The Control of Discrete Event Systems

PETER J. G. RAMADGE, MEMBER, 1EEE, AND W. MURRAY WONHAM, FELLOW, IEEE

Invited Paper

A Discrete Event System (DES) is a dynamic system that evolves
in accordance with the abrupt occurrence, at possibly unknown
irregular intervals, of physical events. Such systems arise in a vari-
ety of contexts ranging from computer operating systems to the
control of complex multimode processes. We survey a control the-
ory for the logical aspects of such DESs. This theory was initiated
by Ramadge and Wonham, and has subsequently been extended
by the authors and other researchers to encompass control theo-
retic ideas such as controllability, observability, aggregation, and
modular, decentralized, and hierarchical control. We concentrate
on the qualitative aspects of control but also consider computa-
tion and the related issue of computational complexity.

. INTRODUCTION

A Discrete Event System (DES) is a dynamic system that
evolves in accordance with the abrupt occurrence, at pos-
sibly unknown irregular intervals, of physical events. For
example, an event may correspond to the arrival or depar-
ture of a customer in a queue, the completion of a task or
the failure of a machine in a manufacturing system, trans-
mission of a packet in a communication system, or the
occurrence of adisturbance or change of setpointin a com-
plex control system. DESs arise in the domains of manu-
facturing, robotics, vehicular traffic, logistics (conveyance
and storage of goods, organization and delivery of ser-
vices), and computer and communication networks. These
applications require control and coordination to ensure the
orderly flow of events. As controlled (or potentially con-
trollable) dynamic systems, DESs qualify as a proper subject
for control theory, a viewpoint that we shall develop in some
detail in the present paper.

In the past, DESs have usually been sufficiently simple
that intuitive or ad hoc solutions to various problems have
been adequate. The increasing complexity of man-made
systems, made possible by the widespread application of
computer technology, has taken such systems to a level of

Manuscript received july 7, 1988; revised September 13, 1988.
This research was partially supported by the National Science
Foundation through Grant ECS-8504584, by an {BM Faculty Devel-
opment Award, and by the National Science and Engineering
Research Council of Canada through Grant A-7399.

P. }. Ramadge is with the Department of Electrical Engineering,
Princeton University, Princeton, N) 08544, USA.

W. M. Wonham is with the Department of Electrical Engineering,
University of Toronto, Toronto, Canada M551A4.

IEEE Log Number 8825174.

complexity where more detailed formal methods become
necessary for their analysis and design. Indeed, the use of
VLS! has already led to the implementation of modular,
hierarchical, and distributed systems on a scale never before
possible. Such systems pose control and coordination
problems of an unparalleled scope and complexity, and as
yet there is little theory to serve as a guide in their reso-
lution.

In this paper we survey automata and formal language
models for DESs and the theory initiated by Ramadge and
Wonham [56], {76], and subsequently extended by the
authors and other researchers. The objective of this theory
has been to examine control theoretic ideas such as con-
trollability, observability, aggregation, and decentralized
and hierarchical control for DESs from a qualitative view-
point. The framework has proved useful in the theoretical
analysis of a number of basic supervisory control problems
[56], [76]; has motivated investigations using related models
in database systems [26], [27] and manufacturing systems
[38]; and, more recently, has been extended to cover mod-
ular [55], [95] and distributed [9], [35], [37] control. The main
advantage of the model is that it separates the concept of
open loop dynamics (plant) from the feedback control, and
thus permits the formulation and solution of a variety of
control synthesis problems. To date, the theory does not
support all of the features that one would desire of a full
theory of DESs. Nevertheless, the model has provided val-
uable concepts and insights to serve as guidelines for future
work, and has contributed to our understanding of the fun-
damentalissuesinvolved in the analysis and control of DESs.

Computational problems for DESs are frequently com-
plex. In our setting this manifests itself in the complexity
of the computations involved in solving basic control syn-
thesis problems. Although these have been shown to be of
polynomial complexity in the number of states, the number
of states in a practical system can be exponential in the
number of constituent processes. To some extent this prob-
lem can be mitigated through modular synthesis [55], [75],
and in certain instances can be overcome by restricting
attention to processes with special structure[52],[49). These
issues are addressed in our survey.

Our coverage of recent work on DESs is of a tutorial
nature, and as a result, many technical points have been
omitted or glossed over. This has been necessary in order

0018-9219/89/0100-0081$01.00 © 1989 |EEE

PROCEEDINGS OF THE IEEE, VOL. 77, NO. 1, JANUARY 1989

81

to present the concepts and results which we think are
important without excessively burdening the reader with
notation and definitions. More detailed expositions of the
topics discussed can be found in the references cited in the
text of the paper.

The remainder of the paper is organized as follows. In
Section Il we give a brief introduction to the modeling of
discrete event systems. This places the model discussed in
this paper in the context of other work in the area. Section
Hl introduces the basic DES model and contains some sim-
pleillustrative examples. Our primary interest is in the con-
trol of DESs, and this topic is introduced in Section IV. Sev-
eral abstract but basic control problems are discussed, and
an example is presented of their application. In view of the
complexity of control problems for DESs it is of interest to
investigate structured solutions to the problems of con-
cern. We take up this theme in Section V by introducing the
concept of modular synthesis. Section Vi, on partial obser-
vations and observability, lays the foundation for our dis-
cussion of distributed control in Section [X. Section VI
consists of abrief discussion of modeling the infinite behav-
ior of DESs, and how the basic control results of Section |V
can be extended. In Section [X we turn to the issue of com-
putational complexity; several of the basic problems dis-
cussed in the earlier sections are analyzed. Finally, in Sec-
tion X we specialize the basic model to consider a structured
class of DESs, and the complexity of some simple but inter-
esting control problems.

II. MODELING DISCRETE EVENT SYSTEMS

In this section we give a brief overview of the modeling
of DESs. To fix a context for our discussion, let us define
a DES to be a dynamic system with a discrete state space
and piecewise constant state trajectories; the time instants
at which state transitions occur, as well as the actual tran-
sitions, will in general be unpredictable. A typical state tra-
jectory for such a system is shown in Fig. 1.

z

[oy 1 15 1 time

Fig. 1. State trajectory of a DES.

The state transitions of a DES are called events and, as
indicated in the figure, these may be labeled with the ele-
ments of some alphabet. These labels usually indicate the
physical phenomenon that caused the change in state. For
example, in acommunication protocol typical event labels
are ““time out,” “packet received,” “’packet sent’’; while in
a manufacturing system, events of interest are “machine
breakdown,” ““machine repaired,” “'part accepted,” etc.

The many areas in which DESs arise and the different
aspects of behavior relevant in each area have led to the
development of a variety of DES models. For example, a

82

common simplifying assumption is to ignore the times of
occurrence of the events and consider only the order in
which they occur. This leads to so-called logical DES models.
In such models a system trajectory is specified simply by
listing (in order) the events that occur along the original
sample path. For example, in a logical model, the partial
trajectory shown in Fig. 1is reduced to the string of events
afByadfB - - - . This simplification is justified when the model
is to be used to study properties of the event dynamics that
are (or should be) independent of specific timing assump-
tions. On the other hand, in some applications the timing
information is crucial, and must be included in the model.
This leads to so-called timed or performance models. These
can be further classified as nonstochastic (e.g., timed Petri
nets, the max-algebra) or stochastic (e.g., Markov chains,
queueing networks, generalized semi-Markov processes)
according to whether the timing is known a priori, or is
modeled by making suitable statistical assumptions. These
models are intended for the study of properties explicitly
dependent on interevent timing.

Logical models have been successfully used to study the
qualitative properties of DESs in a variety of applications.
For example, logical models have been employed in areas
such as concurrent program semantics [62], [48], and com-
municating sequential processes [21], [23], [40], [67]; syn-
chronization in operating systems [12]; supervisory control
[55]-[57], [74]-[76]; communication protocols {9], [24], {25],
[41]; logical analysis of digital circuits {16]; fault tolerant dis-
tributed computing [13], [14]; and database protocols [26],
[27]. In such applications, the formulation and analysis of
the model typically proceeds as follows. One first specifies
the set of admissible event trajectories, i.e., the physically
possible sequences of events. This may be done using some
form of state transition structure (e.g., automata[56] or Petri
nets [46]), by means of a set of algebraic equations [21], [23],
or by a logical calculus such as temporal logic [39]. In the
cases of interest the admissible event trajectories form a
strict subset of the set of all (mathematically) possible event
orderings. Given a property of event sequences, one then
seeks to determine if each admissible trajectory has the
desired property. Or, in a control context, one asks if it is
possible to modify (by control action) the set of admissible
trajectories so that each event trajectory has the desired
property. Typical properties of interest include the follow-
ing: stability (e.g., state convergence [12]), correct use of
resources (e.g., mutual exclusion [3], [49)), correct event
ordering (e.g., database consistency [26], [27]), desirable
dynamic behavior (e.g., no deadlock/livelock [67]), and the
coordination of constituent processes to achieve a desired
goal (e.g., distributed consensus [13], [14]).

In addition to the study of qualitative system properties,
logical models can also be used as a basis of computation,
e.g., verification or synthesis of DESs. In such applications
the issue of computational complexity is a key concern. For
example, the number of states in a transition structure for
specifying the admissible event trajectories may depend
exponentially on some system parameter. In such cases
simple algorithms for verification or synthesis (e.g., search-
ing over the state space) rapidly become computationally
intractable. Despite this fact, use of the models in this role
has notbeen abandoned. Indeed in someapplications(e.g.,
circuitverification, protocol correctness) they offer the only
known means of automated analysis (see e.g., [4], [24], [25],

PROCEEDINGS OF THE IEEE, VOL. 77, NO. 1, JANUARY 1989

[61)). Typically, one tries to mitigate the complexity by the
use of aggregation or modularity, or by exploiting hierar-
chical or the other special structures [31], [32].

Nonstochastic timed models are similar in spirit to the
logical models, except of course that event timing must now
be taken into account. Formulation of a model proceeds by
specifying the admissible set of event trajectories together
with the associated timing. This can be done using a suit-
able transition structure (e.g., timed Petri nets), some for-
mal calculus (e.g., temporal logic), or a formal simulation
language. Simple models of this form have been used in the
design of signal processing arrays [29], the analysis of peri-
odic behavior in manufacturing systems [10], and the spec-
ification of real-time control structures [30], [42], [43].

Stochastic performance models are somewhat different
in spirit. In these models it is usually trivial to specify the
setof admissible state trajectories. The difficult part of mod-
eling and analysis is in defining a useful measure on this
set, and using this to determine the distributions and
moments of the variables of interest. Such models have
been successfully used to study both quantitative and qual-
itative features of systems such as communication net-
works [58], [59]; simple queueing networks [6], [19], (28], [34],
[60], [65]; stochastic scheduling problems (71]; and manu-
facturing systems [2], [5], 7], [11].

Stochastic models, like their deterministic counterparts,
also have their limitations. For example, in general they are
sufficiently complex to prohibit analytic treatment. As a
result, for many problems of interest no closed form solu-
tions are known. Moreover, when the qualitative form of
the solution is known, a means of computing it may not be
available, and even when closed form solutions are known
(e.g., Jackson networks), the form of the solution may be
sufficiently complicated that its use is difficult, if not infeas-
ible. In many cases this complexity has limited results to
those of a qualitative nature, and has led to the use of sim-
ulation as a tool for quantitative analysis [15], [78]. This, in
turn, has motivated the work by Ho and others [20], [65],[77],
on perturbation methods for estimating gradients of per-
formance measures. More detailed accounts of these
aspects of stochastic models can be found in several other
papers in this special issue.

