update op-
erations to other instances, and each downstream instance
applies the received operations. All operations are idempo-
tent and commutative so instances can safely apply the op-
erations out-of-order and still converge [66].

We create a library of convergent state objects based on
our study of various middleboxes shown in Table 2. The li-
brary consists of a collection of abstract data types based on
operation-based CRDTs, for instance different flavors of map,
set, register, and counter objects. These convergent ob-
jects can implement the basic state of common middleboxes.

Constellation addresses two limitations of existing CRDTs
in implementing the state of middleboxes. First, Constella-
tion provides atomic updates across multiple objects to ad-
dress the limitation of CRDTs in supporting multi-object up-
dates. Second, Constellation develops a convergent counting
bloom filter and count-min sketch which are common in in-
trusion detection systems, network monitors, and proxies
(see Table 2). These objects have not been proposed in prior
work to the best of our knowledge.

Multi object updates: Middleboxes need to mutate multi-
ple objects simultaneously, but this may violate the prop-
erties of CRDTs. This limitation is because convergence is
guaranteed for operations on individual CRDT objects [66].
Reasoning about the convergence of general multi-object
operations is complicated, because the objects may diverge
when mutations on multiple objects do not commute.

In operating on multiple state objects, there are middle-
boxes that always update the objects together. This is com-
mon in managing resources where middleboxes update re-
source usage or ownership when they allocate or release the
resources. For example, a NAT updates an address pool and
a flow table object together in processing a new flow, and
a load balancer updates the server pool usage and its flow
table together in assigning a new flow to a backend server.

Operations on multiple state objects do not violate con-
vergence when two conditions hold. First, such a multi-object
operation commutes with other operations defined for the
objects. Second, the operation is idempotent.

Constellation supports multi-object operations by defin-
ing a derivative object that contains multiple state objects,

and performs operations on its state objects simultaneously.
Constellation atomically replicates this derivative object in
a downstream instance to ensure convergence. We discuss
using derivative state objects to develop a NAT in § 5.1.

We also take advantage of the ordering property of our
system to develop a convergent counting bloom filter ob-
ject and count-min sketch object. We discuss the ordering
property in § 4.2.

Counting bloom filter: A counting bloom filter (CBF) is
a memory efficient object for approximate counting. CBF
is used in packet classification, deep packet inspection, and
network monitoring [25, 31, 35, 53] where keeping accurate
statistics with fine granularity does not scale to traffic load.

A CBF represents a large set of n counters using a smaller
vector of m counters. It uses k hash functions to update the
counters. A CBF exposes count and value operations. The
count(x) operation computes k hash values for an operand
x (e.g., x can be a five tuple flow identifier). Each hash value
provides an index 0 < i < m, and the CBF increments
the counter at k computed indices. On value(x) operation,
the CBF computes the same set of k hashes and returns
the minimum value among the relevant counters. The re-
turned value is an approximation, since the exact value of
x’s counter is less than or equal to this value.

For convergence, value and count operations must be
commutative and idempotent [66]. As value does not mu-
tate any counter, we focus on count operation. Addition
commutes, thus count also commutes; however, addition is
not idempotent. Idempotence can be provided using Con-
stellation’s ordering feature. This feature prevents applying
a duplicate count operation, thus a local count operation
performed in a middlebox instance is only applied once at
any other instance across the entire middlebox cluster.

Count-min sketch: A count-min sketch (CMS) is a proba-
bilistic data structure similar to counting bloom filter and
has application in packet classification and deep packet in-
spections [52, 65].

A CMS has k arrays of n counters. A CMS uses k hash
functions to update the counters, one hash function per ar-
ray. A CMS provides the same set of operations as a counting
bloom filter. To provide convergence, we use the same tech-
nique as that of a counting bloom filter. The idempotence of
CMS is provided using Constellation’s ordering feature.

4.2 Asynchronous State Replication

An efficient replication system for convergent state objects
has two requirements. First, we must deliver and apply all
operations to all other instances quickly to achieve fast con-
vergence. Convergent state objects require a one-to-all dis-
semination of updates and allow commutativity of updates.
Constellation uses multicast to build a replication layer that
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allows unordered delivery of state updates. Multicast uses
bandwidth efficiently compared to having O(n?) point to

point transports and reduces latency compared to other topolo-

gies, e.g., forwarding state updates through middlebox in-
stances one by one.

