
Bounded Model Checking
SAT-Based Model Checking

Wallace Wu

Department of Electrical and Computer Engineering
University of Waterloo

March 3, 2011



Outline
Introduction to Bounded Model Checking (BMC)

BMC vs. BDD Model Checkers

A Quick Review of Model Checking Concepts
Kripke Structures
LTL Syntax and Semantics
LTL Model Checking

Bounded Model Checking
Bounded Path Syntax and Semantics
Model Checking Problem Reduction

Reducing BMC to SAT
Example of Checking Mutual Exclusion using BMC

Techniques for Completeness
Completeness Threshold
Liveness
Induction



Outline
Introduction to Bounded Model Checking (BMC)

BMC vs. BDD Model Checkers

A Quick Review of Model Checking Concepts
Kripke Structures
LTL Syntax and Semantics
LTL Model Checking

Bounded Model Checking
Bounded Path Syntax and Semantics
Model Checking Problem Reduction

Reducing BMC to SAT
Example of Checking Mutual Exclusion using BMC

Techniques for Completeness
Completeness Threshold
Liveness
Induction



Model Checking

◮ Exhaustive model checking algorithms
◮ Inefficient; enumerate all states and transitions
◮ Check a few million states in reasonable amount of time
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◮ Exhaustive model checking algorithms
◮ Inefficient; enumerate all states and transitions
◮ Check a few million states in reasonable amount of time

◮ Symbolic model checking
◮ Represent states using Boolean functions
◮ Manipulating Boolean formulas: Reduced Ordered Binary

Decision Trees (ROBDD or BDD for short)
◮ Check ≥ 1020 states in reasonable amount of time
◮ Bottleneck: Memory required for storing and manipulating

BDDs
◮ Full design verifications is generally still beyond the

capacity of BDD-based model checkers
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About BMC

◮ Proposed by Biere, Clarke et al. [Biere et al., 1999]
◮ BMC relies on exponential procedure (still limited in its

capacity)
◮ Complimentary to BDD-based model checking

◮ BMC can solve many cases that BDD-based techniques
cannot and vice versa

◮ No correlation between hardness of SAT and BDD
problems

◮ Does NOT replace other model checking techniques

◮ Disadvantage: Cannot prove absence of errors in most
realistic cases
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Overview of BMC

Idea: Search for a counterexample in executions (paths)
whose length is ≤ k for some integer k

Method: Efficiently reduce problem to a propositional
satisfiability (SAT) problem

◮ Resolves state explosion problem

Process: If no bug is found, increase k until either:
◮ A bug is found
◮ Problem becomes intractable
◮ Some predetermined upper bound for k is

reached
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◮ User must provide a bound on the number of cycles that
should be explored

◮ Experiments show that BMC outperforms BDD-based
techniques for k up to ∼ 60 − 80



Unique Characteristics of BMC

◮ User must provide a bound on the number of cycles that
should be explored

◮ Experiments show that BMC outperforms BDD-based
techniques for k up to ∼ 60 − 80

◮ Uses SAT solving techniques to check models
◮ Details of SAT solvers not covered
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Verifying a 16 × 16 bit shift and add multiplier

SMV2 Prover

bit k texec (s) Memory (MB) texec (s) Memory (MB)

0 1 25 79 <1 1

1 2 25 79 <1 1
2 3 26 80 <1 1

3 4 27 82 1 2
4 5 33 92 1 2

5 6 67 102 1 2
6 7 258 172 2 2

7 8 1741 492 7 3
8 9 >1024 29 3

9 10 58 3
10 11 91 3

11 12 125 3
12 13 156 4
13 14 186 4

14 15 226 4
15 16 183 5



Verifying Various Designs

Model k Rulebase1 Rulebase2 Grasp Grasp (tuned) Chaff

1 18 7 6 282 3 2.2

2 5 70 8 1.1 0.8 <1

3 14 597 375 76 3 <1

4 24 690 261 510 12 3.7

5 12 803 184 24 2 <1

6 22 – 356 – 18 12.2

7 9 – 2671 10 2 <1

8 35 – – 6317 20 85
9 38 – – 9035 25 131.6

10 31 – – – 312 380.5

11 32 152 60 – – 34.7

12 31 1419 1126 – – 194.3

13 4 – 3626 – – 9.8

All values that are right of the column k are given in seconds
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Kripke Structure

