
The Control of Discrete Event Systems

PETER j . G. RAMADGE, MEMBER, IEEE, AND W. MURRAY WONHAM, FELLOW, IEEE

Invited Paper

A Discrete Event System (DES) is a dynamic system that evolves
in accordance with the abrupt occurrence, at possibly unknown
irregular intervals, of physical events. Such systems arise in a vari-
ety of contexts ranging from computer operating systems to the
control of complex multimode processes. We survey a control the-
ory for the logical aspects of such DESs. This theory was initiated
by Ramadge and Wonham, and has subsequently been extended
by the authors and other researchers to encompass control theo-
retic ideas such as controllability, observability, aggregation, and
modular, decentralized, and hierarchical control. We concentrate
on the qualitative aspects of control but also consider computa-
tion and the related issue of computational complexity.

I. INTRODUCTION

A Discrete Event System (DES) i s a dynamic system that
evolves in accordance with the abrupt occurrence, at pos-
sibly unknown irregular intervals, of physical events. For
example, an event may correspond to the arrival or depar-
ture of a customer in a queue, the completion of a task or
the failure of a machine in a manufacturing system, trans-
mission of a packet in a communication system, or the
occurrenceof adisturbanceor changeof setpoint in acom-
plex control system. DESs arise in the domains of manu-
facturing, robotics, vehicular traffic, logistics (conveyance
and storage of goods, organization and delivery of ser-
vices), and computer and communication networks. These
applications requirecontrol and coordination toensure the
orderly flow of events. As controlled (or potentially con-
trollable) dynamic systems, DESs qualify as a proper subject
forcontrol theory,aviewpointthatwe shall develop in some
detail in the present paper.

In the past, DESs have usually been sufficiently simple
that intuitive or ad hoc solutions to various problems have
been adequate. The increasing complexity of man-made
systems, made possible by the widespread application of
computer technology, has taken such systems to a level of

Manuscript received July 7, 1988; revised September 13, 1988.
This research was partially supported by the National Science
Foundation through Grant ECS-8504584, by an IBM Faculty Devel-
opment Award, and by the National Science and Engineering
Research Council of Canada through Grant A-7399.

P. J. Ramadge i s wi th the Department of Electrical Engineering,
Princeton University, Princeton, NJ 08544, USA.

W . M. Wonham i s with the Department of Electrical Engineering,
University of Toronto, Toronto, Canada M5SlA4.

I E E E Log Number 8825174.

complexity where more detailed formal methods become
necessary for their analysis and design. Indeed, the use of
VLSl has already led to the implementation of modular,
hierarchical, and distributed systems on a scale never before
possible. Such systems pose control and coordination
problems of an unparalleled scope and complexity, and as
yet there i s little theory to serve as a guide in their reso-
lution.

In this paper we survey automata and formal language
models for DESs and the theory initiated by Ramadge and
Wonham [56], [76], and subsequently extended by the
authors and other researchers. The objective of this theory
has been to examine control theoretic ideas such as con-
trollability, observability, aggregation, and decentralized
and hierarchical control for DESs from a qualitative view-
point. The framework has proved useful in the theoretical
analysis of a number of basic supervisory control problems
[56], [76]; has motivated investigations using related models
in database systems [26], [27] and manufacturing systems
[38]; and, more recently, has been extended to cover mod-
ular [55], [95] and distributed [9], [35], [37J control. The main
advantage of the model i s that it separates the concept of
open loop dynamics (plant) from the feedback control, and
thus permits the formulation and solution of a variety of
control synthesis problems. To date, the theory does not
support all of the features that one would desire of a full
theory of DESs. Nevertheless, the model has provided val-
uableconceptsand insights toserveasguidelinesfor future
work, and has contributed to our understanding of the fun-
damental issues involved in the analysisand control of DESs.

Computational problems for DESs are frequently com-
plex. In our setting this manifests itself in the complexity
of the computations involved in solving basic control syn-
thesis problems. Although these have been shown to be of
polynomial complexity in the number of states, the number
of states in a practical system can be exponential in the
number of constituent processes.Tosomeextentthis prob-
lem can be mitigated through modular synthesis [55], [75],
and in certain instances can be overcome by restricting
attention to processeswith special structure [52], 1491. These
issues are addressed in our survey.

Our coverage of recent work on DESs i s of a tutorial
nature, and as a result, many technical points have been
omitted or glossed over. This has been necessary in order

0018-9219/89/0100-0081$01.00 0 1989 IEEE

PROCEEDINGS OF THE IEEE, VOL 77, NO 1, JANUARY 1989

-~ ~

81

_ _

to present the concepts and results which we think are
important without excessively burdening the reader with
notation and definitions. More detailed expositions of the
topics discussed can be found in the references cited in the
text of the paper.

The remainder of the paper i s organized as follows. In
Section I I we give a brief introduction to the modeling of
discrete event systems. This places the model discussed in
this paper in the context of other work in the area. Section
Ill introduces the basic DES model and contains some sim-
ple illustrative examples. Our primary interest i s in the con-
trol of DESs, and this topic i s introduced in Section IV. Sev-
eral abstract but basic control problems are discussed, and
an example i s presented of their application. In view of the
complexity of control problems for DE% it i s of interest to
investigate structured solutions to the problems of con-
cern. We take up this theme in Section V by introducing the
concept of modular synthesis. Section VI, on partial obser-
vations and observability, lays the foundation for our dis-
cussion of distributed control in Section IX. Section Vlll
consistsof a brief discussion of modelingthe infinite behav-
ior of DESs, and how the basic control results of Section IV
can be extended. In Section IX we turn to the issue of com-
putational complexity; several of the basic problems dis-
cussed in the earlier sections are analyzed. Finally, in Sec-
tion X we specialize the basic model to consider a structured
class of DESs, and the complexity of some simple but inter-
esting control problems.

I I . MODELING DISCRETE EVENT SYSTEMS

In this section we give a brief overview of the modeling
of DESs. To f ix a context for our discussion, let us define
a DES to be a dynamic system with a discrete state space
and piecewise constant state trajectories; the time instants
at which state transitions occur, as well as the actual tran-
sitions, will in general be unpredictable. A typical state tra-
jectory for such a system i s shown in Fig. 1.

I I , I I I &

11 12 13 14 15 t i m e

Fig. 1 . State trajectory of a DES.

The state transitions of a DES are called events and, as
indicated in the figure, these may be labeled with the ele-
ments of some alphabet. These labels usually indicate the
physical phenomenon that caused the change in state. For
example, in a communication protocol typical event labels
are "time out," "packet received," "packet sent"; while in
a manufacturing system, events of interest are "machine
breakdown," "machine repaired," "part accepted," etc.

The many areas in which DESs arise and the different
aspects of behavior relevant in each area have led to the
development ot a variety of DES models. For example, a

common simplifying assumption is to ignore the times of
occurrence of the events and consider only the order in
which they occur. This leads to so-called logicalDESmodels.
In such models a system trajectory i s specified simply by
listing (in order) the events that occur along the original
sample path. For example, in a logical model, the partial
trajectory shown in Fig. 1 is reduced to the string of events
ap-p6pThis simplification is justified when the model
i s to be used to study properties of the event dynamics that
are (or should be) independent of specific timing assump-
tions. On the other hand, in some applications the timing
information IS crucial, and must be included in the model.
This leads to so-called timed or performance models. These
can be further classified as nonstochastic (e.g., timed Petri
nets, the max-algebra) or stochastic (e.g., Markov chains,
queueing networks, generalized semi-Markov processes)
according to whether the timing i s known a priori, or is
modeled by making suitable statistical assumptions. These
models are intended for the study of properties explicitly
dependent on interevent timing.

Logical models have been successfully used to study the
qualitative properties of DESs in a variety of applications.
For example, logical models have been employed in areas
such as concurrent program semantics [62], [48], and com-
municating sequential processes [21], [23], [40], [67 ; syn-
chronization in operating systems [12]; supervisory control
[55]-[57], [74]-[76]; communication protocols [9], [24], [25],
[41]; logical analysis of digital circuits [16]; fault tolerant dis-
tributed computing [13], [14]; and database protocols [26],
[27]. In such applications, the formulation and analysis of
the model typically proceeds as follows. One first specifies
the set of admissible event trajectories, i.e., the physically
possible sequences of events. This may be done using some
form of state transition structure (e.g., automata [56] or Petri
nets [46]), by means of a set of algebraic equations [21], [23],
or by a logical calculus such as temporal logic [39]. In the
cases of interest the admissible event trajectories form a
strict subset of the set of all (mathematically) possible event
orderings. Given a property of event sequences, one then
seeks to determine if each admissible trajectory has the
desired property. Or, in a control context, one asks if it is
possible to modify (by control action) the set of admissible
trajectories so that each event trajectory has the desired
property. Typical properties of interest include the follow-
ing: stability (e.g., state convergence [12]), correct use of
resources (e.g., mutual exclusion [3], [49]), correct event
ordering (e.g., database consistency [26], [27]), desirable
dynamic behavior (e.g., no deadlockAivelock [67]), and the
coordination of constituent processes to achieve a desired
goal (e.g., distributed consensus [13], [14]).

In addition to the study of qualitative system properties,
logical models can also be used as a basis of computation,
e.g., verification or synthesis of DESs. In such applications
the issue of computational complexity i s a key concern. For
example, the number of states in a transition structure for
specifying the admissible event trajectories may depend
exponentially on some system parameter. In such cases
simple algorithms for verification or synthesis (e.g., search-
ing over the state space) rapidly become corn putationally
intractable. Despite this tact, use of the models in this role
has not been abandoned. Indeed in some applications (e.g.,
circuit verification, protocol correctness) they offerthe only
known means of automated analysis (see e.g., [4], [24], [25],

82 PKOCE€DINGS O F THE IEEE, Vol.. 77, NO. 1, JANUARY 1989

[61]). Typically, one tries to mitigate the complexity by the
use of aggregation or modularity, or by exploiting hierar-
chical or the other special structures [31], [32].

Nonstochastic timed models are similar in spirit to the
logical models, except of course that event timing must now
be taken into account. Formulation of a model proceeds by
specifying the admissible set of event trajectories together
with the associated timing. This can be done using a suit-
able transition structure (e.g., timed Petri nets), some for-
mal calculus (e.g., temporal logic), or a formal simulation
language. Simple modelsof this form have been used in the
design of signal processing arrays [29], the analysis of peri-
odic behavior in manufacturing systems [IO], and the spec-
ification of real-time control structures [30], [42], [43].

Stochastic performance models are somewhat different
in spirit. In these models it i s usually trivial to specify the
setof admissiblestatetrajectories.ThedifficuIt partof mod-
eling and analysis i s in defining a useful measure on this
set, and using this to determine the distributions and
moments of the variables of interest. Such models have
been successfully used to study both quantitative and qual-
itative features of systems such as communication net-
works [58], [59]; simple queueing networks [6], [191, [28], [341,
[60], [65]; stochastic scheduling problems [7‘l]; and manu-
facturing systems [21, [51, [7l, [I l l .

Stochastic models, like their deterministic counterparts,
also have their limitations. For example, in general they are
sufficiently complex to prohibit analytic treatment. As a
result, for many problems of interest no closed form solu-
tions are known. Moreover, when the qualitative form of
the solution i s known, a means of computing it may not be
available, and even when closed form solutions are known
(e.g., Jackson networks), the form of the solution may be
sufficientlycomplicated that i t s use is difficult, if not infeas-
ible. In many cases this complexity has limited results to
those of a qualitative nature, and has led to the use of sim-
ulation as a tool for quantitative analysis [15], [78]. This, in
turn, has motivated thework by Hoand others[20],[65],[77],
on perturbation methods for estimating gradients of per-
formance measures. More detailed accounts of these
aspects of stochastic models can be found in several other
papers in this special issue.

No single approach to the modeling and analysis of DESs
will suffice for all problems of interest. Each of the above
models has its own applications, virtues, and limitations.
In a l l models, there i s a need for higher level descriptions
of system dynamics, for aggregation, for a concise means
of system and problem specification, for the study of inter-
esting subclasses of systems with special structure, and for
modular and hierarchical system and controller decom-
positions. Avarietyof these issues are addressed in the con-
text of logical models in the remainder of the paper.

