Bounded Model Checking SAT-Based Model Checking

Wallace Wu

Department of Electrical and Computer Engineering University of Waterloo

March 3, 2011

Introduction to Bounded Model Checking (BMC) BMC vs. BDD Model Checkers

A Quick Review of Model Checking Concepts

Kripke Structures LTL Syntax and Semantics LTL Model Checking

Bounded Model Checking

Bounded Path Syntax and Semantics Model Checking Problem Reduction

Reducing BMC to SAT

Example of Checking Mutual Exclusion using BMC

Techniques for Completeness

Completeness Threshold Liveness Induction

Introduction to Bounded Model Checking (BMC)

BMC vs. BDD Model Checkers

A Quick Review of Model Checking Concepts

Kripke Structures
LTL Syntax and Semantics
LTL Model Checking

Bounded Model Checking

Bounded Path Syntax and Semantics Model Checking Problem Reduction

Reducing BMC to SAT

Example of Checking Mutual Exclusion using BMC

Techniques for Completeness

Completeness Threshold Liveness Induction

Model Checking

- Exhaustive model checking algorithms
 - Inefficient; enumerate all states and transitions
 - Check a few million states in reasonable amount of time

Model Checking

- Exhaustive model checking algorithms
 - Inefficient; enumerate all states and transitions
 - Check a few million states in reasonable amount of time
- Symbolic model checking
 - Represent states using Boolean functions
 - Manipulating Boolean formulas: Reduced Ordered Binary Decision Trees (ROBDD or BDD for short)
 - ► Check ≥ 10²⁰ states in reasonable amount of time
 - Bottleneck: Memory required for storing and manipulating BDDs
 - Full design verifications is generally still beyond the capacity of BDD-based model checkers

Proposed by Biere, Clarke et al. [Biere et al., 1999]

- Proposed by Biere, Clarke et al. [Biere et al., 1999]
- BMC relies on exponential procedure (still limited in its capacity)

- Proposed by Biere, Clarke et al. [Biere et al., 1999]
- BMC relies on exponential procedure (still limited in its capacity)
- Complimentary to BDD-based model checking
 - BMC can solve many cases that BDD-based techniques cannot and vice versa
 - No correlation between hardness of SAT and BDD problems
 - Does NOT replace other model checking techniques

- Proposed by Biere, Clarke et al. [Biere et al., 1999]
- BMC relies on exponential procedure (still limited in its capacity)
- Complimentary to BDD-based model checking
 - BMC can solve many cases that BDD-based techniques cannot and vice versa
 - No correlation between hardness of SAT and BDD problems
 - Does NOT replace other model checking techniques
- Disadvantage: Cannot prove absence of errors in most realistic cases

Overview of BMC

Idea: Search for a counterexample in executions (paths) whose length is $\leq k$ for some integer k

Overview of BMC

Idea: Search for a counterexample in executions (paths)

whose length is $\leq k$ for some integer k

Method: Efficiently reduce problem to a propositional

satisfiability (SAT) problem

Resolves state explosion problem

Overview of BMC

Idea: Search for a counterexample in executions (paths)

whose length is $\leq k$ for some integer k

Method: Efficiently reduce problem to a propositional

satisfiability (SAT) problem

Resolves state explosion problem

Process: If no bug is found, increase *k* until either:

- A bug is found
- Problem becomes intractable
- Some predetermined upper bound for k is reached

Unique Characteristics of BMC

- User must provide a bound on the number of cycles that should be explored
 - ▶ Experiments show that BMC outperforms BDD-based techniques for k up to $\sim 60 80$

Unique Characteristics of BMC

- User must provide a bound on the number of cycles that should be explored
 - ▶ Experiments show that BMC outperforms BDD-based techniques for k up to $\sim 60 80$
- Uses SAT solving techniques to check models
 - Details of SAT solvers not covered

Introduction to Bounded Model Checking (BMC) BMC vs. BDD Model Checkers

A Quick Review of Model Checking Concepts

Kripke Structures
LTL Syntax and Semantics
LTL Model Checking

Bounded Model Checking

Bounded Path Syntax and Semantics Model Checking Problem Reduction

Reducing BMC to SAT

Example of Checking Mutual Exclusion using BMC

Techniques for Completeness

Completeness Threshold Liveness Induction

Verifying a 16×16 bit shift and add multiplier

			SMV ₂	Prover		
bit	k	t_{exec} (s)	Memory (MB)	t_{exec} (s)	Memory (MB)	
0	1	25	79	<1	1	
1	2	25	79	<1	1	
2	3	26	80	<1	1	
3	4	27	82	1	2	
4	5	33	92	1	2	
5	6	67	102	1	2	
6	7	258	172	2	2	
7	8	1741	492	7	3	
8	9		>1024	29	3	
9	10			58	3	
10	11			91	3	
11	12			125	3	
12	13			156	4	
13	14			186	4	
14	15			226	4	
15	16			183	5	

Verifying Various Designs

Model	k	Rulebase ₁	Rulebase ₂	Grasp	Grasp (tuned)	Chaff
1	18	7	6	282	3	2.2
2	5	70	8	1.1	0.8	<1
3	14	597	375	76	3	<1
4	24	690	261	510	12	3.7
5	12	803	184	24	2	<1
6	22	_	356	_	18	12.2
7	9	_	2671	10	2	<1
8	35	_	_	6317	20	85
9	38	_	_	9035	25	131.6
10	31	_	_	_	312	380.5
11	32	152	60	_	_	34.7
12	31	1419	1126	_	_	194.3
13	4	_	3626	_	_	9.8

All values that are right of the column *k* are given in seconds

Introduction to Bounded Model Checking (BMC) BMC vs. BDD Model Checkers

A Quick Review of Model Checking Concepts

Kripke Structures LTL Syntax and Semantics LTL Model Checking

Bounded Model Checking

Bounded Path Syntax and Semantics Model Checking Problem Reduction

Reducing BMC to SAT

Example of Checking Mutual Exclusion using BMC

Techniques for Completeness

Completeness Threshold Liveness Induction

Introduction to Bounded Model Checking (BMC) BMC vs. BDD Model Checkers

A Quick Review of Model Checking Concepts Kripke Structures

LTL Syntax and Semantics LTL Model Checking

Bounded Model Checking

Bounded Path Syntax and Semantics Model Checking Problem Reduction

Reducing BMC to SAT

Example of Checking Mutual Exclusion using BMC

Techniques for Completeness

Completeness Threshold Liveness Induction

Kripke Structure

- ► The finite automaton can be represented by a Kripke structure, a quadruple M = (S, I, T, L) where
 - **S** is the set of states
 - ▶ I is the set of initial states, $I \subseteq S$
 - **T** is the translation relation, $T \subseteq S \times S$
 - ▶ **L** is the labeling function, $L: S \rightarrow 2^A$, where A is the set of atomic propositions, and 2^A is the powerset of A
 - ▶ L(s), $s \in S$, is made of $A_s \subseteq A$ that hold in s