Second, we must mitigate straggler instances that can slow
down the replication for the entire middlebox cluster. In-
stances may fall behind because of insufficient bandwidth
or processing power. We use the idempotence and commu-
tativity properties of CRDTs to build a congestion control
scheme that coalesces state updates to adaptively meet band-
width and processing constraints of stragglers. This conges-
tion control can bound how far behind any given instance
is from others. Increasing coalescing can reduce bandwidth
requirements, but state updates fall further behind.

Multicast replication: During a middlebox operation, Con-
stellation records state updates into a log store. For each
state object, the log store allocates a queue of log records
and maintains a sequence number to track these records. A
log record tracks an operation by recording the local order
at which it is performed. Specifically, a log record denotes
that an operation was performed on a set of operands at a
particular sequence number. For example, for an IDS’s port
counter, log record (inc, {22}, 7) shows that a counter was
incremented for SSH port 22 at sequence number 7.

The state synchronization component allocates a multi-
cast group per state object. Via this group, middlebox in-
stances share and exchange their local log records of the ob-
ject. For convergence, all log records must be delivered and
applied to other instances. Log records are released once de-
livered.

Constellation runs two threads at the sender and receiver
sides to transmit log records. Send threads use multicast to
send local log records to other instances. Receive threads
receive and apply log records, send acknowledgements, and
prunes log records delivered to all other instances.

For each state object, the send thread continuously re-
trieves outstanding log records, i.e., log records that have
not yet replicated in other instances, from the queue of this
object, creates a state message from the records, and sends
the message to the associated multicast group. The send
thread round-robins between queues belonging to different
objects.

A state message carries a list of log records, and an ac-
knowledgement vector. Each instance maintains the acknowl-
edgement vector to track log records received from other in-
stances. This vector contains the highest sequence numbers
seen for each instance.

The receive thread uses the acknowledgement vector to
track external log records. Upon receiving a state message,
the receive thread applies the operations from the message,
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and updates the instance’s acknowledgement vector. The re-
ceive thread increments a sequence number of the vector
when all log records up to and including this sequence num-
ber have been received.

Since operations are idempotent and commutative, state
objects converge even when applying duplicate or out of
order log records [66]. The receive thread can be also con-
figured to apply log records in order. This ordering prop-
erty provides idempotence for an easier implementation of
state objects that are not intrinsically idempotent. We used
this property to provide idempotence for count operation
of counting bloom filter and count-min sketch in § 4.1.

The receive thread also prunes the log store according to
received state messages. For each object, this thread records
the last acknowledgement that it has received from other in-
stances. The smallest acknowledgement shows the latest log
record that has been replicated in all instances. Accordingly,
the receive thread prunes all log records up to the smallest
acknowledgement.

We provide reliable multicast by retransmitting lost log
records due to packet drops. If a log record has not been
acknowledged, the send thread retransmits the record after
a timeout based on the maximum round trip time of any
instance. If a multicast channel is idle, the send thread peri-
odically transmits keep-alive messages containing the latest
acknowledgement vector.

Adaptive bandwidth optimization: There are cases when
middlebox instances may fall behind in replication due to
transient events, such as temporary congestion in the net-
work. In these cases, Constellation uses coalescedlog records
instead of sending individual log records. Coalescing can sig-
nificantly reduce the bandwidth usage of state replication.

The idempotence and commutativity properties of state
objects allow Constellation to coalesce related log records,
i.e., the records of state operations modifying the same ob-
ject. For example, a series of increments and decrements to
a single counter can be represented as adding the sum of the
operations. To coalesce related operations, the send thread
calls back into to the associated state object.

Constellation detects instances that are falling behind by
monitoring the round trip time (RTT) of each instance in
the multicast group. The receive thread measures the min-
imum and average RTTs for each instance using acknowl-
edgements. When the average RTT is higher than the mini-
mum RTT by a set threshold, the instance is marked as con-
gested.

Upon detection, the send thread starts to send coalesced
log records using an adaptive lookahead window based on
RTT. The instance continuously monitors the average RTT
to increase or decrease the lookahead window. The larger
the lookahead window, the more coalescing opportunity.
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Constellation adjusts the lookahead window to trade-off
the bandwidth reduction from coalescing and the increased
synchronization latency from delaying the transmission of
log records. The lookahead window size is set based on the
throughput. An instance coalesces log records up to a max-
imum lookahead or when an acknowledgement is received.
If the acknowledgement arrives early, the instance immedi-
ately transmits any already coalesced updates, which effec-
tively reduces the lookahead size.