I l l . A LOGICAL DES MODEL

In a logical model of a DES, we are interested in the
sequences or strings of events that the process can gen-
erate. Let C denote the finite set of event labels, and E*
denote the set of a l l finite strings of elements of the set C,
including the empty string e . For convenience, we often
refer to an element of E as an event. A string, say U = a,a2
. . . ak E C*, represents a partial event sample path. We say
partial because there may be more events after ak. The set

of all admissible, i.e., physically possible, sample paths is
then a subset L of E*. It i s customary to call a subset of E*
a language over the alphabet E.

A string U i s a prefix of a string v E C* if for some w E C*,
v = uw. If v is an admissible sample path, then clearly so
are all the prefixes of v. If we define the prefix closure of L
E E* to be the language

L = { U : uv E L for some v E E*}

then we require T = L. In this case we say that L i s prefix
closed.

Thus we model the behavior of a DES as a prefix closed
language L over the event alphabet E. Each U E L represents
a possible (partial) event sample path of the DES. For exam-
ple, a trivial DES with two events {a , 0) that operates so that
the events a and always occur alternately, with a or /3
occurring first has the behavior

-

L = { e , a, P, aP, Pa, a b , . . . } .

On the other hand, if we let (wl, denote the number of
occurrences of the event a in the string w, and set

L = {w E C*: for each prefix U of w, (U(, 5 (u l s)

then L represents a DES in which the number of occur-
rencesof theeventaisalways less thanorequal to thenum-
ber of occurrences of the event 0. This might be the case,
for example, if in a manufacturing system, a corresponds
to taking a part from a buffer, and P corresponds to placing
a part in the buffer.

To construct more elaborate examples, it i s convenient
to have a means of language representation. For our pur-
poses, this i s most convenientlydone by representinga DES
by its state description, or transition structure. We do not
insist that these state representations be finite, or that they
have a specific structure. This allows for the possibility of
counters and other useful infinite state devices. Our
approach here i s to first investigate the qualitative struc-
tural features of the problems of interest, then later turn to
the issueofcomputation.This i s in contrasttoapurelycom-
putational approach, in which some form of finite repre-
sentation would be assumed from the outset. Most of the
qualitative results which we survey are in fact represen-
tation independent, i.e., their validity does not depend on
a specific representation. Thus having first analyzed the
qualitative properties of interest using one form of rep-
resentation, we can turn to other forms of representation
(perhaps for specific classes of DE%) that are suitable for
computation.

To represent a behavior L we proceed as follows. A gen-
eratorG is an automaton [22] consisting of a state set Q, and
initial state 90, and transition function 6:C x Q --t Q (in gen-
eral a partial function). As we remarked above, the state set
Q need not be finite, although this is clearly an interesting
special case. By the set of events possible at state q we mean
the set C(9) c C such that for each a E C(9), 6(a, 9) is defined.
Thefactthatthetransition function isa partial function sim-
ply reflects the fact that in general C(9) is a proper subset
of E. One can think of Gas a directed graph with node set
Q and an edge 9 + 9’ labeled afor each triple (a, 9, q’) such
that 9’ = 6(a, 9). We interpret Gas a device that starts in its
initial state 9,, and executes state transitions, i.e., generates
a sequence of events, by following its graph. State transi-
tions are considered to occur spontaneously, asynchro-

RAMADCE AND WONHAM: THE CONTROL OF DISCRETE EVENT SYSTEMS 83

nously, and instantaneously, and their occurrence i s sig-
naled by the corresponding event label U E E. The generator
G will play the role of the "plant" in the sense of control
theory. The term "generator" i s nonstandard, but better
suited to our interpretation than, say, "automaton" or
"machine."

The transition function 6 of G i s extended to a (partial)
function on E* x Q by defining 6(e, 9) = 9 and

6(wu, q) = 6 b , 6(w, 9))

whenever q' = 6(w, 9) and u(u, q') are defined. Henceforth
we write 6(w, 9)! as an abbreviation for the phase "6(w, q)
isdefined."In termsofthegraph of G,6(w, q)! simplymeans
thatthereisapath inthegraph startingfromqthatislabeled
by the consecutive elements of the string w.

Theclosed behaviorof Gisdefined to bethe prefixclosed
language

L(G) = { w : w E C* and 6(w, q,,)!}.

Every prefix closed language L E E* has such a represen-
tation. If L has a finite state generator representation, then
it is a regu/arIanguage[22].These constitutea proper subset
of the languages over E.

Example 3.7: Fig. 2 shows a simple generator. This i s
intended to model a machine with three states, labeled I

L . It i s natural to require (or at least desire) equality in the
last expression, i.e., that every string in L(G) be a prefix of
a string in L,(C). In this case, every event sample path in
L(G) can be extended to a completed "task" in L,(G). In this
case, we say that G i s nonblocking.

For example, in Fig. 2 the marker states are indicated by
exiting arrows + (state I). Thus the language marked by G
i s simply the set of all strings in the graph that begin and
end at the state I. They represent completed work cycles
of the machine. It is clear that every string in L(G) can be
extended to one that reaches the state I. Hence this gen-
erator is nonblocking. In the formalism of regular expres-
sions we can write

L , = (a(3 + ahp)*.

Example 3.2: Consider two asynchronous, independent
usersof asingle resource, each modeled bythesimplecyclic
generators G1, G2 of Fig. 3.

I

R I 81 U1
Fig. 3. Two users of a resource.

W D

Fig. 2. A simple generator.

(Idle), W(Working), and D (Down); the initial state i s labeled
with an entering arrow + (state I) ; and there are four pos-
sible state transitions, each labeled by the associated
observed event frGm the event set E = {a , (3, A, p } . The
closed behavior of G i s simply the set of all strings obtained
by starting in the state I and following the graph. In the for-
malism of regular expressions this can be written as

L(G) = (a6 + aE\p)*(e + a + ah).

Several refinements of the above model are possible. For
example, one can add to the definition of G a subset of
markerstates Q, G Q, and define the marked behavior of
G (with respect to Q,) to be

L J G) = {s:s E L and 6(w, q,,) E Q,,,}.

We interpret L,(G) as a distinguished subset of the gen-
erated sequences that could represent completed "tasks"
(or sequences of tasks) carried out by the underlying DES
that G is intended to model. There i s no implication that the
generating action halts after the completion of some marked
sequence-marker states of G need not be "final" states.
When G is fixed, we often abbreviate L(G) and L,(G) to sim-
ply L and L,, respectively.

It is always the case that L,(G) G L(G), and hence that
L,(G) G L(G), i.e., that every prefix of L , i s an element of

~

Each user has three states I (Idle), R (Request), and U (Use)
with the transitions shown. We model the joint operation
of these users by the "shuffle product" G = GI 1 1 G2 of GI
and G,.This isthe DESdetermined bytheconcurrentactions
of G1 and G2 under the assumption that these actions are
asynchronous and independent. The states of Gare ordered
pairs (X, Y) where Xis a state of G1 and Y i s a state of G2, and
the transitions of G are either of the form (X, Y) + (X', Y)
where X + X' i s a transition in G1, or of the form (X, Y) -+

(X, Y') where Y + Y' is a transition in G2. The graph of G i s
shown in Fig. 4.

L(G) consists of all words over the alphabet E = { a l , PI,
Y ~ , ~ ~ , P ~ , Y , } correspondingto pathsin thegraph that begin
at(/,, 1 2) . SimilarlyL,(G)correspondstoall paths in thegraph
that both start and end in the state (II, 12). Clearly the gen-
erator G is nonblocking.

This example illustrates the use of the shuffle product to
model asynchronous systems. This i s a special case of a more
general product called the synchronous product that allows
for the possibility of synchronous events in the argument
processes. It is clear that while it i s always possible (con-
ceptually) to form the shuffle (or, more generally, the syn-
chronous) product, and that this may be easily computed
for small examples such as this one, there may bea problem
in computing such models for systems with a large number
of components. This follows from the observation that the
number of states in the product increases exponentially
with the number of components. For problems requiring
computation (e.g., controller synthesis) one tries to find
techniques that avoid actually carrying out this construc-

84 PROCEEDINGS OF THE IEEE, VOL. 77, NO. 1 , JANUARY 1989

\

/

Y2

YI

Fig. 4. The shuffle product generator.

tion, except possibly for subproblems of a reasonable size.
This will be addressed in later sections of this paper.

IV. CONTROLLABILITY AND SUPERVISION OF DESs

Our DES model as described so far i s simply a sponta-
neous generator of event strings without a means of exter-
nal control.Tocontro1 aDESwe postulatethatcertain events
of the system can be disabled (i.e., prevented from occur-
ring) when desired. This enables us to influence the evo-
lution of the system by prohibiting the occurrence of key
events at certain times. To model such control we partition
the set of events E into uncontrollable and controllable
events: E = E, U E,. The events in E, can be disabled a t any
time, while those in E, model events over which the con-
trolling agent has no influence, e.g., machine breakdown
in a manufacturing system, loss of a packet in a commu-
nication channel, external disturbances, etc.

A controlinput for G consists of a subset y c E satisfying
E, c y. If U E y, then U is enabled by y (permitted to occur),
otherwise U is disabled by y (prohibited from occurring).
The condition E, _C y means that the uncontrollable events
are always enabled. Let I‘ c 2’ denote the set of control
inputs. A DES represented by the generator G equipped
with a set of control inputs r i s called a controlled DES
(CDES). In what follows, r i s fixed, and for convenience we
refer to a CDES by its underlying generator G.

Control of a CDES G consists of switching the control
input through a sequence of elements y, y‘, y”, . . . in r,
in response to the observed string of previously generated
events. Such acontrollerwill becalled asupervisor. In intro-
ducing the concept of a supervisor we follow the standard
practice in control theory of distinguishing rather sharply
between the “plant” (or object to be controlled), and the
agent doing the controlling. While in certain instances (per-
haps mainly of computer system applications) this distinc-
tion might seem artificial, it tends to simplify the problem
of defining exactly what controlled behavior i s required, as

well as what constraints on behavior are imposed a priori
by the underlying physical entities with which the design
problem originates.

Formally, a supervisor i s a map

f : L + r
specifying for each possible string of generated events w
the control input f(w) to be applied at that point. Our objec-
tive will be to design a supervisor that selects control inputs
in such a way that the given CDES G behaves in obedience
to various constraints. Roughly, constraints can be viewed
as requiring that certain undesirable sequences of events
are not permitted to occur, while at the same time, certain
other desirable sequences are permitted to occur.

When a CDES G i s supervised by the supervisor f i t oper-
ates as before, except that it obeys the additional constraint
that, following the generation of a string w, the next event
must be an element of f(w) fl E(6(w, go)). Denote the closed
loop system of G supervised by f by (G, f). The behavior of
(G, f) , denoted L(G, f) , or simply Lf when no confusion is
possible, i s formally defined as follows:

i) E E L f ; and
ii) WO E L f iff w E L f , U E f(w), and wu E L.

If G i s equipped with a set of marker states, then the lan-
guage controlled by f in G i s also of interest. This i s the lan-
guage

Lm(G, f) = n L I

This i s simply that part of the original marked language that
survives under supervision. If L, indeed represents com-
pleted tasks, then this language i s clearly important, since
it indicates those tasks that wil l be completed under super-
vision. When no confusion i s possible we will abbreviate
L,(G, f) to simply L m f .

In practice one may require an alternative representation
of the supervisor f. For this we can use a state realization
in terms of an automaton together with an output map (this
is sometimes used as the definition of a supervisor; see e.g.,
[56]). Let T = (E, X, (, x,) be an automaton, and +:X + r. We
say that the pair (T, +) realizes the supervisor f if for each
W E L f

4 (W , x,)) = f(wL

This simply says that the value of f on the string w can be
found by first applying w to Tcausing Tto be driven from
its initial state to some state x, and then computing 4(x).
Thus Tis a standard automaton whose state transitions are
driven by the events in E.

In standard control terminology C plays the role of the
“plant” (object to be controlled), T functions as an
“observer” or ”dynamic compensator,” and 4 i s the “feed-
back.” It is possible to visualize supervision as a simple
interconnectionof Gand Tthrough 6: theoutputsof Gdrive
the state transitions of T, and in turn, the state of T deter-
mines the next control input y through + (see Fig. 5).