◮ The finite automaton can be represented by a Kripke
structure, a quadruple M = (S, I, T , L) where

◮ S is the set of states
◮ I is the set of initial states, I ⊆ S
◮ T is the translation relation, T ⊆ S × S
◮ L is the labeling function, L : S → 2A, where A is the set of

atomic propositions, and 2A is the powerset of A
◮ L(s), s ∈ S, is made of As ⊆ A that hold in s



Sequential Behaviour of Kripke Structures

◮ Use the notion of paths to define behaviour of a Kripke
structure, M

◮ Each path, π in M is an infinite OR finite sequence of
states in an order that respects T

π = (s0, s1, . . .), T (si , si+1) ∀0 ≤ i < |π| − 1

◮ For i < |π|
◮ π(i) denotes the i-th state si in the sequence
◮ πi = (si , si+1, . . .) denotes the suffix of π starting with state

si



Sequential Behaviour of Kripke Structures (cont’d)

◮ If I(s0) (i.e., s0 is an initial state) and s0 ∈ π, π is an
initialized path

◮ If a state is not reachable ⇒ no initialized paths that
contain it



Assumptions about Kripke Structures

For a Kripke structure, M,
◮ I 6= ∅

◮ ∀s ∈ S, ∃t ∈ S with T (s, t) (total transition relation)



Mutual Exclusion Example
Pseudocode

PROCESS A

1 A.pc = 0
2 while TRUE

3 wait for B.pc == 0
4 A.pc = 1
5 // critical section
6 A.pc = 0

PROCESS B

1 B.pc = 0
2 while TRUE

3 wait for A.pc == 0
4 B.pc = 1
5 // critical section
6 B.pc = 0



Mutual Exclusion Example
Modeling

◮ We can encode the set of states using A.pc and B.pc:
A.pc · B.pc.

0001 10

11
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Mutual Exclusion Example
Modeling

◮ We can encode the set of states using A.pc and B.pc:
A.pc · B.pc.

0001 10

11

◮ The transition relation T ⊆ S2 = {0,1}4 is:

T = {0100,1000,1100,0001,0010}

◮ The sequence 11,00,10, . . . is a valid path, but it is not
initialized, since I = {s0}
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LTL Temporal Operators

Let f and g be temporal formulas. The temporal operators are:

Next time: ©f
. . .

f

Globally: �f
. . .

f

Finally: ♦f
. . .

f

Until: f Ug
. . .

gf

Release: f Rg
. . .

g f,g



LTL Semantics

Let π be an infinite path of a Kripke structure M and let f ,g,p
be temporal formulas. We recursively define LTL semantics as:

π |= p ⇔ p ∈ L (π(0))
π |= ¬p ⇔ π 6|= f
π |= f ∧ g ⇔ π |= f and π |= g
π |= ©f ⇔ π1 |= f
π |= �f ⇔ πi |= f ∀i ≥ 0
π |= ♦f ⇔ πi |= f for some i ≥ 0
π |= f Ug ⇔ πi |= g for some i ≥ 0 and πj |= f ∀0 ≤ j < i
π |= f Rg ⇔ πi |= g if for all j < i , πj 6|= f



LTL Semantics (cont’d)

◮ M |= f ⇒ π |= f ∀ initialized paths π of M
◮ LTL formulas f and g are equivalent (i.e., f ≡ g) iff

M |= f ↔ M |= g ∀M
◮ Duality:¬♦¬p ≡ �p
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LTL Model Checking

◮ Standard technique:
◮ compute product of Kripke structure M with automaton

representing the negation of the property to be checked

A
¬φ

◮ emptiness of the product automaton ⇒ correctness of the
property

L(M||A¬φ) = ∅ ⇒ M |= φ
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BMC

◮ Motivation was to leverage success in SAT solving in
model checking

◮ Search for counterexample within a predetermined bound
◮ i.e., Consider only prefixes of paths bounded by k in the

search
◮ In practice, progressively increase k , looking for longer

witnesses in longer traces
◮ Since LTL formulas are defined over all paths, a

counterexample is a trace/path that contradicts the
property

◮ such a trace is called a witness for the property
◮ Example: a counterexample to M |= �p is the existence of

a witness such that ♦¬p
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Prefixes