4.3 Dynamic Scaling
A scaling event changes the members of multicast groups
and consequently impacts state replication. For a correct
replication during and after this membership change, Con-
stellation ensures three properties: i) unique identification:
with a new set of members, each active instance remains
uniquely identifiable; ii) membership agreement: instances
agree upon active members so that their send and receive
threads can work in harmony; and iii) convergence: the new
set of members still remain convergent for all state objects.
We assume that the orchestrator is fault tolerant. If a fail-
ure occurs during a scaling event, the orchestrator reliably
detects and notifies all instances of the change.

Scale-out event: A new instance joins replication groups
and copies a snapshot of middlebox state from an existing
instance before starting to process traffic. Adding a new in-
stance is broken down into four steps.

First, the orchestrator deploys a new instance with unique
identifier. To ensure uniqueness, it is sufficient that the or-
chestrator generates a new identifier or reuses the identifier
of a removed instance.

Second, the new instance joins the replication groups and
starts to record state messages. It sends a join message con-
taining its identifier to the multicast groups to announce
that its joining. Existing instances confirm receiving a join
message by adding the instance to the acknowledgement
vector of its state messages. Upon receiving this confirma-
tion, the new instance starts acknowledging state messages
received from existing instances. It does so by sending empty
state messages with an acknowledgement vector. The new
instance retransmits the join message until all existing in-
stances confirm receiving the message. This ensures the mem-
bership agreement property.

Third, the new instance requests an existing instance for
a snapshot of the state and metadata (includes the acknowl-
edgement vector of each state object). The existing instance
executes a fork system call [6] to duplicate its process to
take a state snapshot and transmit it to the new instance. For
the snapshot consistency, fork is synchronized with packet
processing and state synchronization.

Fourth, upon receiving the state snapshot, the new in-
stance applies log records from state messages recorded since

the second step. Lastly, the new instance notifies the orches-
trator to redistribute traffic load to it.

Taking snapshots using fork is fast, since memory is not
immediately copied. The memory is marked as copy-on-write;
the operating system copies memory after the original or
child process modifies it. Constellation further reduces this
overhead by using madvise [8]. Since the duplicated pro-
cess does not process incoming packets, Constellation tells
the operating system to exclude memory pages reserved for
receiving incoming packets. This significantly reduces the
pause time of fork.

Scale-in event: Another benefit of Constellation is that it
can scale-in with no state loss and virtually zero packet loss.
Removing an excess instance takes four steps.

First, the orchestrator reroutes the traffic load of the ex-
cess instance to other instances. Due to state replication,
other instances have the state necessary to process this load.
Second, the orchestrator notifies the excess instance, and
this instance waits for some time for remaining inflight traf-
fic to arrive. Then, the instance drains its outstanding log
records to ensure convergence. Third, the excess instance
sends a leave message to a multicasting group to announce
that it is leaving. The instance will retry until all instances
acknowledge receiving this message, which ensures mem-
bership agreement. Finally, once all other instances have ac-
knowledged the 1leave message, the excess instance notifies
the orchestrator to reclaim all resources.

5 Implementation and Experience

We built Constellation using the Click modular router [48].
It consists of 6141 SLOC for the runtime and 2155 SLOC
for the middlebox implementations. We discuss our devel-
opment experience in using our system compared to exit-
ing frameworks that provide synchronous middlebox state
management. We dive into the implementation of a flow ta-
ble and a NAT. Lastly, we discuss the artifacts caused by the
use of asynchronous replication.

Convergent flow table: A flow table is used to track net-
work flows and has application in several middleboxes as
shown in Table 2. A flow table is a mapping keyed on a
hashing of packet headers with values that can be network
addresses or some attributes regarding the flows.

A flow table supports add and value operations. The add (k, v)

operation either inserts flow k and value v, or updates the
value of flow k with v. The value(k) operation returns a
value associated with key k.

For convergence, we focus on add operation, since value
does not mutate the state. The add operation is idempotent
but not commutative. Enforcing a deterministic ordering on
concurrent add operations “artificially” makes add commu-
tative. Specifically, a global ordering across the middlebox
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cluster determines the winner in a race between two add
operations modifying the same key k.

The object exposes a callback that allows developers to
customize this ordering. By default, the object uses a numer-
ical comparison, where (k,v) wins against (k,v’) only if
the binary value of v is greater than that of v’.

