Computer-Aided Verification

ECE725/CS745

Borzoo Bonakdarpour

University of Waterloo

(Winter 2011)

CTL Model Checking

Agenda

- Computation Tree Logic (CTL)
- CTL Model Checking
- Binary Decision Diagrams (BDDs)
- The Model Checker SMV

Agenda

- Computation Tree Logic (CTL)
- CTL Model Checking
- Binary Decision Diagrams (BDDs)
- The Model Checker SMV

CTL

- Computation Tree Logic: Intuitions.
- CTL: Syntax and Semantics.
- CTL in Computer Science.
- CTL and Model Checking: Examples.
- CTL Vs. LTL.

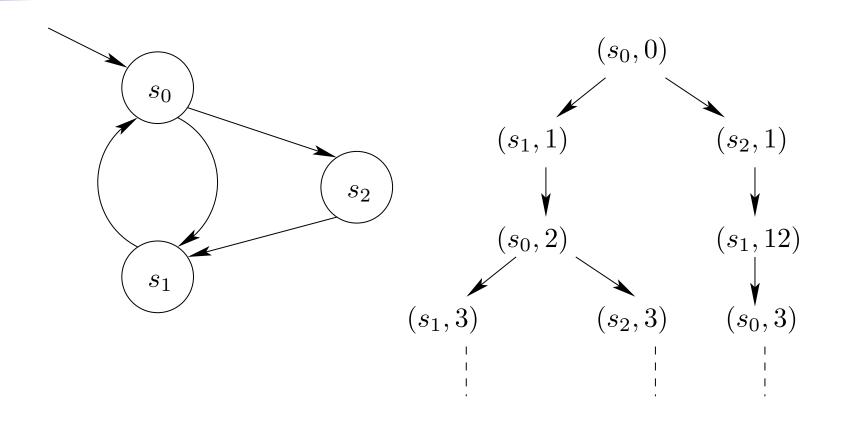
LTL implicitly quantifies universally over paths:

 $\langle M,s\rangle \models \phi$ iff for every path π starting at s, $\langle M,\pi\rangle \models \phi$

Properties that assert the *existence* of a path cannot be expressed in LTL. In particular, properties which mix existential and universal path quantifiers cannot be expressed.

The Computation Tree Logic, CTL, solves these problems:

- CTL explicitly introduces path quantifiers!
- CTL is the natural temporal logic interpreted over Branching Time Structures.



CTL is evaluated over branching-time structures (Trees). CTL explicitly introduces *path quantifiers*:

- All Paths: A
- Exists a Path: E

Every temporal operator $(\Box, \Diamond, \bigcirc, U)$ is preceded by a path quantifier (**A** or **E**).

In universal modalities: $(A\Box, A\Diamond, A\Box, AU)$, the temporal formula is true in *all* the paths starting in the current state.

In existential modalities: $(\mathbf{E}\Box, \mathbf{E}\Diamond, \mathbf{E}\Box, \mathbf{E}U)$, The temporal formula is true in *some* path starting in the current state.

Countable set Σ of atomic propositions: p, q, \cdots the set FORM of formulas is:

$$\phi, \psi \to p \mid \top \mid \bot \mid \neg \phi \mid \phi \land \psi \mid \phi \lor \psi \mid$$

$$\mathbf{A} \Box \phi \mid \mathbf{A} \Diamond \phi \mid \mathbf{A} \bigcirc \phi \mid \mathbf{A} \phi \mathsf{U} \psi \mid$$

$$\mathbf{E} \Box \phi \mid \mathbf{E} \Diamond \phi \mid \mathbf{E} \bigcirc \phi \mid \mathbf{E} \phi \mathsf{U} \psi \mid$$

We interpret our CTL temporal formulae over Kripke models linearized as trees.

