Computer-Aided
Verification
ECE725/CS745

Borzoo Bonakdarpour

University of Waterloo
(Winter 2011)
LTL Model Checking

Computer-Aided Verification — p. 1/¢

m Blichi Automata

m Linear Temporal Logic (LTL)
m Translating LTL into Buchi Automata
= The Spin Model checker

Computer-Aided Verification — p. 2/¢

m Bluchi Automata

m Linear Temporal Logic (LTL)
m Translating LTL into Buchi Automata
= The Spin Model checker

Computer-Aided Verification — p. 3/¢

Notation

B Y denotes a finite alphabet.
W Y. * denotes the set of finite words over ..
m Y ¥ denotes the set of infinite words over ..

B An initinite word o is of the form ¢(0)o(1) - - - where each
o(i) € X

B Finite words are indicated by u, v, w, - - - and the empty word
by e.

B Set of finite words are denoted by U, V, W, - - -, and letters

«, 3, -+ for w-words.

mWeuse L, L, --- to denote sets of w-words (i.e.,
w-languages).

Computer-Aided Verification — p. 4/¢

Operators

Let W be a set of finite words:
B prefW :={ue X" | 3:uv e W},

mWwWe . ={ae€X¥|a=wow- - where w; € W for i > 0},

Let 3“n mean “there exists infinitely many n”. For an
w-sequence g = g(0)o(1) - -+ in S¥, the infinity set Of o IS:

In(o) :={s €S| Fno(n) = s}.

Computer-Aided Verification — p. 5/¢

Buchi Automata

Biichi automata are non-deterministic finite automata equipped with
an acceptance condition that is appropriate for w-words:

An w-word is accepted if the automaton can read it from left to

right while assuming a sequence of states in which some final state

occurs infinitely often (Blchi Condition)

Computer-Aided Verification — p. 6/¢

The above Bichi automaton accepts w-words where any
occurrence of letter a is followed by some occurrence of letter b.

Computer-Aided Verification — p. 7/¢

Buchi Automata

Definition. A Biichi automaton over the alphabet X is of the form
A= (Q,q),A, F), where

M () is a finite set of states,

g € () IS an initial state,

BACQx X x @ is atransition relation, and

B [C () Is a set of final states.

Computer-Aided Verification — p. 8/¢

Acceptance In Bulchi
Automata

A run of A over an w-word a = a(0)a(1) --- from X is a
sequence ¢ = ¢(0)o(1) - -- such that ¢(0) = ¢ and
(o(2),a(i),o(t+1)) € Afori > 0.

The run is called successful if In(o) N F # 0.

A buchi automaton A accepts « If there a successful run of A on

.

Computer-Aided Verification — p. 9/¢

Blichi Recognizable

Let

L(A) = {a € ¥ | A accepts a}

be the w-language recognized by A. If L = L(.A) for some Buchi
. automaton A, L is to be Biichi recognizable.

Computer-Aided Verification — p. 10/¢

Let ¥ = {a,b, c}. The language L; C X defined by:

a € Ly iff after any occurrence of letter a there is some
occurrence of letter b in «.

A buchi automaton recognizing L; is the following:

a

b,c . ac

b

The complement ¥ — L, is recognized by the following Buchi
automaton:

ab,c

s '.a C
‘ : O
Computer-Aided Verification — p. 11/¢

Main Theorems

Theorem 1. Deterministic Bichi automata are strictly less expressive
than non-deterministic Blchi automata.

Theorem 2. An w-language L C >“ is Buchi recognizable iff L is a
finite union of set U.V*¥, where U,V C X* are regular sets of finite
words.

Theorem 3. The emptiness problem for Buichi automata is decidable.

Theorem 4. If L C 3¢ is Blchi recognizable, so is > — L.

Theorem 5. The inclusion problem and the equivalence problem for
Blchi automata are decidable.

Computer-Aided Verification — p. 12/¢

m Blichi Automata

m Linear Temporal Logic (LTL)
m Translating LTL into Buchi Automata
= The Spin Model checker

Modal and Temporal
Logic

Modal logic was originally developed by philosophers to study
different modes of truth.

For example, the assertion P may be false in the present world,
and yet the assertion possibly P may be true if there exists an
alternate world where P is true.

Temporal logic IS a special type of modal logic; it provides a formal
system for qualitatively describing and reasoning about the truth
values of assertions over time.