Sequential Behaviour of Kripke Structures

- Use the notion of paths to define behaviour of a Kripke structure, M
- Each path, π in M is an infinite OR finite sequence of states in an order that respects T

$$\pi = (s_0, s_1, \ldots), \quad T(s_i, s_{i+1}) \ \forall 0 \leq i < |\pi| - 1$$

- ▶ For $i < |\pi|$
 - \bullet $\pi(i)$ denotes the *i*-th state s_i in the sequence
 - $\pi_i = (s_i, s_{i+1}, ...)$ denotes the suffix of π starting with state s_i

Sequential Behaviour of Kripke Structures (cont'd)

- ▶ If $I(s_0)$ (i.e., s_0 is an initial state) and $s_0 \in \pi$, π is an initialized path
- If a state is not reachable ⇒ no initialized paths that contain it

Assumptions about Kripke Structures

For a Kripke structure, M,

- I ≠ ∅
- ▶ \forall s ∈ S, \exists t ∈ S with T(s,t) (total transition relation)

Pseudocode

```
Process A
                                 PROCESS B
   A.pc = 0
                                     B.pc = 0
   while TRUE
                                     while TRUF
3
        wait for B.pc == 0
                                          wait for A.pc == 0
        A.pc = 1
                                 4
                                          B.pc = 1
5
        // critical section
                                 5
                                          // critical section
6
        A.pc = 0
                                 6
                                          B.pc = 0
```

Modeling

We can encode the set of states using A.pc and B.pc: A.pc ⋅ B.pc.

Modeling

We can encode the set of states using A.pc and B.pc: A.pc ⋅ B.pc.

▶ The transition relation $T \subseteq S^2 = \{0, 1\}^4$ is:

$$T = \{0100, 1000, 1100, 0001, 0010\}$$

Modeling

We can encode the set of states using A.pc and B.pc: A.pc ⋅ B.pc.

▶ The transition relation $T \subseteq S^2 = \{0, 1\}^4$ is:

$$T = \{0100, 1000, 1100, 0001, 0010\}$$

The sequence 11,00,10,... is a valid path, but it is not initialized, since I = {s₀}

Introduction to Bounded Model Checking (BMC)
BMC vs. BDD Model Checkers

A Quick Review of Model Checking Concepts

Kripke Structures

LTL Syntax and Semantics

LTL Model Checking

Bounded Model Checking

Bounded Path Syntax and Semantics Model Checking Problem Reduction

Reducing BMC to SAT

Example of Checking Mutual Exclusion using BMC

Techniques for Completeness

Completeness Threshold Liveness Induction

LTL Temporal Operators

Let *f* and *g* be temporal formulas. The temporal operators are:

Next time: *∫ f*

 $\bigcirc \longrightarrow \stackrel{f}{\bigcirc} \longrightarrow \bigcirc \longrightarrow \cdots$

Globally: □f

Finally: $\Diamond f$

Until: f**U**g

f g

Release: fRg

LTL Semantics

Let π be an infinite path of a Kripke structure M and let f, g, p be temporal formulas. We recursively define LTL semantics as:

```
\begin{array}{lll} \pi \models \rho & \Leftrightarrow & p \in L(\pi(0)) \\ \pi \models \neg \rho & \Leftrightarrow & \pi \not\models f \\ \pi \models f \land g & \Leftrightarrow & \pi \models f \text{ and } \pi \models g \\ \pi \models \bigcirc f & \Leftrightarrow & \pi_i \models f \text{ } \forall i \geq 0 \\ \pi \models \Diamond f & \Leftrightarrow & \pi_i \models f \text{ for some } i \geq 0 \\ \pi \models f \textbf{U} g & \Leftrightarrow & \pi_i \models g \text{ for some } i \geq 0 \text{ and } \pi_j \models f \forall 0 \leq j < i \\ \pi \models f \textbf{R} g & \Leftrightarrow & \pi_i \models g \text{ if for all } j < i, \pi_i \not\models f \end{array}
```

LTL Semantics (cont'd)

- ▶ $M \models f \Rightarrow \pi \models f \ \forall$ initialized paths π of M
- ▶ LTL formulas f and g are equivalent (i.e., $f \equiv g$) iff $M \models f \leftrightarrow M \models g \ \forall M$
- ▶ Duality: $\neg \lozenge \neg \rho \equiv \Box \rho$

Introduction to Bounded Model Checking (BMC) BMC vs. BDD Model Checkers

A Quick Review of Model Checking Concepts

Kripke Structures LTL Syntax and Semantics

LTL Model Checking

Bounded Model Checking

Bounded Path Syntax and Semantics Model Checking Problem Reduction

Reducing BMC to SAT

Example of Checking Mutual Exclusion using BMC

Techniques for Completeness

Completeness Threshold Liveness Induction

LTL Model Checking

- Standard technique:
 - compute product of Kripke structure M with automaton representing the negation of the property to be checked

$$\mathcal{A}_{\neg \phi}$$

▶ emptiness of the product automaton ⇒ correctness of the property

$$L(M||\mathcal{A}_{\neg\phi}) = \emptyset \Rightarrow M \models \phi$$

Introduction to Bounded Model Checking (BMC)
BMC vs. BDD Model Checkers

A Quick Review of Model Checking Concepts

Kripke Structures
LTL Syntax and Semantics
LTL Model Checking

Bounded Model Checking

Bounded Path Syntax and Semantics Model Checking Problem Reduction

Reducing BMC to SAT

Example of Checking Mutual Exclusion using BMC

Techniques for Completeness

Completeness Threshold Liveness Induction

BMC

 Motivation was to leverage success in SAT solving in model checking

BMC

- Motivation was to leverage success in SAT solving in model checking
- Search for counterexample within a predetermined bound
 - i.e., Consider only prefixes of paths bounded by k in the search
 - ► In practice, progressively increase *k*, looking for longer witnesses in longer traces