◮ Bounded semantics approximate unbounded semantics
◮ In BMC, finite prefixes of paths are considered
◮ Only the first k + 1 states (s0, . . . , sk ) of a path are used
◮ A finite length prefix represents an infinite path if there is a

back loop from the last state of the prefix to any previous
state(s)

◮ A prefix without back loop(s) only represents the finite
behaviour of the path up to state sk

s sl ks i

Figure: Prefix with back loop

s sl k

Figure: Prefix without back loop
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◮ Consider the LTL property: �p
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Example of Prefix Behaviour

◮ Consider the LTL property: �p
◮ With back loop:

◮ Property can be satisfied in the prefix
◮ Without back loop:

◮ Property CANNOT be satisfied in the prefix
◮ If p holds for all states s0, . . . , sk , we still cannot conclude

that the property holds since p may not hold at sk+1



Prefixes With Back Loops - (k , l)-loop

Definition 1
For 1 ≤ k , we call a path π a (k , l)-loop if T (π(k), π(l)) and
π = u · vω with u = (π(0), . . . , π(l − 1)) and
v = (π(l), . . . , π(k)). We call π a k-loop if there exists k ≥ l ≥ 0
for which π is a (k , l)-loop.

s sl ks i
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Prefixes With Back Loops - (k , l)-loop

Definition 1
For 1 ≤ k , we call a path π a (k , l)-loop if T (π(k), π(l)) and
π = u · vω with u = (π(0), . . . , π(l − 1)) and
v = (π(l), . . . , π(k)). We call π a k-loop if there exists k ≥ l ≥ 0
for which π is a (k , l)-loop.

◮ If a path is a k-loop, then the original LTL semantics are
maintained (∵ infinite path represented in prefix)

Definition 2 (Bounded Semantics for a Loop)
Let k ≥ 0 and π be a k-loop. Then an LTL formula f is valid
along the path π with bound k (denoted by π |=k f ) iff π |= f .

s sl ks i
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Prefixes Without Back Loops

◮ ♦p is valid along π in unbounded semantics if ∃i ≥ 0 s.t. p
is valid along the suffix πi of π

◮ In bounded semantics, (k + 1)-th state π(k) does not have
a successor

◮ Cannot define bounded semantics recursively over suffixes
of π

◮ Introduce notation:
π |=i

k f

where i is the current position in the prefix of π
◮ Implies suffix πi of π satisfies f , i.e.,

π |=i
k⇒ πi |= f



Semantics of Prefixes Without Back Loops

Definition 3 (Bounded Semantics without a Loop)
Let k ≥ 0, and π be a path that is not a k-loop. An LTL formula
f is valid along π with bound k (denoted by π |=k f ) iff π |=0

k f

where
π |=i

k p ⇔ p ∈ L (π(i))
π |=i

k ¬p ⇔ p /∈ L (π(i))
π |=i

k f ∧ g ⇔ π |=i
k f and π |=i

k g
π |=i

k f ∨ g ⇔ π |=i
k f or π |=i

k g
π |=i

k �f is always false
π |=i

k ♦f ⇔ ∃j , i ≤ j ≤ k • π |=j
k f



Semantics of Prefixes Without Back Loops

π |=i
k ©f ⇔ i < k and π |=i+1

k f
π |=i

k f Ug ⇔ ∃j , i ≤ j ≤ k • π |=j
k g

and ∀n, i ≤ n < j • π |=n
k f

π |=i
k f Rg ⇔ ∃j , i ≤ j ≤ k • π |=j

k f
and ∀n, i ≤ n < j • π |=n

k g
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π |=i
k ©f ⇔ i < k and π |=i+1
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π |=i
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◮ �f is not valid along π in k-bounded semantics since f may
not hold for πk+1



Semantics of Prefixes Without Back Loops

π |=i
k ©f ⇔ i < k and π |=i+1

k f
π |=i

k f Ug ⇔ ∃j , i ≤ j ≤ k • π |=j
k g

and ∀n, i ≤ n < j • π |=n
k f

π |=i
k f Rg ⇔ ∃j , i ≤ j ≤ k • π |=j

k f
and ∀n, i ≤ n < j • π |=n

k g

◮ �f is not valid along π in k-bounded semantics since f may
not hold for πk+1

◮ ¬♦f 6≡ �¬f , i.e., duality between � and ♦ no longer holds
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◮ E denotes that an LTL formula is expected to be correct
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Model Checking Problem Reduction