No single approach to the modeling and analysis of DESs
will suffice for all problems of interest. Each of the above
models has its own applications, virtues, and limitations.
in all models, there is a need for higher level descriptions
of system dynamics, for aggregation, for a concise means
of system and problem specification, for the study of inter-
esting subclasses of systems with special structure, and for
modular and hierarchical system and controller decom-
positions. A variety of these issues are addressed in the con-
text of logical models in the remainder of the paper.

111. A LocicaL DES MoDEL

In a logical model of a DES, we are interested in the
sequences or strings of events that the process can gen-
erate. Let L denote the finite set of event labels, and T*
denote the set of all finite strings of elements of the set I,
including the empty string e. For convenience, we often
refer to an element of as an event. A string, say u = 040,
- -+ g, € L*, represents a partial event sample path. We say
partial because there may be more events after o;. The set

RAMADGE AND WONHAM: THE CONTROL OF DISCRETE EVENT SYSTEMS

of all admissible, i.e., physically possible, sample paths is
then a subset £ of Z*. It is customary to call a subset of L*
a language over the alphabet L.

A string u is a prefix of a string v € * if for some w € L*,
v = uw. If v is an admissible sample path, then clearly so
are all the prefixes of v. If we define the prefix closure of L
€ L* to be the language

L ={uuvel for someveL*}

then we require L = L. In this case we say that L is prefix
closed.

Thus we model the behavior of a DES as a prefix closed
tanguage L over the event alphabet L. Each u € L represents
a possible (partial) event sample path of the DES. For exam-
ple, atrivial DES with two events {«, 8} that operates so that
the events o and g8 always occur alternately, with « or 8
occurring first has the behavior

L={e a B, af, B, xBcx, - - *}.

On the other hand, if we let jw|, denote the number of
occurrences of the event « in the string w, and set

L = {w e I*: for each prefix u of w, |u|, = |ulz}

then L represents a DES in which the number of occur-
rences of the eventa is always less than or equal to the num-
ber of occurrences of the event 8. This might be the case,
for example, if in a manufacturing system, o corresponds
to taking a part from a buffer, and 8 corresponds to placing
a part in the buffer.

To construct more elaborate examples, it is convenient
to have a means of language representation. For our pur-
poses, thisis most conveniently done by representing a DES
by its state description, or transition structure. We do not
insist that these state representations be finite, or that they
have a specific structure. This allows for the possibility of
counters and other useful infinite state devices. Our
approach here is to first investigate the qualitative struc-
tural features of the problems of interest, then later turn to
the issue of computation. Thisis in contrastto a purely com-
putational approach, in which some form of finite repre-
sentation would be assumed from the outset. Most of the
qualitative results which we survey are in fact represen-
tation independent, i.e., their validity does not depend on
a specific representation. Thus having first analyzed the
qualitative properties of interest using one form of rep-
resentation, we can turn to other forms of representation
(perhaps for specific classes of DESs) that are suitable for
computation.

To represent a behavior L we proceed as follows. A gen-
erator G is an automaton [22] consisting of a state set Q, and
initial state gy, and transition function 8:Z x Q = Q(in gen-
eral a partial function). As we remarked above, the state set
Q need not be finite, although this is clearly an interesting
special case. By the set of events possible at state g we mean
the set Z(g) < L such that for each o € £(q), (0, q) is defined.
The factthat the transition function is a partial function sim-
ply reflects the fact that in general £(q) is a proper subset
of L. One can think of G as a directed graph with node set
Qand an edge g — q’ labeled ¢ for each triple (s, g, ¢) such
that g’ = 8(g, g). We interpret G as a device that starts in its
initial state g, and executes state transitions, i.e., generates
a sequence of events, by following its graph. State transi-
tions are considered to occur spontaneously, asynchro-

83

nously, and instantaneously, and their occurrence is sig-
naled by the corresponding eventlabel ¢ € £. The generator
G will play the role of the “plant” in the sense of control
theory. The term ‘““generator” is nonstandard, but better
suited to our interpretation than, say, ‘‘automaton’’ or
“machine.”

The transition function & of G is extended to a (partial)
function on £* X Q by defining é(¢, q) = g and

8(wo, q) = (g, 8(w, Q)

whenever q° = 6(w, @) and o(g, q') are defined. Henceforth
we write 8(w, @)! as an abbreviation for the phase “8(w, q)
isdefined.” Interms of the graph of G, 8(w, @)! simply means
thatthereisa path inthe graph starting from q thatis labeled
by the consecutive elements of the string w.

The closed behavior of Gis defined to be the prefix closed
language

L(G) = {w:weL*and é(w, qy'}.

Every prefix closed language L < I* has such a represen-
tation. If L has a finite state generator representation, then
itisaregularlanguage(22]. These constitute a proper subset
of the languages over L.

Example 3.1: Fig. 2 shows a simple generator. This is
intended to model a machine with three states, labeled /

Fig. 2. A simple generator.

(Idle), W (Working), and D (Down); the initial state is labeled
with an entering arrow — (state /); and there are four pos-
sible state transitions, each labeled by the associated
observed event from the event set £ = {a, 8, N\, u}. The
closed behavior of Gis simply the set of all strings obtained
by starting in the state / and following the graph. In the for-
malism of regular expressions this can be written as

L(G) = (af + aAp)*(e + a + aN).

Several refinements of the above model are possible. For
example, one can add to the definition of G a subset of
marker states Q,, S Q, and define the marked behavior of
G (with respect to Q,,) to be

Lp(G) = {s:seland éw, q¢) € Q}.

We interpret L,,(G) as a distinguished subset of the gen-
erated sequences that could represent completed “‘tasks”
(or sequences of tasks) carried out by the underlying DES
that Gis intended to model. There is no implication that the
generating action halts after the completion of some marked
sequence—marker states of G need not be “’final”’ states.
When G is fixed, we often abbreviate L(G) and L,,,(G) to sim-
ply L and L,,, respectively.

It is always the case that L,,(G) € L(G), and hence that
L(G) € L(G), i.e., that every prefix of L, is an element of

84

L. It is natural to require (or at least desire) equality in the
last expression, i.e., that every string in L(G) be a prefix of
a string in L,(G). In this case, every event sample path in
L(G) can be extended to a completed “task’’ in L,(G). In this
case, we say that G is nonblocking.

For example, in Fig. 2 the marker states are indicated by
exiting arrows — (state /). Thus the language marked by G
is simply the set of all strings in the graph that begin and
end at the state /. They represent completed work cycles
of the machine. It is clear that every string in L(C) can be
extended to one that reaches the state /. Hence this gen-
erator is nonblocking. In the formalism of regular expres-
sions we can write

Ly, = (@B + akw)*.

Example 3.2: Consider two asynchronous, independent
users of asingle resource, each modeled by the simple cyclic
generators G,, G, of Fig. 3.

R, By U, R, B, U,

Fig. 3. Two users of a resource.

Each user has three states / (Idle), R (Request), and U (Use)
with the transitions shown. We model the joint operation
of these users by the “‘shuffle product” G = G| G, of G,
and G,. Thisis the DES determined by the concurrentactions
of Gy and G, under the assumption that these actions are
asynchronous and independent. The states of Gare ordered
pairs (X, Y) where X is a state of G, and Y is a state of G,, and
the transitions of G are either of the form (X, Y) = (X, Y)
where X = X’ is a transition in G;, or of the form (X, Y) —
(X, Y') where Y — Y’ is a transition in G,. The graph of G is
shown in Fig. 4.

L(G) consists of all words over the alphabet L = {ay, 85,
Y1, @, B, 72} corresponding to paths in the graph that begin
at(ly, Ip). Similarly L .(G) corresponds to all paths in the graph
that both start and end in the state (/4, /;). Clearly the gen-
erator G is nonblocking.

This example illustrates the use of the shuffle product to
model asynchronous systems. This is a special case ofamore
general product called the synchronous product that allows
for the possibility of synchronous events in the argument
processes. It is clear that while it is always possible (con-
ceptually) to form the shuffle (or, more generally, the syn-
chronous) product, and that this may be easily computed
for small examples such as this one, there may be a problem
in computing such models for systems with a large number
of components. This follows from the observation that the
number of states in the product increases exponentially
with the number of components. For problems requiring
computation (e.g., controller synthesis) one tries to find
techniques that avoid actually carrying out this construc-

PROCEEDINGS OFf THE IEEE, VOL. 77, NO. 1, JANUARY 1989

1

IS

o oy L7

M

o R P \{ ”

™

By B2 B,

Ti
Fig. 4. The shuffle product generator.

tion, except possibly for subproblems of a reasonable size.
This will be addressed in later sections of this paper.

IV. CONTROLLABILITY AND SUPERVISION OF DESs

Our DES model as described so far is simply a sponta-
neous generator of event strings without a means of exter-
nal control. To control a DES we postulate that certain events
of the system can be disabled (i.e., prevented from occur-
ring) when desired. This enables us to influence the evo-
lution of the system by prohibiting the occurrence of key
events at certain times. To model such control we partition
the set of events I into uncontrollable and controllable
events: L = £, U I.. The events in L. can be disabled at any
time, while those in £, model events over which the con-
trolling agent has no influence, e.g., machine breakdown
in a manufacturing system, loss of a packet in a commu-
nication channel, external disturbances, etc.

A control input for G consists of a subsety € I satisfying
L, € . if 6 €y, then ois enabled by v (permitted to occur),
otherwise ¢ is disabled by vy (prohibited from occurring).
The condition £, € y means that the uncontrollable events
are always enabled. Let I' < 2* denote the set of control
inputs. A DES represented by the generator G equipped
with a set of control inputs T is called a controlled DES
(CDES). In what follows, I is fixed, and for convenience we
refer to a CDES by its underlying generator G.

Control of a CDES G consists of switching the control
input through a sequence of elements v, v, v", - - inT,
in response to the observed string of previously generated
events. Such acontroller will be called a supervisor. In intro-
ducing the concept of a supervisor we follow the standard
practice in control theory of distinguishing rather sharply
between the ‘‘plant’’ (or object to be controlled), and the
agentdoing the controlling. While in certain instances (per-
haps mainly of computer system applications) this distinc-
tion might seem artificial, it tends to simplify the problem
of defining exactly what controlled behavior is required, as

RAMADGE AND WONHAM: THE CONTROL OF DISCRETE EVENT SYSTEMS

well as what constraints on behavior are imposed a priori
by the underlying physical entities with which the design
problem originates.

Formally, a supervisor is a map

f:L->T

specifying for each possible string of generated events w
the control input f(w) to be applied at that point. Our objec-
tive will be to design a supervisor that selects control inputs
in such a way that the given CDES G behaves in obedience
to various constraints. Roughly, constraints can be viewed
as requiring that certain undesirable sequences of events
are not permitted to occur, while at the same time, certain
other desirable sequences are permitted to occur.

When a CDES Gis supervised by the supervisor f it oper-
ates as before, except that it obeys the additional constraint
that, following the generation of a string w, the next event
must be an element of f(w) N E(5(w, gy)). Denote the closed
loop system of G supervised by f by (G, f). The behavior of
(G, f), denoted L(G,), or simply L; when no confusion is
possible, is formally defined as follows:

i} eelsand
ii) woel;iffwel,, oef(w),andwoel.

If Gis equipped with a set of marker states, then the /an-
guage controlled by f in G is also of interest. This is the lan-
guage

LG, £) = L,(G) N L.

This is simply that part of the original marked language that
survives under supervision. If L, indeed represents com-
pleted tasks, then this language is clearly important, since
itindicates those tasks that will be completed under super-
vision. When no confusion is possible we will abbreviate
L(G, f) to simply L,,;.

