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m Binary Decision Diagrams (BDDs)
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CTL

= Computation Tree Logic: Intuitions.

m CTL: Syntax and Semantics.

m CTL in Computer Science.

m CTL and Model Checking: Examples.
mCTL Vs. LTL.
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INntuition

LTL implicitly quantifies universally over paths:
(M, s) = ¢ iff for every path = starting at s, (M, ) = ¢

Properties that assert the existence of a path cannot be expressed
In LTL. In particular, properties which mix existential and
universal path quantifiers cannot be expressed.

The Computation Tree Logic, CTL, solves these problems:
m CTL explicitly introduces path guantifiers!

m CTL is the natural temporal logic interpreted over Branching
Time Structures.
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INntuition

CTL is evaluated over branching-time structures (Trees). CTL
explicitly introduces path quantifiers:

m All Paths: A
W Exists a Path: E

Every temporal operator (L1, ¢, (O, U) is preceded by a path
guantifier (A or E).

In universal modalities: (A, A), A, AU), the temporal
formula is true in all the paths starting in the current state.

In existential modalities: (EL], EQ, EQ), EU), The temporal
formula is true in some path starting in the current state,
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Intuition

Countable set X of atomic propositions: p, ¢, - - - the set FORM of
formulas is:

b —p | T L] =6 6Ay | Ve
ADG | AGd | AO¢ | AdUY|
ED¢ | EO¢ | EQ 6 | E¢UY|
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CTL Semantics

We interpret our CTL temporal formulae over Kripke models
linearized as trees.

Let > be a set of atomic propositions. We interpret our CTL
temporal formulae over Kripke Models:

M= (S 1,R,3, L)
The semantics of a temporal formula is provided by the
satisfaction relation:

=: (M x S x FORM) — {true, false}
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CTL Semantics

We start by defining when an atomic proposition is true at a
state/time “s;”

M,s; =p iff pe L(s;) (forpe?X)
The semantics for the classical operators is as expected:
M,s; = ¢ Iff s, =0
M,s; =Ny iff s;, =EoNs EY
M,s; =o Vi iff s, =oVs EvY
M,s; =T
M,s; = L
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CTL Semantics

We start by defining when an atomic proposition is true at a

state/time “s;

M,s; =p iff pe L(s;) (forpe?X)
The semantics for the classical operators is as expected:
M,siEAQ¢ iff Vr={(s,sit1," ) e M,sit1 F ¢

M,Si ‘:Eng Iff E|7T:(SZ',SZ'_|_1,~'°)OM,S7;_|_1 ‘:qb
M,Si‘:ADqﬁ Iff \V/’/T:(8@,87;+1,"')0\V/j2i0M,8j \:gb

M,SZ' |:ED¢ Iff E|7T:(Si,8i+1,-'°)0VjZiOM,Sj |:¢
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CTL Semantics

The semantics for the classical operators is as expected:
M,Sz":Aqu Iff \V/’JT:(Si,8i+1,---)03jZiOM,8j |:q5

M,SZ'|:E<>¢ Iff E|7T:(Si,8i+1,°-')03jZiOM,Sj |:q5

M,s; = AoUyp  iff V= (54,841, --)edj>ie M, s; =9 A
Vi< k< jeM, s ‘:gb

M,s; = EoUy  iff Im = (54,841, --)edj>ieM,s; =9 A
Vi<k<jeM,sp,E¢
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CTL Semantics

CTL is given by the standard Boolean logic enhanced with
temporal operators.

Necessarily Next. A () ¢ IS true in s; Iff ¢ IS true Iin every successor
state s;1.

Possibly Next. E () ¢ IS true In s; Iff ¢ IS true in one successor state

St+41-

Necessarily in the future (Or “Inevitably”). AQ¢ is true in s, Iff ¢ Is
inevitably true in some sy with ¢/ > ¢.