Computer-Aided Verification — p. 14/¢

Temporal Logic

In temporal logic various temporal operators or modalities are
provided to describe and reason about how the truth values of
assertions vary with time:

M sometimes P which is true now if there is a future moment at
which P becomes true

W always () IS true now if () is true at all future moments.

Computer-Aided Verification — p. 15/¢

Temporal Logic

Example. Two processes p; and p, request entering critical
section:

M Mutual exclusion: always ‘p; and po do not enter the critical
section simultaneously’.

M Non-starvation: sometime ‘p; (resp. p») enters the critical
section’.

Computer-Aided Verification — p. 16/¢

Propositional Linear
Temporal Logic (LTL)

Let AP be a set of atomic propositions. A Kripke structure IS
M = (S,x, L), where

M S is a set of states,

Bz : N — S is an infinite sequence of states, and

m [: S — 247 js a labeling of each state with the set of atomic
propositions in AP true at the state.

We usually employ the more convenient notation
r = (sg, S1,S2,- -+). We refer to x as a path, computation, Or behavior.

Computer-Aided Verification — p. 17/

Labelling

What is the labelling function in this example?

Computer-Aided Verification — p. 18/¢

Temporal Operators

The basic temporal operators of LTL are:

B [p: always p (also denoted Gp).
® Op: eventually p (also denoted Fp).
B (Op: nexttime p.

mpUgqg: puntilg.

Computer-Aided Verification — p. 19/¢

lllustration

Op — eventually p

OO @
[p — always p

® O 0 O -
(Op — nexttime p

O O G
pUq - p until q

O O 0 -

Computer-Aided Verification — p. 20/¢

LTL: Syntax

The set of formulae of LTL is the least set of formulae generated
by the following rules:

B each atomic proposition P is a formula
B if p and ¢ are formulae then p A ¢ and —p are formulae

M if p and ¢ are formulae then p U ¢ and (O)p are formulae.

Computer-Aided Verification — p. 21/¢

LTL: Semantics

We define the semantics of LTL with respect to a Kripke structure. We
write M, z = p to mean that “in structure M formula p is true of
computation x.

Let 2 be a computation and z* denote s;, s;11, S;12 - --. We define |=
Inductively on the structure of the formulae:

1.
2.

X

X

X

— P iff P € L(sg), for atomic proposition P

=pAqiffz =pand z = q
= —p iff it is not the case that x = p

—pUqiffdj: (27 =q)and Vk < j : (2* = p),

= Opiffzt =p

Computer-Aided Verification — p. 22/¢

LTL: Abbreviations

® Op abbreviates true U p

B [p abbreviates —=)—p.

Discuss the meaning of the following formulae:

B[0p
mOOp
m(p = 0q)
®-((-pUg)

Computer-Aided Verification — p. 24/¢

LTL Model Checking

Question. How can we check whether a Blichi automaton A

satisfies an LTL formula ¢ (i.e., A = ¢)?

Answer. By checking language inclusion, i.e., L(A) C L(¢).
Alternatively, we can check language emptyness; I.e., whether
L(A) N L(—¢) = 0 as follows:

1. Construct a Blchi automaton that produces all
computations of —¢ (denoted A-y)

2. Compute the product automaton AJ||.A-;
3. If L(A[|A-4) # 0 then A 3= ¢.

Computer-Aided Verification — p. 25/¢

LTL Model Checking

A counterexample IS a trace of the system that violates the property.
Thus, L(A||A-4) # 0 includes the set of counter examples.

. An error (counterexample) may indicate a problem in the system

or it may demonstrate that you did not write your property
correctly.

Computer-Aided Verification — p. 26/¢

m Blchi Automata

m Linear Temporal Logic (LTL)
m Translating LTL into Blchi Automata

m The Spin Model checker

LTL to Buchi
Automata

B Each state of the automata will store a set of properties that
should be satisfied on paths starting at that state

M These properties will be stored in lists old and New where Old
means already processed and New means still needs to be
processed

®m Each state will also store a set of properties which should
be satisfied on paths starting at the next states of that state

M These properties will be stored in the list Next

® The incoming transitions for a state will be stored in the list
Incoming

Computer-Aided Verification — p. 28/¢

LTL to Buchi
Automata

m We will start with a node which has the input LTL property in
its New list

® \We will process the formulae in the New list of each node
one by one

® When we have f U g in the New list we will use

fUg=g Vv (fAO(fUyg))