In practice one may require an alternative representation
of the supervisor f. For this we can use a state realization
in terms of an automaton together with an output map (this
is sometimes used as the definition of a supervisor; seee.g.,
[56)). Let T = (L, X, £, x) be an automaton, and ¢: X = I'. We
say that the pair (7, ¢) realizes the supervisor f if for each
we L

dEW, X)) = f(w).

This simply says that the value of f on the string w can be
found by first applying w to 7 causing T to be driven from
its initial state to some state x, and then computing é(x).
Thus T is a standard automaton whose state transitions are
driven by the events in L.

In standard control terminology G plays the role of the
“plant” (object to be controlled), T functions as an
““observer” or ““dynamic compensator,” and ¢ is the “feed-
back.” It is possible to visualize supervision as a simple
interconnection of Gand Tthrough ¢: the outputs of Gdrive
the state transitions of T, and in turn, the state of T deter-
mines the next control input y through ¢ (see Fig. 5).

itisalso possible to realize a supervisor simply as another
DES S. In this case the control action of S on G is implicit
in the transition structure of S. In detail, if s € L(G, f) then
we require s € L(S), and so € L(S) only if o € f(s). In addition,
if s e L(G,), so € L(G), and o € f(s), then so € L(S). The first
condition ensures that those transitions disabled by f do
not appear in the transition structure of S; while the second

85

control ¥

enabled event G

Fig. 5. Supervision of a DES.

condition ensures that those transitions enabled by f, and
which are possible in G, do appear in the transition struc-
ture of . S and G are assumed to run in parallel in the fol-
lowing fashion. An event ¢ can occur when § X Gis in the
state (x, g) only if o is possible in both S and G at that point;
and results in the state change (x, @) = (x’, @) where x —
x"and g — g’ are the transitions in S and G, respectively,
under o. This form of supervisor realization can be obtained
from the state realization (S, ¢) by suitably trimming the
transition structure of S (cf. [63]).

From the point of view of the theory, we do not require
asupervisorto have a finite state realization. Thus counters,
unbounded queues, and other useful infinite state devices
can appear as part of the automaton S. However, the case
when Siis finite state is clearly a special case of interest. We
say that fis a finite state supervisor if it has a finite state real-
ization.

The basic problem in supervisory control is to modify the
open loop behavior of a given DES G so that it lies (as a set)
within some prescribed range. This desirable range may be
specified by actually giving the desired closed loop behav-
ior, by giving a behavior within which the closed loop
behavior must be contained, or by specifying such sets indi-
rectly through other qualitative performance objectives.
One is thus led to consider the following problem: given
a CDES G with behavior L, what closed loop behaviors K
Lcan b~ achieved by supervision? The key to the resolution
of this (and many related) questions is the concept of con-
trollability.

Say that K © I* is controllable if

KT, NLCK.

This condition requires that for any prefix of a string in K,
i.e,any we K, if w followed by an uncontrolled event ¢ €
L,isinL,i.e., wo e, then it must also be a prefix of a string
in K, i.e., wo € K. In this sense K is conditionally invariant
under the action of Z,,. Since uncontrollable events cannot
be prevented from occurring, it is intuitively clear that if
such an event occurs along a sample path in K, then the
extended sample path must remain in K in order for K to
be a feasible closed loop behavior.

More generally, the aim of supervision is not to modify
L per se, but instead to achieve a prescribed language for
L., and to do so while preserving the desired nonblocking
property. Conditions under which this is possible can also
be stated in terms of language controllability [56, prop. 5.1
and theorem 6.1]. We summarize both results in

Proposition 4.1: Fix a nonblocking DES G with closed
behavior L and marked behavior L,

1) For nonempty K < [there exists a supervisor f such
that L; = K iff K is prefix closed and controllable.

2) Fornonempty K S L, there exists a supervisor f such
that L,,,; = K, and the closed loop system is nonblock-
ing iff K is controllable, and K N L,,, = K.

86

When K satisfies the condition K N L,, = K in part 2) of
the above result, we say that K is L,,-c/losed. Thus achieving
L; = K is possible precisely when K is closed and control-
lable, and achieving L,,,; = K and the nonblocking property
is possible precisely when Kis L,,-closed and controllable.
In addition, the proof of this result provides an algorithm
for constructing a realization (S, ¢) of the required super-
visor f from a generator for the controllable language K.

We can now use our characterization of the possible con-
trolled behaviors to study the structure of this family of lan-
guages. For a given K < I* let C(K) denote the family of
controllable sublanguages of K. C(K) is always nonempty
since @ is controllable. Our second main result on con-
trollability is that the family C(K) is closed under set union,
and hasaunique supremal element under the partial order
of subset inclusion, i.e., there exists a unique largest con-
trollable language K' such that K" < K. Note that K' may be
the empty language. A similar result holds for language
intersection when the languages are, in addition, restricted
to be closed. In this case one would be interested in the
family of closed and controllable languages containing a
given language K.

The closure of C(K) under set union indicates that if a
given language K is not controllable, then there is a natural
controllable approximation to K, namely the largest con-
trollable language contained in K. This language preserves
the restrictions imposed by K, while requiring the least
amount of control action. It can thus be regarded as the
“optimal” or “minimally restrictive’” approximation to K.

We remark that the abstract existence of an optimal solu-
tion is far from being an invariable property of supervisory
control problems; indeed, it fails in certain extensions of
our model to accommodate communication delay and true
concurrency (synchronous events) [30]. in general, how-
ever, when optimality is present the problem of computing
even a feasible solution to a control problem may be con-
siderably simplified because there is just one “‘natural”
solution to look for (technically, one is not required to scan
over possibly awkward partially ordered candidate solution
sets in which a semilattice property of closure under ““join”
fails to hold). In addition, an idealized abstract model where
optimality is obtained may serve as a practical guide to find-
ing sufficient conditions for problem solvability in the more
realistic, though messier, situations referred to above [30].

For the finite state case, i.e., finite state generators are
provided for L (the open loop behavior) and K (the desired
behavior), an algorithm for the computation of K' is
described in[76]. The basis of this algorithm is the following
fixpoint characterization. Let P(£*) denote the power set of
L*, i.e., thesetofalllanguages over £*, and define the oper-
ator

Q:P(Z*) — PE*)
by
Q) =KNsup {T:TS L T=T,TE,NLC]/}

Then K' is the largest fixpoint of @, i.e., the largest language
J such that Q(J) = J. Furthermore, if we set

K, = K

PROCEEDINGS Of THE IEEE, VOL. 77, NO. 1, JANUARY 1989

then

lim K; = K.

j oo
If the generators for L and K have m and n states, respec-
tively, then this scheme converges after at most mn iter-
ations. Since the computation of Q is itself bounded by a
polynomial in m and n, this means that the computation of
K" is of polynomial complexity in m and n.

We have not addressed the practical problem of actually
obtaining the generator for the desired closed loop behav-
ior K. This has simply been taken as the means of task
description, and hence assumed to be available. The prob-
lem of how to define or specify the control task in other
terms has not been addressed.

Some supervisor synthesis problems can be recast in the
framework of Markov decision theory, and dynamic pro-
gramming with aminimax criterion can be used to compute
the desired control (70]. Such an approach provides an
alternative computation scheme, but does little to illumi-
nate the algebraic and structural properties of interest.

The following example is rather simple but illustrates in
an amusing way the application of the concepts of con-
trollability and supervision.

Example 4.1: A cat and a mouse are placed in the maze
shown in Fig. 6. Each doorway in the maze is either for the

Fig. 6. Maze for cat and mouse.

exclusive use of the cat, or for the exclusive use of the
mouse, and must be traversed in the direction indicated.
Our cat and mouse are somewhat whimsical but could rep-
resent, for example, autonomous vehicles in an automated
factory.

LetL = {c;, m;:1=<i=<9,1=<j<6}. Wemodel the move-
mentof the cat and the mouse in the maze by the generators
G, and G, over £ shown in Fig. 7. Here state i/ corresponds
to room i, and a transition j = j corresponds to traversing
the door ¢, between rooms j and j.

For our joint model of the cat and the mouse we adopt
the shuffle product G = G| G,. The states of G are ordered
pairs ij where i is a state of G; and j is a state of G,. G is tab-
ulated in Fig. 8.

We assume that each door, with the exception of ¢;, can
be opened or closed as required in order to control the
movement of the catand the mouse. Our objective s to find

RAMADGE AND WONHAM: THE CONTROL OF DISCRETE EVENT SYSTEMS

Fig. 7. Generator models for cat and mouse.

the control scheme which permits the cat and the mouse
the greatest possible freedom of movement but which also
guarantees that

a) the cat and the mouse never occupy the same room
simultaneously, and that

b) itisalways possible forthe catand the mousetoreturn
to the initial state, i.e., the state in which the cat is in
room 2, and the mouse is in room 4.

Let G be the product generator, set Q,, = {(2,4)},and L,
= {c,}. This is a controlled generator withT = {y: ¢; e v}.
A solution can be computed using the results described in
this section as follows. A generator for the maximal lan-
guage K that satisfies the stated contraints is obtained from
G by removing states which violate constraint a), and from
which one cannot reach Q,,. The supremal controllable
sublanguage contained in K is then computed using the
iteration method previously described. This yields a gen-
erator for the supremal controllable language K" contained
in K. The necessary control action to implement K" can be
computed atthe same time, and a realization of the required
supervisor can be based on this and the generator for K'.
This supervisor realization can be further simplified by a
supervisor aggregation technique [56, sec. 8]. The result is
the supervisor shown in Fig. 9. This has two states (0 and
1), and the status of each controlled event (enabled (1) or
disabled (0)) is shown for each state in the accompanying
table.

The control strategy which this supervisor implements
can be summarized as follows. If the cat and the mouse
occupy their respective initial rooms, then both are given
the opportunity to move to a new room, i.e., ¢z and ms are
open. If the cat leaves room 2, then the mouse is isolated
in room 4, i.e., ms and c; are closed, and the cat is free to
roam the rest of the maze. Similarly, if the mouse leaves
room 4, then the cat is isolated in room 2, and the mouse
is permitted access to those rooms from which it can return
to room 4, i.e., rooms 0, 3, 4.

V. MODULAR SYNTHESIS

One means of reducing the complexity of logical DES
modelsistoincorporate additional structure into the model;
and one means by which this can be done is through mod-
ular problem specification and supervisor construction.
Modularity allows complex problems to be decomposed
into simpler components, and greater structure and flex-
ibility to be incorporated into the controller. Essentially this
involves defining an algebra of DESs, and a corresponding
algebra of supervisors. To be useful, such algebras must be
compatible with the concepts of controllability, nonblock-

87

00 01 02 03 04 10 11 12 13 14

20 21 22 23

24 30 31 32 33 34 40 41 42 43 44

mS'

m5 .

03,

¢7

‘7
¢7

Sy

Fig. 8. Product generator for cat and mouse.

mg o

mg €
€4 C7

my ¢

€ €2 C3 €4 C5 Cg My My M3 My Ms My

0
111

Fig. 9. Supervisor for cat and mouse.

ing supervision, and supremal controliable languages
introduced in the previous section. These problems have
been examined in [55], [75], and are reviewed below.

Of the two natural operations on languages, union and
intersection, intersection is often the most useful in mod-
ular problem specification. For example, it may be desired
to control a DES so as to satisfy two constraints simulta-
neously. If each constraint is specified as a desired con-
trolled language K, then the overall constraint is specified
by the intersection K; N K,.