◮ Introduce path quantifiers E and A
◮ E denotes that an LTL formula is expected to be correct

over some path
◮ A denotes that an LTL formula is expected to be correct

over all paths

◮ The existential model checking problem M |= Ef can
reduced to a bounded existential model checking problem
M |=k Ef

◮ M |= Ef means ∃ an initialized path in M that satisfies f



Model Checking Problem Reduction (cont’d)

◮ Basis for this reduction lies in the following lemmas
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Lemma 1
Let f be an LTL formula and π a path, then π |=k f ⇒ π |= f



Model Checking Problem Reduction (cont’d)

◮ Basis for this reduction lies in the following lemmas

Lemma 1
Let f be an LTL formula and π a path, then π |=k f ⇒ π |= f

Lemma 2
Let f be an LTL formula and M a Kripke structure. If M |= Ef ,
∃k ≥ 0 with M |= Ef .



Model Checking Problem Reduction (cont’d)

The following theorem is derived from the lemmas:

Theorem 1
Let f be an LTL formula and M a Kripke structure. Then
M |= Ef iff ∃k ≥ 0 such that M |=k Ef .



Model Checking Problem Reduction (cont’d)

The following theorem is derived from the lemmas:

Theorem 1
Let f be an LTL formula and M a Kripke structure. Then
M |= Ef iff ∃k ≥ 0 such that M |=k Ef .

◮ Informally, it means that for a sufficiently high bound,
bounded and unbounded semantics are equivalent.
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BMC Reduction

◮ Given a Kripke structure M, an LTL formula f , and a bound
k , we can construct a propositional formula

[[M, f ]]k

◮ Let s0, . . . , sk be a finite sequence of states on path π

◮ Each state si represents a state at time step i and consists
of an assignment of truth values to the set of state
variables

◮ Encode constraints on s0, . . . , sk so that

[[M, f ]]k is satisfiable ⇔ π is a witness for f
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◮ Three components define [[M, f ]]k



Definition of [[M , f ]]k

◮ Three components define [[M, f ]]k
◮ Propositional formula [[M]]k : constrains s0, . . . , sk to be a

valid path starting from an initial state



Definition of [[M , f ]]k

◮ Three components define [[M, f ]]k
◮ Propositional formula [[M]]k : constrains s0, . . . , sk to be a

valid path starting from an initial state
◮ Loop condition: a propositional formula that is evaluated to

true only if the path π contains a loop



Definition of [[M , f ]]k

◮ Three components define [[M, f ]]k
◮ Propositional formula [[M]]k : constrains s0, . . . , sk to be a

valid path starting from an initial state
◮ Loop condition: a propositional formula that is evaluated to

true only if the path π contains a loop
◮ Propositional formula that constrains π to satisfy f



Propositional Formula [[M ]]k

Definition 4 (Unfolding of the Transition Relation)
For a Kripke structure M, k ≥ 0

[[M]]k := I(s0) ∧
k−1
∧

i=0

T (si , si+1)



Loop Condition

◮ Define propositional formula lLk to be true iff there is a
transition from state sk to state sl .

◮ By definition, lLk = T (sk , sl )



Loop Condition

◮ Define propositional formula lLk to be true iff there is a
transition from state sk to state sl .

◮ By definition, lLk = T (sk , sl )

Definition 5 (Loop Condition)
The loop condition Lk is true iff there exists a back loop from
state sk to a previous state or to itself. We define Lk to be:

Lk :=
k
∨

l=0

lLk



Loop Successor

Definition 6 (Successor in a Loop)
Let k , l and i be non-negative integers s.t. l , i ≤ k . Define the
successor succ(i) of i in a (k , l)-loop as:

succ(i) :=







i + 1 i < k

l i = k



Definition 7 (Translation of an LTL Formula for a Loop)
Let f be an LTL formula, k , l , i ≥ 0, with l , i ≤ k .

