Computer-Aided
Verification
ECE725/CS745

Borzoo Bonakdarpour

University of Waterloo
(Winter 2011)
CTL Model Checking

Computer-Aided Verification — p. 1/¢

Agenda

m Computation Tree Logic (CTL)

m CTL Model Checking

m Binary Decision Diagrams (BDDs)
= The Model Checker SMV

Computer-Aided Verification — p. 2/¢

m Computation Tree Logic (CTL)

m CTL Model Checking

m Binary Decision Diagrams (BDDs)
= The Model Checker SMV

Computer-Aided Verification — p. 3/t

CTL

= Computation Tree Logic: Intuitions.

m CTL: Syntax and Semantics.

m CTL in Computer Science.

m CTL and Model Checking: Examples.
mCTL Vs. LTL.

Computer-Aided Verification — p. 4/¢

INntuition

LTL implicitly quantifies universally over paths:
(M, s) = ¢ iff for every path = starting at s, (M,) = ¢

Properties that assert the existence of a path cannot be expressed
In LTL. In particular, properties which mix existential and
universal path quantifiers cannot be expressed.

The Computation Tree Logic, CTL, solves these problems:
m CTL explicitly introduces path guantifiers!

m CTL is the natural temporal logic interpreted over Branching
Time Structures.

Computer-Aided Verification — p. 5/¢

> ~—~~
—~ AN
™ ™ 3./III.
o ~—> O
N — 5
@ YA ~—
\(\ ~—
—~ —~
- o
=) N
% \8
~— ~—
/\) —~
A S n/,_./
— -}

Intuition
6
()

INntuition

CTL is evaluated over branching-time structures (Trees). CTL
explicitly introduces path quantifiers:

m All Paths: A
W Exists a Path: E

Every temporal operator (L1, ¢, (O, U) is preceded by a path
guantifier (A or E).

In universal modalities: (A, A), A, AU), the temporal
formula is true in all the paths starting in the current state.

In existential modalities: (EL], EQ, EQ), EU), The temporal
formula is true in some path starting in the current state,

mputer-Aided Verification — p. 7/¢

Intuition

Countable set X of atomic propositions: p, ¢, - - - the set FORM of
formulas is:

b —p | T L] =6 6Ay | Ve
ADG | AGd | AO¢ | AdUY|
ED¢ | EO¢ | EQ 6 | E¢UY|

Computer-Aided Verification — p. 8/t

CTL Semantics

We interpret our CTL temporal formulae over Kripke models
linearized as trees.

Let > be a set of atomic propositions. We interpret our CTL
temporal formulae over Kripke Models:

M= (S 1,R,3, L)
The semantics of a temporal formula is provided by the
satisfaction relation:

=: (M x S x FORM) — {true, false}

Computer-Aided Verification — p. 9/t

CTL Semantics

We start by defining when an atomic proposition is true at a
state/time “s;”

M,s; =p iff pe L(s;) (forpe?X)
The semantics for the classical operators is as expected:
M,s; = ¢ Iff s, =0
M,s; =Ny iff s;, =EoNs EY
M,s; =o Vi iff s, =oVs EvY
M,s; =T
M,s; = L

Computer-Aided Verification — p. 10/t

CTL Semantics

We start by defining when an atomic proposition is true at a

state/time “s;

M,s; =p iff pe L(s;) (forpe?X)
The semantics for the classical operators is as expected:
M,siEAQ¢ iff Vr={(s,sit1,") e M,sit1 F ¢

M,Si ‘:Eng Iff E|7T:(SZ',SZ'_|_1,~'°)OM,S7;_|_1 ‘:qb
M,Si‘:ADqﬁ Iff \V/’/T:(8@,87;+1,"')0\V/j2i0M,8j \:gb

