
Computer-Aided
Verification

ECE725/CS745
Borzoo Bonakdarpour

University of Waterloo

(Winter 2011)

LTL Model Checking

Computer-Aided Verification – p. 1/65

Agenda

Büchi Automata

Linear Temporal Logic (LTL)

Translating LTL into Büchi Automata

The Spin Model checker

Computer-Aided Verification – p. 2/65

Agenda

Büchi Automata

Linear Temporal Logic (LTL)

Translating LTL into Büchi Automata

The Spin Model checker

Computer-Aided Verification – p. 3/65

Notation
Σ denotes a finite alphabet.

Σ∗ denotes the set of finite words over Σ.

Σω denotes the set of infinite words over Σ.

An initinite word σ is of the form σ(0)σ(1) · · · where each

σ(i) ∈ Σ

Finite words are indicated by u, v, w, · · · and the empty word

by ǫ.

Set of finite words are denoted by U, V, W, · · · , and letters

α, β, · · · for ω-words.

We use L, L′, · · · to denote sets of ω-words (i.e.,

ω-languages).
Computer-Aided Verification – p. 4/65

Operators
Let W be a set of finite words:

prefW := {u ∈ Σ∗ | ∃ : uv ∈ W},

Wω := {α ∈ Σω | α = w0w1 · · · where wi ∈ W for i ≥ 0},

Let ∃ωn mean “there exists infinitely many n”. For an

ω-sequence σ = σ(0)σ(1) · · · in Sω, the infinity set of σ is:

In(σ) := {s ∈ S | ∃ωnσ(n) = s}.

Computer-Aided Verification – p. 5/65

Büchi Automata

Büchi automata are non-deterministic finite automata equipped with

an acceptance condition that is appropriate for ω-words:

An ω-word is accepted if the automaton can read it from left to

right while assuming a sequence of states in which some final state

occurs infinitely often (Büchi Condition)

Computer-Aided Verification – p. 6/65

Example

a, cb, c
a

b

The above Büchi automaton accepts ω-words where any

occurrence of letter a is followed by some occurrence of letter b.

Computer-Aided Verification – p. 7/65

Büchi Automata

Definition. A Büchi automaton over the alphabet Σ is of the form

A = (Q, q0,∆, F), where

Q is a finite set of states,

q0 ∈ Q is an initial state,

∆ ⊆ Q × Σ × Q is a transition relation, and

F ⊆ Q is a set of final states.

Computer-Aided Verification – p. 8/65

Acceptance in Büchi
Automata

A run of A over an ω-word α = α(0)α(1) · · · from Σω is a

sequence σ = σ(0)σ(1) · · · such that σ(0) = q0 and

(σ(i), α(i), σ(i + 1)) ∈ ∆ for i ≥ 0.

The run is called successful if In(σ) ∩ F 6= ∅.

A büchi automaton A accepts α if there a successful run of A on

α.

Computer-Aided Verification – p. 9/65

Büchi Recognizable

Let

L(A) = {α ∈ Σω | A accepts α}

be the ω-language recognized by A. If L = L(A) for some Büchi

automaton A, L is to be Büchi recognizable.

Computer-Aided Verification – p. 10/65

Example
Let Σ = {a, b, c}. The language L1 ⊆ Σω defined by:

α ∈ L1 iff after any occurrence of letter a there is some
occurrence of letter b in α.

A büchi automaton recognizing L1 is the following:

a, cb, c
a

b

The complement Σω − L1 is recognized by the following Büchi
automaton:

a

a, c
a, b, c

Computer-Aided Verification – p. 11/65

Main Theorems
Theorem 1. Deterministic Büchi automata are strictly less expressive
than non-deterministic Büchi automata.

Theorem 2. An ω-language L ⊆ Σω is Büchi recognizable iff L is a
finite union of set U.V ω, where U, V ⊆ Σ∗ are regular sets of finite
words.

Theorem 3. The emptiness problem for Büchi automata is decidable.

Theorem 4. If L ⊆ Σω is Büchi recognizable, so is Σω − L.

Theorem 5. The inclusion problem and the equivalence problem for
Büchi automata are decidable.

Computer-Aided Verification – p. 12/65

Agenda

Büchi Automata

Linear Temporal Logic (LTL)

Translating LTL into Büchi Automata

The Spin Model checker

Computer-Aided Verification – p. 13/65

Modal and Temporal
Logic

Modal logic was originally developed by philosophers to study

different modes of truth.