l [[p]]ik := p(si)

l [[¬p]]ik := ¬p(si)

l [[f ∨ g]]ik := l [[f ]]ik ∨ l [[g]]ik
l [[f ∧ g]]ik := l [[f ]]ik ∧ l [[g]]ik
l [[�f ]]ik := l [[f ]]ik ∧ l [[�f ]]succ(i)

k

l [[♦f ]]ik := l [[f ]]ik ∨ l [[♦f ]]succ(i)
k

l [[f Ug]]ik := l [[g]]ik ∨
(

l [[f ]]ik ∧ l [[f Ug]]succ(i)
k

)

l [[f Rg]]ik := l [[g]]ik ∧
(

l [[f ]]ik ∨ l [[f Rg]]succ(i)
k

)

l [[©f ]]ik := l [[f ]]
succ(i)
k

◮ l [[·]]
i
k is an intermediate formula

◮ l and k defines the start and end of the (k , l)-loop
◮ i for the current position in the path



Definition 8 (Translation of an LTL Formula without a
Loop)

Inductive Case ∀i ≤ k

[[p]]ik := p(si)

[[¬p]]ik := ¬p(si)

[[f ∨ g]]ik := [[f ]]ik ∨ [[g]]ik
[[f ∧ g]]ik := [[f ]]ik ∧ [[g]]ik
[[�f ]]ik := [[f ]]ik ∧ [[�f ]]i+1

k

[[♦f ]]ik := [[f ]]ik ∨ [[♦f ]]i+1
k

[[f Ug]]ik := [[g]]ik ∨
(

[[f ]]ik ∧ [[f Ug]]i+1
k

)

[[f Rg]]ik := [[g]]ik ∧
(

[[f ]]ik ∨ [[f Rg]]i+1
k

)

[[©f ]]ik := [[f ]]i+1
k

Base Case
[[f ]]k+1

k := 0



General Translation

Definition 9 (General Translation)
Let f be an LTL formula, M a Kripke strucutre and k ≥ 0.

[[M, f ]]k := [[M]]k ∧

(

(

¬Lk ∧ [[f ]]0k
)

∨
k
∨

l=0

(

lLk ∧ l [[f ]]
l
k

)

)



Satisfiability and Bounded Model Checking

Theorem 2
[[M, f ]]k is satisfiable iff M |=k Ef
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Mutual Exclusion Example
Pseudocode

Recall the earlier pseudocode for two processes that wish to
gain access to a shared resource:

PROCESS A

1 A.pc = 0
2 while TRUE

3 wait for B.pc == 0
4 A.pc = 1
5 // critical section
6 A.pc = 0

PROCESS B

1 B.pc = 0
2 while TRUE

3 wait for A.pc == 0
4 B.pc = 1
5 // critical section
6 B.pc = 0



Mutual Exclusion Example
Modeling

◮ Each state s of the system M is represented by two-bit
variables

◮ s[1]: high bit (Process A)
◮ s[0]: low bit (Process B)
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Mutual Exclusion Example
Modeling

◮ Each state s of the system M is represented by two-bit
variables

◮ s[1]: high bit (Process A)
◮ s[0]: low bit (Process B)

◮ Initial state:
I(s) := ¬s[1] ∧ ¬s[0]

0001 10

11



Mutual Exclusion Example
Modeling (cont’d)

◮ Transition relation:

T (s, s′) :=
(

¬s[1] ∧
(

s[0] ↔ ¬s′[0]
))

∨
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Mutual Exclusion Example
Modeling (cont’d)

◮ Transition relation:

T (s, s′) :=
(

¬s[1] ∧
(

s[0] ↔ ¬s′[0]
))

∨
(

¬s[0] ∧
(

s[1] ↔ ¬s′[1]
))

∨
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Mutual Exclusion Example
Modeling (cont’d)

◮ Transition relation:

T (s, s′) :=
(

¬s[1] ∧
(

s[0] ↔ ¬s′[0]
))

∨
(

¬s[0] ∧
(

s[1] ↔ ¬s′[1]
))

∨
(

s[0] ∧ s[1] ∧ ¬s′[1] ∧ ¬s′[0]
)
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Mutual Exclusion Example
Adding Faulty Transition

◮ Suppose we add the fault transition 10 → 11 to the model,
M:
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Mutual Exclusion Example
Adding Faulty Transition