Let Σ be a set of atomic propositions. We interpret our CTL temporal formulae over Kripke Models:

$$M = \langle S, I, R, \Sigma, L \rangle$$

The semantics of a temporal formula is provided by the satisfaction relation:

$$\models: \langle M \times S \times \text{FORM} \rangle \rightarrow \{true, false\}$$

We start by defining when an atomic proposition is true at a state/time " s_i "

$$M, s_i \models p$$
 iff $p \in L(s_i)$ (for $p \in \Sigma$)

The semantics for the classical operators is as expected:

$$M, s_i \models \neg \phi$$
 iff $s_i \not\models \phi$
 $M, s_i \models \phi \land \psi$ iff $s_i \models \phi \land s_i \models \psi$
 $M, s_i \models \phi \lor \psi$ iff $s_i \models \phi \lor s_i \models \psi$
 $M, s_i \models \top$
 $M, s_i \not\models \bot$

We start by defining when an atomic proposition is true at a state/time " s_i "

$$M, s_i \models p \quad \text{iff} \quad p \in L(s_i) \quad \text{(for } p \in \Sigma\text{)}$$

The semantics for the classical operators is as expected:

$$M, s_i \models \mathbf{A} \bigcirc \phi$$
 iff $\forall \pi = (s_i, s_{i+1}, \cdots) \bullet M, s_{i+1} \models \phi$

$$M, s_i \models \mathbf{E} \bigcirc \phi$$
 iff $\exists \pi = (s_i, s_{i+1}, \cdots) \bullet M, s_{i+1} \models \phi$

$$M, s_i \models \mathbf{A} \Box \phi$$
 iff $\forall \pi = (s_i, s_{i+1}, \cdots) \bullet \forall j \geq i \bullet M, s_j \models \phi$

$$M, s_i \models \mathbf{E} \Box \phi$$
 iff $\exists \pi = (s_i, s_{i+1}, \cdots) \bullet \forall j \geq i \bullet M, s_j \models \phi$

The semantics for the classical operators is as expected:

$$M, s_i \models \mathbf{A} \Diamond \phi$$
 iff $\forall \pi = (s_i, s_{i+1}, \cdots) \bullet \exists j \geq i \bullet M, s_j \models \phi$

$$M, s_i \models \mathbf{E} \Diamond \phi$$
 iff $\exists \pi = (s_i, s_{i+1}, \cdots) \bullet \exists j \geq i \bullet M, s_j \models \phi$

$$M, s_i \models \mathbf{A}\phi \cup \psi$$
 iff $\forall \pi = (s_i, s_{i+1}, \cdots) \bullet \exists j \geq i \bullet M, s_j \models \psi \land \forall i \leq k \leq j \bullet M, s_k \models \phi$

$$M, s_i \models \mathbf{E}\phi \cup \psi$$
 iff $\exists \pi = (s_i, s_{i+1}, \cdots) \bullet \exists j \geq i \bullet M, s_j \models \psi \land \forall i \leq k \leq j \bullet M, s_k \models \phi$

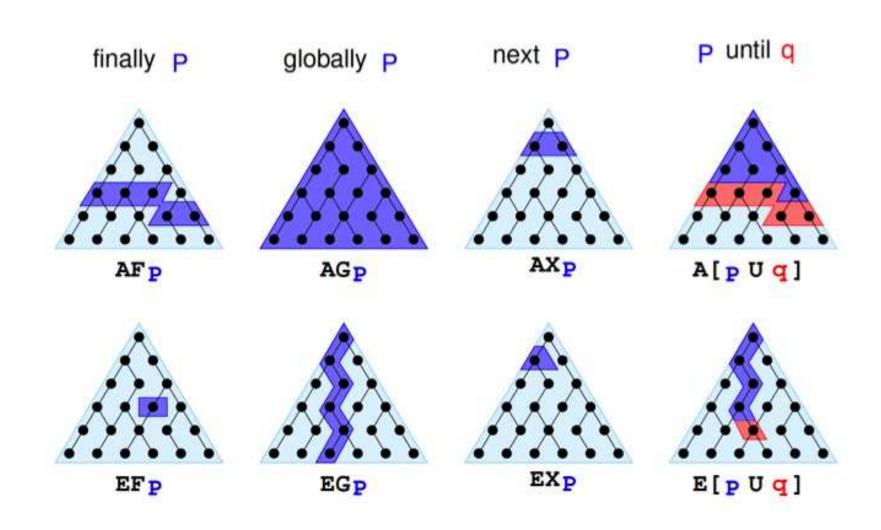
CTL is given by the standard Boolean logic enhanced with temporal operators.

Necessarily Next. $\mathbf{A} \bigcirc \phi$ is true in s_t iff ϕ is true in every successor state s_{t+1} .