For example, the assertion P may be false in the present world,

and yet the assertion possibly P may be true if there exists an

alternate world where P is true.

Temporal logic is a special type of modal logic; it provides a formal

system for qualitatively describing and reasoning about the truth

values of assertions over time.

Computer-Aided Verification – p. 14/65

Temporal Logic

In temporal logic various temporal operators or modalities are

provided to describe and reason about how the truth values of

assertions vary with time:

sometimes P which is true now if there is a future moment at

which P becomes true

always Q is true now if Q is true at all future moments.

Computer-Aided Verification – p. 15/65

Temporal Logic

Example. Two processes p1 and p2 request entering critical

section:

Mutual exclusion: always ‘p1 and p2 do not enter the critical

section simultaneously’.

Non-starvation: sometime ‘p1 (resp. p2) enters the critical

section’.

Computer-Aided Verification – p. 16/65

Propositional Linear
Temporal Logic (LTL)

Let AP be a set of atomic propositions. A Kripke structure is

M = (S, x, L), where

S is a set of states,

x : N → S is an infinite sequence of states, and

L : S → 2AP is a labelling of each state with the set of atomic

propositions in AP true at the state.

We usually employ the more convenient notation

x = (s0, s1, s2, · · ·). We refer to x as a path, computation, or behavior.

Computer-Aided Verification – p. 17/65

Labelling

s2

q

p, q

p

s3

s1

What is the labelling function in this example?

Computer-Aided Verification – p. 18/65

Temporal Operators

The basic temporal operators of LTL are:

�p: always p (also denoted Gp).

♦p: eventually p (also denoted Fp).

©p: nexttime p.

p U q: p until q.

Computer-Aided Verification – p. 19/65

Illustration

�p – always p

©p – nexttime p

pUq – p until q

♦p – eventually p

Computer-Aided Verification – p. 20/65

LTL: Syntax

The set of formulae of LTL is the least set of formulae generated

by the following rules:

each atomic proposition P is a formula

if p and q are formulae then p ∧ q and ¬p are formulae

if p and q are formulae then p U q and ©p are formulae.

Computer-Aided Verification – p. 21/65

LTL: Semantics
We define the semantics of LTL with respect to a Kripke structure. We
write M, x |= p to mean that “in structure M formula p is true of
computation x.

Let x be a computation and xi denote si, si+1, si+2 · · · . We define |=

inductively on the structure of the formulae:

1. x |= P iff P ∈ L(s0), for atomic proposition P

2. x |= p ∧ q iff x |= p and x |= q

x |= ¬p iff it is not the case that x |= p

3. x |= p U q iff ∃j : (xj |= q) and ∀k < j : (xk |= p),
x |= ©p iff x1 |= p

Computer-Aided Verification – p. 22/65

LTL: Abbreviations

♦p abbreviates true U p

�p abbreviates ¬♦¬p.

Computer-Aided Verification – p. 23/65

LTL: Examples

Discuss the meaning of the following formulae:

�♦p

♦�p

�(p ⇒ ♦q)

¬((¬p U q)

Computer-Aided Verification – p. 24/65

LTL Model Checking

Question. How can we check whether a Büchi automaton A

satisfies an LTL formula φ (i.e., A |= φ)?

Answer. By checking language inclusion, i.e., L(A) ⊆ L(φ).

Alternatively, we can check language emptyness; i.e., whether

L(A) ∩ L(¬φ) = ∅ as follows:

1. Construct a Büchi automaton that produces all

computations of ¬φ (denoted A¬φ)

2. Compute the product automaton A||A¬φ

3. If L(A||A¬φ) 6= ∅ then A 6|= φ.

Computer-Aided Verification – p. 25/65

LTL Model Checking

A counterexample is a trace of the system that violates the property.

Thus, L(A||A¬φ) 6= ∅ includes the set of counter examples.

An error (counterexample) may indicate a problem in the system

or it may demonstrate that you did not write your property

correctly.