For prefix closed languages it is readily checked that K,
N K, is controllable whenever both K; and K, are control-
lable. However, without the prefix closure assumption this
need not be true. The key to compatibility between lan-
guageintersection and controllability is the concept of non-

88

conflicting languages. For K;, K, € * it is always the case
that

KNKcsKNK

i.e., a prefix of a word common to Ky and K, is also a prefix
of K; and K,. K; and K, are said to be nonconflicting when
we have equality in this expression:

KiNK, =K NK,.

In other words, two languages are nonconflicting if, when-
ever they share a prefix, they also share a word containing
this prefix. For example, any two closed languages are non-
conflicting.

To illustrate an application of this concept, consider a
refinement of the control problem mentioned above. Fix
a CDES G and suppose that we must find a supervisor f so
that L,,s = K; N K,, where Ky, K, € L(G). From the previous
section we know that this is possible iff K = K; N K; is con-
trollable, and L,,(G)-closed. This may be tested in a modular
fashion as follows:

Proposition 5.1: Let K;, K; € T* be nonconflicting. If K,
and K, are both L,,(G)-closed and controllable, then K; N
K, is L,,(G)-closed and controllable.

Similarly, one can use the nonconflicting property to
determine conditions under which the operation of taking
the supremal controllable sublanguage of Kcommutes with
language intersection:

Proposition 5.2: Let Ky, K, € £*. If K} and K} are noncon-
flicting, then K} N K} = (K; N Ky)'.

PROCEEDINGS OF THE IEEE, VOL. 77, NO. 1, JANUARY 1989

Corollary 5.1: If K;, K, = L* are closed languages, then (K,
N Ky)' =K N K.

These results indicate that the supremal controllable sub-
language of K; N K, can be found by first computing
K} and K}, checking that these languages are nonconflict-
ing, and, if so, forming their intersection.

Assume that the generator G has m states. Then for a reg-
ular language K specified by an n state automaton, the com-
plexity of the verification KT, N L(G) € K is O(nm). Thus
to compute K; N K, (an O(n®) computation), and then to
check the controllability of Kis acomputation of complexity
O(n*m). On the other hand, to verify that K; and K, are each
controllable is a computation of complexity O(nm). These
upper bounds are conservative, but they strongly suggest
that when the modular procedure is applicable it can offer
a significant reduction in computational complexity.

If f and g are supervisors, then their conjunction fA g is
the supervisor

f A gw) = f(w) N gw).

If fand g have state realizations (S, ¢) and (T,), respectively,
then this simply amounts to operating the automata S and
T in parallel (S x T), together with a feedback map ¢ ¢ ¢
formed by intersecting the sets of enabled events of ¢ and
.
Itis clear from the definition that supervisor conjunction
is a commutative and associative operation, and it is easy
to construct a supervisor that acts as an identity. However,
the conjunction of two nonblocking supervisors need not
be nonblocking. Indeed, if two supervisors implement con-
tradictory objectives, then their conjunction will yield a
supervisor that permits the closed loop system to become
blocked. In this respect the utility of supervisor conjunc-
tion depends on the nonconflicting property:

Proposition 5.3: Let f; and f, be nonblocking supervisors
for G. Then the supervisor f = f; A f; has

1) LG, f) = LG, f) N LG, f,); and
2) LG, f) = L(G, f) 0 L,(G,).

Furthermore, fis nonblocking for Giff L (G, f1),and L (G,
f,) are nonconflicting.

To illustrate the above ideas we consider the following
example.

Example 5.1: In a factory two machines M;, M, operate in
parallel to feed a buffer B; a third downstream machine M;
takes parts from the buffer (Fig. 10). Each machine M; oper-
ates as in Example 3.1; i.e., each has three states: /; (idle),
W, (Working), and D; (Down); and events {a;, 8;, v;, u;} as
shown in Fig. 2. The buffer B is simply an automaton driven
by M, My, and Mj.

The system operates as follows. Machine M, takes awork-
piece (event «y), and either successfully completes pro-

Fig. 10. A simple factory.

RAMADGE AND WONHAM: THE CONTROL OF DISCRETE EVENT SYSTEMS

cessing and passes the workpiece to the buffer (event 8,);
or breaks down and discards the workpiece (event y,), but
in that case may later be repaired (event u,). Machine M,
operates in the same way. Machine M; operates essentially
the same way, but takes its workpiece from the buffer, pro-
vided one is there. Aside from these constraints the
machines operate asynchronously and independently.
The informal control specifications are the following:

1) The number of parts in the buffer must be kept less
than a fixed integer N.

2) Machine M; must not attempt to take a part from the
buffer if it is empty.

3) Machines M, and M, are repaired in order of break-
down.

4) Machine M; has priority of repair over machines M,
and M,.

As the generator for the system we take
G = M, [M, M.

This has 29 states and 108 transitions.

To formalize the specifications we bring in the following
DESs. First, to model constraints 1) and 2) (constraints on
the buffer), we define the DES A, shown in Fig. 11 (here we

BiB2 B1B2 B1B,

o oy a,

Fig. 11. Buffer constraint for N = 3.

assume N = 3), Similarly the breakdown/repair of machines
M, and M, is modeled by the DES A, in Fig. 12 and the break-
down/repair of machine M; by the DES A in Fig. 13. In each
of these three figures only the events that are constrained
are indicated; other events have been omitted for clarity.
Omitted events can be reinserted by adjoining a selfloop
labeled by the missing events to each state (in subsequent
computation we assume this has been done).

A
Ay Ha
<>
Hi
HiH2
A

Fig. 12. Breakdown/repair of machines one and two.

Ay
HiHg

W3
Fig. 13. Breakdown/repair of machine three.

89

We first consider nonmodular, or “monolithic” super-
vision. The specifications can be combined by taking the
intersection A = A; N A, N A;. This is a DES with 32 states
and 248 transitions. Using the algorithm introduced in Sec-
tion IV we then compute a supervisor that implements the
supremal controllable sublanguage of A. This turns out to
have 96 states and 302 transitions—too many to display here.
Although this supervisor is guaranteed to satisfy the con-
straints, and to do so in a minimally restrictive fashion, it
is rather cumbersome to implement and in no way reflects
the modularity of the original constraints.

To develop a modular solution we proceed as follows.
First, to prevent buffer overflow we compute: s; = number
of empty buffer slots —number of feeder machines atwork.
This can be done by the automaton S, shown in Fig. 14. To

-

Wy ks oy Ay hyay Iy ko 0y

o ¢,

Fig. 14. Supervisor to prevent buffer overflow.

this we can add the feedback that disables «; and «, in state
0. This yields a supervisor realization that prevents buffer
overflow.

To prevent buffer underflow we compute: s, = number
of full buffer slots. This can be done using the automaton
shown in Fig. 15. If, to this automaton, we add a feedback

BiB2 BiB2 Bip2

o, ay oy
Uz

Fig. 15. Supervisor to prevent buffer underflow.

that disables «; when the buffer is empty (state 0), then we
have a supervisor to ensure that constraint 2) is satisfied.
By adjoining to A, and A; suitable feedback maps, these can
also be converted to supervisors which will ensure that con-
traints 3) and 4), respectively, are satisfied.

Using the results of this section, it can be checked that
correct and optimal supervision of the factory is enforced
by the conjunction of the above supervisors. Clearly this
modular supervisor is much simpler to design and imple-
ment than the corresponding monolithic supervisor, to
which it is equivalent in control action.

V1. PARTIAL OBSERVATIONS AND OBSERVABILITY

Up to this point it has been assumed that all of the events
generated by a CDES can be directly observed by the super-
vising agent. However, in situations involving decentral-
ized or hierarchical control we usually only have local or
partial observations.

To model a DES with partial observations we bring an
additional alphabet L,, the observation alphabet, and a pro-
jection (or mask) P: £ = (£, U {€}). The idea is that P(o) is

90

the event observed when the generator undergoes a state
transition labeled by ¢. Thus the events in L are observed
through the map P. Those events ¢ € L with P(¢) = ¢ are not
observed at all (they are erased), while events «, 8 € L with
P(a) = P(B) can no longer be distinguished. The special case
in which Psimply erases some of the events in L occurs fre-
quently, and will be called a natural projection. In this case
we can take L, € T and define P by

o, ifoek,
P(o) = .
e, ifagZ,.

The action of a projection P is extended to strings by
defining P(e) = € and

P(so) = P(s)P(s) forseL* oel.

Denote the equivalence kernel of this extended map by ker
P, i.e., ker P is the equivalence relation on L* defined by (s,
s’) € ker P (or s = s’(mod P)) iff P(s) = P(s").

If a CDES G has behavior L, then under the projection P
this is observed as the language P(L) € L;. To respect this
information constraint a supervisor for G is now required
to be a map g: P(L) — T'. Similarly, a supervisor realization
becomes anautomaton § = (£, X, £, x¢) together with amap
¢: X — T. Algebraically this is equivalent to restricting atten-
tion to supervisors f: L = T for which there exists a map g:
P(L) = T such that for each w € L, f(w) = g(P(w)). Such a
supervisor is said to be a P-supervisor.

Given anonempty closed language K < L(G) one may now
ask under what conditions does there exist a P-supervisor
fsuch that L(G, f) = K? This is a simple supervisory control
problem with partial information. To resolve the problem
we introduce the concept of language observability. Define
the binary relation acty on £* as follows. The pair (s, s') €
acty if s, s’ € K implies that there does not exist ¢ € X such
that either

sceK and soel(G) — K or soel(G) - K
and s'o € K.

In other words (s, s") € act, if all the one step continuations
of s and s’ that remain in L(G) yield the same result with
respect to membership of K. The relation act is a tolerance
relation on £¥, i.e., it is symmetric and reflexive, but not in
general transitive. Finally, define the closed language K to
be P-observable with respect to G if

ker P < acty

i.e., if P(s) = P(s’) then (s, s’) € actk. Roughly, this means that
the projection P retains sufficient information to decide
whether or not, after the occurrence of some event, the
resultant string is in K.

We can now state [36, theorem 2.1], [cf. 9, lemma 2.3]:

Proposition 6.1: Let K < L(G) be closed and nonempty.
Then there exists a P-supervisor f such that L(G, f) = K iff
K is controllable and P-observable.

If K does not satisfy the conditions of the above prop-
osition, then it is natural to consider the possibility of
approximating K as was done in the complete information
case. Unfortunately, it turns out that, in a given situation,
a unique maximal controllable and observable sublan-
guage of K need not exist. To obtain such approximations
in a reasonable and practical manner we consider the fol-

PROCEEDINGS OF THE IEEE, VOL. 77, NO. 1, JANUARY 1989

lowing subclass of languages. Say that a closed language
K < L(G)is P-normal if

K = LG) N PTIPK).

This condition simply requires that K is the union of some
cosets of ker P intersected with L. This is displayed con-
ceptually in Fig. 16. In the figure each square represents a

k K
N

Fig. 16. A P-normal language.

coset of ker P. If a normal sublanguage contains a point of
a coset, then it must contain all points of that coset that lie
in L. Alternatively, K is P-normal iff it is the largest sublan-
guage of L having P(K) as its projection; thus K is determined
uniquely by its projection and the constraints imposed by

Normal languages have a number of special properties
that make them of interest. The one that concerns us here
is that for s e L(G) we can decide if s € K from P(s) alone.
This in turn gives us [36, prop. 4.1]:

Proposition 6.2: Let K < L(G) be closed and P-normal.
Then K is P-observable.