Computer-Aided Verification — p. 29/¢

LTL to Buchi
Automata

When we process a formula from a node we will either replace
the node with a new node or we will replace it with two new
nodes (i.e., we will split it to two nodes)

B When a node ¢ is replaced by a node ¢’ we will have:
(Old(¢ A New(q) N ONext(q)) <
(Old(¢') A New(q') A ONext(q'))
B \WWhen a node q is split into two nodes ¢; and ¢» we will have
(Old(q) A New(q) A ONext(q)) <

((Old(g1) A New(qi) A ONext(q1)) V
(Old(g2) A New(g2) A ONext(gz)))

Computer-Aided Verification — p. 30/¢

Translation Algorithm

Translate(f) {
Expand([Incoming:=init, Old:=(, New:=f, Next:=0], ()

}
Expand(q, NodeList) {
If New(q) = () then
if 3» € NodeList s.t. Old(r) = Old(g) and Next(r) = Next(q)
then Incoming(r) := Incoming(q) U Incoming(r);
return(NodeList);
else create a new node ¢’ s.t. Incoming(q’)=¢q, Old(¢’) = 0,
New(q")=Next(q), Next(q'):=0;
return expand(q’, Nodelist U {¢});
else // New(q) # 0
pick a formula f from New(qg) and remove it from New(q);
If fis already in Old(g) then return Expand(q, Nodelist);

Computer-Aided Verification — p. 31/¢

Translation Algorithm

hUk=k Vv (b A O(hUE))

elseif (f=hUEk)

create two nodes ¢; and ¢ S.t.
Incoming(qy) = Incoming(q2) =Incoming(q),
Old(q;) = Old(g2) = Old(q) U {h U k},
New(q1) = New(q) U {h},
New(q2) = New(q) U {k},
Next(q1) = Next(q) U{h U k},
Next(q2) = Next(q);

return Expand(gs, Expand(q;, Nodelist));

Computer-Aided Verification — p. 32/¢

Example (a U b)

aUb=0bV (a A O(ald))

Step 1: Nodelist= () Step 2: Nodelist= ()

Denotes @

Incoming

\s

old={}
New = {aUb}

old = {aUb}
New = {a}
Next = {aUb}

old = {aUb}
New = {b}
Next = {}

Next = {}

Computer-Aided Verification — p. 33/¢

Translation Algorithm

elseif (f € APor—f € AP or f is a Boolean constant)

thenif (f = false v —f € Old(q)) then return(Nodelist);
else create a node ¢’ s.t.

Incoming(q’)=Incoming(q),

Old(¢")=Old(q) U {f},

New(q")=New(q) — {f},

Next(¢')=Next(q);
return Expand(q’, Nodelist);

Computer-Aided Verification — p. 34/¢

Example (a U b)

Step 2: Nodelist= () Step 3: Nodelist= ()

old = {aUb}
New = {a}
Next = {aUb}

old = {aUb}
New = {b}
Next = { }

old = {aUb}
New = {a}
Next = {aUb}

Computer-Aided Verification — p. 35/¢

Example (a U b)

Step 3: Nodelist = () Step 4: Nodelist= {nj}

old = {aUb}
New = {a}
Next = {aUb}

old = {b, aUb}
New = { }

Next={}

old = {aUb}
New = {a}
Next = {aUb}

Computer-Aided Verification — p. 36/¢

Example (a U b)

Step 5: Nodelist= {n1,na}

old = {aUb}
New = {a}
Next = {aUb}

Computer-Aided Verification — p. 37/¢

Example (

Step 6: Nodelist= {ni,n2}

old = {aUb}
New = {a}
Next = {aUb}

old = {b, aUb}
New = { }

Next={}

Computer-Aided Verification — p. 38/¢

Example (a U b)

Step 7: Nodelist= {n1,ng2,n3}

n3

old = {aUb, a

New = { }
Next = {aUb}

Computer-Aided Verification — p. 39/¢

Example (a U b)

Step 8: Nodelist= {n1,ng2,n3}

n3

old = {aUb, a

New = { }
Next = {aUb}

—
—

-

e

// Old = {} \\
! \
' New={aUb} ,I
N Next={} /

/ \

Computer-Aided Verification — p. 40/¢

Example (a U b)