It isalso possibleto realizeasupervisor simplyasanother
DES S. In this case the control action of S o n C i s implicit
in the transition structure of S. In detail, if s E L(G, f) then
we require s E L(S), and S U E L(S) only if ~7 E f (s) . In addition,
if s E L(G, f 1, su E L(G), and U E f (s) , then su E L(S). The first
condition ensures that those transitions disabled by f do
not appear in the transition structure of S; while the second

RAMADCE AND WONHAM THE CONTROL OF DISCRETE EVENT SY5TEMS

~-

85

I enabled event cs I

Fig. 5. Supervision of a DES.

condition ensures that those transitions enabled by f, and
which are possible in G, do appear in the transition struc-
ture of S. S and G are assumed to run in parallel in the fol-
lowing fashion. An event U can occur when S x G i s in the
state (x, 9) only if U i s possible in both Sand Gat that point;
and results in the state change (x, 9) + (x', 9') where x +

x' and 9 + q' are the transitions in S and G, respectively,
under U. This form of supervisor realization can be obtained
from the state realization (S, 4) by suitably trimming the
transition structure of S (cf. [63]).

From the point of view of the theory, we do not require
a supervisor to have a finite state realization. Thus counters,
unbounded queues, and other useful infinite state devices
can appear as part of the automaton S. However, the case
when S is finite state is clearly a special case of interest. We
say that f i s a finite state supervisor if it has a finite state real-
ization.

The basic problem in supervisorycontrol i s to modify the
open loop behavior of a given DES G so that it lies (as a set)
within some prescribed range. This desirable range may be
specified by actually giving the desired closed loop behav-
ior, by giving a behavior within which the closed loop
behavior must becontained, or by specifying such sets indi-
rectly through other qualitative performance objectives.
One is thus led to consider the following problem: given
a CDES G with behavior L, what closed loop behaviors K c
L can b>achieved by supervision? The keyto the resolution
of this (and many related) questions i s the concept of con-
t rol labi I ity.

Say that K E C* is controllable if
-
KC, n L G K.

This condition requires that for any prefix of a string in K,
i.e., an), w E K , if w followed by an uncontrolled event U E

E,, is in L, i.e., WCJ E L , then it must also be a prefix of a string
in K , i.e., wu E E. In this sense is conditionally invariant
under the action of E,. Since uncontrollable events cannot
be prevented from occurring, it i s intuitively clear that if
such an event occurs along a sample path in K , then the
extended sample path must remain in K in order for K to
be a feasible closed loop behavior.

More generally, the aim of supervision i s not to modify
L per se, but instead to achieve a prescribed language for
Ln,,, and to do sowhile preserving the desired nonblocking
property. Conditions under which this i s possible can also
be stated in terms of language controllability [56, prop. 5.1
and theorem 6.11. We summarize both results in

Proposition 4.7: Fix a nonblocking DES G with closed
behavior L and marked behavior L,.

1) For nonempty K E L there exists a supervisor f such
that L , = K iff K is prefix closed and controllable.

2) For nonempty K G L,, there exists a supervisor f such
that Lmr = K, and the closed loop system is nonblock-
ing iff K is controllable, and K n L , = K.

When K satisfies the condition E n L,, = K in part 2) of
the above result, we say that K i s L,,,-closed. Thus achieving
L i = K is possible precisely when K i s closed and control-
lable, and achieving Lrn i = K and the nonblocking property
is possible precisely when K is L,,,-closed and controllable.
In addition, the proof of this result provides an algorithm
for constructing a realization (S , 4) of the required super-
visor f from a generator for the controllable language K.

We can now use our characterization of the possible con-
trolled behaviors to study the structure of this familyof lan-
guages. For a given K G C* let C(K) denote the family of
controllable sublanguages of K. C(K) is always nonempty
since 0 i s controllable. Our second main result on con-
trollability is that the family C(K) is closed under set union,
and has a unique suprema1 element under the partial order
of subset inclusion, i.e., there exists a unique largest con-
trollable language KT such that K' & K. Note that K T may be
the empty language. A similar result holds for language
intersection when the languages are, in addition, restricted
to be closed. In this case one would be interested in the
family of closed and controllable languages containing a
given language K.

The closure of C(K) under set union indicates that if a
given language K is not controllable, then there is a natural
controllable approximation to K , namely the largest con-
trollable language contained in K . This language preserves
the restrictions imposed by K , while requiring the least
amount of control action. It can thus be regarded as the
"optimal" or "minimally restrictive" approximation to K.

We remark that the abstract existence of an optimal solu-
tion i s far from being an invariable property of supervisory
control problems; indeed, it fails in certain extensions of
our model to accommodate communication delay and true
concurrency (synchronous events) [30]. In general, how-
ever, when optimality i s present the problem of computing
even a feasible solution to a control problem may be con-
siderably simplified because there is just one "natural"
solution to look for (technically, one is not required to scan
over possibly awkward partially ordered candidate solution
sets in which a semilattice property of closure under "join"
failsto hold). In addition, an idealized abstract model where
optimality is obtained may serve as a practical guide to find-
ing sufficient conditionsfor problem solvability in the more
realistic, though messier, situations referred to above [30].

For the finite state case, i.e., finite state generators are
provided for L (the open loop behavior) and K (the desired
behavior), an algorithm for the computation of KT is
described in [76]. The basis of this algorithm is the following
fixpoint characterization. Let P(C*) denote the power set of
C*, i.e., the set of all languages over E*, and define the oper-
ator

Q : P (C *) + P (E *)

by

R (/) = K n SUP { T : T E E*, T = 7, TC,, n L G 7) .

Then K' i s the largest fixpoint of n, i.e., the largest language
/ such that n(/) = /. Furthermore, if we set

K, = K

86 PK0CttL)INCS 01 1 H t l t t t , VOL. 77, NO. 1, JANUAKY 1989

then
lim Kl = KT.

If the generators for L and K have m and n states, respec-
tively, then this scheme converges after at most mn iter-
ations. Since the computation of R is itself bounded by a
polynomial in m and n, this means that the computation of
K' i s of polynomial complexity in m and n.

We have not addressed the practical problem of actually
obtaining the generator for the desired closed loop behav-
ior K. This has simply been taken as the means of task
description, and hence assumed to be available. The prob-
lem of how to define or specify the control task in other
terms has not been addressed.

Some supervisor synthesis problems can be recast in the
framework of Markov decision theory, and dynamic pro-
grammingwith a minimax criterion can be used to compute
the desired control [70]. Such an approach provides an
alternative computation scheme, but does little to illumi-
nate the algebraic and structural properties of interest.

The following example i s rather simple but illustrates in
an amusing way the application of the concepts of con-
trollability and supervision.

Example 4.1: A cat and a mouse are placed in the maze
shown in Fig. 6. Each doorway in the maze i s either for the

I - -

I

II

IL 1
Fig. 6. Maze for cat and mouse.

exclusive use of the cat, or for the exclusive use of the
mouse, and must be traversed in the direction indicated.
Our cat and mouse are somewhat whimsical but could rep-
resent, for example, autonomous vehicles in an automated
factory.

Let E = { c,, m,: 1 5 i 5 9,1 5 j 5 6). We model the move-
ment of the cat and the mouse in the maze by the generators
C, and G2 over C shown in Fig. 7. Here state i corresponds
to room i , and a transition I + j corresponds to traversing
the door ck between rooms i and j .

For our joint model of the cat and the mouse we adopt
the shuffle product G = GI// G2. The states of G are ordered
pairs i j where i i s a state of G7 and j i s a state of GZ. C i s tab-
ulated in Fig. 8.

We assume that each door, with the exception of c7, can
be opened or closed as required in order to control the
movement of thecat and the mouse.Ourobjective i s to find

Fig. 7. Generator models for cat and mouse.

the control scheme which permits the cat and the mouse
the greatest possible freedom of movement but which also
guarantees that

a) the cat and the mouse never occupy the same room
simultaneously, and that

b) itisalwayspossibleforthecatandthemousetoreturn
to the initial state, i.e., the state in which the cat i s in
room 2, and the mouse i s in room 4.

Let G be the product generator, set Q, = {(2,4)], and C,
= {c7}. This is a controlled generator with r = (7: c, E 7) .
A solution can be computed using the results described in
this section as follows. A generator for the maximal lan-
guage K that satisfies the stated contraints is obtained from
G by removing states which violate constraint a), and from
which one cannot reach Q,. The supremal controllable
sublanguage contained in K is then computed using the
iteration method previously described. This yields a gen-
erator for the supremal controllable language K' contained
in K. The necessary control action to implement KT can be
computed at the same time, and a realization of the required
supervisor can be based on this and the generator for K'.
This supervisor realization can be further simplified by a
supervisor aggregation technique [56, sec. 81. The result i s
the supervisor shown in Fig. 9. This has two states (0 and
11, and the status of each controlled event (enabled (1) or
disabled (0)) i s shown for each state in the accompanying
table.

The control strategy which this supervisor implements
can be summarized as follows. If the cat and the mouse
occupy their respective initial rooms, then both are given
the opportunity to move to a new room, i.e., c j and m, are
open. If the cat leaves room 2, then the mouse i s isolated
in room 4, i.e., m5 and c5 are closed, and the cat i s free to
roam the rest of the maze. Similarly, if the mouse leaves
room 4, then the cat i s isolated in room 2, and the mouse
i s permitted access to those rooms from which it can return
to room 4, i.e., rooms 0, 3, 4.

V. MODULAR SYNTHESIS

One means of reducing the complexity of logical DES
models isto incorporateadditional structure intothe model;
and one means by which this can be done is through mod-
ular problem specification and supervisor construction.
Modularity allows complex problems to be decomposed
into simpler components, and greater structure and flex-
ibility to be incorporated into the controller. Essentially this
involves defining an algebra of DESs, and a corresponding
algebra of supervisors. To be useful, such algebras must be
compatible with the concepts of controllability, nonblock-

RAMADGE AND WONHAM THE CONTROL OF DISCRETE EVENT SYSTEMS

~

87

- _

00 01 02 03 04 10 11 12 13 14 20 21 22 23 24 30 31 32 33 34 40 41 42 43 44

00

01

02

03

04

10

11

12

13

14

20
21

22

23

24

30

31

32

33

34

40

41

42

43

44

. . m l . m 4 c l c

m 3 c 1 , c 4
. . m 2 c 1 c

m G c 1 . , c 4 . .

. . . m 5 c 1 c 4

. m l . m 4 c 2 , c 7 .

m 3 c 2 c

. m 2 . , . . . c 2 c 7

. m 6 c 2 c 7

c 3 m l . m4.
. c 3 m 3
. . c 3 m 2

. . . . c 3 m 5

. c 7 m l . m q c 5

. c 7 . . m 3 . . c 5 . .

4 ' ' ' ' ' ' ' ' '

4 ' . ' ' . ' '
.

.

. 7 ' . ' . ' ' ' _

. m 5 . . c 2 . c 7 .

. . . c 3 m 6

.

. c 7 . , m 2 . . c 5 . .
. c 7 . . m G . . c 5 '

. c 7 . , m 5 . . c5
c G m l . m

. c G m 3

. . c G m 2 . . .

. . . c6 m 6

. C G m5

Fig. 8. Product generator for cat and mouse.

conflicting languages. For K,, K, E E* it i s always the case
that

K, n K~ G K, n
c4 c7

i.e., a prefix of a word common to K1 and K2 i s also a prefix
of K, and K2. K1 and K2 are said to be nonconflicting when
we have equality in this expression: m4cz

CI CZ c3 c4 c5 c6 ml m2 '"3 % m5 m6

Fig. 9. Supervisor for cat and mouse.

ing supervision, and supremal controllable languages
introduced in the previous section. These problems have
been examined in [55], [75], and are reviewed below.

Of the two natural operations on languages, union and
intersection, intersection is often the most useful in mod-
ular problem specification. For example, it may be desired
to control a DES so as to satisfy two constraints simulta-
neously. If each constraint is specified as a desired con-
trolled language K,, then the overall constraint i s specified
by the intersection K1 f l K,.