Possibly Next. $\mathbf{E} \bigcirc \phi$ is true in s_t iff ϕ is true in one successor state s_{t+1} .

Necessarily in the future (or "Inevitably"). $\mathbf{A} \lozenge \phi$ is true in s_t Iff ϕ is inevitably true in some $s_{t'}$ with $t' \ge t$.

Possibly in the future (or "Possibly"). $\mathbf{E} \Diamond \phi$ is true in s_t iff ϕ may be true in some $s_{t'}$ with $t' \geq t$.



Safety Properties

Safety:

"something bad will not happen"

Typical examples:

$$\mathbf{A}\Box\neg(\text{reactor_temp} > 1000)$$

Safety properties are usually of the form:

$$\mathbf{A}\Box\neg\cdots$$

Liveness Properties

Liveness:

"something good will happen"

Typical examples:

- \blacksquare **A** \Diamond rich
- $\blacksquare \mathbf{A} \Diamond (x > 5)$
- $A\Box(\text{start} \Rightarrow A\Diamond \text{terminate})$ Leads-to, unbounded response

and so on....

Liveness properties are usually of the form:

$$\mathbf{A} \lozenge \neg \cdots$$

In-class Exercise

Write a CTL formula that is equal to the following LTL formula:

$$\Diamond T \Rightarrow \Diamond C$$

In-class Exercise

Write a CTL formula that is equal to the following LTL formula:

$$\Diamond T \Rightarrow \Diamond C$$

What about:

$$\mathbf{A} \Diamond T \Rightarrow \mathbf{A} \Diamond C$$

LTL vs. CTL

Many CTL formulae cannot be expressed in LTL (e.g., those containing paths quantified existentially)

E.g., $\mathbf{E}\phi$

Many LTL formulae cannot be expressed in CTL

E.g., $\Diamond T \Rightarrow \Diamond C$ (Strong Fairness in LTL)

i.e, formulae that select a range of paths with a property

Some formulae can be expressed both in LTL and in CTL (typically LTL formulae with operators of nesting depth 1)

Agenda

- Computation Tree Logic (CTL)
- CTL Model Checking
- Binary Decision Diagrams (BDDs)
- The Model Checker SMV

Problem Statement and Assumptions

Problem. Given a model \mathcal{M} and a CTL formula ϕ , determine whether or not $\mathcal{M} \models \phi$.

Assumptions:

- lacktriangleright A is a finite model: finite number of states with variables of finite domain.
- lacksquare ϕ is a finite length CTL formula.

Solution

1. Transform ϕ into a formula in terms of:

 $A\Diamond, EU, E\bigcirc, \land, \lor, \bot$.

- 2. For each subformula φ of ϕ , label states of \mathcal{M} , say s, such that $s \models \varphi$.
- 3. If the initial state s_0 satisfies a subformula φ , then $\mathcal{M} \models \varphi$ as well.

Labelling Algorithm

Let φ be a subformula of ϕ and states satisfying all the immediate subformulas of φ have already been labelled. We want to determine which states to label with φ . If φ is:

- \blacksquare \bot : then no states are labelled with \bot .
- **p** (atomic proposition): label s with p if $p \in L(s)$.
- $\blacksquare \neg \varphi$: label s with $\neg \varphi$ if s is not already labelled with φ .
- **E** $\bigcirc \varphi$: label any state with **E** $\bigcirc \varphi$ if one of its successors is labelled with φ .

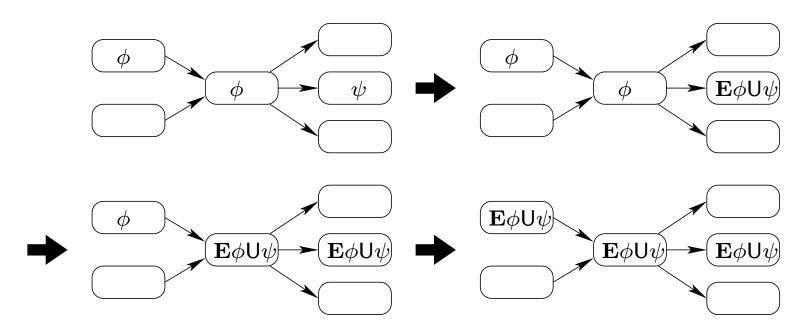
Labelling Algorithm $\mathbf{A}\Diamond\varphi$

- 1- If any state s is labelled with φ , label it with $\mathbf{A} \lozenge \varphi$.
- 2- Repeat: label any state with $\mathbf{A} \Diamond \varphi$, if all successor states are labelled with $\mathbf{A} \Diamond \varphi$, until there is no change.