Step 9: Nodelist= {n1,n2,n3}

old = {aUb, a

New = { }
Next = {aUb}

Computer-Aided Verification — p. 41/¢

Translation Algorithm

elseif (f=h Vv k)

create two nodes ¢; and ¢, s.t
Incoming(q;) = Incoming(g2) = Incoming(q),
Old(g1) = Old(g2) = Old(q) U {h V k},
New(q:) = (New(q) —{h V k}) U {h},
New(gz) = (New(q) —{h V k}) U {k},
Next(q1) = Next(q2) = Next(q);

return Expand(gs, Expand(q;, Nodelist));

Computer-Aided Verification — p. 42/¢

Translation Algorithm

elseif (f=h A k)
create two node ¢’ s.t
Incoming(q’) = Incoming(g),
Old(¢") = Old(¢) U {h A Kk},
New(q') = (New(q) —{h A k}) U {h} U {k},
Next(¢") = Next(q);
return Expand(q’, Nodelist);

Translation Algorithm

elseif (f = Oh)
create two node ¢’ s.t
Incoming(q’) = Incoming(g),
Old(¢') = Old(g) U {Oh},
New(q") = (New(q) —{Oh}),
Next(¢') = Next(q) U {h};
return Expand(q’, Nodelist);

Completing the
Automaton

The resulting Buchi automaton A = (Q, qo, A, F):

Yy = 24P
M () = Nodelist U init
M ¢y = init

M A is defined as follows:
(q,d,q") € Aiff ¢ € Incoming(q’) and
d satisfies the conjunction of negated and
unnegated propositions in Old(q’)

BFC2ie,F={F,F,- - F}

The acceptance set I’ contains a set of accepting states F; € I for
each subformula of the form h U k£ where F; contains all the states ¢

s.t. either k € Old(q) or hUE & Old(q). If there are no subformulas.of
the form hUEL then F = {Q}

Completing the
Automaton

The size of the resulting automaton can be exponential In the size
of the input formula

The resulting automaton is a generalized Buchi automaton we
can translate it to a standard Buchi automaton.

Computer-Aided Verification — p. 46/¢

Example (a U b)

{b}, {a, b}

{b}, {a, b} 0,{a}

{b}, {a, b}

{a},{a,b}

2 =247 ={0,{a},{b},{a,b}}
= {{n1,n2}}

Q) = {init, ny,no,n3g}

qo = 1nit

Computer-Aided Verification — p. 47/¢

Checking Emptyness

Let 4 be a Buichi automaton. Recall that:

L(A) ={a € X¥ | A accepts a}

| L(A) is nonempty if there exists an accepting state ¢ € F' such
that:

W ¢ is reachable from initial state in ¢¢, and

M ¢ is reachable from itself (i.e., ¢ Is contained in a cycle).

Computer-Aided Verification — p. 48/¢

Checking Emptyness

Any run of a Buchi automaton has a suffix in which all the states
on that suffix appear infinitely many times:

B Each state on that suffix is reachable from any other state

B Hence these states form a strongly connected component

M If there Is an accepting state among those states than the
run is an accepting run

So emptiness check involves finding a strongly connected component
that contains an accepting state and is reachable from an initial
state

Computer-Aided Verification — p. 49/¢

Checking Emptyness

To find cycles in a graph one can use a depth-first search algorithm
which constructs the strongly connected components in linear
time by adding two integer numbers to every state reached.

If a strongly connected component reachable from an initial state
contains an accepting state then the language accepted by the

Blchi automaton is not empty.

There is a more memory efficient algorithm for checking the
same condition which is called nested depth first search.

Computer-Aided Verification — p. 50/¢

m Blichi Automata

m Linear Temporal Logic (LTL)
m Translating LTL into Buchi Automata
m The Spin Model checker

Computer-Aided Verification — p. 51/¢

Spin

m Model-checker

m Based on automata theory
m Allows LTL or automata specification

m Efficient (on-the-fly model checking, partial
order reduction).

m Developed in Bell Laboratories.

The Language of
Spin (Promela)

The expressions are from C.
= The communication is from CSP.

m The constructs are from Guarded Command.

Computer-Aided Verification — p. 53/¢

Expressions

m Arithmetic: +, -, *, [, %
m Comparison: >, >=, <, <=
m Boolean: &&, ||, !

m Assignment: : =

m [ncrement/decrement: ++, -

Expressions

m byte namel, name2=4, name3;
m bit b1,b2,b3;

m short s1,s2;

m int arrl[5];

Message types and
channels

= mtype = {OK, READY, ACK}
= mtype Mvar = ACK

m chan Ng=[2] of {byte, byte, mtype},
Next=[0] of {byte}

Ng has a buffer of 2, each message consists
of two bytes and an enumerable type (mtype).
Next is used with handshake message
passing.