For prefix closed languages it i s readily checked that K1
n K2 is controllable whenever both K, and K, are control-
lable. However, without the prefix closure assumption this
need not be true. The key to compatibility between lan-
guage intersection and controllability i s the concept of non-

K1 fl K2 = % fl G.
In other words, two languages are nonconflicting if, when-
ever they share a prefix, they also share a word containing
this prefix. For example, any two closed languages are non-
conflicting.

To illustrate an application of this concept, consider a
refinement of the control problem mentioned above. Fix
a CDES C and suppose that we must find a supervisor f so
that Lmf = K, n K,, where K,, K2 c L(G). From the previous
section we know that this i s possible iff K = K, n K2 i s con-
trollable, and L,(G)-closed. This may be tested in a modular
fashion as follows:

Proposition 5.7: Let K,, K2 C E* be nonconflicting. If K1
and K2 are both L,(G)-closed and controllable, then K, n
K, i s L,(C)-closed and controllable.

Similarly, one can use the nonconflicting property to
determine conditions under which the operation of taking
the supremal controllable sublanguageof Kcommutes with
language intersection:

Proposition 5.2: Let K1, K2 E E*. If K: and K i are noncon-
flicting, then K: n K: = (K1 n &IT.

88 PROCEEDINGS OF THE IEEE, VOL. 77, NO. 1, JANUARY 1989

Corollary5.1: If K,, K2 E E* are closed languages, then (K,

These results indicate that the suprema1 controllable su b-
language of K1 n K2 can be found by first computing
Kj and K i , checking that these languages are nonconflict-
ing, and, if so, forming their intersection.

Assume that the generator G has m states. Then for a reg-
ular language Kspecified by an n state auto_maton, the com-
plexity of the verification KE, n L(G) E K i s O(nm). Thus
to compute K1 n K2 (an O(n2) computation), and then to
check the controllability of K is a computation of complexity
O(n2m). On the other hand, to verify that K1 and K2 are each
controllable i s a computation of complexity O(nm). These
upper bounds are conservative, but they strongly suggest
that when the modular procedure is applicable it can offer
a significant reduction in computational complexity.

If f and g are supervisors, then their conjunction f A g i s
the supervisor

n K,)' = K: n K:.

f A g(w) = f(w) n gw.

If fand g have state realizations (S, 4) and (T, $), respectively,
then this simply amounts to operating the automata S and
T in parallel (S x T) , together with a feedback map 4 0 $
formed by intersecting the sets of enabled events of 4 and
*.

It i s clear from the definition that supervisor conjunction
i s a commutative and associative operation, and it i s easy
to construct a supervisor that acts as an identity. However,
the conjunction of two nonblocking supervisors need not
be nonblocking. Indeed, if two supervisors implement con-
tradictory objectives, then their conjunction will yield a
supervisor that permits the closed loop system to become
blocked. In this respect the utility of supervisor conjunc-
tion depends on the nonconflicting property:

Proposition 5.3: Let fl and f2 be nonblocking supervisors
for G. Then the supervisor f = fl A f2 has

1) L(G, f) = L(G, f,) n L(G, f2); and

Furthermore, f is nonblocking for G iff LJG, f,), and LJG,
f2) are nonconflicting.

To illustrate the above ideas we consider the following
example.

Example5.1: In a factory two machines M,, M2 operate in
parallel to feed a buffer B; a third downstream machine M3
takes parts from the buffer (Fig. IO). Each machine MI oper-
ates as in Example 3.1; i.e., each has three states: I, (Idle),
W, (Working), and D, (Down); and events {a,, P I , y,, p , } as
shown in Fig. 2. The buffer B i s simply an automaton driven
by M,, M2, and M3.

The system operates as follows. Machine M1 takes awork-
piece (event a,), and either successfully completes pro-

2) LJG, f) = L,G, f,) n L J G , f2).

Fig. 10. A simple factory.

cessing and passes the workpiece to the buffer (event 0,);
or breaks down and discards the workpiece (event y,), but
in that case may later be repaired (event p,). Machine M2
operates in the same way. Machine M3 operates essentially
the same way, but takes its workpiece from the buffer, pro-
vided one i s there. Aside from these constraints the
machines operate asynchronously and independently.

The informal control specifications are the following:

1) The number of parts in the buffer must be kept less
than a fixed integer N.

2) Machine M3 must not attempt to take a part from the
buffer if it is empty.

3) Machines M1 and M2 are repaired in order of break-
down.

4) Machine M3 has priority of repair over machines M,
and M,.

As the generator for the system we take

G = M, I1 M~ I1 M ~ .

This has 29 states and 108 transitions.
To formalize the specifications we bring in the following

DESs. First, to model constraints 1) and 2) (constraints on
the buffer), we define the DES A, shown in Fig. 11 (here we

a3 a3 a3

Fig. 11. Buffer constraint for N = 3.

assume N = 3). Similarly the breakdownlrepair of machines
M1 and M2 is modeled bythe DESA2 in Fig. l2and the break-
downlrepair of machine M, by the DESA, in Fig. 13. In each
of these three figures only the events that are constrained
are indicated; other events have been omitted for clarity.
Omitted events can be reinserted by adjoining a selfloop
labeled by the missing events to each state (in subsequent
computation we assume this has been done).

PI P2 y-)
Fig. 12. Breakdownlrepair of machines one and two.

4

Fig. 13. Breakdownhepair of machine three.

