Computer-Aided Verification

ECE725/CS745

Borzoo Bonakdarpour

University of Waterloo

(Winter 2011)

LTL Model Checking

Agenda

- Büchi Automata
- Linear Temporal Logic (LTL)
- Translating LTL into Büchi Automata
- The Spin Model checker

Agenda

- Büchi Automata
- Linear Temporal Logic (LTL)
- Translating LTL into Büchi Automata
- The Spin Model checker

Notation

- $ightharpoonup \Sigma$ denotes a finite *alphabet*.
- Σ denotes the set of *finite words* over Σ .
- \blacksquare Σ^{ω} denotes the set of *infinite words* over Σ .
- An initinite word σ is of the form $\sigma(0)\sigma(1)\cdots$ where each $\sigma(i) \in \Sigma$
- Finite words are indicated by u, v, w, \cdots and the empty word by ϵ .
- Set of finite words are denoted by U, V, W, \cdots , and letters α, β, \cdots for ω -words.
- We use L, L', \cdots to denote sets of ω -words (i.e., ω -languages).

Operators

Let W be a set of finite words:

- $\blacksquare W^{\omega} := \{ \alpha \in \Sigma^{\omega} \mid \alpha = w_0 w_1 \cdots \text{ where } w_i \in W \text{ for } i \geq 0 \},$

Let $\exists^{\omega} n$ mean "there exists infinitely many n". For an ω -sequence $\sigma = \sigma(0)\sigma(1)\cdots$ in S^{ω} , the *infinity set* of σ is:

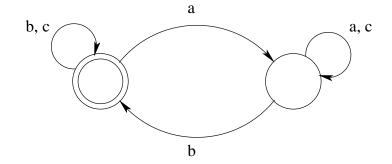
$$\operatorname{In}(\sigma) := \{ s \in S \mid \exists^{\omega} n \sigma(n) = s \}.$$

Büchi Automata

Büchi automata are non-deterministic finite automata equipped with an *acceptance condition* that is appropriate for ω -words:

An ω -word is accepted if the automaton can read it from left to right while assuming a sequence of states in which some final state occurs infinitely often (Büchi Condition)

Example



The above Büchi automaton accepts ω -words where any occurrence of letter a is followed by some occurrence of letter b.

Büchi Automata

Definition. A Büchi automaton over the alphabet Σ is of the form $\mathcal{A}=(Q,q_0,\Delta,F)$, where

- $\blacksquare Q$ is a finite set of *states*,
- lacksquare $q_0 \in Q$ is an *initial state*,
- lacksquare $\Delta \subseteq Q \times \Sigma \times Q$ is a *transition* relation, and
- lacksquare $F \subseteq Q$ is a set of *final states*.

Acceptance in Büchi Automata

A run of \mathcal{A} over an ω -word $\alpha = \alpha(0)\alpha(1)\cdots$ from Σ^{ω} is a sequence $\sigma = \sigma(0)\sigma(1)\cdots$ such that $\sigma(0) = q_0$ and $(\sigma(i), \alpha(i), \sigma(i+1)) \in \Delta$ for $i \geq 0$.

The run is called *successful* if $In(\sigma) \cap F \neq \emptyset$.

A büchi automaton $\mathcal A$ accepts α if there a successful run of $\mathcal A$ on α .

Büchi Recognizable

Let

$$L(\mathcal{A}) = \{ \alpha \in \Sigma^{\omega} \mid \mathcal{A} \text{ accepts } \alpha \}$$

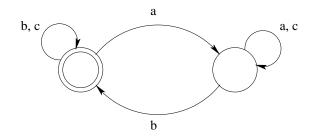
be the ω -language *recognized* by \mathcal{A} . If $L = L(\mathcal{A})$ for some Büchi automaton \mathcal{A} , L is to be *Büchi recognizable*.

Example

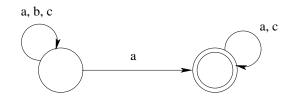
Let $\Sigma = \{a, b, c\}$. The language $L_1 \subseteq \Sigma^{\omega}$ defined by:

 $\alpha \in L_1$ iff after any occurrence of letter a there is some occurrence of letter b in α .