Possibly in the future (or “Possibly”). EQ¢ Is true In s; Iff ¢ may be
true In Some St/ Wlth t/ Z t. Computer-Aided Verification — p. 13/-



finally p globally p next p
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Safety Properties

Safety:

“something bad will not happen”

Typical examples:
Al—(reactor_temp > 1000)

Safety properties are usually of the form:
A= -
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Liveness Properties

Liveness:

“something good will happen”

Typical examples:
B A{rich
mAO(x > 5)

B A(](start = A{Qterminate)
Leads-to, unbounded response

and so on.....
Liveness properties are usually of the form:
Ad—- .
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In-class Exercise

Write a CTL formula that is equal to the following
LTL formula:

OT = OC
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Write a CTL formula that is equal to the following
LTL formula:

OT = OC
. What about:
AT = AQC
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LTL vs. CTL

Many CTL formulae cannot be expressed in LTL (e.g., those
containing paths guantified existentially)
E.g., E¢

Many LTL formulae cannot be expressed in CTL
E.g., 0T = OC (Strong Fairness In LTL)

l.e, formulae that select a range of paths with a property

Some formulae can be expressed both in LTL and in CTL
(typically LTL formulae with operators of nesting depth 1)
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m Computation Tree Logic (CTL)

m CTL Model Checking

m Binary Decision Diagrams (BDDs)
= The Model Checker SMV
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Problem Statement
and Assumptions

Problem. Given a model M and a CTL formula ¢, determine
whether or not M = ¢.
Assumptions:

m M is a finite model: finite number of states with variables of
finite domain.

M ¢ is a finite length CTL formula.
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Solution

1. Transform ¢ into a formula in terms of:
AO,EU, EO), A, V, L.

2. For each subformula ¢ of ¢, label states of M, say s, such
that s = .

3. If the initial state sg satisfies a subformula ¢, then M |= ¢ as
well.
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Labelling Algorithm

Let ¢ be a subformula of ¢ and states satisfying all the
Immediate subformulas of © have already been labelled. We
want to determine which states to label with . If ¢ Is:

m | : then no states are labelled with L.

W p (atomic proposition): label s with p if p € L(s).

B, A ps: label s with o1 A @9 If s Is already labelled both with
©1 and with L.

m —¢: label s with = if s Is not already labelled with .

B E () p: label any state with E (O ¢ if one of its successors Is
labelled with .
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Labelling Algorithm

1- If any state s is labelled with ¢, label it with A Q.
2- Repeat: label any state with A (¢, If all successor states are
labelled with Ay, until there is no change.
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Labelling Algorithm:
EpUy

1- If any state s is labelled with ¢, label it with E¢U.

2- Repeat: label any state with E¢Uq, if it is labelled with ¢ and at
least one of its successors is labelled with E¢U, until there is
no change.

Complexity: O(S?), where S is the set of reachable states: -z



Labelling Algorithm

Handling ELIp Directly

1- Label all the states that are already labelled o, by ECp.
2- Repeat: Delete the label E[ly from any state if none of its
successors is labelled with EClyp; until there is no change.
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Labelling Algorithm

There is even a more efficient way to handle E[Llp:

1. restrict the graph to states satisfying ¢, i.e., delete all other states and their
transitions;

2. find the maximal strongly connected components (SCCs); these are maximal
regions of the reachable states in which every state is reachable from every other
one in that region.

3. use breadth-first searching on the restricted graph to find any state that can reach
an SCC.

@@

Complexity: O(SS), where S is the set of reachable states.

Computer-Aided Verification — p. 27/-



State Space
Explosion

Notice that in worst case, one has to explore the set of all states
to label them:

B Forward reachablity: computing successor states until a fixpoint
IS reached

B Backward reachability: computing predecessor states until a
fixpoint is reached

Question. Is it possible to make this computation more efficient?
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State Space
Explosion

Exhaustive analysis may require to store all the states of the
Kripke structure, and to explore them one-by-one.