Computer-Aided Verification — p. 56/¢

Sending and
receiving a message

m Channel declaration:
chan gname=[3] of mtype, byte, byte

® In sender:
gnameltag3(exprl, expr2) or equivalently:
gnameltag3, exprl, expr2

m [n Recelver:
gnhame?tag3(varl,var2)

Computer-Aided Verification — p. 57/¢

Condition

If

L X%2==1 -> z=7*y; X—

- X%2==0 -> y=y*y; X=Xx/2
fi

If more than one guard is enabled: a non-deterministic
choice.

If no guard Is enabled: the process waits (until a guard
becomes enabled).

Computer-Aided Verification — p. 58/¢

Looping

do

XY -> X=X-Y
L Y>X -> y=y-X
.. else break
od;

Normal way to terminate a loop: with break. (or goto).

As In condition, we may have a non-deterministic loop or
have to walit.

Computer-Aided Verification — p. 59/¢

Definition of a process:
proctype prname (byte Id; chan Comm)

{

Statements

Activation of a process:
run prname (7, Con[1]);

Computer-Aided Verification — p. 60/¢

INit process Is the
root of all others

Init{ statements }

init {byte 1=0;
atomic{do
::1<10 -> run prname(l, chan[l]);
|=I+1
::1=10 -> break;

od}}

atomic allows performing several actions as one atomic
step.

Computer-Aided Verification — p. 61/¢

Mutual Exclusion

Non_Critical _Section;
TR:Pre_Protocol;
CR:Critical _Section;
Post_protocol;

end loop;

Computer-Aided Verification — p. 62/¢

task PO is
begin
loop
Non_Ciritical _Sec;
Wait Turn=0;
Critical _Sec;
Turn:=1,
end loop
end PO.

Mutual Exclusion

task P1is
begin
loop
Non_Ciritical _Sec;
Wait Turn=1;
Critical _Sec;
Turn :=0;
end loop
end P1

Computer-Aided Verification — p. 63/¢

#define t (P@try)
#define c (P@cr)
#define critical (incrit[0] && incrit[1])
byte turn=0, incrit[2]=0;
proctype P (bool id)
{do
2 1->
do
2 1 -> skip
. 1 -> break
od

Translating into Spin

try:do
:turn==id -> break
od;

cr:incrit[id]=1,;
incrit[id]=0;
turn=21-turn
od}

Init{ atomic{
run P(0); run P(1) } };

Computer-Aided Verification — p. 64/

LTL Verification
Using Spin

Both process do not enter the critical section:

spin -f [] lcritical’

spin -f ‘[|(t -> <>c¢)’

In old versions of Spin, one could verify properties
expressed as never claims.

Computer-Aided Verification — p. 65/¢

	Agenda
	Agenda
	Notation
	Operators
	B"uchi Automata
	Example
	B"uchi Automata
	Acceptance in B"uchi Automata
	B"uchi Recognizable
	Example
	Main Theorems
	Agenda
	Modal and Temporal Logic
	Temporal Logic
	Temporal Logic
	Propositional Linear Temporal Logic (LTL)
	Labelling
	Temporal Operators
	Illustration
	LTL: Syntax
	LTL: Semantics
	LTL: Abbreviations
	LTL: Examples
	LTL Model Checking
	LTL Model Checking
	Agenda
	LTL to B"uchi Automata
	LTL to B"uchi Automata
	LTL to B"uchi Automata
	Translation Algorithm
	Translation Algorithm
	Example $(a ; un ; b)$
	Translation Algorithm
	Example $(a ; un ; b)$
	Example $(a ; un ; b)$
	Example $(a ; un ; b)$
	Example $(a ; un ; b)$
	Example $(a ; un ; b)$
	Example $(a ; un ; b)$
	Example $(a ; un ; b)$
	Translation Algorithm
	Translation Algorithm
	Translation Algorithm
	Completing the Automaton
	Completing the Automaton
	Example $(a ; un ; b)$
	Checking Emptyness
	Checking Emptyness
	Checking Emptyness
	Agenda
	Spin
	The Language of Spin (Promela)
	Expressions
	Expressions
	Message types and channels
	Sending and receiving a message
	Condition
	Looping
	Process Declaration
	init process is the root of all others
	Mutual Exclusion
	Mutual Exclusion
	Translating into Spin
	LTL Verification Using Spin