BMC

- Motivation was to leverage success in SAT solving in model checking
- Search for counterexample within a predetermined bound
 - i.e., Consider only prefixes of paths bounded by k in the search
 - ▶ In practice, progressively increase k, looking for longer witnesses in longer traces
- Since LTL formulas are defined over all paths, a counterexample is a trace/path that contradicts the property
 - such a trace is called a witness for the property
 - ▶ **Example:** a counterexample to $M \models \Box p$ is the existence of a witness such that $\Diamond \neg p$

Outline

Introduction to Bounded Model Checking (BMC)
BMC vs. BDD Model Checkers

A Quick Review of Model Checking Concepts

Kripke Structures
LTL Syntax and Semantics
LTL Model Checking

Bounded Model Checking

Bounded Path Syntax and Semantics

Model Checking Problem Reduction

Reducing BMC to SAT

Example of Checking Mutual Exclusion using BMC

Techniques for Completeness

Completeness Threshold Liveness Induction

Bounded semantics approximate unbounded semantics

- Bounded semantics approximate unbounded semantics
- ► In BMC, finite prefixes of paths are considered

- Bounded semantics approximate unbounded semantics
- ► In BMC, finite prefixes of paths are considered
- ▶ Only the first k + 1 states $(s_0, ..., s_k)$ of a path are used

- Bounded semantics approximate unbounded semantics
- In BMC, finite prefixes of paths are considered
- ▶ Only the first k + 1 states $(s_0, ..., s_k)$ of a path are used
- A finite length prefix represents an infinite path if there is a back loop from the last state of the prefix to any previous state(s)

Figure: Prefix with back loop

- Bounded semantics approximate unbounded semantics
- In BMC, finite prefixes of paths are considered
- ▶ Only the first k + 1 states $(s_0, ..., s_k)$ of a path are used
- A finite length prefix represents an infinite path if there is a back loop from the last state of the prefix to any previous state(s)
- A prefix without back loop(s) only represents the finite behaviour of the path up to state s_k

Figure: Prefix with back loop

Figure: Prefix without back loop

Example of Prefix Behaviour

► Consider the LTL property: □p

Example of Prefix Behaviour

- ▶ Consider the LTL property: □p
- With back loop:
 - Property can be satisfied in the prefix

Example of Prefix Behaviour

- ► Consider the LTL property: □p
- With back loop:
 - Property can be satisfied in the prefix
- Without back loop:
 - Property CANNOT be satisfied in the prefix
 - ▶ If p holds for all states s_0, \ldots, s_k , we still cannot conclude that the property holds since p may not hold at s_{k+1}

Prefixes With Back Loops - (k, l)-loop

Definition 1

For $1 \le k$, we call a path π a (k, I)-loop if $T(\pi(k), \pi(I))$ and $\pi = u \cdot v^{\omega}$ with $u = (\pi(0), \dots, \pi(I-1))$ and $v = (\pi(I), \dots, \pi(k))$. We call π a k-loop if there exists $k \ge I \ge 0$ for which π is a (k, I)-loop.

Prefixes With Back Loops - (k, l)-loop

Definition 1

For $1 \le k$, we call a path π a (k, I)-loop if $T(\pi(k), \pi(I))$ and $\pi = u \cdot v^{\omega}$ with $u = (\pi(0), \dots, \pi(I-1))$ and $v = (\pi(I), \dots, \pi(k))$. We call π a k-loop if there exists $k \ge I \ge 0$ for which π is a (k, I)-loop.

If a path is a k-loop, then the original LTL semantics are maintained (∵ infinite path represented in prefix)

Prefixes With Back Loops - (k, l)-loop

Definition 1

For $1 \le k$, we call a path π a (k, l)-loop if $T(\pi(k), \pi(l))$ and $\pi = u \cdot v^{\omega}$ with $u = (\pi(0), \dots, \pi(l-1))$ and $v = (\pi(l), \dots, \pi(k))$. We call π a k-loop if there exists $k \ge l \ge 0$ for which π is a (k, l)-loop.

If a path is a k-loop, then the original LTL semantics are maintained (∵ infinite path represented in prefix)

Definition 2 (Bounded Semantics for a Loop)

Let $k \ge 0$ and π be a k-loop. Then an LTL formula f is valid along the path π with bound k (denoted by $\pi \models_k f$) iff $\pi \models f$.

Prefixes Without Back Loops

▶ $\Diamond p$ is valid along π in unbounded semantics if $\exists i \geq 0$ s.t. p is valid along the suffix π_i of π

Prefixes Without Back Loops

- ▶ $\Diamond p$ is valid along π in unbounded semantics if $\exists i \geq 0$ s.t. p is valid along the suffix π_i of π
- ▶ In bounded semantics, (k + 1)-th state $\pi(k)$ does not have a successor
 - \blacktriangleright Cannot define bounded semantics recursively over suffixes of π

Prefixes Without Back Loops

- ▶ $\Diamond p$ is valid along π in unbounded semantics if $\exists i \geq 0$ s.t. p is valid along the suffix π_i of π
- ▶ In bounded semantics, (k + 1)-th state $\pi(k)$ does not have a successor
 - \blacktriangleright Cannot define bounded semantics recursively over suffixes of π
- Introduce notation:

$$\pi \models_{k}^{i} f$$

where *i* is the current position in the prefix of π

▶ Implies suffix π_i of π satisfies f, i.e.,

$$\pi \models_{k}^{i} \Rightarrow \pi_{i} \models f$$

Definition 3 (Bounded Semantics without a Loop)

Let $k \ge 0$, and π be a path that is not a k-loop. An LTL formula f is valid along π with bound k (denoted by $\pi \models_k f$) iff $\pi \models_k^0 f$ where

$$\pi \models_{k}^{i} p \qquad \Leftrightarrow \quad p \in L(\pi(i))
\pi \models_{k}^{i} \neg p \qquad \Leftrightarrow \quad p \notin L(\pi(i))
\pi \models_{k}^{i} f \land g \qquad \Leftrightarrow \quad \pi \models_{k}^{i} f \text{ and } \pi \models_{k}^{i} g
\pi \models_{k}^{i} f \lor g \qquad \Leftrightarrow \quad \pi \models_{k}^{i} f \text{ or } \pi \models_{k}^{i} g
\pi \models_{k}^{i} \Box f \qquad \text{is always false}
\pi \models_{k}^{i} \Diamond f \qquad \Leftrightarrow \quad \exists j, i \leq j \leq k \bullet \pi \models_{k}^{j} f$$

$$\pi \models_{k}^{i} \bigcirc f \iff i < k \text{ and } \pi \models_{k}^{i+1} f$$

$$\pi \models_{k}^{i} f \mathbf{U} g \iff \exists j, i \leq j \leq k \bullet \pi \models_{k}^{j} g$$