A büchi automaton recognizing L_1 is the following:



The complement $\Sigma^{\omega} - L_1$ is recognized by the following Büchi automaton:



Main Theorems

Theorem 1. Deterministic Büchi automata are strictly less expressive than non-deterministic Büchi automata.

Theorem 2. An ω -language $L\subseteq \Sigma^\omega$ is Büchi recognizable iff L is a finite union of set $U.V^\omega$, where $U,V\subseteq \Sigma^*$ are regular sets of finite words.

Theorem 3. The emptiness problem for Büchi automata is decidable.

Theorem 4. If $L \subseteq \Sigma^{\omega}$ is Büchi recognizable, so is $\Sigma^{\omega} - L$.

Theorem 5. The inclusion problem and the equivalence problem for Büchi automata are decidable.

Agenda

- Büchi Automata
- Linear Temporal Logic (LTL)
- Translating LTL into Büchi Automata
- The Spin Model checker

Modal and Temporal Logic

Modal logic was originally developed by philosophers to study different *modes* of truth.

For example, the assertion P may be false in the present world, and yet the assertion possibly P may be true if there exists an alternate world where P is true.

Temporal logic is a special type of modal logic; it provides a formal system for qualitatively describing and reasoning about the truth values of assertions over time.

Temporal Logic

In temporal logic various temporal operators or *modalities* are provided to describe and reason about how the truth values of assertions vary with time:

- sometimes P which is true now if there is a future moment at which P becomes true
- \blacksquare always Q is true now if Q is true at all future moments.

Temporal Logic

Example. Two processes p_1 and p_2 request entering critical section:

- Mutual exclusion: always ' p_1 and p_2 do not enter the critical section simultaneously'.
- Non-starvation: sometime ' p_1 (resp. p_2) enters the critical section'.

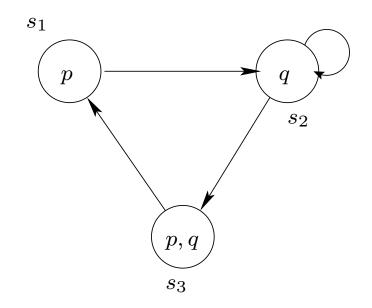
Propositional Linear Temporal Logic (LTL)

Let AP be a set of atomic propositions. A Kripke structure is $\mathcal{M}=(S,x,L)$, where

- \blacksquare S is a set of states,
- $\blacksquare x: \mathbb{N} \to S$ is an *infinite* sequence of states, and
- $lackbox{$\blacksquare$} L:S
 ightarrow 2^{AP}$ is a *labelling* of each state with the set of atomic propositions in AP true at the state.

We usually employ the more convenient notation $x=(s_0,s_1,s_2,\cdots)$. We refer to x as a path, computation, or behavior.

Labelling



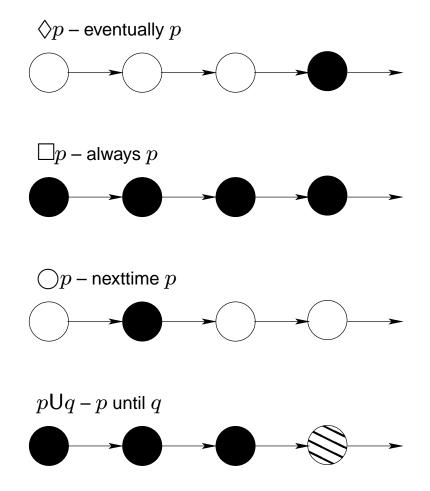
What is the labelling function in this example?

Temporal Operators

The basic temporal operators of LTL are:

- $\blacksquare \Box p$: always p (also denoted Gp).
- $\triangleright p$: eventually p (also denoted $\vdash p$).
- $lue{p}$: nexttime p.
- $\blacksquare p \cup q$: p until q.

Illustration



LTL: Syntax

The set of formulae of LTL is the least set of formulae generated by the following rules:

- \blacksquare each atomic proposition P is a formula
- \blacksquare if p and q are formulae then $p \land q$ and $\neg p$ are formulae
- \blacksquare if p and q are formulae then $p \cup q$ and $\bigcap p$ are formulae.