Labelling Algorithm: $\mathbf{E}\phi\mathbf{U}\psi$

- 1- If any state s is labelled with ψ , label it with $\mathbf{E}\phi \mathsf{U}\psi$.
- 2- Repeat: label any state with $\mathbf{E}\phi U\psi$, if it is labelled with ϕ and at least one of its successors is labelled with $\mathbf{E}\phi U\psi$, until there is no change.



Complexity: $O(S^2)$, where S is the set of reachable states. Verification - p. 25/5

Labelling Algorithm

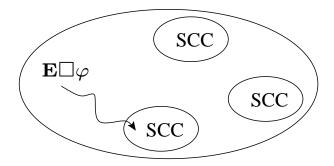
Handling $\mathbf{E}\Box\varphi$ Directly

- 1- Label all the states that are already labelled φ , by $\mathbf{E}\Box\varphi$.
- 2- Repeat: Delete the label $\mathbf{E} \Box \varphi$ from any state if none of its successors is labelled with $\mathbf{E} \Box \varphi$; until there is no change.

Labelling Algorithm

There is even a more efficient way to handle $\mathbf{E} \Box \varphi$:

- 1. restrict the graph to states satisfying φ , i.e., delete all other states and their transitions;
- find the maximal strongly connected components (SCCs); these are maximal regions of the reachable states in which every state is reachable from every other one in that region.
- 3. use breadth-first searching on the restricted graph to find any state that can reach an SCC.



Complexity: O(S), where S is the set of reachable states.

State Space Explosion

Notice that in worst case, one has to explore the set of all states to label them:

- Forward reachablity: computing successor states until a fixpoint is reached
- Backward reachability: computing predecessor states until a fixpoint is reached

Question. Is it possible to make this computation more efficient?

Agenda

- Computation Tree Logic (CTL)
- CTL Model Checking
- Binary Decision Diagrams (BDDs)
- The Model Checker SMV

State Space Explosion

Exhaustive analysis may require to store all the states of the Kripke structure, and to explore them one-by-one.

The state space may be exponential in the number of components and variables (E.g., 300 Boolean vars \Rightarrow up to 2^{300} states!)

State Space Explosion:

- Too much memory required;
- Too much CPU time required to explore each state.

A solution: Symbolic Model Checking.

Symbolic Model Checking

Symbolic representation of *set of states* by *formulae* in propositional logic:

- manipulation of sets of states, rather than single states;
- manipulation of sets of transitions, rather than single transitions.

OBDDs

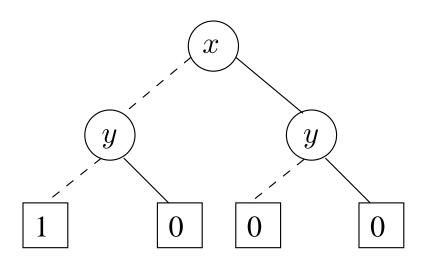
Ordered Binary Decision Diagrams (OBDD) are used to represent formulae in propositional logic.

A simple version: Binary Decision Trees:

- Non-Terminal nodes labelled with Boolean variables/propositions;
- Leaves (terminal nodes) are labelled with either 0 or 1;
- Two kinds of lines: dashed and solid;
- Paths leading to 1 represent models, while paths leading to
 0 represent counter-models.

Binary Decision Trees

BDT representing the formula: $\phi = \neg x \land \neg y$:



The assignment, x = 0 and y = 0 makes true the formula.