RAMADGE A N D W O N H A M THE CONTROL OF DISCRETE EVENT SYSTEMS

~~~ ~~ ~ 

89 

_ -  



We first consider nonmodular, or ”monolithic” super- 
vision. The specifications can be combined by taking the 
intersection A = A ,  fl A, n A,. This i s  a DES with 32 states 
and 248 transitions. Using the algorithm introduced in Sec- 
tion IV we then compute a supervisor that implements the 
suprema1 controllable sublanguage of A. This turns out to 
have 96 states and 302 transitions-too many to display here. 
Although this supervisor i s  guaranteed to satisfy the con- 
straints, and to do so in a minimally restrictive fashion, it 
is rather cumbersome to implement and in no way reflects 
the modularity of the original constraints. 

To develop a modular solution we proceed as follows. 
First, to prevent buffer overflow we compute: s, = number 
ofempty bufferslots -numberoffeeder machinesatwork. 
This can be done by the automaton S ,  shown in Fig. 14. To 

cLI (1: 

Fig. 14. Supervisor to prevent buffer overflow. 

this we can add the feedback that disables a,  and 01, in state 
0. This yields a supervisor realization that prevents buffer 
overflow. 

To prevent buffer underflow we compute: s2 = number 
of full buffer slots. This can be done using the automaton 
shown in Fig. 15. If, to this automaton, we add a feedback 

PI P 2  P,  P. PIP. 

E3 E ?  (1 1 

- 
a ,  

Fig. 15. Supervisor to prevent butter underflow. 

that disables aj when the buffer is empty (state O), then we 
have a supervisor to ensure that constraint 2) i s  satisfied. 
Byadjoining toA,andA,suitablefeedback maps, thesecan 
also beconverted tosupervisorswhich will ensure thatcon- 
traints 3) and 4), respectively, are satisfied. 

Using the results of this section, it can be checked that 
correct and optimal supervision of the factory i s  enforced 
by the conjunction of the above supervisors. Clearly this 
modular supervisor is much simpler to design and imple- 
ment than the corresponding monolithic supervisor, to 
which it i s  equivalent in control action. 

VI. PARTIAL O B S E R V A T I O N S  A N D  OB5FRVABlL lTY 

Up to this point it has been assumed that all of the events 
generated by a CDES can bedirectlyobserved by the super- 
vising agent. However, in situations involving decentral- 
ized or hierarchical control we usually only have local or 
partial observations. 

To model a DES with partial observations we bring an 
additional alphabet E,, the observation alphabet, and apro- 
jection (or mask) P E + (E, U { E } ) .  The idea is that P(u) is 

the event observed when the generator undergoes a state 
transition labeled by U. Thus the events in C are observed 
through the map P. Those events U E C with P(u) = t are not 
observed at all (they are erased), while events a ,  0 E E with 
P(a)  = P ( 0 )  can no longer be distinguished. The special case 
in which Psimply erases some of the events in C occurs fre- 
quently, and will be called a naturalprojection. In this case 
we can take C, G C and define P by 

The action of a projection P is extended to strings by 
defining P(t) = t and 

P(su) = P(s)P(u) for s E E*, U E C. 

Denote the equivalence kernel of this extended map by ker 
P, i.e., k e r f  is the equivalence relation on E* defined by (s, 
s’) E ker P (or s = s‘(mod P) )  iff P(s) = P(s’). 

If a CDES G has behavior L, then under the projection P 
this i s  observed as the language P(L) E:. To respect this 
information constraint a supervisor for G i s  now required 
to be a map g: P(L) + r. Similarly, a supervisor realization 
becomes an automaton S = (CO, X, <, x,) together with a map 
$: X + r. Algebraicallythis i s  equivalent to restricting atten- 
tion to supervisors f :  L + r for which there exists a map g: 
P(L) + r such that for each w E L, f ( w )  = g(P(w)). Such a 
supervisor is said to be a P-supervisor. 

Given a nonempty closed language K E L(G) one may now 
ask under what conditions does there exist a P-supervisor 
f such that L(G, f )  = K? This is a simple supervisory control 
problem with partial information. To resolve the problem 
we introduce the concept of language observability. Define 
the binary relation act, on C* as follows. The pair (s, s’) E 

act, i f  s, s ’  E K implies that there does not exist U E C such 
that either 

S U E  K and s’u E L(C) - K or su E L(G) - K 
and s’u E K .  

In other words (s, s‘) E act, if all the one step continuations 
of s and s’ that remain in L(G) yield the same result with 
respect to membership of K .  The relation act, is a tolerance 
relation on E*, i.e., it is symmetric and reflexive, but not in 
general transitive. Finally, define the closed language K to 
be P-observable with respect to G if 

ker P 5 act, 

i.e., if P(s) = P(s ’ )  then (s, s’) €act,. Roughly, this means that 
the projection P retains sufficient information to decide 
whether or not, after the occurrence of some event, the 
resultant string is in K. 

We can now state [36, theorem 2.11, [cf. 9, lemma 2.31: 
Proposition 6.1: Let K E L(G) be closed and nonempty. 

Then there exists a P-supervisor f such that L(G, f )  = K iff 
K is controllable and P-observable. 

If K does not satisfy the conditions of the above prop- 
osition, then it i s  natural to consider the possibility of 
approximating K as was done in the complete information 
case. Unfortunately, it turns out that, in a given situation, 
a unique maximal controllable and observable sublan- 
guage of K need not exist. To obtain such approximations 
in a reasonable and practical manner we consider the fol- 

90 PROCEEDINGS OF THE IEEE, VOL. 77, NO. 1 ,  JANUARY 1989 



lowing subclass of languages. Say that a closed language 
K E L(C) i s  P-normal if 

K = L(C) n P - ' ( P ( K ) ) .  

This condition simply requires that K i s  the union of some 
cosets of ker P intersected with L. This i s  displayed con- 
ceptually in Fig. 16. In  the figure each square represents a 

"I a l l  a12 a13 a14 a l S  

A 0  L^ L^ L^ L^ L A  - -  - -  - -  * 
"2 o azl 1 a22 2 a23 3 a24 4 a25 5 

Fig. 17. Guideway with lights (*) and detectors (!). 

Fig. 16. A P-normal language. 

coset of ker P. If a normal sublanguage contains a point of 
a coset, then it must contain all points of that coset that lie 
in L. Alternatively, K i s  P-normal iff it is the largest sublan- 
guageof L having P(K)as its projection; thusKisdetermined 
uniquely by its projection and the constraints imposed by 
L. 

Normal languages have a number of special properties 
that make them of interest. The one that concerns us here 
is that for s E L(G) we can decide if s E K from P(s) alone. 
This in turn gives us [36, prop. 4.11: 

Proposition 6.2: Let K E L(G) be closed and P-normal. 
Then K i s  P-observable. 

The converse of the above proposition need not be true, 
namely a P-observable language need not be P-normal. 
However, the normal languages form a subset of the 
observable languages that is algebraically better behaved. 
In particular, this family i s  closed under set union, so the 
largest P-normal sublanguage of a given closed language 
always exists [36, prop. 4.21. Thus the supremal controllable 
P-normal sublanguage of a given closed language K E L(C) 
always exists, and provides a quasi-optimal controllable and 
observable approximation to K should this language fail to 
satisfy the conditions of Proposition 6.1 [9, sec. 31, [36, sec. 

The above results give the flavor of supervisory control 
with partial information. The literaturecontains further dis- 
cussion of morecomplexsupervision problemswith partial 
observations [9], [36]; as well as a discussion of some of the 
related computational issues [8], [9], [70], [74]. The supremal 
controllable P-normal sublanguage of a given language can 
be computed using algorithms similar in spirit to the lattice 
iteration described in Section Ill. Several algorithmsforthis 
and related computations are discussed in some detail in 
[8], [9], and [74]. It i s  well known that most discrete decision 
and control problems with partial information are com- 
putationally difficult, i.e., NP-complete or worse [44], [45]. 
As shown in [70] this i s  also the case for general supervisory 
control problems with partial information, and this makes 
suboptimal schemes, e.g., normal sublanguages, all the 
more interesting as a basis for computation. 

txample 6. I: Two stations labeled A and B are connected 
by a single one-way track from A to  B. The track consists of 
four sections, with stoplights (*) and detectors (!) installed 

41. 

at various junctions (Fig. 17). Two vehicles V,, V2 use the 
guideway simultaneously. is in state 0 when at A,  in  state 
i when in section i, i = 1, * * . ,4, and in state 5 when at B. 

To avoid collisions, control of the stoplights must ensure 
that VI and V2 never travel on the same section of track 
simultaneously. The generator for VI i s  shown in Fig. 17; 
controllable events are q, for i = 1,2,4, and a12 is an unob- 
servable event. The plant i s  obtained by taking G = V, 11 V2. 
From this, a generator for the desired closed loop behavior 
K i s  obtained by removing the states ( i ,  i), i = 1, . . * ,4. This 
i s  a generator with 30 states and 40 transitions. One then 
sets out to compute the unique supremal controllable nor- 
mal sublanguage of K. This turns out to  be described by a 
generator with 26 states and 32 transitions. That part of the 
generator corresponding to the situation when V, starts first 
is shown in Fig. 18. The corresponding supervisor imple- 

a13 !.-,I 

Fig. 18. Supervisor for guideway. 

ments the following policy: since V2 starts first, V, must wait 
at A until V, enters track section 4. V, may then continue 
into track section 3, but may not enter track section 4 until 
V, enters station B. Light #2 i s  not used. 

VI I. DECENTRALIZED SUPERVISION 

Decentralized supervision i s  based on the idea of local 
agents (supervisors) simultaneously supervising a DES C, 
with each agent having access only to "local" information 
and "local" controls (Fig. 19). Such a situation is similar to  

local model pro ject ion generator pro ject ion local model 

G 

t t  I I 

I f  - - g  I 
U 
supervisor 

Fig. 19. Decentralized supervision. 

U 
supervisor 

modular supervision except that we have added the addi- 
tional constraint of partial information and partial control. 
In the current framework the overall control task, as 
embodied in some constraint language K c L(G), often 

RAMADCE AND W O N H A M  THt  CONTROL OF DlSCKtTt  EVENT SYSTEMS 

~ 

91 

_ _  



splits naturally into subtasks for which “local” supervisory 
controllers are fairly easy to obtain. This makes decentral- 
ized control attractive. However, the question then arises 
whether such local controllers acting concurrently achieve 
the desired control objective, and if so, whether they 
achieve it in an “optimal” manner. 

Fix a DES G over the alphabet E and assume that we have 
a projection P: E* + E,*. For simplicity we shall assume that 
Pisa natural projection (see SectionVI).As before,we inter- 
pret E, as the set of events that can be observed by the local 
supervisor. 

The local observation of the behavior of Cis P(L(C)). This 
can be represented by a localmodel Go, with L(G,) = P(L(G)), 
and LJG,) = P(L,(G)). Go embodies the local agent’s model 
of the global process G. Denote, as usual, the sets of con- 
trolled and uncontrolled events of C by E,, and E,,, respec- 
tively. Then define 

E,, = E, f’ E, and E,, = E n E,. 
Thus the local agent sees the control decomposition E, = 

E,, U E,,, and only has access to the corresponding local 
input set r,. 

Now assume that we are given a nonempty closed lan- 
guage E, E,*, which we interpret as a constraint on admis- 
sible behavior at the local level, i.e., we want to find a local 
supervisor f,: P ( L )  + F, such that L(C,, f,) c E,. For this we 
select f ,  so as to synthesize the supremal (locally) con- 
trollable sublanguage K,, of L(G,) n €,, i.e., L(C,, f,) = KO. 
At the global level this results in the closed loop behavior 
k = L(G) n P-’(K,). 

On theother hand, the local specification €,corresponds 
to the global constraint language E = L(G)  n P-’(€,), and 
we can find a global supervisor f: L + r so as to synthesize 
the supremal controllable sublanguage K of E, i.e., L(G, f )  
= K .  

It i s  intuitively clear that we must have k _C K. But when 
do we have K = k ,  i.e., when i s  K globally optimal? For this 
we have [37, theorem 3.11: 

Proposition 7.1: Local supervision is globally optimal (i.e., 
k = K )  iff K i s  P-normal. In that case, events in E, - E,, never 
need to be disabled. 

In practice, use of the local supervisor f,will be attractive 
because of its relatively simple structure and ease of syn- 
thesis. One would like to be able to justify i t s  use without 
actually computing and comparing it with the global struc- 
ture K or the corresponding supervisor f since, in general, 
these are complicated and expensive to compute. Some- 
timesthiscan bedoneon the basisof several sufficientcon- 
ditions which do not require K to be explicitly computed 
[37]. However, this will not be pursued further here. 

We now turn to the case of multiple local controllers. 
Assume that nonempty (not necessarily pairwise disjoint) 
local subalphabets E, E E, i E I ,  are given, and let P,: E* + 

E: denotethecorresponding natural projections. As before 
we set 

E,, = cc n E, E,, = c, n E, 

and let GI denote the local model of agent I .  

A set of local supervisors { f ! ,  i E I }  acting concurrently 
on C i s  equivalent to the single global supervisor f defined 
by 

f (s)  = A,,/  f , (S) s E L(G). 

Of course not every supervisor can be represented in this 
fashion. A supervisor f for G i s  said to be a decentralized 