LTL: Semantics

We define the semantics of LTL with respect to a Kripke structure. We write $\mathcal{M}, x \models p$ to mean that "in structure \mathcal{M} formula p is true of computation x.

Let x be a computation and x^i denote $s_i, s_{i+1}, s_{i+2} \cdots$. We define \models inductively on the structure of the formulae:

- 1. $x \models P$ iff $P \in L(s_0)$, for atomic proposition P
- 2. $x \models p \land q \text{ iff } x \models p \text{ and } x \models q$ $x \models \neg p \text{ iff it is not the case that } x \models p$
- 3. $x \models p \cup q \text{ iff } \exists j : (x^j \models q) \text{ and } \forall k < j : (x^k \models p),$ $x \models \bigcirc p \text{ iff } x^1 \models p$

LTL: Abbreviations

- lacktriangledown $\Diamond p$ abbreviates $true\ \ \ \ p$
- $\blacksquare p$ abbreviates $\neg \lozenge \neg p$.

LTL: Examples

Discuss the meaning of the following formulae:

- $\blacksquare \Box \Diamond p$
- $\bigcirc \bigcirc p$
- $\blacksquare \Box (p \Rightarrow \Diamond q)$
- $\blacksquare \neg ((\neg p \ \mathsf{U} \ q))$

LTL Model Checking

Question. How can we check whether a Büchi automaton \mathcal{A} satisfies an LTL formula ϕ (i.e., $\mathcal{A} \models \phi$)?

Answer. By checking language inclusion, i.e., $L(A) \subseteq L(\phi)$. Alternatively, we can check language emptyness; i.e., whether $L(A) \cap L(\neg \phi) = \emptyset$ as follows:

- 1. Construct a Büchi automaton that produces all computations of $\neg \phi$ (denoted $\mathcal{A}_{\neg \phi}$)
- 2. Compute the product automaton $\mathcal{A}||\mathcal{A}_{\neg\phi}|$
- 3. If $L(A||A_{\neg \phi}) \neq \emptyset$ then $A \not\models \phi$.

LTL Model Checking

A *counterexample* is a trace of the system that violates the property. Thus, $L(A||A_{\neg\phi}) \neq \emptyset$ includes the set of counter examples.

An error (counterexample) may indicate a problem in the system or it may demonstrate that you did not write your property correctly.

Agenda

- Büchi Automata
- Linear Temporal Logic (LTL)
- Translating LTL into Büchi Automata
- The Spin Model checker

LTL to Büchi Automata

- Each state of the automata will store a set of properties that should be satisfied on paths starting at that state
 - These properties will be stored in lists Old and New where Old means already processed and New means still needs to be processed
- Each state will also store a set of properties which should be satisfied on paths starting at the next states of that state
 - These properties will be stored in the list Next
- The incoming transitions for a state will be stored in the list Incoming

LTL to Büchi Automata

- We will start with a node which has the input LTL property in its New list
- We will process the formulae in the New list of each node one by one
 - When we have $f \cup g$ in the New list we will use $f \cup g \equiv g \vee (f \wedge \bigcirc (f \cup g))$

LTL to Büchi Automata

When we process a formula from a node we will either replace the node with a new node or we will replace it with two new nodes (i.e., we will split it to two nodes)

■ When a node q is replaced by a node q' we will have:

$$(\mathrm{Old}(q \wedge \mathrm{New}(q) \wedge \bigcirc \mathrm{Next}(q)) \Leftrightarrow (\mathrm{Old}(q') \wedge \mathrm{New}(q') \wedge \bigcirc \mathrm{Next}(q'))$$

■ When a node q is split into two nodes q_1 and q_2 we will have

$$(\mathrm{Old}(q) \wedge \mathrm{New}(q) \wedge \bigcirc \mathrm{Next}(q)) \Leftrightarrow$$

$$((\mathrm{Old}(q_1) \wedge \mathrm{New}(q_1) \wedge \bigcirc \mathrm{Next}(q_1)) \vee$$

$$(\mathrm{Old}(q_2) \wedge \mathrm{New}(q_2) \wedge \bigcirc \mathrm{Next}(q_2)))$$