Binary Decision Trees

Let T be a BDT, then T determines a unique Boolean formula in the following way:

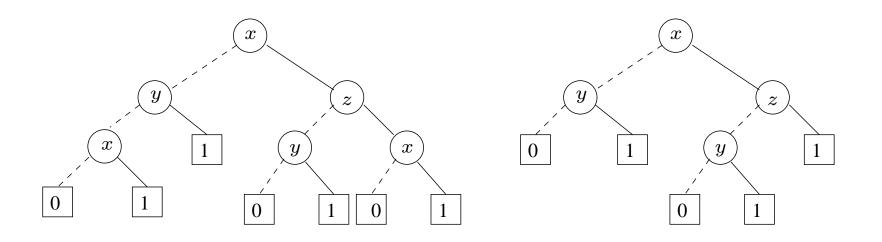
Fixed an assignment for the variables in T we start at the root and:

- If the value of the variable in the current node is 1 we follow the solid line;
- Otherwise, we follow the dashed line;
- The truth value of the formula is given by the value of the leaf we reach.

Binary Decision Trees

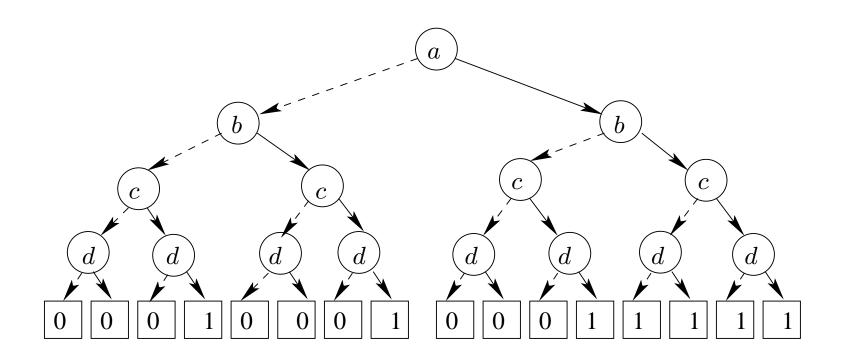
BDT's with multiple occurrences of a variable along a path are:

- Rather inefficient (Redundant paths);
- Difficult to check whether they represent the same formula (equivalence test). Example of two equivalent BDT's



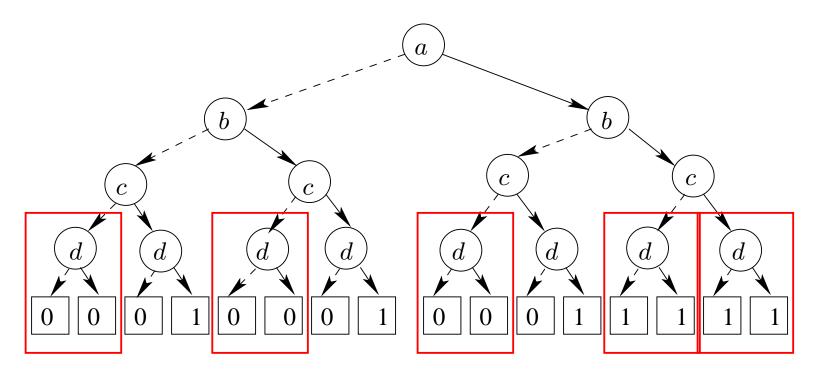
Ordered Binary Decision Trees

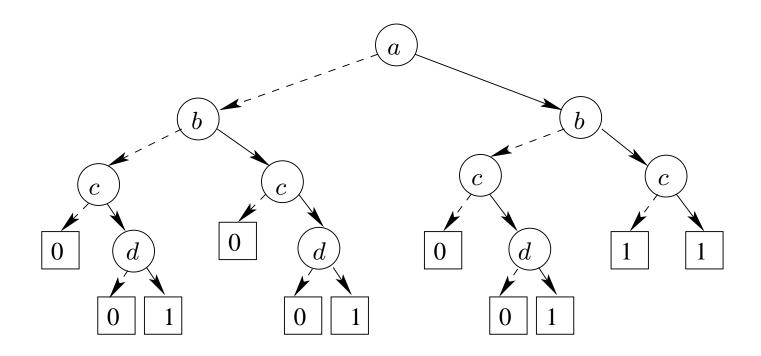
Ordered Decision Tree (OBDT): from root to leaves variables are encountered always in the same order without repetitions along paths. Example: Ordered Decision tree for $\phi = (a \land b) \lor (c \land d)$