$$\text{and } \forall n, i \leq n < j \bullet \pi \models_{k}^{n} f$$

$$\pi \models_{k}^{i} f \mathbf{R} g \iff \exists j, i \leq j \leq k \bullet \pi \models_{k}^{j} f$$

$$\text{and } \forall n, i \leq n < j \bullet \pi \models_{k}^{n} g$$

$$\pi \models_{k}^{i} \bigcirc f \Leftrightarrow i < k \text{ and } \pi \models_{k}^{i+1} f$$

$$\pi \models_{k}^{i} f U g \Leftrightarrow \exists j, i \leq j \leq k \bullet \pi \models_{k}^{j} g$$

$$\text{and } \forall n, i \leq n < j \bullet \pi \models_{k}^{n} f$$

$$\pi \models_{k}^{i} f R g \Leftrightarrow \exists j, i \leq j \leq k \bullet \pi \models_{k}^{j} f$$

$$\text{and } \forall n, i \leq n < j \bullet \pi \models_{k}^{n} g$$

▶ $\Box f$ is not valid along π in k-bounded semantics since f may not hold for π_{k+1}

$$\pi \models_{k}^{j} \bigcirc f \iff i < k \text{ and } \pi \models_{k}^{i+1} f$$

$$\pi \models_{k}^{i} f \mathbf{U} g \iff \exists j, i \leq j \leq k \bullet \pi \models_{k}^{j} g$$

$$\text{and } \forall n, i \leq n < j \bullet \pi \models_{k}^{n} f$$

$$\pi \models_{k}^{i} f \mathbf{R} g \iff \exists j, i \leq j \leq k \bullet \pi \models_{k}^{j} f$$

$$\text{and } \forall n, i \leq n < j \bullet \pi \models_{k}^{n} g$$

- ▶ $\Box f$ is not valid along π in k-bounded semantics since f may not hold for π_{k+1}
- ▶ $\neg \Diamond f \not\equiv \Box \neg f$, i.e., duality between \Box and \Diamond no longer holds

Outline

Introduction to Bounded Model Checking (BMC)
BMC vs. BDD Model Checkers

A Quick Review of Model Checking Concepts

Kripke Structures
LTL Syntax and Semantics
LTL Model Checking

Bounded Model Checking

Bounded Path Syntax and Semantics

Model Checking Problem Reduction

Reducing BMC to SAT

Example of Checking Mutual Exclusion using BMC

Techniques for Completeness

Completeness Threshold Liveness Induction

Model Checking Problem Reduction

- Introduce path quantifiers E and A
 - ▶ E denotes that an LTL formula is expected to be correct over some path
 - ► A denotes that an LTL formula is expected to be correct over all paths

Model Checking Problem Reduction

- Introduce path quantifiers E and A
 - ▶ E denotes that an LTL formula is expected to be correct over some path
 - A denotes that an LTL formula is expected to be correct over all paths
- The existential model checking problem M ⊨ Ef can reduced to a bounded existential model checking problem M ⊨_k Ef

Model Checking Problem Reduction

- Introduce path quantifiers E and A
 - ▶ E denotes that an LTL formula is expected to be correct over some path
 - A denotes that an LTL formula is expected to be correct over all paths
- The existential model checking problem M ⊨ Ef can reduced to a bounded existential model checking problem M ⊨ Ef
- M ⊨ Ef means ∃ an initialized path in M that satisfies f

Basis for this reduction lies in the following lemmas

Basis for this reduction lies in the following lemmas

Lemma 1

Let f be an LTL formula and π a path, then $\pi \models_k f \Rightarrow \pi \models f$

Basis for this reduction lies in the following lemmas

Lemma 1

Let f be an LTL formula and π a path, then $\pi \models_k f \Rightarrow \pi \models f$

Lemma 2

Let f be an LTL formula and M a Kripke structure. If $M \models \mathbf{E}f$, $\exists k \geq 0$ with $M \models \mathbf{E}f$.

The following theorem is derived from the lemmas:

Theorem 1

Let f be an LTL formula and M a Kripke structure. Then $M \models \mathbf{E} f$ iff $\exists k \geq 0$ such that $M \models_k \mathbf{E} f$.

The following theorem is derived from the lemmas:

Theorem 1

Let f be an LTL formula and M a Kripke structure. Then $M \models \mathbf{E} f$ iff $\exists k \geq 0$ such that $M \models_k \mathbf{E} f$.

Informally, it means that for a sufficiently high bound, bounded and unbounded semantics are equivalent.

Outline

Introduction to Bounded Model Checking (BMC)
BMC vs. BDD Model Checkers

A Quick Review of Model Checking Concepts

Kripke Structures
LTL Syntax and Semantics
LTL Model Checking

Bounded Model Checking

Bounded Path Syntax and Semantics Model Checking Problem Reduction

Reducing BMC to SAT

Example of Checking Mutual Exclusion using BMC

Techniques for Completeness

Completeness Threshold Liveness Induction

Given a Kripke structure M, an LTL formula f, and a bound k, we can construct a propositional formula

 $[[M,f]]_k$

Given a Kripke structure M, an LTL formula f, and a bound k, we can construct a propositional formula

$$[[M,f]]_k$$

▶ Let $s_0, ..., s_k$ be a finite sequence of states on path π

Given a Kripke structure M, an LTL formula f, and a bound k, we can construct a propositional formula

$$[[M,f]]_k$$

- ▶ Let s_0, \ldots, s_k be a finite sequence of states on path π
- ► Each state *s_i* represents a state at time step *i* and consists of an assignment of truth values to the set of state variables

Given a Kripke structure M, an LTL formula f, and a bound k, we can construct a propositional formula

$$[[M,f]]_k$$

- Let s_0, \ldots, s_k be a finite sequence of states on path π
- ► Each state *s_i* represents a state at time step *i* and consists of an assignment of truth values to the set of state variables
- ▶ Encode constraints on $s_0, ..., s_k$ so that

 $[[M, f]]_k$ is satisfiable $\Leftrightarrow \pi$ is a witness for f

Definition of $[[M, f]]_k$

► Three components define [[M, f]]_k

Definition of $[[M, f]]_k$

- ▶ Three components define $[[M, f]]_k$
 - ▶ Propositional formula $[[M]]_k$: constrains s_0, \ldots, s_k to be a valid path starting from an initial state

Definition of $[[M, f]]_k$

- ► Three components define [[M, f]]_k
 - ▶ Propositional formula $[[M]]_k$: constrains s_0, \ldots, s_k to be a valid path starting from an initial state
 - ▶ Loop condition: a propositional formula that is evaluated to true only if the path π contains a loop