supervisor precisely when it can be represented in the above 
form. Decentralization imposes a restriction on the class of 
admissible supervisors, and hence on the class of realizable 
controlled behaviors. 

A natural first question is the following: given a nonempty 
closed K c L(G), when i s  it possible to find a decentralized 
supervisor f such that L(C, f )  = K ?  For each U E E,,  define 
the index set lo = { i :  a G E,]. Say that K i s  {P,}-observable 
i f  for U E E,, strings {s,: j E I,} in K and s’ E K the conditions 

1) s,u E K for all j E I,; 
2) s’u E L(G); 
3 )  P(s,) = P(s’)  for all j E I,; 

together imply that 

s’u E K .  

Then, in the spirit of Proposition 6.1, we have [9,lemma4.2]: 
Proposition 7.2: Let K be a nonempty closed sublanguage 

of L(C). There exists a decentralized supervisor f such that 
L(G, f )  = K iff K is controllable and {P,}-observable. 

While clearly theoretically important, the above result 
has the computational disadvantage that it requires work- 
ing with the global structure K .  Consider now the situation 
where we specify the constraint on the controlled behavior 
by E = n; F‘-’(EJ, where E,  L 2;. In other words, the global 
constraint can be reduced to the simultaneous satisfaction 
of local constraints expressed in the sublanguages E,.  Let 
K denote the supremal (globally) controllable sublanguage 
of E, and K,  denote the supremal (globally) controllable sub- 
language of L(G) n P -  ’(€!), i E /. As a first step in the analysis 
of this situation we have [37, prop. 4.11: 

Proposition 7.3: Let f , ( i  E I )  be supervisors for G with L(G, 
f , )  = K,, i E I .  Then L(G, A, f , )  = K. 

The above result simply says that the concurrent oper- 
ation ot globally optimal decentralized supervisors is glob- 
ally optimal. Of course the result is most likely to be useful 
just when the f ,  can be designed and implemented at the 
local level. For this let 1) denote the supremal (locally) con- 
trollable sublanguage of E, n P,(L(G)), let f ,  be a local super- 
visor with L(C,, f , )  = Ij, and set 

R, = L ( G )  n P;VJ. 
k,  is the global behavior resulting from local control syn- 
thesis bytheith agent. Saythat Gislocallycontrollable, with 
respect to the family of sublanguages {E)}, if we have K ,  = 
k,(i E I ) .  With these definitions we can summarize the state 
of affairs as [37, theorem 4.11: 

Proposition 7.4: Let G be locally controllable. Then L(G, 
A, f,) = K. 

This result says that i f  C is locally controllable, then 
decentralized supervision of G is globally optimal. 

Further details, and a number of examples of decen- 
tralized control, are discussed in [9], [37], and [74]. Since 
decentralized control is a partial information problem, sim- 
ilar comments to those given at the end of Section VI apply 
to the issue of computational complexity. The design and 
analysis of distributed protocols and controllers is known 
to be a computationally difficult task. While the model dis- 
cussed here gives insight and qualitative results, it remains 
to explore issues such as aggregation and approximation 
which may help in computational applications. 

92 PKOCtt[)lNCS Of THE IEEE, VOL. 77, NO. 1 ,  JANIJAKY 1989 



VI I I. SEQUENTIAL BEHAVIOR 

There are a number of possible further extensions of the 
basic model defined in Section II. Some of these are dis- 
cussed in [IA, [181, [301-[331, [491-[541, [681, 1691, and [791. In  
this section we describe an extension of the model to 
include infinite sequences of events as developed in [49]- 
[51], [ 6 7 ,  [68]. Modeling the behavior of a DES as a set of 
infinite sequences can offer several advantages, including 
the modeling of nonterminating processes, addressing 
issues such as livelock and fair concurrency, and distin- 
guishing between transient and nontransient behavior. 

Let E" denote the set of all infinite sequences over the 
alphabet C. We model the behavior of a DES as a subset B 
of E". A subset of C" i s  usually termed an w-language over 
E. 

The basic means of analysis is to consider the sequential 
behavior as the limit, in a suitable sense, of an appropriate 
string language. The string language represents the finite 
time behavior, and the sequential behavior the limiting 
behavior over time. For this we need the concept of the pre- 
fixof an w-language, and theadherenceof astring language. 
For each sequence e E E" let e/ denote the string consisting 
of the first j elements of e. By definition eo = E .  The prefix 
of B E E" i s  the set pr(B)  G E* defined by 

pr(B) = {e/:e E B, j 2 0 )  

i.e., pr(B) i s  the set of all strings in E* that form a prefix of 
a sequence in B including the empty string E .  For K E E* 
the adherence of K i s  the w-language K" consisting of those 
sequences e E E" with infinitely many prefixes in K. For 
example, the prefix of the w-language (ab)" = {abababab 
. . . }  isthestringlanguage(ab)*(E + a )  = {E,a,ab,aba,. . - } ;  
and the adherence of the string language a* = { E ,  a,  aa, aaa, 
aaaa, . . . }  i s  the w-language a" = {aaaaaa . . - } .  

An w-language B can be specified in terms of a generator 
model as follows. To the generator G = (E, Q, 6,90) we adjoin 
a subset of states Q, E Q. Roughly, G recognizes the 
sequence e = u1u2u3 . . . if there i s  a state trajectory of G 
under e that intersects the set Q, infinitely often. The set 
of all sequences so recognized constitutes the w-language 
recognized by G. Denote this set by B(G). In  the case that 
G is finite state, this model i s  called a (deterministic) Buchi 
automaton, and the class of languages so recognized i s  
called the class of (deterministic) regular w-languages. 

It is clear thatpr(B(G)) E L(G),  in general without equality. 
Equality implies that every string in L(G) i s  a prefix of some 
sequence in B(G). Roughly, this means that the system i s  
never prevented from producing a sequence in B(G). Hence 
when pr(B) = L, we say that G i s  nonblocking. 

The introduction of infinite sequences brings in  some 
interesting topological issues. There i s  a natural topology 
on E* corresponding to the limiting operations mentioned 
above.' The easiest way to introduce this topology is 
through the metric: 

This measures the distance between two sequences of 
events as the reciprocal of the index of the first place in 

'The closed sets of this topology are precisely the adherences 
of the prefix closed string languages. 

RAMADCE AND WONHAM THE CONTROL OF DISCRETE EVENT SYSTEMS 

~ ~~ ~~ ~ ~ 

which they differ. The topological closure of a set B C E" 
with respect to  the above topology is denoted E ,  and for 
subsets B E S E E", we say that B is closed relative to S if 

As before, a supervisor for G is  a map fthat specifies the 
current control action as a function of the previously gen- 
erated events. Since at any given time only a finite number 
of events have been generated, this means that a supervisor 
i s  a map 

- 
B n s = B .  

f : L ( c )  + r. 
When fsupervises G the closed loop string language i s  L(G, 
f ) ,  and the closed loop w-language B(G, f )  is defined by 

B(G, f )  = B(G) n L(G, f r .  

As before, when no confusion i s  possible, we abbreviate 
L(G, f )  to  L,  and B(C, f )  to B,. We say that f i s  nonblocking 
for G if the controlled system (C ,  f )  i s  nonblocking. 

It is natural to  now inquire what controlled sequential 
behaviors B' can be achieved by supervision. This can be 
answered in  terms of controllability of the finite behavior 
of C and an appropriate topological condition on B'. The 
details are stated in [49, prop. 3.11, [69, prop. 4.31: 

Proposition 8.7: If B' c B(G) is nonempty, then there exists 
a nonblocking supervisor f for C such that B(G, f )  = B' iff 

i) pr(B') i s  controllable; and 
ii) B' i s  topologically closed relative to  B(G), i.e., fl 

When the two conditions of the proposition are satisfied, 
we say that B' E B(G) i s  a controllable w-language. 

It is readilyshown thatthesetof controllabledanguages 
i s  closed under finite set union, but not, in general, under 
countable set union. Despite this fact, in certain situations 
it is still true that there is a unique supremal controllable 
sequential behavior contained in a prescribed w-language 
B'. It issufficient,forexample, to imposetheadditional con- 
straint that B' be closed relative to B(G) [49, prop. 3.21: 

Proposition 8.2: If B' E B(G) i s  closed relative to B(G), then 
there exists a unique supremal controllable w-language B" 
contained in B'. 

For some synthesis problems this result i s  adequate. 
However, for the analog of the general synthesis problems 
considered in [56] we need a stronger notion of control- 
lability. This i s  discussed in detail along with related com- 
putational issues in [69]. 

B(G) = B'. 

IX.  SOME COMPLEXITY ISSUES 

In computational applications of DES models, one is 
interested in the computational complexity of the relevant 
decision and synthesis problems. In our context this 
reduces to the complexity of verifying concepts such as 
controllability and observability, and the complexity of syn- 
thesizing appropriate supervisors. 

The basic supervisory control problems we have dis- 
cussed are described in terms of a generator C and a sub- 
IanguageKof L(G). FixthealphabetE,assumethat Gisfinite 
state with m states, and that K has a finite state realization 
with n states. We measure the sizeof an instanceof a super- 
visory problem by max (m, n). Then, a supervisor synthesis 
problem is  said to  be polynomially decidable if, given an 
instance of the problem, it i s  possible to decide in a time 

93 

_ _  



bounded bya polynomial in the sizeof the instance whether 
or not it i s  solvable. Similarly, we shall say that the problem 
i s  polynomially solvable if, given a solvable instance of the 
problem, it is possible to synthesize a solution in a time 
bounded by a polynomial in the size of the particular 
instance. 

The controllability of a given K G L(G) is polynomially 
decidable. This can be seen by applying the algorithm for 
computing suprema1 controllable sublanguages given in 
[76, sec. 61. According to this algorithm, one first takes the 
intersection of the generator for K with C, an operation of 
complexity O(mnlC1). This yields a generator with at most 
mnstates. For each stateof thisgeneratoronechecksasub- 
set inclusion, each check being a computation of com- 
plexity O(/C/  lCnl) .  Thus the controllability of K can be 
checked in O(mn/C,I ICI) time. 

Consider the problem of synthesizing a supervisor so that 
the closed loop behavior is a prescribed language K .  Recall 
that there exists a supervisor f for C such that L(G, f )  = K 
iff K i s  closed and controllable. Since both of these con- 
ditions can be checked in polynomial-time, the problem is 
polynomially decidable. Assume that K is a closed and con- 
trollable sublanguage of L(C). The proof of Proposition 4.1 
provides a scheme for the construction of a realization of 
a supervisor to implement K [56, prop. 5.11. The time com- 
plexity of this scheme i s  polynomial in mn. Thus the prob- 
lem i s  polynomially solvable. 

If the closed language K 5 L(G)  is not controllable, then 
one can approximate K by its largest controllable sublan- 
guage. The computation of K' using the algorithm outlined 
in Section IV (see [76, sec. 61) i s  of time complexity O(m2n2). 
So KT can be computed in polynomial-time. 

Now consider the problem of synthesizing a supervisor 
fso that the closed loop behavior contains the language K, ,  
and i s  contained in the language K ? .  This problem is soh- 
able iff the largest controllable sublanguage of K ,  contains 
K ,  [56, sec. 91. If K ,  and K ,  are specified by finite state gen- 
erators with n, and n, states, respectively, then K; can be 
computed in a time bounded by a polynomial in m and n,, 
and the inclusion K ,  c K:can bechecked in atime bounded 
by a polynomial in n1 and nL. Thus the synthesis problem 
i s  polynomially decidable. When solvable, it reduces to the 
first synthesis problem with K = K!,  and hence is polyno- 
mially solvable. 

Not all problems in this setting are polynomially decid- 
able. Consider, for example, the problem of supervisor real- 
ization. Given a supervisor f i t  is natural to consider the 
problem of realizing f by an automaton with the least num- 
ber of states. If we assume that one finite state realization 
off, say(S, +), isgiven, then the minimal realization problem 
i s  equivalent to the minimization of a partially specified 
sequential machine. There are two approaches to the prob- 
lem. First, one can look for congruences on the state set X 
ofSfinerthan ker+.Acongruenceisan equivalence relation 
on X with the property that, for each U E C, if x = y and ( ( U ,  

x )  and {(o, y) are both defined, then 

( ( U ,  x )  = < ( U ,  y). 
This i s  a very useful construction. However, if we translate, 
with some minor modifications, the results of Pfleeger [47] 
into the current setting we have: 

Proposition 9.1: Let (S, +) be a finite state supervisor real- 
ization. The decision problem: does there exist a congru- 

ence on S finer than ker 4, and having at most k equiva- 
lences classes, i s  NP-complete. 

A second, and more general approach to the minimi- 
zation problem involves the use of invariant covers. It can 
be shown that the minimal realizations of fcan be obtained 
from any given realization (S,+) by examining the invariant 
covers of S finer than 4. This was explored in [72]. However, 
a simple extension of Pfleeger's previous result yields: 

Proposition 9.2: Let f : K  + r be a finite state supervisor. 
The decision problem: does there exist a finite state real- 