M,SZ' |:ED¢ Iff E|7T:(Si,8i+1,-'°)0VjZiOM,Sj |:¢

Computer-Aided Verification — p. 11/-

CTL Semantics

The semantics for the classical operators is as expected:
M,Sz":Aqu Iff \V/’JT:(Si,8i+1,---)03jZiOM,8j |:q5

M,SZ'|:E<>¢ Iff E|7T:(Si,8i+1,°-')03jZiOM,Sj |:q5

M,s; = AoUyp iff V= (54,841, --)edj>ie M, s; =9 A
Vi< k< jeM, s ‘:gb

M,s; = EoUy iff Im = (54,841, --)edj>ieM,s; =9 A
Vi<k<jeM,sp,E¢

Computer-Aided Verification — p. 12/¢

CTL Semantics

CTL is given by the standard Boolean logic enhanced with
temporal operators.

Necessarily Next. A () ¢ IS true in s; Iff ¢ IS true Iin every successor
state s;1.

Possibly Next. E () ¢ IS true In s; Iff ¢ IS true in one successor state

St+41-

Necessarily in the future (Or “Inevitably”). AQ¢ is true in s, Iff ¢ Is
inevitably true in some sy with ¢/ > ¢.

Possibly in the future (or “Possibly”). EQ¢ Is true In s; Iff ¢ may be
true In Some St/ Wlth t/ Z t. Computer-Aided Verification — p. 13/-

finally p globally p next p

Computer-Aided Verification — p. 14/*

Safety Properties

Safety:

“something bad will not happen”

Typical examples:
Al—(reactor_temp > 1000)

Safety properties are usually of the form:
A= -

Computer-Aided Verification — p. 15/%

Liveness Properties

Liveness:

“something good will happen”

Typical examples:
B A{rich
mAO(x > 5)

B A(](start = A{Qterminate)
Leads-to, unbounded response

and so on.....
Liveness properties are usually of the form:
Ad—- .

Computer-Aided Verification — p. 16/~

In-class Exercise

Write a CTL formula that is equal to the following
LTL formula:

OT = OC

Computer-Aided Verification — p. 17/%

Write a CTL formula that is equal to the following
LTL formula:

OT = OC
. What about:
AT = AQC

Computer-Aided Verification — p. 18/~

LTL vs. CTL

Many CTL formulae cannot be expressed in LTL (e.g., those
containing paths guantified existentially)
E.g., E¢

Many LTL formulae cannot be expressed in CTL
E.g., 0T = OC (Strong Fairness In LTL)

l.e, formulae that select a range of paths with a property

Some formulae can be expressed both in LTL and in CTL
(typically LTL formulae with operators of nesting depth 1)

Computer-Aided Verification — p. 19/¢

m Computation Tree Logic (CTL)

m CTL Model Checking

m Binary Decision Diagrams (BDDs)
= The Model Checker SMV

Computer-Aided Verification — p. 20/t

Problem Statement
and Assumptions

Problem. Given a model M and a CTL formula ¢, determine
whether or not M = ¢.
Assumptions:

m M is a finite model: finite number of states with variables of
finite domain.

M ¢ is a finite length CTL formula.

Computer-Aided Verification — p. 21/¢

Solution

1. Transform ¢ into a formula in terms of:
AO,EU, EO), A, V, L.

2. For each subformula ¢ of ¢, label states of M, say s, such
that s = .

3. If the initial state sg satisfies a subformula ¢, then M |= ¢ as
well.

Computer-Aided Verification — p. 22/-

Labelling Algorithm

Let ¢ be a subformula of ¢ and states satisfying all the
Immediate subformulas of © have already been labelled. We
want to determine which states to label with . If ¢ Is:

m | : then no states are labelled with L.

W p (atomic proposition): label s with p if p € L(s).

B, A ps: label s with o1 A @9 If s Is already labelled both with
©1 and with L.

m —¢: label s with = if s Is not already labelled with .

B E () p: label any state with E (O ¢ if one of its successors Is
labelled with .