5.1 Network Address Translator
A NAT bridges two address spaces [21,42, 72]. NAT instances
share two state objects. Using a flow table object, a NAT in-
stance maps traffic flows coming from one address space to
another address space. A NAT instance identifies each flow
by a unique port number from an available port pool ob-
ject [72]. Both flow table and port pool are updated together,
thus we can use Constellation’s derivative state object fea-
ture to support multi object operations on these two objects.
In rare incidents, due to asynchronous local accesses, NAT
instances may concurrently allocate an identical port num-
ber for different flows. This violates the NAT’s unique port
assignment invariant, and flow translations may collide.
Constellation’s convergent flow table enable us to resolve
this inconsistency. We use its callback so that among two
collided flows, a flow with larger numerical value of its five
tuple wins the race enabling all instances to converge.

5.2 Artifacts of Asynchronous Replication
Asynchronous replication may cause middleboxes to expe-
rience temporary inconsistencies until instances converge.
We study a number of middleboxes including the ones shown
in Table 2 for their possible artifacts. There are three cate-
gories of artifacts: lag or reduced precision; packet loss; and
duplicates and collisions. In practice, these artifacts are non-
issues, as they are rare and are already mitigated by existing
protocols or end user applications. Our design makes the
tradeoff of dealing with small artifacts for substantial per-
formance gains on both local area networks and wide area
networks.

Lag or reduced precision: The most common problem for
most middleboxes is that asynchronous replication induces
alag in measurement or reduces the measurement precision.
For example, an IPS may set a threshold for when it blocks
traffic and may lag by approximately the round-trip time
between instances. A distributed rate limiter may be impre-
cise in its ability to set a limit, but for longer flows it can still
maintain a tight bounded error.

Packet loss:Packet loss issues can arise for stateful fire-
walls, NATs and load balancers. This may occur when traf-
fic passes through a different instance while a connection is
being established but before state is synchronized between
instances. For example in Figure 2, the second firewall in-
stance may receive the response traffic before its state is
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synchronized with the first instance. Since most protocols
will retry dropped packets, this artifact will only result in a
small increase in latency.

Duplicates and collisions: NATs and load balancers may
also suffer from collisions or duplicate mappings, if two in-
stances simultaneously generate conflicting mappings. For
example, two NAT instances might reuse the same public IP
and port for two connections to the same destination IP and
port. In this scenario we can terminate one connection and
have the client to reconnect. For even very large networks
this is exceedingly rare, and disconnects from other issue
sources would be orders of magnitude more common.

An alternative approach is to design a NAT with an extra
table to allow instances to acquire leases on regions of the
public IP and port space. When a connection arrives the in-
stance would allocate out of one of these pools, thus prevent-
ing collisions. This would require the middlebox to eagerly
reserve new ranges when it is running low on the current
pool.

6 Evaluation

We start with a description of our setup and methodology
in § 6.1, and then we measure the overhead of Constella-
tion framework in § 6.2. We measure Constellation’s perfor-
mance during its normal operation and dynamic scaling in
§ 6.3 and § 6.4, respectively. Then in § 6.6, we measure the
impact of Constellation’s artifacts in our IDPS example. Fi-
nally, we discuss the implementation complexity in § 6.7.

6.1 Experimental Setup and Methodology

We compare Constellation with S6 [80] and Sharded. Sé6 is
the-state-of-art in elastic scaling of middleboxes. We use the
publicly available implementation of S6 [79]. A S6’s middle-
box application runs as a process that uses DPDK toolkit [45].
Sharded is a baseline system used to measure the perfor-
mance upper bound, as middlebox traffic is sharded with
no shared state. Moreover, we use two middleboxes, a NAT
and an IDPS. Our implementation of IDPS includes only the
port-scan detection/mitigation functionality.

We use a server cluster each equipped with a single In-
tel D-1540 Xeon with 8 cores and 64 GiB of memory. The
servers are connected with an Intel Ethernet Connection
X557 10 Gbps NIC to a Supermicro SSE-X3348T switch. A
separate 10 Gbps Mellanox ConnectX-3 NIC connected to a
Mellanox switch is used as the state channel for state syn-
chronization. All servers run Ubuntu 18.04.