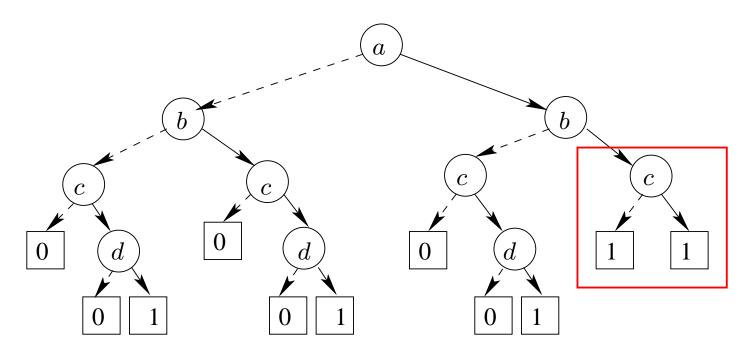


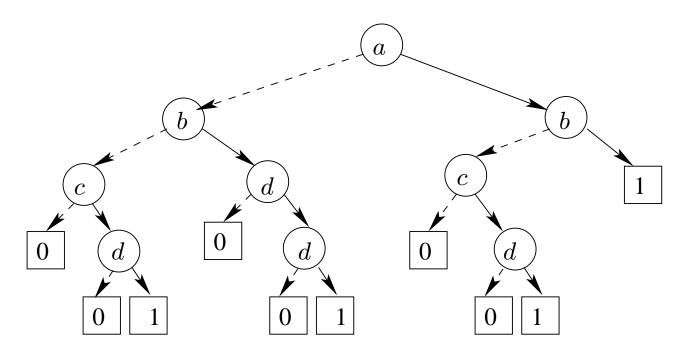
OBDT's are still exponential in the number of variables: Given n variables the OBDT's will have $2^{n+1}-1$ nodes! We can reduce the size of OBDT's by a recursive applications of the following reductions:

- Remove Redundancies: Nodes with same left and right children can be eliminated;
- Share Subnodes: Roots of structurally identical sub-trees can be collapsed.