Computer-Aided Verification – p. 26/65

Agenda

Büchi Automata

Linear Temporal Logic (LTL)

Translating LTL into Büchi Automata

The Spin Model checker

Computer-Aided Verification – p. 27/65

LTL to Büchi
Automata

Each state of the automata will store a set of properties that

should be satisfied on paths starting at that state

These properties will be stored in lists Old and New where Old

means already processed and New means still needs to be

processed

Each state will also store a set of properties which should

be satisfied on paths starting at the next states of that state

These properties will be stored in the list Next

The incoming transitions for a state will be stored in the list

Incoming

Computer-Aided Verification – p. 28/65

LTL to Büchi
Automata

We will start with a node which has the input LTL property in

its New list

We will process the formulae in the New list of each node

one by one

When we have f U g in the New list we will use

f U g ≡ g ∨ (f ∧©(f U g))

Computer-Aided Verification – p. 29/65

LTL to Büchi
Automata

When we process a formula from a node we will either replace

the node with a new node or we will replace it with two new

nodes (i.e., we will split it to two nodes)

When a node q is replaced by a node q′ we will have:

(Old(q ∧ New(q) ∧ ©Next(q)) ⇔

(Old(q′) ∧ New(q′) ∧ ©Next(q′))

When a node q is split into two nodes q1 and q2 we will have

(Old(q) ∧ New(q) ∧ ©Next(q)) ⇔

((Old(q1) ∧ New(q1) ∧ ©Next(q1)) ∨

(Old(q2) ∧ New(q2) ∧ ©Next(q2)))

Computer-Aided Verification – p. 30/65

Translation Algorithm
Translate(f) {

Expand([Incoming:=init, Old:=∅, New:=f , Next:=∅], ∅)
}

Expand(q, NodeList) {
If New(q) = ∅ then

if ∃r ∈ NodeList s.t. Old(r) = Old(q) and Next(r) = Next(q)
then Incoming(r) := Incoming(q) ∪ Incoming(r);

return(NodeList);
else create a new node q′ s.t. Incoming(q′)=q, Old(q′) = ∅,

New(q′)=Next(q), Next(q′):=∅;
return expand(q′, Nodelist ∪ {q});

else // New(q) 6= ∅

pick a formula f from New(q) and remove it from New(q);
if f is already in Old(q) then return Expand(q, Nodelist);

Computer-Aided Verification – p. 31/65

Translation Algorithm

h U k ≡ k ∨ (h ∧ ©(hUk))

else if (f ≡ h U k)

create two nodes q1 and q2 s.t.

Incoming(q1) = Incoming(q2) =Incoming(q),

Old(q1) = Old(q2) = Old(q) ∪ {h U k},

New(q1) = New(q) ∪ {h},

New(q2) = New(q) ∪ {k},

Next(q1) = Next(q) ∪{h U k},

Next(q2) = Next(q);

return Expand(q2, Expand(q1, Nodelist));

Computer-Aided Verification – p. 32/65

Example (a U b)

a U b ≡ b ∨ (a ∧ ©(aUb))

initinit
Denotes
Incoming

Step 1: Nodelist = ∅

Old = {aUb} Old = {aUb}

New = {b}

Next = {}

New = {a}

Next = {aUb}

Old = {}

Next = {}

New = {aUb}

Step 2: Nodelist = ∅

Computer-Aided Verification – p. 33/65

Translation Algorithm

else if (f ∈ AP or ¬f ∈ AP or f is a Boolean constant)

then if (f ≡ false ∨ ¬f ∈ Old(q)) then return(Nodelist);

else create a node q′ s.t.

Incoming(q′)=Incoming(q),

Old(q′)=Old(q) ∪ {f},

New(q′)=New(q) − {f},

Next(q′)=Next(q);

return Expand(q′, Nodelist);

Computer-Aided Verification – p. 34/65

Example (a U b)

initinit

Old = {b, aUb}Old = {aUb}

New = {}

Next = {}

New = {a}

Next = {aUb}

Step 3: Nodelist = ∅

Old = {aUb} Old = {aUb}

New = {b}

Next = {}

New = {a}

Next = {aUb}

Step 2: Nodelist = ∅

Computer-Aided Verification – p. 35/65

Example (a U b)

initinit

n1

Old = {}

New = {}

Next = {}

Old = {aUb}

New = {a}

Next = {aUb}

Step 4: Nodelist = {n1}

Old = {aUb}

New = {}

Next = {}

New = {a}

Next = {aUb}

Step 3: Nodelist = ∅

Old = {b, aUb}

New = {}

Next = {}

Old = {b, aUb}

Computer-Aided Verification – p. 36/65

Example (a U b)