Definition of $[[M, f]]_k$

- ▶ Three components define $[[M, f]]_k$
 - ▶ Propositional formula $[[M]]_k$: constrains s_0, \ldots, s_k to be a valid path starting from an initial state
 - Loop condition: a propositional formula that is evaluated to true only if the path π contains a loop
 - ▶ Propositional formula that constrains π to satisfy f

Propositional Formula $[[M]]_k$

Definition 4 (Unfolding of the Transition Relation) For a Kripke structure $M, k \ge 0$

$$[[M]]_k := I(s_0) \wedge \bigwedge_{i=0}^{k-1} T(s_i, s_{i+1})$$

Loop Condition

- ▶ Define propositional formula $_{l}L_{k}$ to be true iff there is a transition from state s_{k} to state s_{l} .
- ▶ By definition, ${}_{l}L_{k} = T(s_{k}, s_{l})$

Loop Condition

- ▶ Define propositional formula $_{l}L_{k}$ to be true iff there is a transition from state s_{k} to state s_{l} .
- ▶ By definition, ${}_{l}L_{k} = T(s_{k}, s_{l})$

Definition 5 (Loop Condition)

The loop condition L_k is true iff there exists a back loop from state s_k to a previous state or to itself. We define L_k to be:

$$L_k := \bigvee_{l=0}^k {}_l L_k$$

Loop Successor

Definition 6 (Successor in a Loop)

Let k, l and i be non-negative integers s.t. l, $i \le k$. Define the *successor* succ(i) of i in a (k, l)-loop as:

$$succ(i) := \begin{cases} i+1 & i < k \\ l & i = k \end{cases}$$

Definition 7 (Translation of an LTL Formula for a Loop)

Let f be an LTL formula, $k, l, i \ge 0$, with $l, i \le k$.

```
I[[p]]_k^i := p(s_i)

I[[\neg p]]_k^i := \neg p(s_i)
 \int_{I} [[f \vee g]]_{k}^{i} := \int_{I} [[f]]_{k}^{i} \vee \int_{I} [[g]]_{k}^{i}
 I_{I}[[f \wedge g]]_{k}^{i} := I_{I}[[f]]_{k}^{i} \wedge I_{I}[[g]]_{k}^{i}

\begin{array}{lll}
I[[\Box f]]_k^i & := & I[[f]]_k^i \wedge I[[\Box f]]_k^{\operatorname{succ}(i)} \\
I[[\Diamond f]]_k^i & := & I[[f]]_k^i \vee I[[\Diamond f]]_k^{\operatorname{succ}(i)}
\end{array}

\begin{array}{lll}
I[[f \mathbf{U}g]]_{k}^{j} & := & I[[g]]_{k}^{j} \vee \left(I[f]]_{k}^{j} \wedge I[[f \mathbf{U}g]]_{k}^{\operatorname{succ}(i)}\right) \\
I[[f \mathbf{R}g]]_{k}^{j} & := & I[[g]]_{k}^{j} \wedge \left(I[[f]]_{k}^{j} \vee I[[f \mathbf{R}g]]_{k}^{\operatorname{succ}(i)}\right) \\
I[[\bigcirc f]]_{k}^{j} & := & I[[f]]_{k}^{\operatorname{succ}(i)}
\end{array}
```

- \triangleright $I[[\cdot]]_k^i$ is an intermediate formula
 - ▶ I and k defines the start and end of the (k, I)-loop
 - i for the current position in the path

Definition 8 (Translation of an LTL Formula without a Loop)

Inductive Case $\forall i < k$

$$\begin{aligned} & [[\rho]]_k^i & := & \rho(s_i) \\ & [[\neg \rho]]_k^i & := & \neg \rho(s_i) \\ & [[f \lor g]]_k^i & := & [[f]]_k^i \lor [[g]]_k^i \\ & [[f \land g]]_k^i & := & [[f]]_k^i \land [[g]]_k^i \\ & [[\Box f]]_k^i & := & [[f]]_k^i \land [[\Box f]]_k^{i+1} \\ & [[\lozenge f]]_k^i & := & [[f]]_k^i \lor [[\lozenge f]]_k^{i+1} \\ & [[f \mathbf{U}g]]_k^i & := & [[g]]_k^i \lor ([[f]]_k^i \land [[f \mathbf{U}g]]_k^{i+1}) \\ & [[f \mathbf{R}g]]_k^i & := & [[g]]_k^i \land ([[f]]_k^i \lor [[f \mathbf{R}g]]_k^{i+1}) \\ & [[\bigcirc f]]_k^i & := & [[f]]_k^{i+1} \end{aligned}$$

Base Case

$$[[f]]_{k}^{k+1} := 0$$

General Translation

Definition 9 (General Translation)

Let f be an LTL formula, M a Kripke strucutre and $k \ge 0$.

$$[[M,f]]_k := [[M]]_k \wedge \left(\left(\neg L_k \wedge [[f]]_k^0 \right) \vee \bigvee_{l=0}^k \left({}_l L_k \wedge {}_l [[f]]_k^l \right) \right)$$

Satisfiability and Bounded Model Checking

Theorem 2 $[[M, f]]_k$ is satisfiable iff $M \models_k \mathbf{E} f$

Outline

Introduction to Bounded Model Checking (BMC)
BMC vs. BDD Model Checkers

A Quick Review of Model Checking Concepts

Kripke Structures
LTL Syntax and Semantics
LTL Model Checking

Bounded Model Checking

Bounded Path Syntax and Semantics Model Checking Problem Reduction

Reducing BMC to SAT
Example of Checking Mutual Exclusion using BMC

Techniques for Completeness

Completeness Threshold Liveness Induction

Pseudocode

Recall the earlier pseudocode for two processes that wish to gain access to a shared resource:

Process A		PR	PROCESS B	
1	A.pc = 0	1	B.pc = 0	
2	while True	2	while TRUE	
3	wait for $B.pc == 0$	3	wait for $A.pc == 0$	
4	A.pc = 1	4	B.pc = 1	
5	// critical section	5	// critical section	
6	A.pc = 0	6	B.pc = 0	

Modeling

- Each state s of the system M is represented by two-bit variables
 - ► s[1]: high bit (Process A)
 - ▶ s[0]: low bit (Process B)

Modeling

- Each state s of the system M is represented by two-bit variables
 - ► s[1]: high bit (Process A)
 - ► s[0]: low bit (Process B)
- Initial state:

$$I(s) := \neg s[1] \wedge \neg s[0]$$

Modeling (cont'd)