Computer-Aided Verification — p. 23/t

Labelling Algorithm

1- If any state s is labelled with ¢, label it with A Q.
2- Repeat: label any state with A (¢, If all successor states are
labelled with Ay, until there is no change.

Computer-Aided Verification — p. 24/-

Labelling Algorithm:
EpUy

1- If any state s is labelled with ¢, label it with E¢U.

2- Repeat: label any state with E¢Uq, if it is labelled with ¢ and at
least one of its successors is labelled with E¢U, until there is
no change.

Complexity: O(S?), where S is the set of reachable states: -z

Labelling Algorithm

Handling ELIp Directly

1- Label all the states that are already labelled o, by ECp.
2- Repeat: Delete the label E[ly from any state if none of its
successors is labelled with EClyp; until there is no change.

Computer-Aided Verification — p. 26/-

Labelling Algorithm

There is even a more efficient way to handle E[Llp:

1. restrict the graph to states satisfying ¢, i.e., delete all other states and their
transitions;

2. find the maximal strongly connected components (SCCs); these are maximal
regions of the reachable states in which every state is reachable from every other
one in that region.

3. use breadth-first searching on the restricted graph to find any state that can reach
an SCC.

@@

Complexity: O(SS), where S is the set of reachable states.

Computer-Aided Verification — p. 27/-

State Space
Explosion

Notice that in worst case, one has to explore the set of all states
to label them:

B Forward reachablity: computing successor states until a fixpoint
IS reached

B Backward reachability: computing predecessor states until a
fixpoint is reached

Question. Is it possible to make this computation more efficient?

Computer-Aided Verification — p. 28/~

m Computation Tree Logic (CTL)
m CTL Model Checking

m Binary Decision Diagrams (BDDs)

m The Model Checker SMV

State Space
Explosion

Exhaustive analysis may require to store all the states of the
Kripke structure, and to explore them one-by-one.

The state space may be exponential in the number of
components and variables (E.g., 300 Boolean vars = up to 23%
states!)

State Space Explosion:
B Too much memory required,;
B Too much CPU time required to explore each state.

A solution: Symbolic Model Checking.

Computer-Aided Verification — p. 30/t

Symbolic Model
Checking

Symbolic representation of set of states by formulae In propositional
logic:
B manipulation of sets of states, rather than single states;

B manipulation of sets of transitions, rather than single transitions.

Computer-Aided Verification — p. 31/%

Ordered Binary Decision Diagrams (OBDD) are used to represent
formulae in propositional logic.

A simple version: Binary Decision Trees:

B Non-Terminal nodes labelled with Boolean
variables/propositions;

M [eaves (terminal nodes) are labelled with either O or 1;
B Two kinds of lines: dashed and solid,

B Paths leading to 1 represent models, while paths leading to
O represent counter-models.

Computer-Aided Verification — p. 32/-

Binary Decision
Trees

BDT representing the formula: ¢ = -z A —y:

The assignment, z = 0 and y = 0 makes true the formula.

Computer-Aided Verification — p. 33/%

Binary Decision
Trees

Let 7' be a BDT, then T determines a unigue Boolean formula in
the following way:

Fixed an assignment for the variables in T" we start at the root
and:

m If the value of the variable in the current node is 1 we follow
the solid line;

m Otherwise, we follow the dashed line;

B The truth value of the formula is given by the value of the
leaf we reach.

Computer-Aided Verification — p. 34/-

Binary Decision
Trees

BDT's with multiple occurrences of a variable along a path are:

B Rather inefficient (Redundant paths);

m Difficult to check whether they represent the same formula
(equivalence test). Example of two equivalent BDT’s

7 7
7 7
7 7
7 7
7 7
7 7
- ’ \ z s

/,@1@’@ IO ERONEE

Computer-Aided Verification — p. 35/¢

Ordered Binary
Decision Trees

Ordered Decision Tree (OBDT): from root to leaves variables are
encountered always in the same order without repetitions along
paths. Example: Ordered Decision tree for ¢ = (a A b) V (c A d)

(4)
/4

//

0//0(|O

1

Reducing the Size of
OBDDs

OBDT'’s are still exponential in the number of variables: Given n

variables the OBDT’s will have 2**! — 1 nodes!
We can reduce the size of OBDT'’s by a recursive applications of

the following reductions:

B Remove Redundancies: Nodes with same left and right children
can be eliminated,;

B Share Subnodes: Roots of structurally identical sub-trees can
be collapsed.