◮ Suppose we add the fault transition 10 → 11 to the model,
M:

0001 10

11

◮ Then we have the new transition relation:

Tf (s, s
′) := T (s, s′) ∨

(

s[1] ∧ ¬s[0] ∧ s′[1] ∧ s′[0]
)



Mutual Exclusion Example
Checking Mutex Property

◮ Consider the safety property that at most one process can
be in the critical section at any time, i.e.:

f = �¬p = �¬(s[1] ∧ s[0])



Mutual Exclusion Example
Checking Mutex Property

◮ Consider the safety property that at most one process can
be in the critical section at any time, i.e.:

f = �¬p = �¬(s[1] ∧ s[0])

◮ Try to find a counterexample of this property, that is, a
witness for ♦p

◮ If a witness exists, then M 6|= f
◮ If a witness cannot be found, then M |=k f (i.e., property

holds up to the bound k )



Mutual Exclusion Example
LTL to Propositional Formula Translation

◮ Consider the bound k = 2.



Mutual Exclusion Example
LTL to Propositional Formula Translation

◮ Consider the bound k = 2.
◮ Unroll the transition relation:

[[M]]2 : = I(s0) ∧
k−1
∧

l=0

T (sl , sl+1)

= I(s0) ∧ Tf (s0, s1) ∧ Tf (s1, s2)



Mutual Exclusion Example
LTL to Propositional Formula Translation

◮ Consider the bound k = 2.
◮ Unroll the transition relation:

[[M]]2 : = I(s0) ∧
k−1
∧

l=0

T (sl , sl+1)

= I(s0) ∧ Tf (s0, s1) ∧ Tf (s1, s2)

◮ The loop condition is:

L2 :=
2
∨

l=0

Tf (s2, sl )



Mutual Exclusion Example
LTL to Propositional Formula Translation (cont’d)

◮ Translation for paths without loops is:

[[♦p]]02 := p(s0) ∨ [[♦p]]12
[[♦p]]12 := p(s1) ∨ [[♦p]]22
[[♦p]]22 := p(s2) ∨ [[♦p]]32
[[♦p]]32 := 0



Mutual Exclusion Example
LTL to Propositional Formula Translation (cont’d)

◮ Translation for paths without loops is:

[[♦p]]02 := p(s0) ∨ [[♦p]]12
[[♦p]]12 := p(s1) ∨ [[♦p]]22
[[♦p]]22 := p(s2) ∨ [[♦p]]32
[[♦p]]32 := 0

◮ Substitute all intermediate terms to obtain:

[[♦p]]02 := p(s0) ∨ p(s1) ∨ p(s2)



Mutual Exclusion Example
LTL to Propositional Formula Translation (cont’d)

◮ Translation for paths with loops is:

0[[♦p]]02 := p(s0) ∨ 0[[♦p]]12
0[[♦p]]12 := p(s1) ∨ 0[[♦p]]22
0[[♦p]]22 := p(s2) ∨ 0[[♦p]]02

1[[♦p]]12 := p(s1) ∨ 1[[♦p]]22
1[[♦p]]22 := p(s2) ∨ 1[[♦p]]12

2[[♦p]]22 := p(s2) ∨ 2[[♦p]]22



Mutual Exclusion Example
Check for a Witness

◮ Putting everything together:

[[F ,♦p]]2 := [[M]]2∧

(

(

¬L2 ∧ [[♦p]]02
)

∨
2
∨

l=0

(

lL2 ∧ l [[♦p]]l2
)

)
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◮ Putting everything together:

[[F ,♦p]]2 := [[M]]2∧

(

(

¬L2 ∧ [[♦p]]02
)

∨
2
∨

l=0

(

lL2 ∧ l [[♦p]]l2
)

)

◮ Since a finite path to a bad state is sufficient for falsifying a
property, omit the loop condition.



Mutual Exclusion Example
Check for a Witness

◮ Putting everything together:

[[F ,♦p]]2 := [[M]]2∧

(

(

¬L2 ∧ [[♦p]]02
)

∨
2
∨

l=0

(

lL2 ∧ l [[♦p]]l2
)

)

◮ Since a finite path to a bad state is sufficient for falsifying a
property, omit the loop condition.