Translation Algorithm

```
Translate(f) {
         Expand([Incoming:=init, Old:=\emptyset, New:=f, Next:=\emptyset], \emptyset)
Expand(q, NodeList) {
If New(q) = \emptyset then
     if \exists r \in \mathsf{NodeList} \ \mathsf{s.t.} \ \mathsf{Old}(r) = \mathsf{Old}(q) \ \mathsf{and} \ \mathsf{Next}(r) = \mathsf{Next}(q)
     then Incoming(r) := Incoming(q) \cup Incoming(r);
           return(NodeList);
     else create a new node q' s.t. Incoming(q')=q, Old(q')=\emptyset,
                                             New(q')=Next(q), Next(q'):=\emptyset;
           return expand(q', Nodelist \cup \{q\});
else // New(q) \neq \emptyset
           pick a formula f from New(q) and remove it from New(q);
           if f is already in Old(q) then return Expand(q, Nodelist);
```

Translation Algorithm

$$h \cup k \equiv k \vee (h \wedge \bigcirc (h \cup k))$$

```
else if (f \equiv h \cup k)

create two nodes q_1 and q_2 s.t.

lncoming(q_1) = lncoming(q_2) = lncoming(q),

Old(q_1) = Old(q_2) = Old(q) \cup \{h \cup k\},

New(q_1) = New(q) \cup \{h\},

New(q_2) = New(q) \cup \{k\},

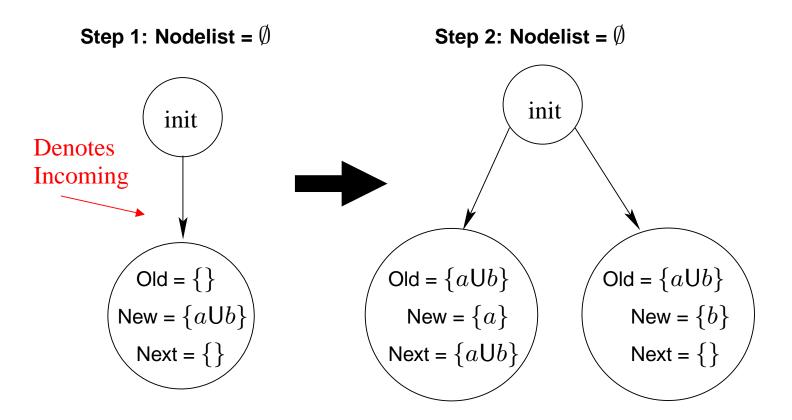
Next(q_1) = Next(q) \cup \{h \cup k\},

Next(q_2) = Next(q);

return Expand(q_2, Expand(q_1, Nodelist));
```