Transition relation:

$$T(s, s') := (\neg s[1] \land (s[0] \leftrightarrow \neg s'[0])) \lor$$

Modeling (cont'd)

Transition relation:

$$T(s,s') := \ \left(\neg s[1] \land \left(s[0] \leftrightarrow \neg s'[0] \right) \right) \lor \\ \left(\neg s[0] \land \left(s[1] \leftrightarrow \neg s'[1] \right) \right) \lor$$

Modeling (cont'd)

Transition relation:

$$\begin{split} \textit{T}(\textit{s}, \textit{s}') := & \left(\neg \textit{s}[1] \land \left(\textit{s}[0] \leftrightarrow \neg \textit{s}'[0] \right) \right) \lor \\ & \left(\neg \textit{s}[0] \land \left(\textit{s}[1] \leftrightarrow \neg \textit{s}'[1] \right) \right) \lor \\ & \left(\textit{s}[0] \land \textit{s}[1] \land \neg \textit{s}'[1] \land \neg \textit{s}'[0] \right) \end{split}$$

Adding Faulty Transition

Suppose we add the fault transition 10 → 11 to the model, M:

Adding Faulty Transition

Suppose we add the fault transition 10 → 11 to the model, M:

Then we have the new transition relation:

$$T_f(s,s') := T(s,s') \vee (s[1] \wedge \neg s[0] \wedge s'[1] \wedge s'[0])$$

Checking Mutex Property

Consider the safety property that at most one process can be in the critical section at any time, i.e.:

$$f = \Box \neg p = \Box \neg (s[1] \land s[0])$$

Checking Mutex Property

Consider the safety property that at most one process can be in the critical section at any time, i.e.:

$$f = \Box \neg p = \Box \neg (s[1] \land s[0])$$

- Try to find a counterexample of this property, that is, a witness for ◊p
 - ▶ If a witness exists, then $M \not\models f$
 - ▶ If a witness cannot be found, then $M \models_k f$ (i.e., property holds up to the bound k)

LTL to Propositional Formula Translation

▶ Consider the bound k = 2.

LTL to Propositional Formula Translation

- ▶ Consider the bound k = 2.
- Unroll the transition relation:

$$[[M]]_2 := I(s_0) \wedge \bigwedge_{l=0}^{k-1} T(s_l, s_{l+1})$$

= $I(s_0) \wedge T_f(s_0, s_1) \wedge T_f(s_1, s_2)$

LTL to Propositional Formula Translation

- ▶ Consider the bound k = 2.
- Unroll the transition relation:

$$[[M]]_2 := I(s_0) \wedge \bigwedge_{l=0}^{k-1} T(s_l, s_{l+1})$$

= $I(s_0) \wedge T_f(s_0, s_1) \wedge T_f(s_1, s_2)$

► The loop condition is:

$$L_2 := \bigvee_{l=0}^2 T_f(s_2, s_l)$$

LTL to Propositional Formula Translation (cont'd)

Translation for paths without loops is:

```
\begin{array}{lll} [[\lozenge \rho]]_{2}^{0} & := & \rho(s_{0}) \vee [[\lozenge \rho]]_{2}^{1} \\ [[\lozenge \rho]]_{2}^{1} & := & \rho(s_{1}) \vee [[\lozenge \rho]]_{2}^{2} \\ [[\lozenge \rho]]_{2}^{2} & := & \rho(s_{2}) \vee [[\lozenge \rho]]_{2}^{3} \\ [[\lozenge \rho]]_{2}^{3} & := & 0 \end{array}
```

LTL to Propositional Formula Translation (cont'd)

Translation for paths without loops is:

Substitute all intermediate terms to obtain:

$$[[\lozenge p]]_2^0 := p(s_0) \vee p(s_1) \vee p(s_2)$$

LTL to Propositional Formula Translation (cont'd)

Translation for paths with loops is:

```
\begin{array}{lll} {}_{0}[[\lozenge\rho]]_{2}^{0} & := & p(s_{0})\vee_{0}[[\lozenge\rho]]_{2}^{1} \\ {}_{0}[[\lozenge\rho]]_{2}^{1} & := & p(s_{1})\vee_{0}[[\lozenge\rho]]_{2}^{2} \\ {}_{0}[[\lozenge\rho]]_{2}^{2} & := & p(s_{2})\vee_{0}[[\lozenge\rho]]_{2}^{0} \\ {}_{1}[[\lozenge\rho]]_{2}^{1} & := & p(s_{1})\vee_{1}[[\lozenge\rho]]_{2}^{2} \\ {}_{1}[[\lozenge\rho]]_{2}^{2} & := & p(s_{2})\vee_{1}[[\lozenge\rho]]_{2}^{1} \\ {}_{2}[[\lozenge\rho]]_{2}^{2} & := & p(s_{2})\vee_{2}[[\lozenge\rho]]_{2}^{2} \end{array}
```

Check for a Witness

Putting everything together:

$$[[F,\Diamond p]]_2 := [[M]]_2 \wedge \left(\left(\neg L_2 \wedge [[\Diamond p]]_2^0 \right) \vee \bigvee_{l=0}^2 \left({}_l L_2 \wedge {}_l [[\Diamond p]]_2^l \right) \right)$$

Check for a Witness

Putting everything together:

$$[[F,\lozenge p]]_2 := [[M]]_2 \wedge \left(\left(\neg L_2 \wedge [[\lozenge p]]_2^0 \right) \vee \bigvee_{l=0}^2 \left({}_l L_2 \wedge {}_l [[\lozenge p]]_2^l \right) \right)$$

Since a finite path to a bad state is sufficient for falsifying a property, omit the loop condition.