The converse of the above proposition need not be true,
namely a P-observable language need not be P-normal.
However, the normal languages form a subset of the
observable languages that is algebraically better behaved.
In particular, this family is closed under set union, so the
largest P-normal sublanguage of a given closed language
always exists [36, prop. 4.2]. Thus the supremal controllable
P-normal sublanguage of a given closed language K ¢ L(G)
always exists, and provides a quasi-optimal controllable and
observable approximation to K should this language fail to
satisfy the conditions of Proposition 6.1 [9, sec. 3], [36, sec.
4].

The above results give the flavor of supervisory control
with partial information. The literature contains further dis-
cussion of more complex supervision problems with partial
observations [9], [36]; as well as a discussion of some of the
related computational issues [8], [9], [70], [74]. The supremal
controllable P-normal sublanguage of a given language can
be computed using algorithms similar in spirit to the lattice
iteration described in Section l11. Several algorithms for this
and related computations are discussed in some detail in
[8],19], and [74]. It is well known that most discrete decision
and control problems with partial information are com-
putationally difficult, i.e., NP-complete or worse [44], [45].
As shown in [70] this is also the case for general supervisory
control problems with partial information, and this makes
suboptimal schemes, e.g., normal sublanguages, all the
more interesting as a basis for computation.

Example 6.1: Two stations labeled A and B are connected
by a single one-way track from A to B. The track consists of
four sections, with stoplights (*) and detectors (!) installed

RAMADGE AND WONHAM: THE CONTROL OF DISCRETE EVENT SYSTEMS

Stn A —0 © (=] o 0 stn B

v, L33! (3] 03 %y %5

V2 0 0 1 Qyp 2 Oy 3 Oy 4 Q& 5

Fig. 17. Guideway with lights (*) and detectors (!).

at various junctions (Fig. 17). Two vehicles V,, V, use the
guideway simultaneously. V; is in state 0 when at A, in state
iwhen in sectioni,i =1, -+ -, 4, and in state 5 when at B.

To avoid collisions, control of the stoplights must ensure
that V; and V, never travel on the same section of track
simultaneously. The generator for V; is shown in Fig. 17;
controllable events are o for i = 1,2, 4, and e, is an unob-
servable event. The plant is obtained by taking G = V, || V,.
From this, a generator for the desired closed loop behavior
Kis obtained by removing the states (i,i),i =1, - - - , 4. This
is a generator with 30 states and 40 transitions. One then
sets out to compute the unique supremal controllable nor-
mal sublanguage of K. This turns out to be described by a
generator with 26 states and 32 transitions. That part of the
generator corresponding to the situation when V, starts first
is shown in Fig. 18. The corresponding supervisor imple-

a
U7y g3 Ggq Ops @y Oy Oy O

Fig. 18. Supervisor for guideway.

ments the following policy: since V, starts first, V; must wait
at A until V, enters track section 4. V,; may then continue
into track section 3, but may not enter track section 4 until
V, enters station B. Light #2 is not used.

VII. DECENTRALIZED SUPERVISION

Decentralized supervision is based on the idea of local
agents (supervisors) simultaneously supervising a DES G,
with each agent having access only to ““local” information
and “local” controls (Fig. 19). Such a situation is similar to

focal model projection

generator

projection focal model

supervisor supervisor

Fig. 19. Decentralized supervision.

modular supervision except that we have added the addi-
tional constraint of partial information and partial control.
In the current framework the overall control task, as
embodied in some constraint language K C L(G), often

91

splits naturally into subtasks for which ““local” supervisory
controllers are fairly easy to obtain. This makes decentral-
ized control attractive. However, the question then arises
whether such local controllers acting concurrently achieve
the desired control objective, and if so, whether they
achieve it in an “optimal” manner.

Fix a DES G over the alphabet L and assume that we have
a projection P:L* — L. For simplicity we shall assume that
Pisanatural projection (see Section VI). As before, we inter-
pret L, as the set of events that can be observed by the local
supervisor.

The local observation of the behavior of G is P(L(G)). This
can be represented by a local model G, with L(G,) = P(L(G)),
and L,(G,) = P(L,,(G)). G, embodies the local agent’s model
of the global process G. Denote, as usual, the sets of con-
trolled and uncontrolled events of G by L, and T, respec-
tively. Then define

Lo=L,NE, and Z,=XNEL,.

Thus the local agent sees the control decomposition £, =
L, U L, and only has access to the corresponding local
input set I',,.

Now assume that we are given a nonempty closed lan-
guage F, € L7, which we interpret as a constraint on admis-
sible behavior at the local level, i.e., we want to find a local
supervisor f,: P(L) = T, such that L(G,, f,) € E,. For this we
select f, so as to synthesize the supremal (focally) con-
trollable sublanguage K, of L(G,) N E,, i.e., L(G,, f,) = K,.
At the global level this results in the closed loop behavior
K =LG) N P K,).

On the other hand, the local specification £, corresponds
to the global constraint language £ = [(G) N P~ Y(E,), and
we can find a global supervisor f: L — T so as to synthesize
the supremal controllable sublanguage K of £, i.e., (G, f)
= K.

It is intuitively clear that we must have K S K. But when
do we have K = K, i.e., when is K globally optimal? For this
we have [37, theorem 3.1]:

Proposition 7.1: Local supervision is globally optimal (i.e.,
K = K)iff Kis P-normal. In that case, events in T, — L., never
need to be disabled.

In practice, use of the local supervisor f, will be attractive
because of its relatively simple structure and ease of syn-
thesis. One would like to be able to justify its use without
actually computing and comparing it with the global struc-
ture K or the corresponding supervisor f since, in general,
these are complicated and expensive to compute. Some-
times this can be done on the basis of several sufficient con-
ditions which do not require K to be explicitly computed
[37]. However, this will not be pursued further here.

We now turn to the case of multiple local controllers.
Assume that nonempty (not necessarily pairwise disjoint)
local subalphabets I, € L, i e/, are given, and let P;: £* —
L} denote the corresponding natural projections. As before
we set

L, =E NEL Eu/:Euﬁ):l

and let G; denote the local model of agent .

A set of local supervisors { f,, i e I'} acting concurrently
on G is equivalent to the single global supervisor f defined

by
f(s) = Aje fils) s € L(G).

92

Of course not every supervisor can be represented in this
fashion. A supervisor f for G is said to be a decentralized
supervisor precisely when it can be represented in the above
form. Decentralization imposes a restriction on the class of
admissible supervisors, and hence on the class of realizable
controlled behaviors.

A natural first question is the following: given a nonempty
closed K C {G), when is it possible to find a decentralized
supervisor f such that L(G, f) = K? For each ¢ € L, define
the index set /, = {i: 0 € L;}. Say that K is {P;}-observable
if foro e L, strings {s;:je/,} in Kand s” € K the conditions

1) s/aeror alljel,;
2) s‘ce l(C);
3) P(s) = Ps)foralljel;

together imply that
s‘cek.

Then, in the spirit of Proposition 6.1, we have [9, lemma4.2]:

Proposition 7.2: Let K be a nonempty closed sublanguage
of L(G). There exists a decentralized supervisor f such that
L(G, f) = K iff K is controllable and {P;}-observable.

While clearly theoretically important, the above result
has the computational disadvantage that it requires work-
ing with the global structure K. Consider now the situation
where we specify the constraint on the controlled behavior
by £ = N; P '(E), where £, < L. In other words, the global
constraint can be reduced to the simultaneous satisfaction
of local constraints expressed in the sublanguages L,. Let
K denote the supremal (globally) controllable sublanguage
of £,and K; denote the supremal (globally) controllable sub-
language of L(G) NP~ (E), iel. As a first step in the analysis
of this situation we have [37, prop. 4.1]:

Proposition 7.3: Let f (i e I) be supervisors for G with L(G,
f) =K;, iel Then L(G, A, f) = K.

The above result simply says that the concurrent oper-
ation of globally optimal decentralized supervisors is glob-
ally optimal. Of course the result is most likely to be useful
just when the f; can be designed and implemented at the
local level. For this let J; denote the supremal (locally) con-
trollable sublanguage of £, N P,(L(G)), let f; be a local super-
visor with L{(G;, f} = J;, and set

K. = LG) 0 Py
K; is the global behavior resulting from local control syn-
thesis by the ith agent. Say that Gis locally controllable, with
respect to the family of sublanguages {£;}, if we have K; =
Ri(i € I). With these definitions we can summarize the state
of affairs as [37, theorem 4.1]:

Proposition 7.4: Let G be locally controllable. Then L(G,
A) =K.

This result says that if G is locally controllable, then
decentralized supervision of G is globally optimal.

Further details, and a number of examples of decen-
tralized control, are discussed in [9], [37], and [74]. Since
decentralized control is a partial information problem, sim-
ilar comments to those given at the end of Section VI apply
to the issue of computational complexity. The design and
analysis of distributed protocols and controllers is known
to be a computationally difficult task. While the model dis-
cussed here gives insight and qualitative results, it remains
to explore issues such as aggregation and approximation
which may help in computational applications.

PROCEEDINGS Of THE IEEE, VOL. 77, NO. 1, JANUARY 1989

VII. SEQUENTIAL BEHAVIOR

There are a number of possible further extensions of the
basic model defined in Section Il. Some of these are dis-
cussed in [17], [18], [30]-[33], [49]-[54], [68], [69], and [79]. In
this section we describe an extension of the model to
include infinite sequences of events as developed in [49]-
[51], [67], [68]. Modeling the behavior of a DES as a set of
infinite sequences can offer several advantages, including
the modeling of nonterminating processes, addressing
issues such as livelock and fair concurrency, and distin-
guishing between transient and nontransient behavior.

Let Z¢ denote the set of all infinite sequences over the
alphabet E. We model the behavior of a DES as a subset B
of . A subset of I“ is usually termed an w-language over
L.

The basic means of analysis is to consider the sequential
behavior as the limit, in a suitable sense, of an appropriate
string language. The string language represents the finite
time behavior, and the sequential behavior the limiting
behavior over time. For this we need the concept of the pre-
fixof an w-language, and the adherence of astring language.
For each sequence e e L let e/ denote the string consisting
of the first j elements of e. By definition e° = e. The prefix
of B € L is the set pr(B) & L* defined by

pr(B) = {e/:e € B, j = 0}

i.e., pr(B) is the set of all strings in * that form a prefix of
a sequence in B including the empty string . For K < T*
the adherence of K is the w-language K* consisting of those
sequences e € L with infinitely many prefixes in K. For
example, the prefix of the w-language (ab)® = {abababab
- - -} isthestringlanguage (ab)*(e + a) = {¢,a,ab, aba, - - - };
and the adherence of the string language a* = {¢, a, aa, aaa,
aaaa, - + '} is the w-language a* = {aaaaaa - - -}.

An w-language B can be specified in terms of a generator
model as follows. To the generator G = (L, Q, §, go) we adjoin
a subset of states Q,, © Q. Roughly, G recognizes the
sequence e = 010,03 * - - if there is a state trajectory of G
under e that intersects the set Q,, infinitely often. The set
of all sequences so recognized constitutes the w-language
recognized by G. Denote this set by B(G). In the case that
G is finite state, this model is called a (deterministic) Buchi
automaton, and the class of languages so recognized is
called the class of (deterministic) regular w-languages.

Itis clear that pr(B(G)) € L(G), in general without equality.
Equality implies that every string in L(G) is a prefix of some
sequence in B(G). Roughly, this means that the system is
never prevented from producing asequencein B(G). Hence
when pr(B) = L, we say that G is nonblocking.

The introduction of infinite sequences brings in some
interesting topological issues. There is a natural topology
on I* corresponding to the limiting operations mentioned
above." The easiest way to introduce this topology is
through the metric:

1Un, ifel" =ef" and eq(n) # eyn);
0(81, e2) = .
0, ife;=e,.