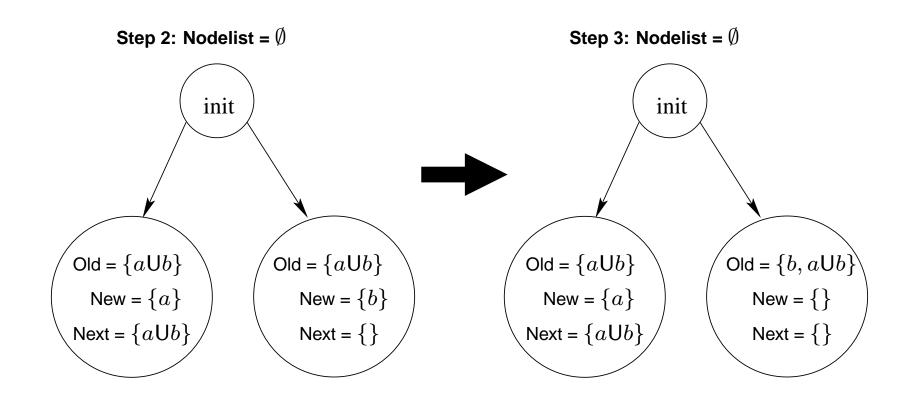
Example $(a \cup b)$

$$a \cup b \equiv b \vee (a \wedge \bigcirc (a \cup b))$$

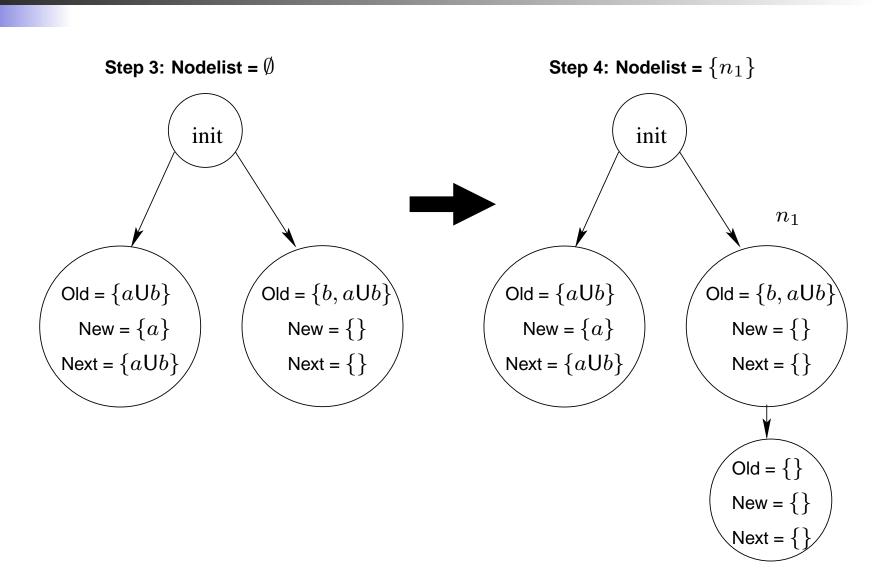


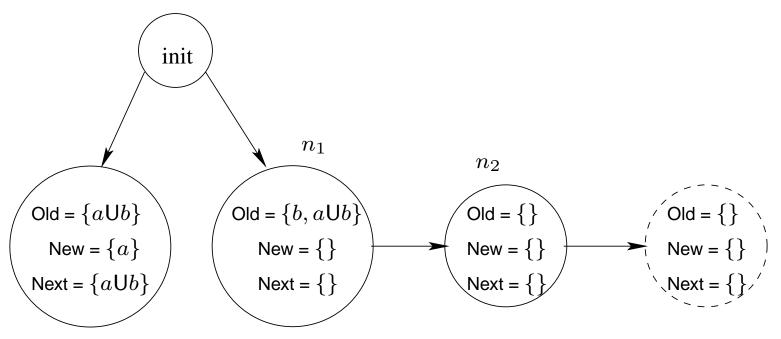
Translation Algorithm

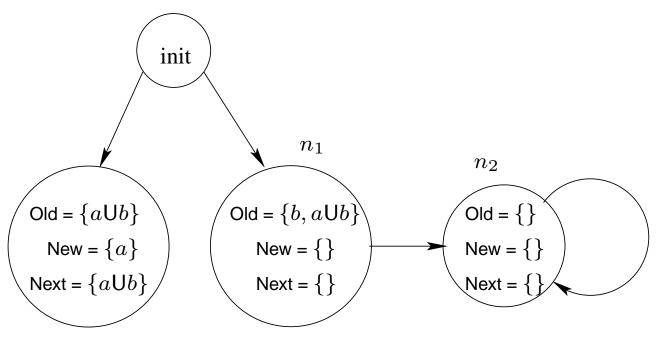
Example $(a \cup b)$

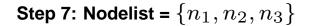


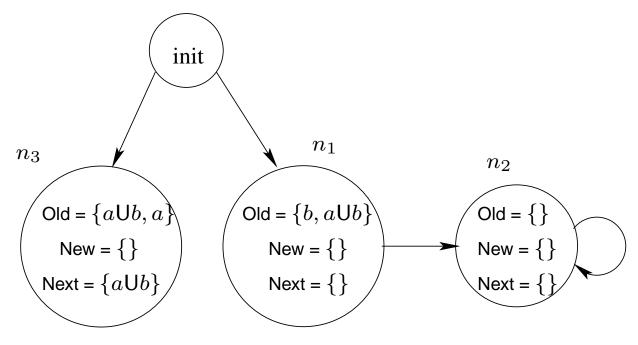
Example $(a \cup b)$

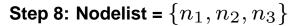


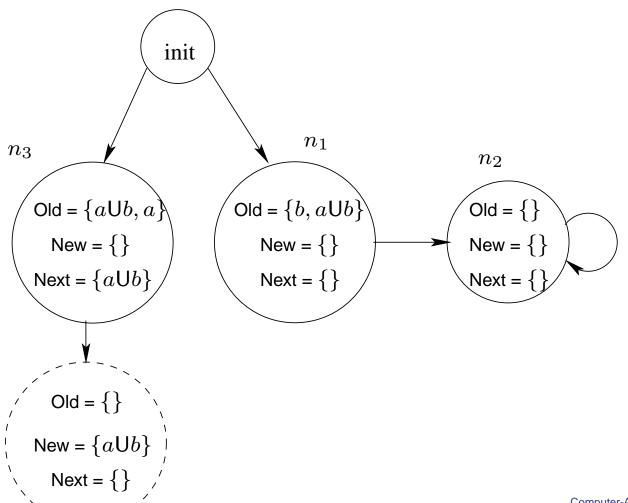


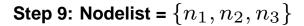


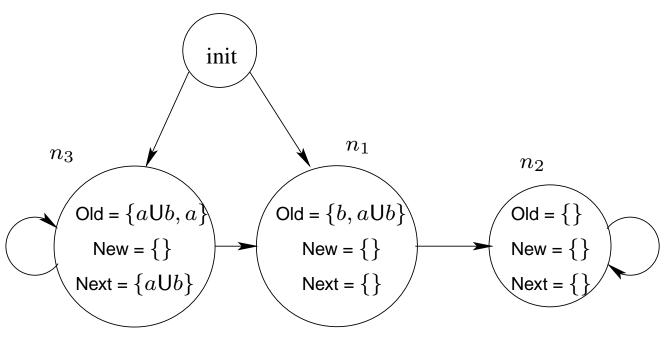












Translation Algorithm

Translation Algorithm

Translation Algorithm

Completing the Automaton

The resulting Büchi automaton $\mathcal{A} = (Q, q_0, \Delta, F)$:

- $\Sigma = 2^{AP}$
- $\square Q = \text{Nodelist} \cup \text{init}$
- $q_0 = init$
- lacksquare Δ is defined as follows:

 $(q,d,q') \in \Delta \text{ iff } q \in \text{Incoming}(q') \text{ and }$

d satisfies the conjunction of negated and unnegated propositions in Old(q')

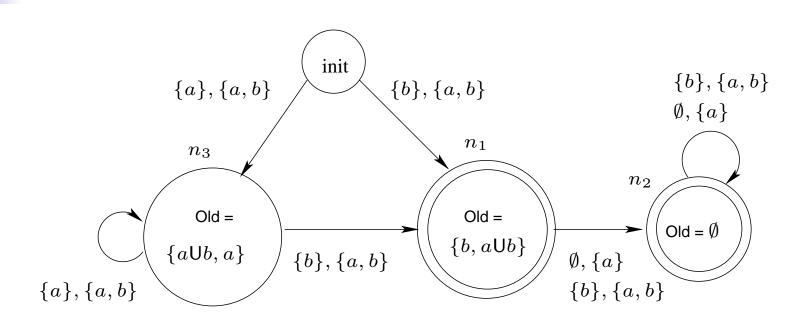