We use MoonGen [33] to generate traffic and measure per-
formance. Traffic from a generator server is sent through a
middlebox instance then back to the generator. We measure
latency and total throughput at the traffic generators. The
packet size in our experiments is 64 B. MoonGen measures
end-to-end latency by sending timestamped 128 B packets
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Toolkit No Op. Reference Read Write R+W

S6 11.80 5.96  3.66 2.52 2.08 1.38
Constellation 10.00 9.28 N/A 9.26 9.20 9.20
Table 3: Throughput of a pass-through middlebox in
Mpps: “R+W” denotes read and write. S6 runs on DPDK,
while Constellation uses DPDK+Click adding overhead to
the toolkit baseline. Reference adds the overhead of finding
which instance owns a state object. We measure the read
and write costs separately and together. The performance
difference between Constellation and S6 is the cost of syn-

chronization.

while it simultaneously sends load of 64 B packets. We also
developed a tool to accurately timestamp received packets
at microsecond granularity, which allows us to accurately
measure throughput changes. Using this tool, we capture
the impact of Constellation’s dynamic scaling in § 6.4.

Unless stated otherwise, we run 5 second experiments
and repeat each experiment 10 times. The confidence inter-
vals of our results are all within 5%. As a result, we do not
report them in our plots.

6.2 Performance Breakdown

Table 3 shows a performance breakdown for a pass through
middlebox operating on a counter object. Using this mid-
dlebox, we benchmark S6 and Constellation to breakdown
the performance cost of common middlebox operations. We
configure the middlebox to either perform no operation, or
perform a read, a write, or a read and write per packet.

S6 runs directly on DPDK, while Constellation is built
using DPDK+Click which reduces baseline throughput by
~ 15%. The no-operation measurement shows the cost from
the S6 and Constellation frameworks. S6 process each packet
in a separate microthread, built using Boost coroutines [4]
to allow an independent microthread to process a packet
while another microthread is blocked on a remote state ac-
cess. Context switching between microthreads results in a
loss of 49% of its performance.

The remaining columns measure the cost of reading and
writing shared state. The reference column measures the
time required for S6 to discover which instance owns the
key of a flow. The read and write costs are measured sep-
arately and together. S6 slows down by a further 76% per-
cent over the no-operation column, excluding the cost of
microthreads.

6.3 Performance in Normal Operation

We measure the maximum aggregated throughput and the
end-to-end latency of NAT and IDPS. For wide area exper-
iments, we deploy our NAT instances in a simulated WAN.
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Figure 4: Total throughput of middleboxes in LAN:
Compared to linear scaling, Constellation is within 2-4% for
NAT and 1-5% for IDPS.

Using tc [18], we configure the servers running instances
to artificially add WAN latency [26, 49, 55] to the state chan-
nel. For both our LAN and WAN, we use a traffic load where
each NAT instance receives 2000 new flows per second.

Throughput in LAN. Figure 4 shows the maximum aggre-
gated throughput of the NAT and IDPS instances deployed
in our LAN. For IDPS, we configure S6 in two modes. In the
first mode, labeled “S6,” the state updates are immediately
synchronized. In the second mode, labeled “S6 W-behind,”
the remote counters are updated by a 10 ms delay.

As shown for both middleboxes, Constellation’s through-
put scales linearly with increasing the number of instances,
within 2-4% of the ideal scaling for NAT and within 1-5% for
the IDPS. For S6, per instance throughput of the NAT drops
up to 21% due to the overhead of state synchronization. The
throughput of IDPS drops for S6 and flattens for “S6 write-
behind” going from 2 to 3 instances. In the S6 system, each
instance has to query other instances to retrieve the values
of their state objects. IDPS instances pay this overhead once
every few packets (i.e., 50% and 66% of packets for 2 and 3
IDPS instances), while NAT instances incur this cost once
every few flows (i.e., 50% and 66% of flows for 2 and 3 IDPS
instances).

Compared to S6 for NAT, Constellation improves through-
put by 2.5-3.2X and is within 2-4% of Sharded’s aggregated
throughput. For IDPS, Constellation achieves a 3.4-6.3x and
3.4-11.2X higher throughput compared to that of “S6 write-
behind” and Sé, respectively.