This measures the distance between two sequences of
events as the reciprocal of the index of the first place in

"The closed sets of this topology are precisely the adherences
of the prefix closed string languages.

RAMADGE AND WONHAM: THE CONTROL OF DISCRETE EVENT SYSTEMS

which they differ. The topological closure of a set B C
with respect to the above topology is denoted B, and for
subsets B € S © L, we say that B is closed relative to S if
BN S=8.

As before, a supervisor for G is a map f that specifies the
current control action as a function of the previously gen-
erated events. Since at any given time only a finite number
of events have been generated, this means thata supervisor
is a map

f:L(G) = T.

When fsupervises G the closed loop string language is L(G,
f), and the closed loop w-language B(G, f) is defined by

B(G, f) = B(G) N L(G, £)*.

As before, when no confusion is possible, we abbreviate
L(G, f) to L;and B(G, f) to B;. We say that f is nonblocking
for G if the controlled system (G, f) is nonblocking.

It is natural to now inquire what controlled sequential
behaviors B’ can be achieved by supervision. This can be
answered in terms of controllability of the finite behavior
of G and an appropriate topological condition on B’. The
details are stated in [49, prop. 3.1], [69, prop. 4.3]:

Proposition 8.1:1f B’ < B(G) is nonempty, then there exists
a nonblocking supervisor f for G such that B(G,) = B’ iff

i) pr(B’) is controllable; and

i) B’ is topologically closed relative to B(G), i.e., B’ N
B(G) =B

When the two conditions of the proposition are satisfied,
we say that B° € B(G) is a controllable w-language.

Itis readily shown that the set of controllable w-languages
is closed under finite set union, but not, in general, under
countable set union. Despite this fact, in certain situations
it is still true that there is a unique supremal controllable
sequential behavior contained in a prescribed w-language
B'.Itis sufficient, for example, to impose the additional con-
straint that B’ be closed relative to B(G) [49, prop. 3.2

Proposition 8.2: 1f B* € B(G)is closed relative to B(G), then
there exists a unique supremal controllable w-language 8"'
contained in B’

For some synthesis problems this result is adequate.
However, for the analog of the general synthesis problems
considered in [56] we need a stronger notion of control-
lability. This is discussed in detail along with related com-
putational issues in [69].

IX. SOME COMPLEXITY [SSUES

In computational applications of DES models, one is
interested in the computational complexity of the relevant
decision and synthesis problems. In our context this
reduces to the complexity of verifying concepts such as
controllability and observability, and the complexity of syn-
thesizing appropriate supervisors.

The basic supervisory control problems we have dis-
cussed are described in terms of a generator G and a sub-
language K of L(G). Fix the alphabet T, assume that G is finite
state with m states, and that K has a finite state realization
with n states. We measure the size of an instance of a super-
visory problem by max (m, n). Then, a supervisor synthesis
problem is said to be polynomially decidable if, given an
instance of the problem, it is possible to decide in a time

93

bounded by a polynomial in the size of the instance whether
or notitis solvable. Similarly, we shall say that the problem
is polynomially solvable if, given a solvable instance of the
problem, it is possible to synthesize a solution in a time
bounded by a polynomial in the size of the particular
instance.

The controllability of a given K & L(G) is polynomially
decidable. This can be seen by applying the algorithm for
computing supremal controllable sublanguages given in
[76, sec. 6]. According to this algorithm, one first takes the
intersection of the generator for K with G, an operation of
complexity O(mn{E)). This yields a generator with at most
mn states. For each state of this generator one checks a sub-
set inclusion, each check being a computation of com-
plexity O(|Z||E,|). Thus the controllability of K can be
checked in O(mn|L,||Z}) time.

Consider the problem of synthesizing a supervisor so that
the closed loop behavior is a prescribed language K. Recall
that there exists a supervisor f for G such that L(G, f) = K
iff K is closed and controllable. Since both of these con-
ditions can be checked in polynomial-time, the problem is
polynomially decidable. Assume that K is a closed and con-
trollable sublanguage of L(G). The proof of Proposition 4.1
provides a scheme for the construction of a realization of
a supervisor to implement K [56, prop. 5.1]. The time com-
plexity of this scheme is polynomial in mn. Thus the prob-
lem is polynomially solvable.

If the closed language K < L(G) is not controllable, then
one can approximate K by its largest controllable sublan-
guage. The computation of K~ using the algorithm outlined
in Section IV (see [76, sec. 6]) is of time complexity O(m’n?).
So K' can be computed in polynomial-time.

Now consider the problem of synthesizing a supervisor
fso that the closed loop behavior contains the language K,
and is contained in the language K,. This problem is solv-
able iff the largest controllable sublanguage of K, contains
K, [56, sec. 9]. If Ky and K, are specified by finite state gen-
erators with n; and n, states, respectively, then K; can be
computed in a time bounded by a polynomial in m and n,,
and the inclusion K, C K} can be checked in atime bounded
by a polynomial in n; and n,. Thus the synthesis problem
is polynomially decidable. When solvable, it reduces to the
first synthesis problem with K = K}, and hence is polyno-
mially solvable.

Not all problems in this setting are polynomially decid-
able. Consider, forexample, the problem of supervisor real-
ization. Given a supervisor f it is natural to consider the
problem of realizing f by an automaton with the least num-
ber of states. If we assume that one finite state realization
of f,say (S, ¢), is given, then the minimal realization problem
is equivalent to the minimization of a partially specified
sequential machine. There are two approaches to the prob-
lem. First, one can look for congruences on the state set X
of Sfinerthan ker¢. A congruenceis an equivalence relation
on X with the property that, for each s € £, if x = y and &(o,
x) and £(o, y) are both defined, then

(o, x) = &lo, y).

This is a very useful construction. However, if we translate,
with some minor modifications, the results of Pfleeger [47]
into the current setting we have:

Proposition 9.1: Let (S, ¢) be a finite state supervisor real-
ization. The decision problem: does there exist a congru-

94

ence on S finer than ker ¢, and having at most k equiva-
lences classes, is NP-complete.

A second, and more general approach to the minimi-
zation problem involves the use of invariant covers. [t can
be shown that the minimal realizations of fcan be obtained
from any given realization (S, ¢) by examining the invariant
covers of S finer than ¢. This was explored in [72]. However,
a simple extension of Pfleeger’s previous result yields:

Proposition 9.2: Let f:K — T be a finite state supervisor.
The decision problem: does there exist a finite state real-
ization (S, ¢) of f that has at most k states, is NP-complete.

These results indicate that in general minimal supervisor
realization is unlikely to be feasible for problems of sig-
nificant size (assuming P # NP). It is important to be aware
of this fact but also important to keep it in perspective: in
many supervisory control problems, structured solutions
are probably of greater merit than minimal solutions.

Control problems with partial information are known to
be computationally difficult. In [70] it is shown that the con-
ditions of Proposition 6.1, i.e., the existence of a P-super-
visor, can be checked in polynomial-time. This is a positive
result. However, under the assumption that P = NP, several
other control problems of interest are shown to require
nonpotynomial-time algorithms. The use of P-normal lan-
guages to avoid this problem was discussed in Section VI.

We have seen examples of systems constructed using the
shuffle product. Such product systems arise naturally when
modeling the concurrent operation of several asynchro-
nous, or partially synchronous, discrete dynamical sys-
tems. One of the principal difficulties in dealing with these
systems is that the number of states increases exponentially
with the number of components. Thus synthesis methods
based on searching over the product state space are unlikely
to be computationally feasible. However, it is also the case
that product systems possess special structure, and in some
instances this can be exploited in the solution of decision
and synthesis problems. This is discussed further in the next
section.

X. PRODUCT SYSTEMS

In this section we continue our discussion of compu-
tational complexity, but specialize to the interesting case
of a DES composed of a finite set of asynchronous com-
ponents. In our setting such systems have been modeled
by the shuffle (or, more generally, the synchronous) prod-
uct. For notational convenience let[1, p] denote the interval
of integers {i: 1 = i < p}.

For each i € [1, p] let G, = (T, Q;, &, qo) be a DES with
control partition £; = £, U L,;. Assume that the event sets
L;are pairwise disjoint, that each G;has anonempty sequen-
tial behavior B;, and that Pr(B) = L(G). LetL = U ,L;and P;:
L — L, be the natural projection.

The product system G = [|?_,G; is the shuffle product of
the DESG,, - - -, Cp. This DES is defined so that its sequen-
tial behavior is the w-language

B(G) = {e:eeL¥and P(e) e B,, i € [1, pl}

i.e., e € B(G) iff for each i, e(t) € L; infinitely often, and if e,
isthe subsequence of e consisting of all elementsin I;, then
e; € B;. The control partitionof GisL = L, U L. withZ, =
U;Z,;, and as usual, its set of admissible controls is denoted
by T.

PROCEEDINGS OF THE IEEE, VOL. 77, NO. 1, JANUARY 1989

If each G, has n states, then G has n” states. Clearly, from
the point of view of computation, this is a possible problem.
If p is bounded, say p = 4, then the number of states in G
is bounded by a polynomial in n, and the results of Section
IX apply. However, we are interested in the case when both
p and n are variable. In this case, we say that a supervision
problem for a product system is polynomially decidable if
the time required to determine whether or not itis solvable
is bounded by a polynomial in n and p. Similarly, a control
problem is polynomially solvable if we can synthesize a
finite realization of a solution in a time bounded by a poly-
nomial in n and p. It is convenient to construct this real-
ization as a product system. In this case the dynamics of the
realization are specified by a set of finite state automata S;,
i € 1, p], together with a feedback map ¢ mapping their
product state space X = II¥_;X; into I'. Since the compo-
nents Sy, - - +, S, of the realization operate in parallel, there
is no need to actually construct their product. This is in the
spirit of the modular synthesis discussed in Section V. In
general such a realization will be nonminimal, but this will
be offset by the fact that it is structured, and more readily
synthesized.

We restrict attention here to control problems requiring
pure coordination. Roughly, this means that the supervisor
does not modify the open loop behaviors of the individual
DESs, but only constrains how they interact by controlling
the relative order of events. Formally, we say that a super-
visor ffor a product system is a coordinator if, for every set
of p event sequences, e, €, * * * , €, withe; €B;,iell,pl,
there exists a sequence e in the closed loop behavior B;such
that for all i € [1, pl.

Pfe) = e;.

Consider, for example, the following coordination prob-
lem:

Mutual Exclusion (MEX): Let Q; € Q; be p given nontran-
sient subsets, and k be a fixed integer with 1 < k < p. Syn-
thesize (if possible) a nonblocking coordinator f for G such
that for each e € By, and each j = 1, after the first j events
of e at most k of the generators G, satisfy q; € Q;.

The problem requires that at most k of the generators G,
are in the designated subsets of states at any one time, and
this must be done without changing the open loop behav-
ior of any generator. The assumption that the subset Q; of
the state set of the generator G;is nontransient simply means
that there exists an admissible state trajectory for G; that
visits Q; infinitely often.

Let B’ be the subset of B(G) that satisfies the mutual exclu-
sion constraint. It is easy to see that B’ is closed, and hence
closed relative to B(G). Thus by Proposition 8.2 there exists
a unique supremal controllable sequential behavior B
contained in B’. It can be shown from the definitions that
if an instance of MEX is solvable, then it has a minimally
restrictive solution, and that this solution implements the
closed loop behavior B'. On the issue of computational
complexity one can state [49, theorem 5.1]:

Proposition 10.7: MEX is polynomially decidable. More-
over, given a solvable instance of MEX it is possible to syn-
thesize a minimally restrictive solution in polynomial-time.