 $lacksquare F\subseteq 2^Q$ i.e., $F=\{F_1,F_2,\cdots,F_k\}$

The acceptance set F contains a set of accepting states $F_i \in F$ for each subformula of the form $h \cup k$ where F_i contains all the states q s.t. either $k \in \text{Old}(q)$ or $h \cup k \not\in \text{Old}(q)$. If there are no subformulas of the form $h \cup k$ then $F = \{Q\}$

Completing the Automaton

The size of the resulting automaton can be *exponential* in the size of the input formula

The resulting automaton is a generalized Büchi automaton we can translate it to a standard Büchi automaton.



$$\Sigma = 2^{AP} = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}\}$$

$$F = \{\{n_1, n_2\}\}\}$$

$$Q = \{\text{init}, n_1, n_2, n_3\}$$

$$q_0 = \text{init}$$

Checking Emptyness

Let A be a Büchi automaton. Recall that:

$$L(\mathcal{A}) = \{ \alpha \in \Sigma^{\omega} \mid \mathcal{A} \text{ accepts } \alpha \}$$

L(A) is nonempty if there exists an accepting state $q \in F$ such that:

- $\blacksquare q$ is reachable from initial state in q_0 , and
- $\blacksquare q$ is reachable from itself (i.e., q is contained in a cycle).

