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Notation

B Y denotes a finite alphabet.
W Y. * denotes the set of finite words over ..
m Y ¥ denotes the set of infinite words over ..

B An initinite word o is of the form ¢(0)o(1) - - - where each
o(i) € X

B Finite words are indicated by u, v, w, - - - and the empty word
by e.

B Set of finite words are denoted by U, V, W, - - -, and letters

«, 3, -+ for w-words.

mWeuse L, L, --- to denote sets of w-words (i.e.,
w-languages).
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Operators

Let W be a set of finite words:
B prefW :={ue X" | 3:uv e W},

mWwWe . ={ae€X¥|a=wow- - where w; € W for i > 0},

Let 3“n mean “there exists infinitely many n”. For an
w-sequence g = g(0)o(1) - -+ in S¥, the infinity set Of o IS:

In(o) :={s €S| Fno(n) = s}.
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Buchi Automata

Biichi automata are non-deterministic finite automata equipped with
an acceptance condition that is appropriate for w-words:

An w-word is accepted if the automaton can read it from left to

right while assuming a sequence of states in which some final state

occurs infinitely often (Blchi Condition)
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The above Bichi automaton accepts w-words where any
occurrence of letter a is followed by some occurrence of letter b.
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Buchi Automata

Definition. A Biichi automaton over the alphabet X is of the form
A= (Q,q),A, F), where

M () is a finite set of states,

g € () IS an initial state,

BACQx X x @ is atransition relation, and

B [ C () Is a set of final states.
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Acceptance In Bulchi
Automata

A run of A over an w-word a = a(0)a(1) --- from X is a
sequence ¢ = ¢(0)o(1) - -- such that ¢(0) = ¢ and
(o(2),a(i),o(t+1)) € Afori > 0.

The run is called successful if In(o) N F # 0.

A buchi automaton A accepts « If there a successful run of A on

.
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Blichi Recognizable

Let

L(A) = {a € ¥ | A accepts a}

be the w-language recognized by A. If L = L(.A) for some Buchi
. automaton A, L is to be Biichi recognizable.
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Let ¥ = {a,b, c}. The language L; C X defined by:

a € Ly iff after any occurrence of letter a there is some
occurrence of letter b in «.

A buchi automaton recognizing L; is the following:

a

b,c . ac

b

The complement ¥ — L, is recognized by the following Buchi
automaton:

ab,c

s '.a C
‘ : O
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Main Theorems

Theorem 1. Deterministic Bichi automata are strictly less expressive
than non-deterministic Blchi automata.

Theorem 2. An w-language L C >“ is Buchi recognizable iff L is a
finite union of set U.V*¥, where U,V C X* are regular sets of finite
words.

Theorem 3. The emptiness problem for Buichi automata is decidable.

Theorem 4. If L C 3¢ is Blchi recognizable, so is > — L.

Theorem 5. The inclusion problem and the equivalence problem for
Blchi automata are decidable.
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Modal and Temporal
Logic

Modal logic was originally developed by philosophers to study
different modes of truth.

For example, the assertion P may be false in the present world,
and yet the assertion possibly P may be true if there exists an
alternate world where P is true.

Temporal logic IS a special type of modal logic; it provides a formal
system for qualitatively describing and reasoning about the truth
values of assertions over time.
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Temporal Logic

In temporal logic various temporal operators or modalities are
provided to describe and reason about how the truth values of
assertions vary with time:

M sometimes P which is true now if there is a future moment at
which P becomes true

W always () IS true now if () is true at all future moments.

Computer-Aided Verification — p. 15/¢



Temporal Logic

Example. Two processes p; and p, request entering critical
section:

M Mutual exclusion: always ‘p; and po do not enter the critical
section simultaneously’.

M Non-starvation: sometime ‘p; (resp. p») enters the critical
section’.
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Propositional Linear
Temporal Logic (LTL)

Let AP be a set of atomic propositions. A Kripke structure IS
M = (S,x, L), where

M S is a set of states,

Bz : N — S is an infinite sequence of states, and

m [ : S — 247 js a labeling of each state with the set of atomic
propositions in AP true at the state.