Throughput in WAN. We evaluate the impact of the state
channel with WAN delay on the NAT throughput. As shown
in Figure 5, the aggregated throughput of Constellation’s
NAT is independent of the WAN delay of the state channel.
However, S6’s throughput drops significantly. Compared to
our LAN measurements, Constellation’s WAN throughput
is within 2-3% of its LAN throughput, while S6 becomes 6



Constellation: A High Performance Geo-Distributed Middlebox Framework

N S6 M Constellation Sharded

20

15
: J J j J

0
5 10 50 100

Simulated latency (ms)

Total throughput (Mpps)
at

Figure 5: Total throughput of 2 NAT instances in WAN:
Constellation’s throughput is largely independent of la-
tency, but synchronous accesses to remote state slow down
S6’s throughput by 6X to 32X going from 5 to 100 ms latency.

1 instance 2 instances 3 instances

S6 21+ 1ps 25+ 1pus 26+ 1pus
Constellation 31 + 1uys 44 +3us 46 +2us
Sharded 31+1ps 32+ 1us 34+ 2pus

Table 4: NAT average latency: Constellation’s latency re-
mains constant going from 2 to 3 instances. Its latency in-
crease going from 1 to 2 is due to Click’s scheduling over-

head.

to 32x slower. Constellation’s throughput is 17 to 96X of
S6’s and is within 2-5% of Sharded’s.

Constellation accesses the state locally and does not per-
form immediate state synchronization when a NAT instance
writes or queries the state of flows. This asynchrony allows
Constellation’s NAT instances to operate at the same through-
put level over the WAN as its local area network. On the
other hand, S6’s middlebox instances access state stored in
a distributed hash table. Due to state distribution in this
hash table, an instance owns a half of the state and must
remotely query the other instance to operate on the other
half. The overhead of this synchronous remote access is the
root cause of S6’s performance drop.

Latency in LAN.Table 4 presents the average end-to-end
latency of the NAT in our LAN. For a fair comparison, the
NAT instances are under S6’s sustainable load of 1 Mpps
with 2 k new flows per second. Going from one middlebox
instance to two or more instances, both S6 and Constellation
enable their state synchronization mechanisms between in-
stances.

As shown in Table 4, going from 2 to 3 instances, Con-
stellation’s latency overhead does not increase. Compared
to Sharded, Constellation adds 12 us overhead. In our imple-
mentation, the receive thread of the state synchronization
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and the middlebox logic run on the same processor core,
and we use Click’s scheduler [48] to schedule them. The
latency increase from 1 to 2 instances is due the overhead
of Click scheduler [48]. S6’s latency slightly increases going
from 1 to 2 and 3 instances. Its latency is lower than Sharded,
since S6’s middleboxes run on DPDK, while Sharded’s mid-
dleboxes uses DPDK+Click which adds Click’s overhead to
the baseline DPDK (recall from § 6.2).

To investigate the latency overhead in more details we re-
port the latency of the first instance of the 2 NAT instances
in Figure 6 under different traffic loads. Figure 6a shows that
average latency remains steady for all systems as the traffic
load increases until they approach their respective satura-
tion points. Near these points, packets start to be queued,
and latency rapidly spikes. The average latency of Constel-
lation and Sharded remain under 209 us, while S6’s aver-
age latency spikes up to 500 ps. As shown in Figure 6b, 99-
percentile latency has a trend similar to that of the average
latency. Constellation’s and Sharded’s peak latency values
are 451 ps and 539 ps, and S6 exhibits a peak latency of up
to 2.1 ms.

6.4 Dynamic Scaling

We use our cluster of two NAT instances to quantify the per-
formance of Constellation during dynamic scaling. Each in-
stance is under a 5 Mpps load with 2 k new flows per second.
We use our tool to measure throughput at microsecond scale
resolution. We discuss only the performance of the instance
that is involved in state transmission to the new instance.
This instance resides in the same local area network as the
new instance.

As shown in Figure 7, the first instance does not expe-
rience notable throughput degradation. Packet drop is also
zero. Excluding unnecessary memory pages from copy-on-
write protection allows fork to complete in only a fraction
of a millisecond. In a separate experiment, not shown here,
we measured that fork lasts for 10 ms without this optimiza-
tion.

Once packet processing resumes, we observe a through-
put burst for packets queued during fork pause time. Dur-
ing state transmission, throughput temporarily fluctuates.
This is due to state updates in processing the first packets
of new flows, since they write into copy-on-write memory
pages containing the state and incur memory copying over-

heads.