Check for a Witness

Putting everything together:

$$[[F,\Diamond p]]_2 := [[M]]_2 \wedge \left(\left(\neg L_2 \wedge [[\Diamond p]]_2^0 \right) \vee \bigvee_{l=0}^2 \left({}_l L_2 \wedge {}_l [[\Diamond p]]_2^l \right) \right)$$

- Since a finite path to a bad state is sufficient for falsifying a property, omit the loop condition.
- This results in the formula:

$$\begin{aligned} [[M, \Diamond p]]_2 := [[M]]_2 \wedge [[\Diamond p]]_2^0 \\ &= I(s_0) \wedge T_f(s_0, s_1) \wedge T_f(s_1, s_2) \\ &\wedge (p(s_0) \vee p(s_1) \vee p(s_2)) \end{aligned}$$

Check for a Witness (cont'd)

- $(s_0, s_1, s_2) = (00, 10, 11)$ satisfies $[[M, \Diamond p]]_2$
 - an initialized path that violates the safety property

Outline

Introduction to Bounded Model Checking (BMC)
BMC vs. BDD Model Checkers

A Quick Review of Model Checking Concepts

Kripke Structures
LTL Syntax and Semantics
LTL Model Checking

Bounded Model Checking

Bounded Path Syntax and Semantics Model Checking Problem Reduction

Reducing BMC to SAT

Example of Checking Mutual Exclusion using BMC

Techniques for Completeness

Completeness Threshold Liveness Induction

Completeness

▶ Suppose we have a model checking problem $M \models \mathbf{E}f$, where f is the negated version of the property to be checked

Completeness

- Suppose we have a model checking problem M ⊨ Ef, where f is the negated version of the property to be checked
- ▶ Increment bound *k* until a finite-length witness is found
 - In this case, we are done and M ⊨ Ef (i.e., model does not satisfy the property)

Completeness

- Suppose we have a model checking problem M ⊨ Ef, where f is the negated version of the property to be checked
- Increment bound k until a finite-length witness is found
 - In this case, we are done and M ⊨ Ef (i.e., model does not satisfy the property)
- If M ⊭ Ef, how do we know when to terminate the BMC model checker?

Outline

Introduction to Bounded Model Checking (BMC)
BMC vs. BDD Model Checkers

A Quick Review of Model Checking Concepts

Kripke Structures
LTL Syntax and Semantics
LTL Model Checking

Bounded Model Checking

Bounded Path Syntax and Semantics Model Checking Problem Reduction

Reducing BMC to SAT

Example of Checking Mutual Exclusion using BMC

Techniques for Completeness

Completeness Threshold

Liveness Induction

▶ For every finite state system M, a property p, and a translation scheme, there is a number \mathcal{CT} where the absence of errors up to cycle \mathcal{CT} proves that $M \models p$

- ▶ For every finite state system M, a property p, and a translation scheme, there is a number \mathcal{CT} where the absence of errors up to cycle \mathcal{CT} proves that $M \models p$
- ► Completeness threshold is the minimal bound on k for □p required to reach all states and called the reachability diameter

- ▶ For every finite state system M, a property p, and a translation scheme, there is a number \mathcal{CT} where the absence of errors up to cycle \mathcal{CT} proves that $M \models p$
- Completeness threshold is the minimal bound on k for □p required to reach all states and called the reachability diameter

Definition 10

The reachability diameter rd(M) is the minimal number of steps required for reaching all reachable states, i.e.:

$$rd(M) := \min \left\{ i | \forall s_0, \dots, s_n \bullet \exists s'_0, \dots, s'_t, t \leq i \bullet \right.$$

$$I(s_0) \land \bigwedge_{j=0}^{n-1} T(s_j, s_{j+1}) \to \left(I\left(s'_0\right) \land \bigwedge_{j=0}^{t-1} T\left(s'_j, s'_{j+1}\right) \land s'_t = s_n \right) \right\}$$

- ▶ For every finite state system M, a property p, and a translation scheme, there is a number \mathcal{CT} where the absence of errors up to cycle \mathcal{CT} proves that $M \models p$
- Completeness threshold is the minimal bound on k for □p required to reach all states and called the reachability diameter

Definition 10

The reachability diameter rd(M) is the minimal number of steps required for reaching all reachable states, i.e.:

$$rd(M) := \min \left\{ i | \forall s_0, \dots, s_n \bullet \exists s'_0, \dots, s'_t, t \leq i \bullet \right.$$

$$I(s_0) \land \bigwedge_{j=0}^{n-1} T(s_j, s_{j+1}) \to \left(I\left(s'_0\right) \land \bigwedge_{j=0}^{t-1} T\left(s'_j, s'_{j+1}\right) \land s'_t = s_n \right) \right\}$$

▶ Worst case for $n = 2^{|V|}$, where V is the set of variables defining the states of M

- ► Worst case for $n = 2^{|V|}$, where V is the set of variables defining the states of M
- Determine best n
 - Let n = i + 1. Check whether every state that can be reached in i + 1 can be reached sooner

- ► Worst case for $n = 2^{|V|}$, where V is the set of variables defining the states of M
- Determine best n
 - Let n = i + 1. Check whether every state that can be reached in i + 1 can be reached sooner

$$rd(M) := \min \left\{ i | \forall s_0, \dots, s_{i+1} \bullet \exists s'_0, \dots, s'_i, \bullet \right.$$

$$I(s_0) \land \bigwedge_{j=0}^i T(s_j, s_{j+1}) \to \left(I(s'_0) \land \bigwedge_{j=0}^{i-1} T(s'_j, s'_{j+1}) \land \bigvee_{j=0}^i s'_j = s_{i+1} \right) \right\}$$

- ▶ Worst case for $n = 2^{|V|}$, where V is the set of variables defining the states of M
- Determine best n
 - Let n = i + 1. Check whether every state that can be reached in i + 1 can be reached sooner

$$\begin{aligned} \textit{rd}(\textit{M}) := \min \left\{ i | \forall s_0, \dots, s_{i+1} \bullet \exists s'_0, \dots, s'_i, \bullet \\ \textit{I}(s_0) \land \bigwedge_{j=0}^i \textit{T}(s_j, s_{j+1}) \rightarrow \left(\textit{I}\left(s'_0\right) \land \bigwedge_{j=0}^{i-1} \textit{T}\left(s'_j, s'_{j+1}\right) \land \bigvee_{j=0}^i s'_j = s_{i+1} \right) \right\} \end{aligned}$$

Alternation of quantifiers in the two previous expressions are hard to solve in practice

Recurrence Diameter for Reachability

Approximate the reachability diameter instead

Recurrence Diameter for Reachability

Approximate the reachability diameter instead

Definition 11 (Recurrence Diameter for Reachability)

The recurrence diameter for reachability with respect to a model M, denoted by rdr(M), is the longest loop-free path in M starting from an initial state:

$$rdr(M) := \max \left\{ i | \exists s_0 \dots s_i \bullet \atop I(s_0) \land \bigwedge_{j=0}^{i-1} T(s_j, s_{j+1}) \land \bigwedge_{j=0}^{i-1} \bigwedge_{k=j+1}^{i} s_j \neq s_k \right\}$$

Recurrence Diameter for Reachability

Approximate the reachability diameter instead

Definition 11 (Recurrence Diameter for Reachability)