◮ This results in the formula:

[[M,♦p]]2 : = [[M]]2 ∧ [[♦p]]02
= I(s0) ∧ Tf (s0, s1) ∧ Tf (s1, s2)

∧ (p(s0) ∨ p(s1) ∨ p(s2))



Mutual Exclusion Example
Check for a Witness (cont’d)

◮ (s0, s1, s2) = (00,10,11) satisfies [[M,♦p]]2
◮ an initialized path that violates the safety property

0001 10

11
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where f is the negated version of the property to be
checked



Completeness

◮ Suppose we have a model checking problem M |= Ef ,
where f is the negated version of the property to be
checked

◮ Increment bound k until a finite-length witness is found
◮ In this case, we are done and M |= Ef (i.e., model does not

satisfy the property)



Completeness

◮ Suppose we have a model checking problem M |= Ef ,
where f is the negated version of the property to be
checked

◮ Increment bound k until a finite-length witness is found
◮ In this case, we are done and M |= Ef (i.e., model does not

satisfy the property)

◮ If M 6|= Ef , how do we know when to terminate the BMC
model checker?
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Reachability Diameter
◮ For every finite state system M, a property p, and a

translation scheme, there is a number CT where the
absence of errors up to cycle CT proves that M |= p

◮ Completeness threshold is the minimal bound on k for �p
required to reach all states and called the reachability
diameter

Definition 10
The reachability diameter rd(M) is the minimal number of steps
required for reaching all reachable states, i.e.:

rd(M) := min

{

i |∀s0, . . . , sn • ∃s′
0, . . . , s

′
t , t ≤ i•

I(s0) ∧
n−1
∧

j=0

T (sj , sj+1) →

(

I
(

s′
0

)

∧
t−1
∧

j=0

T
(

s′
j , s

′
j+1

)

∧ s′
t = sn

)}



Reachability Diameter
◮ For every finite state system M, a property p, and a

translation scheme, there is a number CT where the
absence of errors up to cycle CT proves that M |= p

◮ Completeness threshold is the minimal bound on k for �p
required to reach all states and called the reachability
diameter

Definition 10
The reachability diameter rd(M) is the minimal number of steps
required for reaching all reachable states, i.e.:

rd(M) := min

{

i |∀s0, . . . , sn • ∃s′
0, . . . , s

′
t , t ≤ i•

I(s0) ∧
n−1
∧

j=0
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I
(

s′
0

)

∧
t−1
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j=0

T
(

s′
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′
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)

∧ s′
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)}
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defining the states of M



Determining rd(M)

◮ Worst case for n = 2|V |, where V is the set of variables
defining the states of M

◮ Determine best n
◮ Let n = i + 1. Check whether every state that can be

reached in i + 1 can be reached sooner



Determining rd(M)

◮ Worst case for n = 2|V |, where V is the set of variables
defining the states of M

◮ Determine best n
◮ Let n = i + 1. Check whether every state that can be

reached in i + 1 can be reached sooner

rd(M) := min

{

i |∀s0, . . . , si+1 • ∃s′
0, . . . , s

′
i , •

I(s0) ∧
i
∧

j=0

T (sj , sj+1) →

(

I
(
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0

)

∧
i−1
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j=0

T
(

s′
j , s

′
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)

∧
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Determining rd(M)

◮ Worst case for n = 2|V |, where V is the set of variables
defining the states of M

◮ Determine best n
◮ Let n = i + 1. Check whether every state that can be

reached in i + 1 can be reached sooner

rd(M) := min

{

i |∀s0, . . . , si+1 • ∃s′
0, . . . , s

′
i , •

I(s0) ∧
i
∧

j=0

T (sj , sj+1) →

(

I
(

s′
0

)

∧
i−1
∧

j=0

T
(

s′
j , s

′
j+1

)

∧
i
∨

j=0

s′
j = si+1

)}

◮ Alternation of quantifiers in the two previous expressions
are hard to solve in practice
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Recurrence Diameter for Reachability