ization (S, +) of f that has at most k states, i s  NP-complete. 

These results indicate that in general minimal supervisor 
realization i s  unlikely to be feasible for problems of sig- 
nificant size (assuming P # NP). It is important to be aware 
of this fact but also important to keep it in perspective: in 
many supervisory control problems, structured solutions 
are probably of greater merit than minimal solutions. 

Control problems with partial information are known to 
becomputationally difficult. In [70] it i s  shown that the con- 
ditions of Proposition 6.1, i.e., the existence of a P-super- 
visor, can be checked in polynomial-time. This is a positive 
result. However, underthe assumption that P # NP, several 
other control problems of interest are shown to require 
nonpolynomial-time algorithms. The use of P-normal lan- 
guages to avoid this problem was discussed in Section VI. 

We have seen examplesof systems constructed using the 
shuffle product. Such product systems arise naturally when 
modeling the concurrent operation of several asynchro- 
nous, or partially synchronous, discrete dynamical sys- 
tems. One of the principal difficulties in dealing with these 
systems i s  thatthe number of states increasesexponentially 
with the number of components. Thus synthesis methods 
based on searching overthe product statespaceareunlikely 
to be computationally feasible. However, it is also the case 
that product systems possess special structure, and in some 
instances this can be exploited in the solution of decision 
and synthesis problems. This isdiscussed further in the next 
section. 

X. PRODUCT SYSTEMS 

In this section we continue our discussion of compu- 
tational complexity, but specialize to the interesting case 
of a DES composed of a finite set of asynchronous com- 
ponents. In our setting such systems have been modeled 
by the shuffle (or, more generally, the synchronous) prod- 
uct. For notational convenience let [l,p] denote the interval 
of integers { i :  1 5 i 5 p } .  

For each i E [I ,  p ]  let G, = (E,, Q,, 6, ,  9,,J be a DES with 
control partition C, = E,, U E,,,. Assume that the event sets 
&are pairwisedisjoint, that each C, hasanonemptysequen- 
tial behavior B, ,  and that Pr(B,) = L(G,). Let E = U,C, and P,: 
E --t E, be the natural projection. 

The product system G = l l~=,C,  i s  the shuffle product of 
the DES G,, . . . , C,. This DES is defined so that its sequen- 
tial behavior i s  the a-language 

B(G) = {e:e E E" and /',(e) E B,, i E [I, p]} 

i.e., e E B(G) iff for each i ,  e(t) E C, infinitely often, and i f  e, 
isthesubsequenceofeconsistingofallelements in&, then 
e, E B,. The control partition of G i s  C = C, U C, with C, = 

U, E,,, and as usual, its set of admissible controls i s  denoted 
by r. 

94 PROCEEDINGS OF THE IEEE,  VOL. 77, NO. 1. JANUAKY 1989 



If each GI has n states, then G has np states. Clearly, from 
the pointofviewofcomputation, this isapossibleproblem. 
If p i s  bounded, sayp 5 4, then the number of states in G 
is bounded by a polynomial in n, and the results of Section 
IX apply. However, we are interested in the casewhen both 
p and n are variable. In  this case, we say that a supervision 
problem for a product system i s  polynomially decidable if 
the time required to determine whether or not it i s  solvable 
i s  bounded by a polynomial in n and p. Similarly, a control 
problem is  polynomially solvable if we can synthesize a 
finite realization of a solution in a time bounded by a poly- 
nomial in n and p .  It i s  convenient to construct this real- 
ization as a product system. In  this case the dynamics of the 
realization are specified by a set of finite state automata SI, 
i E [I, p ] ,  together with a feedback map 4 mapping their 
product state space X = II?==,X, into r. Since the compo- 
nents SI, . . . , s, of the realization operate in  parallel, there 
is no need to actually construct their product. This is in the 
spirit of the modular synthesis discussed in Section V. In 
general such a realization will be nonminimal, but this will 
be offset by the fact that it is  structured, and more readily 
synthesized. 

We restrict attention here to  control problems requiring 
pure coordination. Roughly, this means that the supervisor 
does not modify the open loop behaviors of the individual 
DESs, but only constrains how they interact by controlling 
the relative order of events. Formally, we say that a super- 
visor f for  a product system is a coordinator if, for every set 
of p event sequences, el, e2, . . . , ep with e, E B,, i E [I, p ] ,  
thereexists asequence e in  the closed loop behavior Bfsuch 
that for all i E [I, p]. 

P,(e) = e,. 

Consider, for exahple, the following coordination prob- 
lem: 

Mutual Exclusion (MEX): Let 0, c Q, be p given nontran- 
sient subsets, and k be a fixed integer with 1 5 k < p .  Syn- 
thesize (if possible) a nonblocking coordinator f for  G such 
that for each e E Bf ,  and each j 2 1, after the first j events 
of e at most k of the generators G, satisfy q, E Q,. 

The problem requires that at most k of the generators C, 
are in the designated subsets of states at any one time, and 
this must be done without changing the open loop behav- 
ior of any generator. The assumption that the subset a, of 
thestate set of thegenerator C, is nontransient simply means 
that there exists an admissible state trajectory for GI that 
visits a, infinitely often. 

Let B’ be the subset of B(G) that satisfies the mutual exclu- 
sion constraint. It i s  easy to  see that B‘ is closed, and hence 
closed relative to  B(G). Thus by Proposition 8.2 there exists 
a unique suprema1 controllable sequential behavior B” 
contained in B’. It can be shown from the definitions that 
if an instance of MEX is solvable, then it has a minimally 
restrictive solution, and that this solution implements the 
closed loop behavior B’. On the issue of computational 
complexity one can state [49, theorem 5.11: 

Proposition 10.7: MEX i s  polynomially decidable. More- 
over, given a solvable instance of M E X  it i s  possible to  syn- 
thesize a minimally restrictive solution in polynomial-time. 

That the problem i s  of polynomial complexity is due to 
the fact that it can be decoupled and analyzed in terms of 
thecomponent DESs.The proof of the proposition provides 
a simple polynomial-time test by which the solvability of 

MEXcan bedecided. In addition, if the problem i s  solvable, 
a supervisor is provided which will ensure that the require- 
ments of MEX are met. 

Asasecond exampleof acoordination problem consider: 
Uncontrolled String Exclusion (USE): Let w, E E:,, 1 5 i 5 

p ,  be p nonempty, nontransient strings of uncontrolled 
events, and let the string w be formed from a shuffling of 
the w,. Synthesize (if possible) a nonblocking coordinator 
f for G such that for every e E Bf and every j 2 1, e’ f slws2 
for some s,, s2 E E*. 

The problem requires that the generated sequence of 
events e never contains the “illegal string” w. The length 
of w is an additional factor in the complexity analysis. 

It i s  readily shown that there exists a polynomial trans- 
formation of an instance of USE to an instance of MEX. 
Indeed, given an instance of USE set 

X, = { q l  E Ql:6,(w,, q,) ! } .  

Then the instance of USE i s  solvable iff the instance of MEX 
with k = p - 1 and a, = XI is solvable. This leads to: 

Proposition 70.2: USE i s  polynomially decidable. More- 
over, given a solvable instance of USE it is possible to  syn- 
thesize a minimally restrictive solution in  polynomial-time. 

It i s  possible to  pose a string exclusion problem without 
the assumption that the events in the string are uncon- 
trolled. In this case the string w contains at least one con- 
trollableevent, and with theexception of afew special cases, 
a supervisor can be based on a simple string recognizer. 
This problem i s  again polynomial [49, theorem 5.31. 

An essential feature of the above problems i s  that they 
can be “decoupled” and analyzed in terms of the system 
components, and as a result, the required supervisor can 
be synthesized in a modular fashion as a product system. 
For this we assumed that the components of the open loop 
product system were independent, and that any interaction 
between the components could be modeled as part of a 
control constraint.Alternatively,onecan thinkof the super- 
visor synthesis as designing the process interaction to  
achieve a desired behavior. While this i s  possible for a vari- 
ety of DESs of interest, it i s  a serious assumption that we 
would like to  weaken. In  [I71 it i s  shown that with just one 
common shared event the MEX problem cannot be solved 
with a polynomial-time algorithm. However, with reason- 
able additional restrictions on the shared events, one can 
ensure that the problem remains polynomial. 

X i .  CONCLUSION 

This paper has provided an overview of one trend in the 
development of a control theory for discrete-event systems. 
In view of the relatively long history of prior approaches to 
discrete-event control design (notably discrete-event sys- 
tem simulation, and analysis via Petri nets, starting in the 
1960s; and investigations via stochastic models, including 
perturbation analysis, from the early1970s) it i s  perhaps sur- 
prising that attempts to  evolve a synthetic, control-theo- 
retic overview of the problem area, especially in its qual- 
itative, logical aspects, have been both few in number and 
recent in appearance. Nevertheless, the control of DESs i s  
now an established branch of control theory. 

The current studies of the qualitative aspects of the con- 
trol of DESs highlight the thesis that control science i s  
defined in terms of problems and concepts, not in  terms 

RAMADCE AND WONHAM, THE CONTROL OF DISCRETE EVENT SYSTEMS 

. ~ - __ 

95 



of techniques. Stimulated by the demands of technology 
and by developments in computer science, new techniques 
areentering the field of control theoryfrom automaton the- 
ory, formal language and formal logic, to take their place 
alongside the traditional mathematics like differential 
equations and operator theory. For both researchers and 
educators in  the control field, the challenges remain plen- 
tiful. 

[91 

[I 91 

S .  Aggarwal, C. Coucoubetis, and P. Wolper, "Adding live- 
ness properties to coupled finite state machines," preprint, 
AT&T Bell Laboratories, Murray Hill, NI, 1988. 
R. Akella and P. R. Kumar, "Optimal control of production 
rate in a failure prone manufacturing system," /€€€ Trans. 
Automat. Contr., vol. 31, no. 2, pp. 116-126, Feb. 1986. 
J. Beauquier and M. Nivat, "Application of formal language 
theory to problems of security and synchronization," in For- 
mal Language Theory-Perspective and Open Problems, R. V. 
Book, Ed. New York: Academic Press, 1980, pp. 407-454. 
C. Berthet and E. Cerny, "An algebraic model for asynchron- 
ous circuits verification," / € E €  Trans. Comput., vol. 3:7, no. 7, 

T. Bielecki and P. R. Kumar, "Optimality of zero inventory 
policies for unrealiable manufacturing systems," preprint, 
Dept. Electrical Engineering, Universityof Illinois, Urbana, IL, 
1986. 
A. D. Bovopoulos and A. A. Lazar, "Optimal routing and flow 
control of a network of parallel processors," preprint, Dept. 
Electrical Engineering, Columbia University, NY, Jarl. 1985. 
J .  A. Buzacott, "Optimal operating rules for automated man- 
ufacturing systems," /€€€ Trans. Automat. Contr., vol. 27, no. 
2, pp. 80-86, Feb. 1982. 
H. Choand S.  I. Marcus, "On the suprema1 languagesof sub- 
languages that arise in supervisor synthesis problems with 
partial observation," Mathematics Contr., Signals Syst., vol. 
2, no. 2, pp. 47-69, 1989. 
R. Cieslak, C. Desclaux, A. Fawaz, and P. Varaiya, "Supervi- 
sory control of discrete event processes with partial obser- 
vations," / € € E  Trans. Automat. Contr., vol. 33, no. 3, pp. 249- 
260, Mar. 1988. 
C. Cohen, D. Dubois, J. P. Quadrat, and M. Voit, " A  linear 
system-theoretic view of discrete event processes and its use 
for the performance evaluation in manufacturing," /Elf€ Trans. 
Automat. Contr., vol. 30, no. 3, pp. 210-220, 1985. 
C. A. Courcoubetis and R. R. Weber, "A bin packing, system 
for objects with sizes from finite set: necessary and sufficient 
conditions for stability and some applications," in Proc. 25th 
Conf. Decision and Control, (Athens, Greece), pp. 1686-1691, 
Dec. 1986. 
E. W. Dijkstra,"Self-stabilizing systems in spiteof distributed 
control," Commun. ACM, vol. 17, no. 11, pp. 643-644, Nov. 
1974. 
M. J. Fisher, "The consensus problem in unreliable distrib- 
uted systems (a brief survey)," Research Rep. YALEUIDCSIRR- 
273, Dept. Computer Science, Yale University, June 1983. 
M. J. Fisher, N. A. Lynch, and M. S.  Patterson, "Impossibility 
of distributed consensus with one faulty process," 1. ACM, 
vol. 32, no. 2, pp. 374-382, Apr. 1982. 
C. S.  Fishman, Principles o f  Discrete €vent Simulation. New 
York, NY: Wiley, 1978. 
I. Certner and R. Kurshan, "Logical analysis of digital cir- 
cuits," preprint, AT&T Bell Laboratories, Murray Hill, NJ, 1987. 
C. H. Colaszewski and P. J .  Ramadge, "Mutual exclusion 
problems for discrete event systems with shared events," in 
Proc. 27th / € E €  Conf. Decision and Control (Austin, TX), pp. 
234-239, Dec. 1988. 
- , "Discrete event processes with arbitrary conti~ols," in 
Advanced Computing Concepts and Techniques in Control 
Engineering, M. 1. Denham and A. J. Laub, Eds., Springer-Ver- 
lag NATO AS1 Series. New York, NY: Springer Verlag, 1988, 
pp. 459-469. 
B. Hajek, "Optimal control of two interacting service sta- 

pp. 835-847, July 1988. 

tions," / € € E  Trans. Automat. Contr., vol. 29, no. 6, pp. 491-499, 