We usually employ the more convenient notation
r = (sg, S1,S2,- -+ ). We refer to x as a path, computation, Or behavior.
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Labelling

What is the labelling function in this example?
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Temporal Operators

The basic temporal operators of LTL are:

B [p: always p (also denoted Gp).
® Op: eventually p (also denoted Fp).
B (Op: nexttime p.

mpUgqg: puntilg.
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lllustration

Op — eventually p

OO @
[p — always p

® O 0 O -
(Op — nexttime p

O O G
pUq - p until q

O O 0 -
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LTL: Syntax

The set of formulae of LTL is the least set of formulae generated
by the following rules:

B each atomic proposition P is a formula
B if p and ¢ are formulae then p A ¢ and —p are formulae

M if p and ¢ are formulae then p U ¢ and (O)p are formulae.
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LTL: Semantics

We define the semantics of LTL with respect to a Kripke structure. We
write M, z = p to mean that “in structure M formula p is true of
computation x.

Let 2 be a computation and z* denote s;, s;11, S;12 - --. We define |=
Inductively on the structure of the formulae:

1.
2.

X

X

X

— P iff P € L(sg), for atomic proposition P

=pAqiffz =pand z = q
= —p iff it is not the case that x = p

—pUqiffdj: (27 =q)and Vk < j : (2* = p),

= Opiffzt =p
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LTL: Abbreviations

® Op abbreviates true U p

B [p abbreviates —=)—p.



Discuss the meaning of the following formulae:

B[ 0p
mOOp
m(p = 0q)
®-((-pUg)
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LTL Model Checking

Question. How can we check whether a Blichi automaton A

satisfies an LTL formula ¢ (i.e., A = ¢)?

Answer. By checking language inclusion, i.e., L(A) C L(¢).
Alternatively, we can check language emptyness; I.e., whether
L(A) N L(—¢) = 0 as follows:

1. Construct a Blchi automaton that produces all
computations of —¢ (denoted A-y)

2. Compute the product automaton AJ||.A-;
3. If L(A[|A-4) # 0 then A 3= ¢.
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LTL Model Checking

A counterexample IS a trace of the system that violates the property.
Thus, L(A||A-4) # 0 includes the set of counter examples.

. An error (counterexample) may indicate a problem in the system

or it may demonstrate that you did not write your property
correctly.
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LTL to Buchi
Automata

B Each state of the automata will store a set of properties that
should be satisfied on paths starting at that state

M These properties will be stored in lists old and New where Old
means already processed and New means still needs to be
processed

®m Each state will also store a set of properties which should
be satisfied on paths starting at the next states of that state

M These properties will be stored in the list Next

® The incoming transitions for a state will be stored in the list
Incoming
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LTL to Buchi
Automata

m We will start with a node which has the input LTL property in
its New list

® \We will process the formulae in the New list of each node
one by one

® When we have f U g in the New list we will use

fUg=g Vv (fAO(fUyg))
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LTL to Buchi
Automata

When we process a formula from a node we will either replace
the node with a new node or we will replace it with two new
nodes (i.e., we will split it to two nodes)

B When a node ¢ is replaced by a node ¢’ we will have:
(Old(¢ A New(q) N ONext(q)) <
(Old(¢') A New(q') A ONext(q'))
B \WWhen a node q is split into two nodes ¢; and ¢» we will have
(Old(q) A New(q) A ONext(q)) <

((Old(g1) A New(qi) A ONext(q1)) V
(Old(g2) A New(g2) A ONext(gz)))
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Translation Algorithm

Translate(f) {
Expand([Incoming:=init, Old:=(, New:=f, Next:=0], ()

}
Expand(q, NodeList) {
If New(q) = () then
if 3» € NodeList s.t. Old(r) = Old(g) and Next(r) = Next(q)
then Incoming(r) := Incoming(q) U Incoming(r);
return(NodeList);
else create a new node ¢’ s.t. Incoming(q’)=¢q, Old(¢’) = 0,
New(q")=Next(q), Next(q'):=0;
return expand(q’, Nodelist U {¢});
else // New(q) # 0
pick a formula f from New(qg) and remove it from New(q);
If fis already in Old(g) then return Expand(q, Nodelist);
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Translation Algorithm

hUk=k Vv (b A O(hUE))

elseif (f=hUEk)

create two nodes ¢; and ¢ S.t.
Incoming(qy) = Incoming(q2) =Incoming(q),
Old(q;) = Old(g2) = Old(q) U {h U k},
New(q1) = New(q) U {h},
New(q2) = New(q) U {k},
Next(q1) = Next(q) U{h U k},
Next(q2) = Next(q);

return Expand(gs, Expand(q;, Nodelist));
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Example (a U b)

aUb=0bV (a A O(ald))

Step 1: Nodelist= () Step 2: Nodelist= ()

Denotes @

Incoming

\s

old={}
New = {aUb}

old = {aUb}
New = {a}
Next = {aUb}

old = {aUb}
New = {b}
Next = {}

Next = {}
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Translation Algorithm

elseif (f € APor—f € AP or f is a Boolean constant)

thenif (f = false v —f € Old(q)) then return(Nodelist);
else create a node ¢’ s.t.