6.5 Coalescing Benefits

We measure the bandwidth saving by coalescing state up-
dates of a counting bloom filter and a count-min sketch to
evaluate coalescing benefits. We use network traces from a
backbone network [9] where we use only valid IP packets.
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Figure 6: End-to-end Latency of the first instance of 2 NAT instances deployed in our LAN: Constellation’s average
and 99-percentile latency remain steady under these traffic loads. When Constellation approaches the saturation point, its
latency increases up to 0.2 and 0.5 ms for the average and 99 percentile, respectively.
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Figure 7: Throughput of the NAT instance transmit-
ting its state in a scale-out event: The instance experi-
ences a sub-millisecond throughput disruption during fork.
The throughput becomes unsteady for few milliseconds dur-
ing state transmission of 20 k concurrent flows.

6.6 Inconsistency Artifacts

We measure the impact of Constellation’s asynchronous repli-
cation in mitigating flooding a port number. We deploy two
IDPS instances in a simulated WAN with 5 ms delay and
configure them with a mitigation policy as follows. An in-
stance blocks traffic destined to a port number if the traffic
volume passes the threshold of 1024 Mbits. Two traffic gen-
erators flood the instances at 1 Mpps. For each instance, we
measure the number of its leaked packets, i.e., the number
of packets that pass through an instance in the distributed
deployment compared with a theoretical centralized IDPS
with infinite packet processing that receives the aggregated
traffic and filters packets after crossing a given threshold.
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Figure 8: IDPS leaking packets due to asynchronous
replication: Histogram shows the number of packets
leaked beyond the target threshold for Constellation’s IDPS.

Figure 8 shows a histogram of the number of leaked pack-
ets. Asynchronous replication delays blocking the attack. Con-
stellation IDPS reacts to the flood within 5 ms and leaks on
average 3.2 k packets.

Delaying an IDPS response by a few milliseconds is a
good trade-off as it allows the system to keep up with the
throughput demands of high speed networks. Previous work
has shown that IDSes unable to keep up with the traffic can
be bypassed to successfully launch attacks [29, 60, 70].

6.7 Development Complexity
Comparing the complexity of different middlebox frameworks
is extremely difficult. Using the lines of code, we provide a
rough estimation of the complexity.

We compared the code of the NAT implemented in S6 to
the one implemented in Constellation as described in § 5.
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Both NATs are roughly the same size, with 361 lines of code
for Constellation and 283 lines for S6. We measured S6’s
code before the source-to-source translator that provides
syntactic sugar to simplify the system implementation. This
result illustrates that it is not significantly difficult to build
middleboxes with asynchronous replication.

7 Related Work

We have discussed existing frameworks that support state
sharing for general middleboxes in § 2.2. As mentioned, they
are not optimized for wide area networks. Next, we compare
Constellation with two other lines of related work.

Middlebox specific frameworks: Some systems are highly
specialized for particular middleboxes. Most of them deploy
middlebox instances as shards with no shared state [21, 32,
37, 56]. Unlike others, vNIDS [51], a microservice based net-
work intrusion detection system, and Yoda [37], an applica-
tion layer load balancer, share their state in a central data
store.

Database replication protocols: Two phase commit is a

common protocol to replicate transactions in distributed databasest

The protocol supports any transaction using synchronous
coordination; however, it does not scale for a geo-distributed
replication, since a transaction involves multiple rounds of
message passing between a coordinator and replicas in dif-
ferent sites.

Multi datacenter consistency (MDCC) [49] optimizes per-
formance by involving a coordinator only when transactions
conflict. MDCC also optimizes commutative transactions with
domain integrity constraints (e.g., a bank account balance
must remain non-negative with concurrent deposits and with-
drawals) by involving a coordinator only when concurrent
transactions may violate constraints (e.g., the account bal-
ance is close to become zero).

Highly available databases relax generality of transactions
or consistency guarantees for higher scalability and perfor-
mance. Some systems split data into shards and restrict up-

dates to only a single shard. Eventually consistent databases [30]

allow asynchronous state replication with complex resolu-
tion mechanisms to resolve conflicts; however, these mech-
anisms can cause consistency anomalies.

8 Conclusions

WAN latency can significantly impact the performance of
a stateful middlebox whose instances are deployed across
a WAN. We introduced Constellation, a framework for the
geo-distributed middleboxes. Using asynchronous state repli-
cation of convergent state objects, Constellation achieves
high performance and scalability. Our results show that Con-
stellation can improve middlebox performance by almost
two orders of magnitude compared to the state-of-the-art [80].
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