Computer-Aided Verification — p. 37/¢

Reducing the Size of
OBDDs

Remove Redundancies:

Computer-Aided Verification — p. 38/t

Reducing the Size of
OBDDs

Remove Redundancies:

Reducing the Size of
OBDDs

Remove Redundancies:

Reducing the Size of
OBDDs

Remove Redundancies:

Reducing the Size of

Share identical nodes:

Reducing the Size of
OBDDs

Share identical nodes:

Reducing the Size of
OBDDs

Computer-Aided Verification — p. 44/*

Reducing the Size of
OBDDs

Remove Redundancies:

Reducing the Size of
OBDDs

The final OBDD!

=\ \
A\
O
Joa
Voo
[N
[
U
'
v\
v
v
\
\
! \
! \
\ \
\ \
\ \

OBDDs as Canonical
Forms

Theorem. A Reduced OBDD is a Canonical
Form of a Boolean formula: Once a variable

| ordering Is established (i.e., OBDD’s have

| compatible variable ordering), equivalent
formulae are represented by the same OBDD:

O1 < ¢y it OBDD(¢p1) = OBDD(¢s)

Computer-Aided Verification — p. 47/¢

Impact of Variable
Ordering

Changing the ordering of variables may increase the size of
OBDD’s. Example, two OBDD'’s for the formula:

» = (a1 < b1) A (a2 < ba) A (a3 < bs)

BDD Operations

We do not cover the algorithm for constructing BDDs of
propositional operators (A, V, —). You can find the algorithm in

Randy Bryant, Graph-Based Algorithms for Boolean Function
Manipulation.

Computer-Aided Verification — p. 49/¢

BDD-based

Reachability Analysis

BDD frontier = InitStates:
BDD current = bddZero();
BDD ReachableStates = InitStates:

while (ReachableStates != current)

{

current = ReachableStates;
BDD image = frontier * Transitions,
frontier = Unprime(image);

ReachableStates = current + frontier;

Computer-Aided Verification — p. 50/-

	Agenda
	Agenda
	CTL
	Intuition
	Intuition
	Intuition
	Intuition
	CTL Semantics
	CTL Semantics
	CTL Semantics
	CTL Semantics
	CTL Semantics
	CTL Semantics
	Safety Properties
	Liveness Properties
	In-class Exercise
	In-class Exercise
	LTL vs. CTL
	Agenda
	Problem Statement and Assumptions
	Solution
	Labelling Algorithm
	Labelling Algorithm $�a Diamond varphi $
	Labelling Algorithm: $	e phi un psi $
	Labelling Algorithm
	Labelling Algorithm
	State Space Explosion
	Agenda
	State Space Explosion
	Symbolic Model Checking
	OBDDs
	Binary Decision Trees
	Binary Decision Trees
	Binary Decision Trees
	Ordered Binary Decision Trees
	Reducing the Size of OBDDs
	Reducing the Size of OBDDs
	Reducing the Size of OBDDs
	Reducing the Size of OBDDs
	Reducing the Size of OBDDs
	Reducing the Size of OBDDs
	Reducing the Size of OBDDs
	Reducing the Size of OBDDs
	Reducing the Size of OBDDs
	Reducing the Size of OBDDs
	OBDDs as Canonical Forms
	Impact of Variable Ordering
	BDD Operations
	BDD-based Reachability Analysis