That the problem is of polynomial complexity is due to
the fact that it can be decoupled and analyzed in terms of
the component DESs. The proof of the proposition provides
a simple polynomial-time test by which the solvability of

RAMADGE AND WONHAM: THE CONTROL OF DISCRETE EVENT SYSTEMS

MEX can be decided. In addition, if the problem is solvable,
a supervisor is provided which will ensure that the require-
ments of MEX are met.

As asecond example of a coordination problem consider:

Uncontrolled String Exclusion (USE): Let w,; €L, 1 < i <
p, be p nonempty, nontransient strings of uncontrolled
events, and let the string w be formed from a shuffling of
the w;,. Synthesize (if possible) a nonblocking coordinator
ffor G such that for every e € B;and everyj = 1, e/ # s,ws,
for some s;, s, € L*.

The problem requires that the generated sequence of
events e never contains the “illegal string” w. The length
of w is an additional factor in the complexity analysis.

It is readily shown that there exists a polynomial trans-
formation of an instance of USE to an instance of MEX.
Indeed, given an instance of USE set

X = {q; € Q;:8;w;, q)'}.

Then the instance of USE is solvable iff the instance of MEX
with k = p — 1and Q; = X; is solvable. This leads to:

Proposition 70.2: USE is polynomially decidable. More-
over, given a solvable instance of USE it is possible to syn-
thesize a minimally restrictive solution in polynomial-time.

It is possible to pose a string exclusion problem without
the assumption that the events in the string are uncon-
trolled. In this case the string w contains at least one con-
trollable event, and with the exception of a few special cases,
a supervisor can be based on a simple string recognizer.
This problem is again polynomial [49, theorem 5.3].

An essential feature of the above problems is that they
can be ““decoupled’’ and analyzed in terms of the system
components, and as a result, the required supervisor can
be synthesized in a modular fashion as a product system.
For this we assumed that the components of the open loop
product system were independent, and that any interaction
between the components could be modeled as part of a
control constraint. Alternatively, one can think of the super-
visor synthesis as designing the process interaction to
achieve a desired behavior. While this is possible for a vari-
ety of DESs of interest, it is a serious assumption that we
would like to weaken. In [17] it is shown that with just one
common shared event the MEX problem cannot be solved
with a polynomial-time algorithm. However, with reason-
able additional restrictions on the shared events, one can
ensure that the problem remains polynomial.

Xl. CONCLUSION

This paper has provided an overview of one trend in the
developmentof a control theory for discrete-event systems.
In view of the relatively long history of prior approaches to
discrete-event control design (notably discrete-event sys-
tem simulation, and analysis via Petri nets, starting in the
1960s; and investigations via stochastic models, including
perturbation analysis, from the early 1970s) it is perhaps sur-
prising that attempts to evolve a synthetic, control-theo-
retic overview of the problem area, especially in its qual-
itative, logical aspects, have been both few in number and
recent in appearance. Nevertheless, the control of DESs is
now an established branch of control theory.

The current studies of the qualitative aspects of the con-
trol of DESs highlight the thesis that control science is
defined in terms of problems and concepts, not in terms

95

of techniques. Stimulated by the demands of technology
and by developments in computer science, new techniques
are entering the field of control theory from automaton the-
ory, formal language and formal logic, to take their place
alongside the traditional mathematics like differential
equations and operator theory. For both researchers and
educators in the control field, the challenges remain plen-
tiful.

REFERENCES

[11 S. Aggarwal, C. Coucoubetis, and P. Wolper, “Adding live-
ness properties to coupled finite state machines,” preprint,
AT&T Bell Laboratories, Murray Hill, NJ, 1988.

[2] R. Akeila and P. R. Kumar, “‘Optimal control of production
rate in a failure prone manufacturing system,” JEEE Trans.
Automat. Contr., vol. 31, no. 2, pp. 116-126, Feb. 1986.

[3]). Beauquier and M. Nivat, “‘Application of formal language
theory to problems of security and synchronization,” in For-
mal Language Theory—Perspective and Open Problems, R. V.
Book, Ed. New York: Academic Press, 1980, pp. 407-454.

{4] C.BerthetandE. Cerny, “An algebraic model for asynchron-
ous circuits verification,”” IEEE Trans. Comput., vol. 37, no. 7,
pp. 835-847, July 1988.

{51 T. Bielecki and P. R. Kumar, "“Optimality of zero inventory
policies for unrealiable manufacturing systems,” preprint,
Dept. Electrical Engineering, University of lllinois, Urbana, IL,
1986.

[6] A.D.Bovopoulosand A. A. Lazar, “Optimal routing and flow
control of a network of parallel processors,” preprint, Dept.
Electrical Engineering, Columbia University, NY, Jan. 1985.

[71). A. Buzacott, “Optimal operating rules for automated man-
ufacturing systems,” IEEE Trans. Automat. Contr., vol. 27, no.
2, pp. 80-86, Feb. 1982.

[8] H.ChoandS. 1. Marcus, “On the supremal languages of sub-
languages that arise in supervisor synthesis problems with
partial observation,” Mathematics Contr., Signals Syst., vol.
2, no. 2, pp. 47-69, 1989.

[9] R. Cieslak, C. Desclaux, A. Fawaz, and P. Varaiya, ‘‘Supervi-
sory control of discrete event processes with partial obser-
vations,”” IEEE Trans. Automat. Contr., vol. 33, no. 3, pp. 249-
260, Mar. 1988.

[10] G. Cohen, D. Dubois,). P. Quadrat, and M. Voit, “A linear
system-theoretic view of discrete event processes and its use
for the performance evaluation in manufacturing,” IEEE Trans.
Automat. Contr., vol. 30, no. 3, pp. 210-220, 1985.

[11] C. A. Courcoubetis and R. R. Weber, “A bin packing system
for objects with sizes from finite set: necessary and sufficient
conditions for stability and some applications,” in Proc. 25th
Conf. Decision and Control, (Athens, Greece), pp. 1686-1691,
Dec. 1986.

[12} E.W.Dijkstra, “Self-stabilizing systems in spite of distributed
control,” Commun. ACM, vol. 17, no. 11, pp. 643-644, Nov.
1974.

[13] M.). Fisher, “The consensus problem in unreliable distrib-
uted systems (a brief survey),” Research Rep. YALEU/DCS/RR-
273, Dept. Computer Science, Yale University, June 1983.

[14] M.]J. Fisher, N. A. Lynch, and M. S. Patterson, ““Impossibility
of distributed consensus with one faulty process,” J. ACM,
vol. 32, no. 2, pp. 374-382, Apr. 1982.

[15]1 G.S. Fishman, Principles of Discrete Event Simulation. New
York, NY: Wiley, 1978.

[16] I. Gertner and R. Kurshan, ““Logical analysis of digital cir-
cuits,” preprint, AT&T Bell Laboratories, Murray Hill, N), 1987.

[17) C. H. Golaszewski and P.]. Ramadge, ““Mutual exclusion
problems for discrete event systems with shared events,” in
Proc. 27th IEEE Conf. Decision and Control (Austin, TX), pp.
234-239, Dec. 1988.

[18] ——, “Discrete event processes with arbitrary controls,” in
Advanced Computing Concepts and Techniques in Control
Engineering, M. |. Denham and A. J. Laub, Eds., Springer-Ver-
lag NATO ASI Series. New York, NY: Springer Verlag, 1988,
pp- 459-469.

(191 B. Hajek, “Optimal control of two interacting service sta-

96

{20]

{21}

[22)

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

31]

[32]

(33]

[34]

[35]

(36]
37]

(38]

[39]

[40]

[41]

[42]

[43]

tions,"” IEEE Trans. Automat. Contr.,vol. 29, no. 6, pp. 491-499,
June 1984.

Y. C.Ho and C. Cassandras, ‘A new approach to the analysis
of discrete event dynamic systems,”” Automatica, vol. 19, no.
2, pp. 149-167, 1983.

C. A.R. Hoare, Communicating Sequential Processes. Engle-
wood Cliffs, NJ: Prentice-Hall, 1985.

). E.Hopcroftand J. D. Ullman, Introduction to Automata The-
ory, Languages and Computation. Reading, MA: Addison-
Wesley, 1979.

K. Inan and P. Varaiya, “Finitely recursive process models for
discrete event systems,”” [EEE Trans. Automat. Contr., vol. 33,
no. 7, pp. 626-639, July 1988.

R. Kurshan, “Reducibility in analysis of coordination,” in Dis-
crete Fvent Systems: Models and Applications, I1ASA Confer-
ence, Sopron, Hungary, Aug. 3-7, 1987, P. Varaiya and A. B.
Kurzhanski, Eds., Lecture Notes in Control and Information
Sciences, vol. 103. New York, NY: Springer-Verlag, 1988, pp.
19-39.

R.P.Kurshan, “Testing containment of w-regular languages,”
preprint, AT&T Bell Laboratories, Murray Hill, NJ, Oct. 1986.
S. Lafortune, ““Modelling and analysis of transaction execu-
tion in database systems,”” IEEE Trans. Automat. Contr., vol.
33, no. 5, pp. 439-447, May 1988.

S. Lafortune and E. Wong, *‘A state model for the concurrency
control problem in data base management systems,”” Memo.
UCB/ERL M85/27, Electronic Systems Laboratory, College of
Engineering, University of California Berkeley, CA, Apr. 1985.
A. A. Lazar and M. T. Hsiao, “Network and user optimal flow
control with decentralized information,” preprint, Dept.
Electrical Engineering, Columbia University, NY.

E. A. Lee, “Data flow programming for parallel implemen-
tation of digital signal processing systems,”” in Discrete Event
Systems: Models and Applications, 1IASA Conference,
Sopron, Hungary, Aug. 3-7, 1987, P. Varaiya and A. B. Kur-
zhanski, Eds., Lecture Notes in Control and Information Sci-
ences, vol. 103. New York, NY: Springer-Verlag, 1988, pp.
135-148.

Y. Li and W. M. Wonham, ““On supervisory control of real-
time discrete-event systems,”” Inform. Sci., vol. 46, pp. 159-
183, 1988.

—, ""Controllability and observability in the state-feedback
control of discrete-event systems,” in Proc. 27th IEEE Conf.
Decision and Control (Austin, TX), pp. 203-208, Dec. 1988.
——, "'A state-variable approach to the modelling and control
of discrete-event systems,”” in Proc. 26th Annual Allerton
Conf., Sept. 1988.

——, "“Deadlock issues in supervisory control of discrete-event
systems,”” in Proc. 22nd Annual Conf. Information Sciences
and Systems, (Princeton, NJ), pp. 57~63, Mar. 1988.

W. Lin and P. R. Kumar, “Optimal control of a queueing sys-
tem with two heterogeneous servers,” [EEE Trans. Automat.
Contr., vol. 29, pp. 696-703, Aug. 1984.

F. Lin and W. M. Wonham, ““Decentralized control and coor-
dination of discrete-event systems,” in Proc. 27th IEEE Conf.
Decision and Control (Austin, TX), pp. 1125-1130, Dec. 1988.
—, "“On observability of discrete-event systems,” Inform.
Sci., vol. 44, pp. 173-198, 1988.

—, "Decentralized supervisory control of discrete-event
systems,” Inform. Sci., vol. 44, pp. 199-224, 1988.

O. Maimon and G. Tadmore, “Efficient low level control of
FMS,” Draft Tech. Rep. LIDS-P-1571, Laboratory for Infor-
mation and Decision Systems, MIT, Cambridge, MA, June
1986.

Z. Manna and A. Pnueli, “Synthesis of communicating pro-
cesses from temporal logic specifications,” ACM Trans. Pro-
gramming Languages and Syst., vol. 6, no. 1, pp. 68-93, Jan.
1984.