Checking Emptyness

Any run of a Büchi automaton has a suffix in which all the states on that suffix appear infinitely many times:

- Each state on that suffix is reachable from any other state
- Hence these states form a *strongly connected component*
- If there is an accepting state among those states than the run is an accepting run

So emptiness check involves finding a *strongly connected component* that contains an accepting state and is reachable from an initial state

Checking Emptyness

To find cycles in a graph one can use a *depth-first search algorithm* which constructs the strongly connected components in linear time by adding two integer numbers to every state reached.

If a strongly connected component reachable from an initial state contains an accepting state then the language accepted by the Büchi automaton is not empty.

There is a more memory efficient algorithm for checking the same condition which is called *nested depth first search*.

Agenda

- Büchi Automata
- Linear Temporal Logic (LTL)
- Translating LTL into Büchi Automata
- The Spin Model checker

Spin

- Model-checker
- Based on automata theory
- Allows LTL or automata specification
- Efficient (on-the-fly model checking, partial order reduction).
- Developed in Bell Laboratories.

The Language of Spin (Promela)

- The expressions are from C.
- The communication is from CSP.
- The constructs are from Guarded Command.

Expressions

- Arithmetic: + , , * , / , %
- Comparison: >, >=, <, <=, ==, !=</pre>
- Boolean: &&, ||, !
- Assignment: :=
- Increment/decrement: ++, -

Expressions

- byte name1, name2=4, name3;
- bit b1,b2,b3;
- short s1,s2;
- int arr1[5];

Message types and channels

- mtype = {OK, READY, ACK}
- mtype Mvar = ACK
- chan Ng=[2] of {byte, byte, mtype}, Next=[0] of {byte}

Ng has a buffer of 2, each message consists of two bytes and an enumerable type (mtype). Next is used with handshake message passing.

Sending and receiving a message

- Channel declaration: chan qname=[3] of mtype, byte, byte
- In sender: qname!tag3(expr1, expr2) or equivalently: qname!tag3, expr1, expr2
- In Receiver: qname?tag3(var1,var2)

Condition

```
if
:: x%2==1 -> z=z*y; x-
:: x%2==0 -> y=y*y; x=x/2
fi
```

If more than one guard is enabled: a non-deterministic choice.

If no guard is enabled: the process waits (until a guard becomes enabled).

Looping

do

- :: else break

od;

Normal way to terminate a loop: with break. (or goto).

As in condition, we may have a non-deterministic loop or have to wait.

Process Declaration

```
Definition of a process:

proctype prname (byte Id; chan Comm)
{

    statements
}

Activation of a process:

run prname (7, Con[1]);
```

init process is the root of all others

atomic allows performing several actions as one atomic step.

Mutual Exclusion

```
loop
Non_Critical_Section;
TR:Pre_Protocol;
CR:Critical_Section;
Post_protocol;
end loop;
```

Mutual Exclusion

```
task P0 is
                               task P1 is
begin
                                begin
   loop
                                  loop
                                     Non_Critical_Sec;
      Non_Critical_Sec;
      Wait Turn=0;
                                     Wait Turn=1;
      Critical_Sec;
                                     Critical_Sec;
                                     Turn :=0;
      Turn:=1;
   end loop
                                  end loop
end P0.
                               end P1
```

Translating into Spin

```
#define t (P@try)
#define c (P@cr)
#define critical (incrit[0] && incrit[1])
                                           try:do
byte turn=0, incrit[2]=0;
                                               ::turn==id -> break
proctype P (bool id)
                                               od;
{ do
                                           cr:incrit[id]=1;
   :: 1 ->
                                              incrit[id]=0;
      do
                                              turn=1-turn
         :: 1 -> skip
                                              od}
         :: 1 -> break
                                           init{ atomic{
                                              run P(0); run P(1) } };
      od
```

LTL Verification Using Spin

Both process do not enter the critical section:

spin -f '[] !critical'

spin -f '[](t -> <>c)'

In old versions of Spin, one could verify properties expressed as *never claims*.