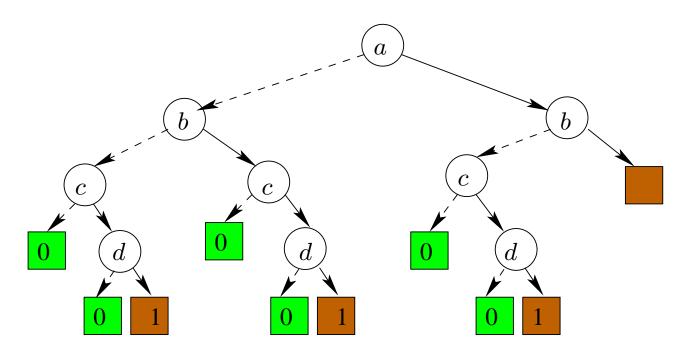




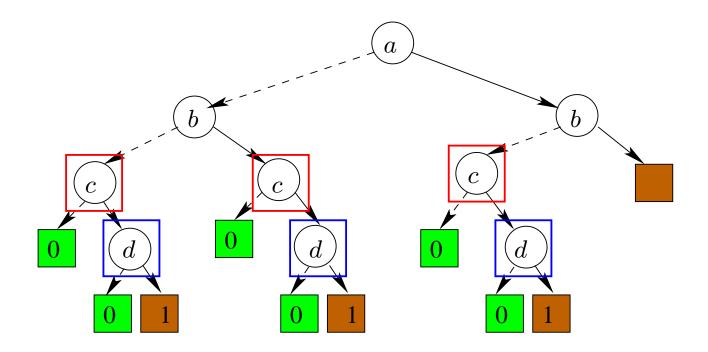


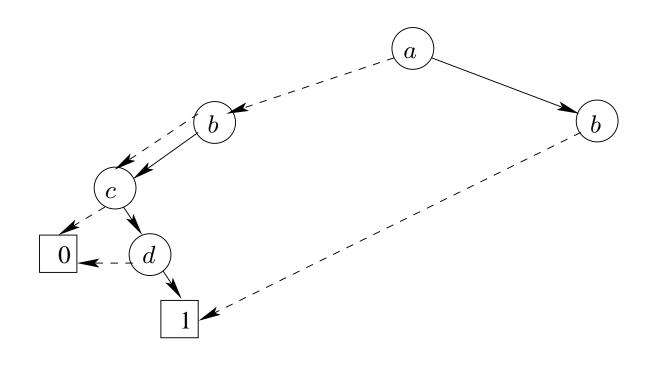


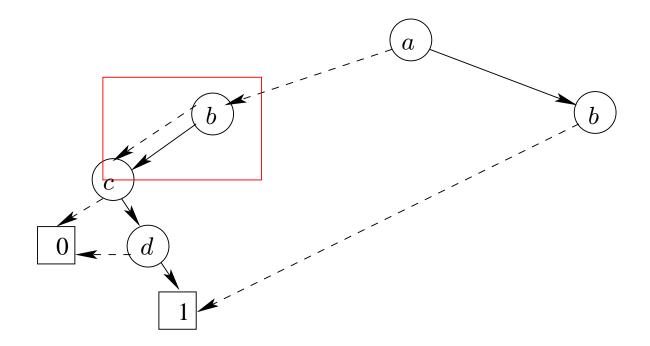
Share identical nodes:



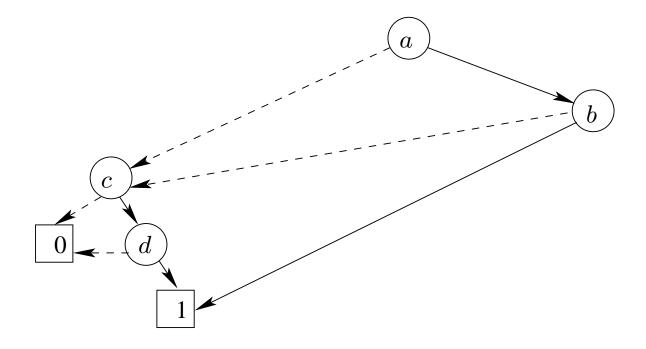
Share identical nodes:







The final OBDD!



OBDDs as Canonical Forms

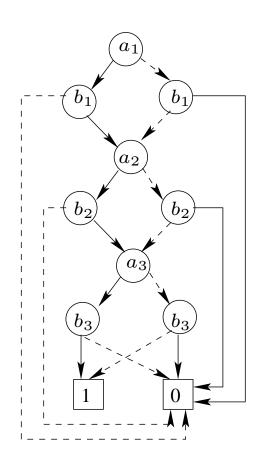
Theorem. A Reduced OBDD is a Canonical Form of a Boolean formula: Once a variable ordering is established (i.e., OBDD's have compatible variable ordering), equivalent formulae are represented by the same OBDD:

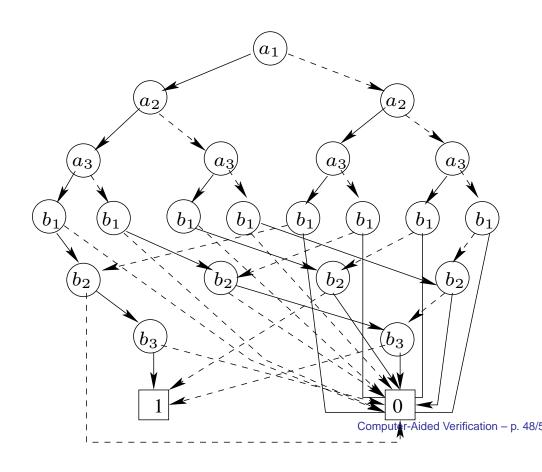
$$\phi_1 \Leftrightarrow \phi_2 \quad \text{iff} \quad OBDD(\phi_1) = OBDD(\phi_2)$$

Impact of Variable Ordering

Changing the ordering of variables may increase the size of OBDD's. Example, two OBDD's for the formula:

$$\phi = (a_1 \Leftrightarrow b_1) \land (a_2 \Leftrightarrow b_2) \land (a_3 \Leftrightarrow b_3)$$





BDD Operations

We do not cover the algorithm for constructing BDDs of propositional operators (\land, \lor, \neg) . You can find the algorithm in

Randy Bryant, *Graph-Based Algorithms for Boolean Function Manipulation*.

BDD-based Reachability Analysis

```
BDD frontier = InitStates;
BDD current = bddZero();
BDD ReachableStates = InitStates;
while (ReachableStates != current)
      current = ReachableStates;
      BDD image = frontier * Transitions;
      frontier = Unprime(image);
      ReachableStates = current + frontier;
```