G. MilneandR. Milner, ““Concurrent processes and their syn-
tax,” J. ACM, vol. 26, pp. 302-321, 1979.

K. Okumura, “Protocol analysis from language structure,”
preprint, IBM Research, Tokyo Research Laboratory, 5-19,
Tokyo, June 1988.

J. S. Ostroff and W. M. Wonham, A temporal logic approach
to real time control,” in Proc. 24th IEEE Conf. Decision and
Control, (Fort Lauderdale, Florida), pp. 656-657, Dec. 1985.
J. S. Ostroff, “Real time computer control of discrete event

PROCEEDINGS OF THE IEEE, VOL. 77, NO. 1, JANUARY 1989

{441

(45]

[46)

(471

[48]

[49]

[50]

[57]

(52}

[56]

[57]

[58]

{59]

(60]

[64]

[65]

RAMADGE AND WONHAM: THE CONTROL OF DISCRETE EVENT SYSTEMS

systems modelled by extended state machines: A temporal
logic approach,” Rep. 8618, Dept. Electrical Engineering, Uni-
versity of Toronto, Sept. 1986.

C. H. Papadimitriou and J. N. Tsitsiklis, “On the complexity
of designing distributed protocols,” Inform. Contr., vol. 53,
pp. 211-218, June 1982.

—, “On the complexity of Markov decision processes,”
Mathematics Operations Res., vol. 12, no. 3, pp. 441-450, Aug.
1987.

1. L. Peterson, Petri Net Theory and the Modeling of Systems.
Englewood Cliffs, Nj: Prentice-Hall, 1981.

C. P. Pfleeger, “State reduction in incompletely specified
finite state machines,” IEEE Trans. Comput., vol. C-22, no. 12,
pp. 1099-1102, Jan. 1979.

A. Pneuli, “The temporal semantics of concurrent pro-
grams,” in Semantics of Concurrent Computation, Lecture
Notes in Computer Science 70. New York, NY: Springer-Ver-
lag, 1979, pp. 1-20.

P.].Ramadge, “Some tractable supervisory control problems
for discrete event systems described by Blichi automata,” IEEE
Trans. Automat. Contr., vol. 34, no. 1, Jan. 1989.

——, “The complexity of some basic problems in the super-
visory control of discrete event systems,”” in Advanced Com-
puting Concepts and Techniques in Control Engineering, M.
J. Denham and A. J. Laub, Eds., Springer-Verlag NATO ASlI
Series. New York, NY: Springer Verlag, 1988, pp. 171-190.
—, ““Supervisory control of discrete event systems: a survey
and some new results,” in Discrete Event Systems: Models
and Applications, IIASA Conference, Sopron, Hungary, Aug.
3-7,1987,P. Varaiyaand A. B. Kurzhanski, Eds., Lecture Notes
in Control and Information Sciences, vol. 103. New York,
NY: Springer-Verlag, 1988, pp. 69-80.

——, “‘Some tractable supervisory control problems for dis-
crete event systems,” to appear in Proc. Symp. on the Math-
ematical Theory of networks and Systems, (Phoenix, AZ), June
1987.

—, “Observability of discrete event systems,” in Proc. 25th
IEEE Conf. Decision and Control, (Athens, Greece), pp. 1108-
1112, Dec. 10-12, 1986.

——, “A note on the fixpoint characterization of supremal
controllable sublanguages,” in Proc. 21st Conf. Information
Sciences and Syst., pp. 741-744, Mar. 1987.

P.J.Ramadge and W. M. Wonham, “Modular feedback logic
for discrete event systems,”” SIAM J. Contr. Optimization, vol.
25, no. 5, pp. 1202-1218, May 1987.

——, “Supervisory control of a class of discrete-event pro-
cesses,” SIAM J. Contr. Optimization, vol. 25, no. 1, pp. 206-
230, Jan. 1987.

—, “Modular supervisory control of discrete event sys-
tems,” in Proc. 7th Int. Conf. Analysis and Optimization of
Syst., (Antibes, France), pp. 202-214, June 1986.

D. Raychaudhuri ““Aloha with multiplacket messages and
ARQ-type retransmission protocols—throughput analysis,”’
IEEE Trans. Commun., vol. 32, no. 2, pp. 148-154, Feb.
1984.

—, “'Stability and optimal retransmission control of
announced retransmission random access systems,” pre-
print, RCA Laboratories, Princeton, NJ, 1985.

Z.Rosberg, P. P. Varaiya, and). C. Walrand, “Optimal control
of service in tandem queues,” IEEE Trans. Automat. Contr.,
vol. 27, no. 3, pp. 600-610, june 1982.

K. Sabnani, ““An algorithmic technique for protocol verifi-
cation,” IEEE Trans. Commun., vol. 36, no. 3, pp. 924-931, Aug.
1988.

A. C. Shaw, “Software descriptions with flow expressions,”
IFEE Trans. Software Eng., vol. 4, no. 3, pp. 242-254, 1978.

R. Smedinga, 'Using trace theory to model discrete events,”
in Discrete Event Systems: Models and Applications, [IASA
Conference, Sopron, Hungary, Aug. 3-7, 1987, P. Varaiya and
A. B. Kurzhanski, Eds., Lecture Notes in Control and Infor-
mation Sciences, vol. 103. New York, NY: Springer-Verlag,
1988, pp. 81-99.

M. Steenstrup, M. A. Arbib, and E. G. Manes, “’Port automata
and the algebra of concurrent processes,” Computer and
Information Science Tech. Rep. 81-25, University of Massa-
chusetts, Amherst, MA, 1981.

R. Suriand M. Zazanis, "‘Perturbation analysis is exact for the

(66]

[67]

[68]

(69}

[70)

71}

{72]

[73]

{74

{75

{761

[77]

[78]

791

M/G/1 queue,” in Proc. 23rd IEEE Conf. Decision and Control,
(Las Vegas, NV), pp. 535-536, Dec. 1984.

S. Toueg and K. Steiglitz, ’‘Deadlock free packet switching
networks,” SIAM J. Computing, vol. 10, pp. 594-611, Aug. 1981.
). G. Thistleand W. M. Wonham, ’Control problems ina tem-
poral logic framework,” Int. J. Contr., vol. 44, no. 4, pp. 943-
976, 1986.

——, ““Supervisory control with infinite string specifications,”
in Proc. 25th Ann. Allerton Conf. Communications, Control,
and Computing, pp. 327-334, Sept. 1987.

—, "“On the synthesis of supervisors subject to w-language
specifications,” in 22nd Ann. Conf. Information Sciences and
Systems, (Princeton, NJ), pp. 440-444, Mar. 1988.

J. N. Tsitsiklis, “On the control of discrete event dynamical
systems,”” Math. Contr., Signals, and Syst., vol. 2, no. 1, pp.
95-107, 1989.

P. P. Varaiya, J. C. Walrand, and C. Buyukkoc, ““Extensions of
the multiarmed bandit problem: the discounted case,” IEEE
Trans. Automat. Contr., vol. 30, no. 5, pp. 426-439, May 1985.
A.Vaz and W. M. Wonham, *“On supervisor reduction in dis-
crete-event systems,” Int. J. Contr., vol. 44, no. 2, pp. 475-491,
1986.

J. Walrand, An Introduction To Queueing Networks. Engle-
wood Cliffs, NJ: Prentice-Hall, 1988.

W. M. Wonham, ““A control theory for discrete-event sys-
tems,” in Advanced Computing Concepts and Techniques in
Control Engineering, M.). Denham and A.). Laub, Eds., Sprin-
ger-Verlag NATO AS| Series. New York,NY: Springer Verlag,
1988, pp. 129-169.

W. M. Wonham and P.). Ramadge, ‘‘Modular supervisor con-
trol of discrete event systems,” Math. Contr., Signals, and
Syst., vol. 1, no. 1, pp. 13-30, Jan. 1988.

—, "“On the supremal controllable sublanguage of a given
language,” SIAM J. Contr. and Optimization, vol. 25, no. 3,
pp. 637-659, May 1987.

M. A. Zazanis and R. Suri, “Estimating second derivatives of
performance measures for G/G/1 queues from a single sam-
ple path,” preprint, Division of Applied Sciences, Harvard
University, Cambridge, MA, June 1985.

B. P. Zeigler, Multifaceted Modeling and Discrete Event Sim-
ulation. New York, NY: Academic Press, 1984.

H. Zhong and W. M. Wonham, “On hierarchical control of
discrete event systems,” in 22nd Ann. Conf. on Information
Sciences and Syst., (Princeton, NJ), pp. 64-70, Mar. 1988.

Peter J. G. Ramadge (Member, IEEE) received
the B.S., B.E.E. (Hons.), and M. eng. degrees
from the University of Newcastle, Australia,
in 1976, 1978, and 1980, respectively, and
the Ph.D. degree in electrical engineering
from the University of Toronto, Ontario,
Canada, in 1983.

From June-December 1978 he was a vis-
itor in the Division of Applied Sciences,
Harvard University, and from June 1983-
August 1984, a postdoctoral fellow in the

Systems Control Group, Department of Electrical Engineering,
University of Toronto, Canada. He joined the faculty of Princeton
University, Princeton, NJ, as an Assistant Professor of Electrical
Engineering in September 1984. He has worked in the areas of
adaptive control, stochastic control, and discrete-event systems.
His current research interests are in the theoretical aspects of com-
puter science and control theory with emphasis on applications
of computers in control, learning, and signal processing.

Dr. Ramage is a member of Sigma Xi and of SIAM. In 1980 he
received the Outstanding Paper Award from the Control Systems
Society of the [EEE for research in the area of adaptive control; in
1982 he received the Outstanding Teaching Assistant Award from
the Department of Electrical Engineering, University of Toronto;
and in 1985 he was a recipient of a National Science Foundation
Research Initiation Grant. He was Co-Chairman of the 22nd Con-

97

ference on Information Sciences and Systems, and is currently
serving as an Associate Editor of the journal Sysiems AN CONTROL
LETTERS.

W. Murray Wonham (Fellow, IEEE) received
the B.S. degree in engineering physics from
McGill University, Montreal, Quebec, Can-
ada, in 1956, and the Ph.D. degree in control
engineering from the University of Cam-
bridge, Cambridge, England, in 1961.
From 1961-1969 he was associated with
the Control and Information Systems Lab-
oratory at Purdue University, the Research
Institute for Advanced Studies (RIAS) of the
Martin Marietta Co., the Division of Applied
Mathematics at Brown University, and (as a National Academy of
Sciences Research Fellow) with the Office of Control Theory and

98

Application of NASA’s Electronics Research Center. In 1970 he
joined the Systems Control Group of the Department of Electrical
Engineering at the University of Toronto, Canada, of which he is
the current Chairman. In addition he has held visiting academic
appointments with the Department of Electrical Engineering at MIT,
the Department of Systems Science and Mathematics at Wash-
ington University, the Department of Mathematics of the Univer-
sity of Bremen, the Mathematics Institute of the Academia Sinica
(Beijing), and other institutions world wide. His research interests
are in the areas of stochastic control and filtering, the geometric
theory of linear multivariable control, and more recently in dis-
crete event systems from the viewpoint of formal logic and lan-
guage. He has authored or coauthored about fifty research papers
as well as the book Linear Multivariable Control: A Geometric
Approach.

Dr. Wonham is a Fellow of the Royal Society of Canada. In 1987
he was the recipient of the IEEE Control Systems Science and Engi-
neering Award.

PROCEEDINGS OF THE IEEE, VOL. 77, NO. 1, JANUARY 1989