The recurrence diameter for reachability with respect to a model M, denoted by rdr(M), is the longest loop-free path in M starting from an initial state:

$$rdr(M) := \max \left\{ i | \exists s_0 \dots s_i \bullet \atop I(s_0) \land \bigwedge_{j=0}^{i-1} T(s_j, s_{j+1}) \land \bigwedge_{j=0}^{i-1} \bigwedge_{k=j+1}^{i} s_j \neq s_k \right\}$$

rdr(M) is an over-approximation of rd(M) because every shortest path is a loop-free path

Outline

Introduction to Bounded Model Checking (BMC)
BMC vs. BDD Model Checkers

A Quick Review of Model Checking Concepts

Kripke Structures LTL Syntax and Semantics LTL Model Checking

Bounded Model Checking

Bounded Path Syntax and Semantics Model Checking Problem Reduction

Reducing BMC to SAT

Example of Checking Mutual Exclusion using BMC

Techniques for Completeness

Completeness Threshold

Liveness

Induction

Liveness

▶ If a proof for liveness exists, the proof can be established by examining all finite sequences of length k starting from initial states

Liveness

▶ If a proof for liveness exists, the proof can be established by examining all finite sequences of length k starting from initial states

Definition 12 (Translation for Liveness Properties)

$$[[M,\mathbf{A}\Diamond p]]_k:=I(s_0)\wedge \bigwedge_{i=0}^{k-1}T(s_i,s_{i+1})\rightarrow \bigvee_{i=0}^{k}p(s_i)$$

Theorem 3

 $M \models \mathbf{A} \Diamond \mathbf{p} \Leftrightarrow \exists k \bullet [[M, \mathbf{A} \Diamond \mathbf{p}]]_k \text{ is valid.}$

Theorem 3

$$M \models \mathbf{A} \Diamond p \Leftrightarrow \exists k \bullet [[M, \mathbf{A} \Diamond p]]_k \text{ is valid.}$$

▶ Need to search for a k that makes the negation of $[[M, \mathbf{A} \Diamond p]]_k$ unsatisfiable

Theorem 3

$$M \models \mathbf{A} \Diamond p \Leftrightarrow \exists k \bullet [[M, \mathbf{A} \Diamond p]]_k \text{ is valid.}$$

- ▶ Need to search for a k that makes the negation of $[[M, \mathbf{A} \Diamond p]]_k$ unsatisfiable
- Bound k needed for a proof represent length of longest sequence from an initial state without hitting a state where p holds

Theorem 3

$$M \models \mathbf{A} \Diamond p \Leftrightarrow \exists k \bullet [[M, \mathbf{A} \Diamond p]]_k \text{ is valid.}$$

- ▶ Need to search for a k that makes the negation of $[[M, \mathbf{A} \Diamond p]]_k$ unsatisfiable
- Bound k needed for a proof represent length of longest sequence from an initial state without hitting a state where p holds
- In BMC, we have semi-decision procedures for

$$M \models \mathsf{E} \Box \neg p \Leftrightarrow M \not\models \mathsf{A} \Diamond p$$

• : either $\mathbf{A} \lozenge p$ or $\mathbf{E} \square \neg p$ must hold, one of the semi-decision procedures must terminate

Outline

Introduction to Bounded Model Checking (BMC)
BMC vs. BDD Model Checkers

A Quick Review of Model Checking Concepts

Kripke Structures
LTL Syntax and Semantics
LTL Model Checking

Bounded Model Checking

Bounded Path Syntax and Semantics Model Checking Problem Reduction

Reducing BMC to SAT

Example of Checking Mutual Exclusion using BMC

Techniques for Completeness

Completeness Threshold Liveness

Induction

Induction

Inductive techniques can be used to make BMC complete for safety properties

Induction

- Inductive techniques can be used to make BMC complete for safety properties
- ▶ Proving that $M \models \mathbf{A} \Box p$ by induction usually involves:
 - Manually finding a strengthening inductive invariant expression that is inductive and implies the property

Induction

- Inductive techniques can be used to make BMC complete for safety properties
- ▶ Proving that $M \models \mathbf{A} \Box p$ by induction usually involves:
 - Manually finding a strengthening inductive invariant expression that is inductive and implies the property
- Inductive proof:
 - Base case
 - Induction step
 - Strengthening step

Prove Inductive Invariant Holds for First *n* Steps

Show that inductive invariant φ holds in first n steps by checking whether the following is unsatisfiable:

$$\exists s_0,\ldots,s_n \bullet I(s_0) \land \bigwedge_{i=0}^{n-1} T(s_i,s_{i+1}) \land \bigvee_{i=0}^k \neg \phi(s_i)$$

Prove Inductive Invariant Holds for First *n* Steps

Show that inductive invariant φ holds in first n steps by checking whether the following is unsatisfiable:

$$\exists s_0, \ldots, s_n \bullet I(s_0) \land \bigwedge_{i=0}^{n-1} T(s_i, s_{i+1}) \land \bigvee_{i=0}^k \neg \phi(s_i)$$

▶ Base step is equivalent to searching for a counterexample to □p

Inductive Step

Prove induction step by showing that the following is unsatisfiable:

$$\exists s_0, \ldots, s_{n+1} \bullet \bigwedge_{i=0}^n (\phi(s_i) \land T(s_i, s_{i+1})) \land \neg \phi(s_{n+1})$$

Refining the Inductive Step

- Paths in M restricted to contain distinct states
 - Preserves completeness of BMC for safety properties
 - A bad state is reachable (if it exists) is reachable via a simple path

Refining the Inductive Step

- Paths in M restricted to contain distinct states
 - Preserves completeness of BMC for safety properties
 - A bad state is reachable (if it exists) is reachable via a simple path
- Sufficient to show that the following is unsatisfiable:

$$\exists s_0, \dots, s_{n+1} \bullet \bigwedge_{j=0}^n \bigwedge_{k=j+1}^{n+1} (s_j \neq s_k) \wedge \bigwedge_{i=0}^n (\phi(s_i) \wedge T(s_i, s_{i+1})) \wedge \neg \phi(s_{n+1})$$

Strengthening Inductive Invariant Implies Property

Establish that for an arbitrary i:

$$\forall s_i \bullet \phi(s_i) \rightarrow p(s_i)$$

References

- A. Biere, A. Cimatti, E. Clarke, and Y. Zhu
 Symbolic Model Checking without BDDs
 In Proc. of the Workshop on Tools and Algorithms for the
 Consturction and Analysis of Systems (TACAS'99), LNCS.
 Springer-Verlag, 1999.
- A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu Bounded Model Checking

 Advances in Computers, Vol. 58, 2003.