June 1984. 
Y. C. Ho and C. Cassandras, "A new approach to the analysis 
of discrete event dynamic systems," Automatica, vol. 19, no. 
2, pp. 149-167, 1983. 
C. A. R. Hoare, Communicating Sequential Processes. Engle- 
wood Cliffs, NJ: Prentice-Hall, 1985. 
j. E. Hopcroft and j. D. Ullman, lntroduction to Automata The- 
ory, Languages and Compufation. Reading, MA: Addison- 
Wesley, 1979. 
K. lnan and P. Varaiya, "Finitely recursive process models for 
discrete event systems," / E € €  Trans. Automat. Contr., vol. 33, 
no. 7, pp. 626-639, July 1988. 
R. Kurshan, "Reducibility in analysis of coordination," in Dis- 
crete €vent Systems: Models and Applications, llASA Confer- 
ence, Sopron, Hungary, Aug. 3-7, 1987, P. Varaiya and A. B. 
Kurzhanski, Eds., Lecture Notes in Control and Information 
Sciences, vol. 103. New York, NY: Springer-Verlag, 1988, pp. 
19-39. 
R. P. Kurshan, "Testing containment ofw-regular languages," 
preprint, AT&T Bell Laboratories, Murray Hill, NJ, Oct. 1986. 
S.  Lafortune, "Modelling and analysis of transaction execu- 
tion in database systems," / € € E  Trans. Automat. Contr., vol. 
33, no. 5, pp. 439-447, May 1988. 
S.  Lafortuneand E. Wong,"Astate model fortheconcurrency 
control problem in data base management systems," Memo. 
UCBIERL M85127, Electronic Systems Laboratory, College of 
Engineering, University of California Berkeley, CA, Apr. 1985. 
A. A. Lazar and M. T. Hsiao, "Network and user optinial tlow 
control with decentralized information," preprint, Dept. 
Electrical Engineering, Columbia University, NY. 
E. A. Lee, "Data flow programming for parallel implemen- 
tation of digital signal processing systems," in Discrete Event 
Systems: Models and Applications, llASA Conference, 
Sopron, Hungary, Aug. 3-7, 1987, P. Varaiya and A. B. Kur- 
zhanski, Eds., Lecture Notes in Control and Information Sci- 
ences, vol. 103. New York, NY: Springer-Verlag, 1988, pp. 

Y. Li and W. M. Wonham, "On supervisory control of real- 
time discrete-event systems," Inform. Sci., vol. 46, pp. 159- 
183, 1988. 
-, "Controllability and observability in the state-feedback 
control of discrete-event systems," in Proc. 27th / € E t  Coni. 
Decision and Control (Austin, TX), pp. 203-208, Dec. 1988. 
- , "A state-variable approach to the modelling and control 
of discrete-event systems," in Proc. 26th Annual Allerton 
Conf., Sept. 1988. 
- , "Deadlock issues in supervisory control of discrete-event 
systems," in Proc. 22nd Annual Conf. Information Sciences 
and Systems, (Princeton, NJ), pp. 57-63, Mar. 1988. 
W. Lin and P. R. Kumar, "Optimal control of a queueing sys- 
tem with two heterogeneous servers," / E € €  Trans. Automat. 
Contr., vol. 29, pp. 696-703, Aug. 1984. 
F. Lin and W. M. Wonham, "Decentralized control and coor- 
dination of discrete-event systems," in Proc. 27th / € E €  Conf. 
Decision and Control (Austin, TX), pp. 1125-1130, Dec. 1988. 
- , "On observability of discrete-event systems," Inform. 

- , "Decentralized supervisory control of discrete-event 
systems," Inform. Sci., vol. 44, pp. 199-224, 1988. 
0. Maimon and C. Tadmore, "Efficient low level control of 
FMS," Draft Tech. Rep. LIDS-I-1571, Laboratory for Infor- 
mation and Decision Systems, MIT, Cambridge, MA, June 
1986. 
Z. Manna and A. Pnueli, "Synthesis of communicating pro- 
cesses from temporal logic specifications," ACM Trans. Pro- 
gramming Languages and Syst., vol. 6, no. 1, pp. 68-93, Jan. 
1984. 
C. Milneand R. Milner,"Concurrent processesand their syn- 
tax," 1. ACM, vol. 26, pp. 302-321, 1979. 
K. Okumura, "Protocol analysis from language structure," 
preprint, IBM Research, Tokyo Research Laboratory, 5-19, 
Tokyo, June 1988. 
I. S .  Ostroff and W. M. Wonham, "A temporal logic approach 
to real time control," in Proc. 24th / € € E  Conf. Decision and 
Control, (Fort Lauderdale, Florida), pp. 656-657, Dec. 1985. 
1. S .  Ostroff, "Real t ime computer control of discrete event 

135-148. 

SCi., Vol. 44, pp. 173-198, 1988. 

96 PROCEEDINGS OF THE IEEE, VOL. 77, NO. 1, JANUARY 1989 



1511 

systems modelled by extended state machines: A temporal 
logic approach,” Rep. 8618, Dept. Electrical Engineering, Uni- 
versity of Toronto, Sept. 1986. 
C. H. Papadimitriou and J. N. Tsitsiklis, ”On the complexity 
of designing distributed protocols,” Inform. Contr., vol. 53, 
pp. 211-218, June 1982. 
- , “On the complexity of Markov decision processes,” 
Mathematics Operations Res., vol. 12, no. 3, pp. 441-450, Aug. 
1987. 
J. L. Peterson, Petri Net Theory and the Modeling o f  Systems. 
Englewood Cliffs, NJ: Prentice-Hall, 1981. 
C. P. Pfleeger, ”State reduction in  incompletely specified 
finite state machines,” / E € €  Trans. Comput., vol. C-22, no. 12, 
pp. 1099-1102, Jan. 1979. 
A. Pneuli, “The temporal semantics of concurrent pro- 
grams,” in Semantics o f  Concurrent Computation, Lecture 
Notes in  Computer Science 70. New York, NY: Springer-Ver- 
lag, 1979, pp. 1-20. 
P. J .  Ramadge, “Some tractable supervisorycontrol problems 
for discreteevent systemsdescribed by Buchi automata,” /€E 
Trans. Automat. Contr., vol. 34, no. 1, Jan. 1989. 
- , “The complexity of some basic problems in  the super- 
visory control of discrete event systems,” in Advanced Com- 
puting Concepts and Techniques in Control Engineering, M. 
J.  Denham and A. J. Laub, Eds., Springer-Verlag NATO AS1 
Series. New York, NY: Springer Verlag, 1988, pp. 171-190. 
- , ”Supervisory control of discrete event systems: a survey 
and some new results,” in Discrete Event Systems: Models 
and Applications, llASA Conference, Sopron, Hungary, Aug. 
3-7, 7987, P. Varaiya and A. B. Kurzhanski, Eds., Lecture Notes 
in Control and lnformation Sciences, vol. 103. New York, 
NY: Springer-Verlag, 1988, pp. 69-80. 
- , ”Some tractable supervisory control problems for dis- 
Crete event systems,’’ to appear in Proc. Symp. on the Math- 
ematical Theory of  networks and Systems, (Phoenix, AZ), June 
1987. 
- , “Observability of discrete event systems,” in Proc. 25th 
/€E€ Conf. Decision and Control, (Athens, Greece), pp. 1108- 
1112, Dec. 10-12, 1986. 
- , “A note on the fixpoint characterization of supremal 
controllable sublanguages,” in  Proc. 27st Conf. lnformation 
Sciences and Syst., pp. 741-744, Mar. 1987. 
P. J. Ramadge and W. M. Wonham, “Modular feedback logic 
for discrete event systems,’’ SIAMI. Contr. Optimization, vol. 
25, no. 5, pp. 1202-1218, May 1987. 
- , “Supervisory control of a class of discrete-event pro- 
cesses,” SIAM/.  Contr. Optimization, vol. 25, no. 1, pp. 206- 
230, Jan. 1987. 
-, “Modular supervisory control of discrete event sys- 
tems,” in Proc. 7th lnt. Conf. Analysis and Optimization of 
Syst., (Antibes, France), pp. 202-214, June 1986. 
D. Raychaudhuri ”Aloha with multiplacket messages and 
ARQ-type retransmission protocols-throughput analysis,” 
/ € € E  Trans. Commun., vol. 32, no. 2, pp. 148-154, Feb. 
1984. 
- , ”Stability and optimal retransmission control of 
announced retransmission random access systems,” pre- 
print, RCA Laboratories, Princeton, NJ, 1985. 
Z. Rosberg, P. P. Varaiya, and J. C. Walrand, “Optimal control 
of service in tandem queues,” / € € E  Trans. Automat. Contr., 
vol. 27, no. 3, pp. 600-610, June 1982. 
K. Sabnani, “An algorithmic technique for protocol verifi- 
cation,” It€€ Trans. Commun., vol. 36, no. 3, pp. 924-931, Aug. 
1988. 
A. C. Shaw, “Software descriptions with flow expressions,” 
/ E € €  Trans. Software €ng., vol. 4, no. 3, pp. 242-254, 1978. 
R. Smedinga, “Using trace theory to model discrete events,” 
in Discrete Event Systems: Models and Applications, llASA 
Conference, Sopron, Hungary, Aug. 3-7, 1987, P. Varaiya and 
A. B. Kurzhanski, Eds., Lecture Notes in Control and Infor- 
mation Sciences, vol. 103. New York, NY: Springer-Verlag, 

M. Steenstrup, M. A. Arbib, and E. C. Manes, “Port automata 
and the algebra of concurrent processes,” Computer and 
Information Science Tech. Rep. 81-25, University of Massa- 
chusetts, Amherst, MA, 1981. 
R. Suri and M. Zazanis, “Perturbation analysis is exact for the 

1988, pp. 81-99. 

[721 

MiGll queue,” in  Proc. 23rd / €E€  Conf. Decision and Control, 
(Las Vegas, NV), pp. 535-536, Dec. 1984. 
S. Toueg and K. Steiglitz, “Deadlock free packet switching 
networks,”SlAM]. Computing,vol. IO, pp. 594-611,Aug. 1981. 
J. G. Thistle and W. M. Wonham, ”Control problems in  a tem- 
poral logic framework,” lnt. 1. Contr., vol. 44, no. 4, pp. 943- 
976, 1986. 
- ,“Supervisory control with infinite string specifications,” 
in Proc. 25th Ann. Allerton Conf. Communications, Control, 
and Computing, pp. 327-334, Sept. 1987. 
- , “On the synthesis of supervisors subject to w-language 
specifications,” in 22ndAnn. Conf. lnformation Sciences and 
Systems, (Princeton, NI), pp. 440-444, Mar. 1988. 
J.  N. Tsitsiklis, “On the control of discrete event dynamical 
systems,” Math. Contr., Signals, and Syst., vol. 2, no. 1, pp. 
95-107, 1989. 
P. P. Varaiya, J. C. Walrand, and C. Buyukkoc, ”Extensions of 
the multiarmed bandit problem: the discounted case,” / E € €  
Trans. Automat. Contr., vol. 30, no. 5, pp. 426-439, May 1985. 
A. Vaz and W. M. Wonham, “On supervisor reduction in dis- 
crete-event systems,’’ lnt. 1. Contr., vol. 44, no. 2, pp. 475-491, 
1986. 
J. Walrand, An lntroduction To Queueing Networks. Engle- 
wood Cliffs, NJ: Prentice-Hall, 1988. 
W. M. Wonham, “A control theory for discrete-event sys- 
tems,” in Advanced Computing Concepts and Techniques in 
Controlhgineering, M. J. Denham and A. J. Laub, Eds., Sprin- 
ger-Verlag NATOASI Series. NewYork, NY: Springer Verlag, 
1988, pp. 129-169. 
W. M. Wonham and P. J. Ramadge, “Modular supervisor con- 
trol of discrete event systems,” Math. Contr., Signals, and 
Syst., vol. 1, no. 1, pp. 13-30, Jan. 1988. 
- , “On the supremal controllable sublanguage of a given 
language,” SlAM 1. Contr. and Optimization, vol. 25, no. 3, 
pp. 637-659, May 1987. 
M. A. Zazanis and R. Suri, ”Estimating second derivatives of 
performance measures for ClGll queues from a single sam- 
ple path,” preprint, Division of Applied Sciences, Harvard 
University, Cambridge, MA, June 1985. 
B. P. Zeigler, Multifaceted Modeling and Discrete Event Sim- 
ulation. New York, NY: Academic Press, 1984. 
H. Zhong and W. M. Wonham, ”On hierarchical control of 
discrete event systems,” in  22ndAnn. Conf on Information 
Sciences and Syst., (Princeton, NJ), pp. 64-70, Mat. 1988. 

Peter 1. C .  Ramadge (Member, IEEE) received 
theB.S., B.E.E. (Hons.),andM. eng. degrees 
from the University of Newcastle, Australia, 
in 1976, 1978, and 1980, respectively, and 
the Ph.D. degree in electrical engineering 
from the University of Toronto, Ontario, 
Canada, in 1983. 

From June-December 1978 he was a vis- 
itor in the Division of Applied Sciences, 
Harvard University, and from June 1983- 
August 1984, a postdoctoral fellow in the 

Systems Control Group, Department of Electrical Engineering, 
University of Toronto, Canada. He joined the faculty of Princeton 
University, Princeton, NI, as an Assistant Professor of Electrical 
Engineering in  September 1984. He has worked in  the areas of 
adaptive control, stochastic control, and discrete-event systems. 
His current research interestsare in the theoretical aspectsof com- 
puter science and control theory with emphasis on  applications 
of computers in control, learning, and signal processing. 

Dr. Ramage i s  a member of Sigma X i  and of SIAM. In 1980 he 
received the Outstanding Paper Award from the Control Systems 
Society of the IEEE for research in the area of adaptive control; in 
1982 he received the Outstanding Teaching Assistant Award from 
the Department of Electrical Engineering, University of Toronto; 
and in  1985 he was a recipient of a National Science Foundation 
Research Initiation Grant. He was Co-chairman of the 22nd Con- 

RAMADCE AND W O N H A M  THE CONTROL OF DISCRETE EVENT SYSTEMS 

~ ~- ~ 

97 



ference on Information Sciences and Systems, and i s  currently 
serving as an Associate Editor of the journal SYsiEMs AND CONTROL 
L E ~ E R S .  

Mathematics at Bro! 
Sciences Research F 

98 

wn 
'ell 

W. Murray Wonham (Fellow, IEEE) received 
the B.S. degree in engineering physics from 
McGill University, Montreal, Quebec, Can- 
ada, in 1956,andthePh.D.degreeincontrol 
engineering from the University of Cam- 
bridge, Cambridge, England, in 1961. 

From 1961-1969 he was associated with 
the Control and Information Systems Lab- 
oratory at Purdue University, the Research 
Institute for Advanced Studies (RIAS) of the 
Martin Marietta Co., the Division of Applied 
University, and (as a National Academy of 

low) with the Office of Control Theory and 

Application of NASA's Electronics Research Center. In 1970 he 
joined the Systems Control Group of the Department of Electrical 
Engineering at the University of Toronto, Canada, of which he is 
the current Chairman. In  addition he has held visiting academic 
appointmentswith the Department of Electrical Engineering at MIT, 
the Department of Systems Science and Mathematics at Wash- 
ington University, the Department of Mathematics of the Univer- 
sity of Bremen, the Mathematics Institute of the Academia Sinica 
(Beijing), and other institutions world wide. His research interests 
are in the areas of stochastic control and filtering, the geometric 
theory of linear multivariable control, and more recently in dis- 
crete event systems from the viewpoint of formal logic and lan- 
guage. He has authored or coauthored about fifty research papers 
as well as the book Linear Multivariable Control: A Geometric 
Approach. 

Dr. Wonham i s  a Fellow of the Royal Society of Canada. In 1987 
he was the recipient of the IEEE Control Systems Science and Engi- 
neering Award. 

PROCEEDINGS OF THE IEEE, VOL. 77, NO.  1, JANUARY 1989 