Incoming(q’)=Incoming(q),

Old(¢")=Old(q) U {f},

New(q")=New(q) — {f},

Next(¢')=Next(q);
return Expand(q’, Nodelist);
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Example (a U b)

Step 2: Nodelist= () Step 3: Nodelist= ()

old = {aUb}
New = {a}
Next = {aUb}

old = {aUb}
New = {b}
Next = { }

old = {aUb}
New = {a}
Next = {aUb}
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Example (a U b)

Step 3: Nodelist = () Step 4: Nodelist= {nj}

old = {aUb}
New = {a}
Next = {aUb}

old = {b, aUb}
New = { }

Next={}

old = {aUb}
New = {a}
Next = {aUb}
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Example (a U b)

Step 5: Nodelist= {n1,na}

old = {aUb}
New = {a}
Next = {aUb}

Computer-Aided Verification — p. 37/¢



Example (

Step 6: Nodelist= {ni,n2}

old = {aUb}
New = {a}
Next = {aUb}

old = {b, aUb}
New = { }

Next={}
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Example (a U b)

Step 7: Nodelist= {n1,ng2,n3}

n3

old = {aUb, a

New = { }
Next = {aUb}
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Example (a U b)

Step 8: Nodelist= {n1,ng2,n3}

n3

old = {aUb, a

New = { }
Next = {aUb}

—
—

-

e

// Old = {} \\
! \
' New={aUb} ,I
N Next={} /

/ \
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Example (a U b)

Step 9: Nodelist= {n1,n2,n3}

old = {aUb, a

New = { }
Next = {aUb}
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Translation Algorithm

elseif (f=h Vv k)

create two nodes ¢; and ¢, s.t
Incoming(q;) = Incoming(g2) = Incoming(q),
Old(g1) = Old(g2) = Old(q) U {h V k},
New(q:) = (New(q) —{h V k}) U {h},
New(gz) = (New(q) —{h V k}) U {k},
Next(q1) = Next(q2) = Next(q);

return Expand(gs, Expand(q;, Nodelist));
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Translation Algorithm

elseif (f=h A k)
create two node ¢’ s.t
Incoming(q’) = Incoming(g),
Old(¢") = Old(¢) U {h A Kk},
New(q') = (New(q) —{h A k}) U {h} U {k},
Next(¢") = Next(q);
return Expand(q’, Nodelist);



Translation Algorithm

elseif (f = Oh)
create two node ¢’ s.t
Incoming(q’) = Incoming(g),
Old(¢') = Old(g) U {Oh},
New(q") = (New(q) —{Oh}),
Next(¢') = Next(q) U {h};
return Expand(q’, Nodelist);



Completing the
Automaton

The resulting Buchi automaton A = (Q, qo, A, F):

Yy = 24P
M () = Nodelist U init
M ¢y = init

M A is defined as follows:
(q,d,q") € Aiff ¢ € Incoming(q’) and
d satisfies the conjunction of negated and
unnegated propositions in Old(q’)

BFC2ie,F={F,F,- - F}

The acceptance set I’ contains a set of accepting states F; € I for
each subformula of the form h U k£ where F; contains all the states ¢

s.t. either k € Old(q) or hUE & Old(q). If there are no subformulas.of . ...
the form hUEL then F = {Q}



Completing the
Automaton

The size of the resulting automaton can be exponential In the size
of the input formula

The resulting automaton is a generalized Buchi automaton we
can translate it to a standard Buchi automaton.
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Example (a U b)

{b}, {a, b}

{b}, {a, b} 0,{a}

{b}, {a, b}

{a},{a,b}

2 =247 ={0,{a},{b},{a,b}}
= {{n1,n2}}

Q) = {init, ny,no,n3g}

qo = 1nit
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Checking Emptyness