◮ Approximate the reachability diameter instead

Definition 11 (Recurrence Diameter for Reachability)
The recurrence diameter for reachability with respect to a
model M, denoted by rdr(M), is the longest loop-free path in M
starting from an initial state:

rdr(M) :=max

{

i |∃s0 . . . si•

I(s0) ∧
i−1
∧

j=0

T (sj , sj+1) ∧
i−1
∧

j=0

i
∧

k=j+1

sj 6= sk

}



Recurrence Diameter for Reachability

◮ Approximate the reachability diameter instead

Definition 11 (Recurrence Diameter for Reachability)
The recurrence diameter for reachability with respect to a
model M, denoted by rdr(M), is the longest loop-free path in M
starting from an initial state:

rdr(M) :=max

{

i |∃s0 . . . si•

I(s0) ∧
i−1
∧

j=0

T (sj , sj+1) ∧
i−1
∧

j=0

i
∧

k=j+1

sj 6= sk

}

◮ rdr(M) is an over-approximation of rd(M) because every
shortest path is a loop-free path
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Liveness

◮ If a proof for liveness exists, the proof can be established
by examining all finite sequences of length k starting from
initial states



Liveness

◮ If a proof for liveness exists, the proof can be established
by examining all finite sequences of length k starting from
initial states

Definition 12 (Translation for Liveness Properties)

[[M,A♦p]]k := I(s0) ∧
k−1
∧

i=0

T (si , si+1) →
k
∨

i=0

p(si)



Liveness (cont’d)

Theorem 3

M |= A♦p ⇔ ∃k • [[M,A♦p]]k is valid.
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Theorem 3

M |= A♦p ⇔ ∃k • [[M,A♦p]]k is valid.

◮ Need to search for a k that makes the negation of
[[M,A♦p]]k unsatisfiable

◮ Bound k needed for a proof represent length of longest
sequence from an initial state without hitting a state where
p holds



Liveness (cont’d)

Theorem 3

M |= A♦p ⇔ ∃k • [[M,A♦p]]k is valid.

◮ Need to search for a k that makes the negation of
[[M,A♦p]]k unsatisfiable

◮ Bound k needed for a proof represent length of longest
sequence from an initial state without hitting a state where
p holds

◮ In BMC, we have semi-decision procedures for

M |= E�¬p ⇔ M 6|= A♦p

◮ ∵ either A♦p or E�¬p must hold, one of the semi-decision
procedures must terminate
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Induction

◮ Inductive techniques can be used to make BMC complete
for safety properties
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Induction

◮ Inductive techniques can be used to make BMC complete
for safety properties

◮ Proving that M |= A�p by induction usually involves:
◮ Manually finding a strengthening inductive invariant -

expression that is inductive and implies the property
◮ Inductive proof:

◮ Base case
◮ Induction step
◮ Strengthening step



Prove Inductive Invariant Holds for First n Steps

◮ Show that inductive invariant φ holds in first n steps by
checking whether the following is unsatisfiable:

∃s0, . . . , sn • I(s0) ∧
n−1
∧

i=0

T (si , si+1) ∧
k
∨

i=0

¬φ(si)



Prove Inductive Invariant Holds for First n Steps

◮ Show that inductive invariant φ holds in first n steps by
checking whether the following is unsatisfiable:

∃s0, . . . , sn • I(s0) ∧
n−1
∧

i=0

T (si , si+1) ∧
k
∨

i=0

¬φ(si)

◮ Base step is equivalent to searching for a counterexample
to �p



Inductive Step

◮ Prove induction step by showing that the following is
unsatisfiable:

∃s0, . . . , sn+1 •
n
∧

i=0

(φ(si ) ∧ T (si , si+1)) ∧ ¬φ(sn+1)



Refining the Inductive Step

◮ Paths in M restricted to contain distinct states
◮ Preserves completeness of BMC for safety properties
◮ A bad state is reachable (if it exists) is reachable via a

simple path



Refining the Inductive Step

◮ Paths in M restricted to contain distinct states
◮ Preserves completeness of BMC for safety properties
◮ A bad state is reachable (if it exists) is reachable via a

simple path

◮ Sufficient to show that the following is unsatisfiable:

∃s0, . . . , sn+1•
n
∧

j=0

n+1
∧

k=j+1

(sj 6= sk )∧
n
∧

i=0

(φ(si ) ∧ T (si , si+1))∧¬φ(sn+1)



Strengthening Inductive Invariant Implies Property

◮ Establish that for an arbitrary i :

∀si • φ(si) → p(si)
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