The state space may be exponential in the number of
components and variables (E.g., 300 Boolean vars = up to 23%
states!)

State Space Explosion:
B Too much memory required,;
B Too much CPU time required to explore each state.

A solution: Symbolic Model Checking.
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Symbolic Model
Checking

Symbolic representation of set of states by formulae In propositional
logic:
B manipulation of sets of states, rather than single states;

B manipulation of sets of transitions, rather than single transitions.
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Ordered Binary Decision Diagrams (OBDD) are used to represent
formulae in propositional logic.

A simple version: Binary Decision Trees:

B Non-Terminal nodes labelled with Boolean
variables/propositions;

M [ eaves (terminal nodes) are labelled with either O or 1;
B Two kinds of lines: dashed and solid,

B Paths leading to 1 represent models, while paths leading to
O represent counter-models.
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Binary Decision
Trees

BDT representing the formula: ¢ = -z A —y:

The assignment, z = 0 and y = 0 makes true the formula.
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Binary Decision
Trees

Let 7' be a BDT, then T determines a unigue Boolean formula in
the following way:

Fixed an assignment for the variables in T" we start at the root
and:

m If the value of the variable in the current node is 1 we follow
the solid line;

m Otherwise, we follow the dashed line;

B The truth value of the formula is given by the value of the
leaf we reach.
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Binary Decision
Trees

BDT's with multiple occurrences of a variable along a path are:

B Rather inefficient (Redundant paths);

m Difficult to check whether they represent the same formula
(equivalence test). Example of two equivalent BDT’s

7 7
7 7
7 7
7 7
7 7
7 7
- ’ \ z s

/,@1@’@ IO ERONEE
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Ordered Binary
Decision Trees

Ordered Decision Tree (OBDT): from root to leaves variables are
encountered always in the same order without repetitions along
paths. Example: Ordered Decision tree for ¢ = (a A b) V (c A d)

(4)
/4

//

0//0(|O

1




Reducing the Size of
OBDDs

OBDT'’s are still exponential in the number of variables: Given n

variables the OBDT’s will have 2**! — 1 nodes!
We can reduce the size of OBDT'’s by a recursive applications of

the following reductions:

B Remove Redundancies: Nodes with same left and right children
can be eliminated,;

B Share Subnodes: Roots of structurally identical sub-trees can
be collapsed.
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Reducing the Size of
OBDDs

Remove Redundancies:
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Reducing the Size of
OBDDs

Remove Redundancies:




Reducing the Size of
OBDDs

Remove Redundancies:




Reducing the Size of
OBDDs

Remove Redundancies:




Reducing the Size of

Share identical nodes:




Reducing the Size of
OBDDs

Share identical nodes:




Reducing the Size of
OBDDs
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Reducing the Size of
OBDDs

Remove Redundancies:




Reducing the Size of
OBDDs

The final OBDD!
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OBDDs as Canonical
Forms

Theorem. A Reduced OBDD is a Canonical
Form of a Boolean formula: Once a variable

| ordering Is established (i.e., OBDD’s have

| compatible variable ordering), equivalent
formulae are represented by the same OBDD:

O1 < ¢y it OBDD(¢p1) = OBDD(¢s)
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Impact of Variable
Ordering

Changing the ordering of variables may increase the size of
OBDD’s. Example, two OBDD'’s for the formula:

» = (a1 < b1) A (a2 < ba) A (a3 < bs)

_______________



BDD Operations

We do not cover the algorithm for constructing BDDs of
propositional operators (A, V, —). You can find the algorithm in

Randy Bryant, Graph-Based Algorithms for Boolean Function
Manipulation.
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BDD-based

Reachability Analysis

BDD frontier = InitStates:
BDD current = bddZero();
BDD ReachableStates = InitStates:

while (ReachableStates != current)

{

current = ReachableStates;
BDD image = frontier * Transitions,
frontier = Unprime(image);

ReachableStates = current + frontier;
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