Let 4 be a Buichi automaton. Recall that:

L(A) ={a € X¥ | A accepts a}

| L(A) is nonempty if there exists an accepting state ¢ € F' such
that:

W ¢ is reachable from initial state in ¢¢, and

M ¢ is reachable from itself (i.e., ¢ Is contained in a cycle).
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Checking Emptyness

Any run of a Buchi automaton has a suffix in which all the states
on that suffix appear infinitely many times:

B Each state on that suffix is reachable from any other state

B Hence these states form a strongly connected component

M If there Is an accepting state among those states than the
run is an accepting run

So emptiness check involves finding a strongly connected component
that contains an accepting state and is reachable from an initial
state

Computer-Aided Verification — p. 49/¢



Checking Emptyness

To find cycles in a graph one can use a depth-first search algorithm
which constructs the strongly connected components in linear
time by adding two integer numbers to every state reached.

If a strongly connected component reachable from an initial state
contains an accepting state then the language accepted by the

Blchi automaton is not empty.

There is a more memory efficient algorithm for checking the
same condition which is called nested depth first search.
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Spin

m Model-checker

m Based on automata theory
m Allows LTL or automata specification

m Efficient (on-the-fly model checking, partial
order reduction).

m Developed in Bell Laboratories.



The Language of
Spin (Promela)

The expressions are from C.
= The communication is from CSP.

m The constructs are from Guarded Command.
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Expressions

m Arithmetic: +, -, *, [, %
m Comparison: >, >=, <, <=
m Boolean: &&, ||, !

m Assignment: : =

m [ncrement/decrement: ++, -



Expressions

m byte namel, name2=4, name3;
m bit b1,b2,b3;

m short s1,s2;

m int arrl[5];




Message types and
channels

= mtype = {OK, READY, ACK}
= mtype Mvar = ACK

m chan Ng=[2] of {byte, byte, mtype},
Next=[0] of {byte}

Ng has a buffer of 2, each message consists
of two bytes and an enumerable type (mtype).
Next is used with handshake message
passing.
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Sending and
receiving a message

m Channel declaration:
chan gname=[3] of mtype, byte, byte

® In sender:
gnameltag3(exprl, expr2) or equivalently:
gnameltag3, exprl, expr2

m [n Recelver:
gnhame?tag3(varl,var2)
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Condition

If

L X%2==1 -> z=7*y; X—

- X%2==0 -> y=y*y; X=Xx/2
fi

If more than one guard is enabled: a non-deterministic
choice.

If no guard Is enabled: the process waits (until a guard
becomes enabled).
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Looping

do

XY -> X=X-Y
L Y>X -> y=y-X
.. else break
od;

Normal way to terminate a loop: with break. (or goto).

As In condition, we may have a non-deterministic loop or
have to walit.
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Definition of a process:
proctype prname (byte Id; chan Comm)

{

Statements

Activation of a process:
run prname (7, Con[1]);
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INit process Is the
root of all others

Init{ statements }

init {byte 1=0;
atomic{do
::1<10 -> run prname(l, chan[l]);
|=I+1
::1=10 -> break;

od}}

atomic allows performing several actions as one atomic
step.
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Mutual Exclusion

Non_Critical _Section;
TR:Pre_Protocol;
CR:Critical _Section;
Post_protocol;

end loop;
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task PO is
begin
loop
Non_Ciritical _Sec;
Wait Turn=0;
Critical _Sec;
Turn:=1,
end loop
end PO.

Mutual Exclusion

task P1is
begin
loop
Non_Ciritical _Sec;
Wait Turn=1;
Critical _Sec;
Turn :=0;
end loop
end P1
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#define t (P@try)
#define c (P@cr)
#define critical (incrit[0] && incrit[1])
byte turn=0, incrit[2]=0;
proctype P (bool id)
{do
2 1->
do
2 1 -> skip
. 1 -> break
od

Translating into Spin

try:do
:turn==id -> break
od;

cr:incrit[id]=1,;
incrit[id]=0;
turn=21-turn
od}

Init{ atomic{
run P(0); run P(1) } };
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LTL Verification
Using Spin

Both process do not enter the critical section:

spin -f [] lcritical’

spin -f ‘[|(t -> <>c¢)’

In old versions of Spin, one could verify properties
expressed as never claims.
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