init

n2

Old = {aUb}

New = {a}

Next = {aUb}

New = {}

Next = {}

Old = {b, aUb} Old = {}

New = {}

Next = {}

Old = {}

New = {}

Next = {}

Step 5: Nodelist = {n1, n2}

n1

Computer-Aided Verification – p. 37/65

Example (a U b)

init

n2

Old = {aUb}

New = {a}

Next = {aUb}

New = {}

Next = {}

Old = {b, aUb} Old = {}

New = {}

Next = {}

Step 6: Nodelist = {n1, n2}

n1

Computer-Aided Verification – p. 38/65

Example (a U b)

init

n3

Old = {aUb, a}

New = {}

Next = {aUb}

New = {}

Next = {}

Old = {b, aUb} Old = {}

New = {}

Next = {}

Step 7: Nodelist = {n1, n2, n3}

n1

n2

Computer-Aided Verification – p. 39/65

Example (a U b)

init

Step 8: Nodelist = {n1, n2, n3}

New = {}

Next = {}

Old = {b, aUb} Old = {}

New = {}

Next = {}

n1

n2
n3

Old = {aUb, a}

New = {}

Next = {aUb}

Old = {}

Next = {}

New = {aUb}

Computer-Aided Verification – p. 40/65

Example (a U b)

init

Step 9: Nodelist = {n1, n2, n3}

New = {}

Next = {}

Old = {b, aUb} Old = {}

New = {}

Next = {}

n1

n2
n3

Old = {aUb, a}

New = {}

Next = {aUb}

Computer-Aided Verification – p. 41/65

Translation Algorithm

else if (f ≡ h ∨ k)

create two nodes q1 and q2 s.t

Incoming(q1) = Incoming(q2) = Incoming(q),

Old(q1) = Old(q2) = Old(q) ∪ {h ∨ k},

New(q1) = (New(q) −{h ∨ k}) ∪ {h},

New(q2) = (New(q) −{h ∨ k}) ∪ {k},

Next(q1) = Next(q2) = Next(q);

return Expand(q2, Expand(q1, Nodelist));

Computer-Aided Verification – p. 42/65

Translation Algorithm

else if (f ≡ h ∧ k)

create two node q′ s.t

Incoming(q′) = Incoming(q),

Old(q′) = Old(q) ∪ {h ∧ k},

New(q′) = (New(q) −{h ∧ k}) ∪ {h} ∪ {k},

Next(q′) = Next(q);

return Expand(q′, Nodelist);

Computer-Aided Verification – p. 43/65

Translation Algorithm

else if (f ≡ ©h)

create two node q′ s.t

Incoming(q′) = Incoming(q),

Old(q′) = Old(q) ∪ {©h},

New(q′) = (New(q) −{©h}),

Next(q′) = Next(q) ∪ {h};

return Expand(q′, Nodelist);

Computer-Aided Verification – p. 44/65

Completing the
Automaton

The resulting Büchi automaton A = (Q, q0, ∆, F):

Σ = 2AP

Q = Nodelist ∪ init

q0 = init

∆ is defined as follows:
(q, d, q′) ∈ ∆ iff q ∈ Incoming(q′) and

d satisfies the conjunction of negated and
unnegated propositions in Old(q′)

F ⊆ 2Q i.e., F = {F1, F2, · · · , Fk}

The acceptance set F contains a set of accepting states Fi ∈ F for
each subformula of the form h U k where Fi contains all the states q

s.t. either k ∈ Old(q) or hUk 6∈ Old(q). If there are no subformulas of
the form hUk then F = {Q}

Computer-Aided Verification – p. 45/65

Completing the
Automaton

The size of the resulting automaton can be exponential in the size

of the input formula

The resulting automaton is a generalized Büchi automaton we

can translate it to a standard Büchi automaton.

Computer-Aided Verification – p. 46/65

Example (a U b)

init

n2

{a}, {a, b}

n3

{a}, {a, b} {b}, {a, b}

{b}, {a, b} ∅, {a}

{b}, {a, b}

Old =

{b, aUb}
Old = ∅

{aUb, a}

Old =

n1

∅, {a}

{b}, {a, b}

Σ = 2AP = {∅, {a}, {b}, {a, b}}

F = {{n1, n2}}

Q = {init, n1, n2, n3}

q0 = init
Computer-Aided Verification – p. 47/65

Checking Emptyness

Let A be a Büchi automaton. Recall that:

L(A) = {α ∈ Σω | A accepts α}

L(A) is nonempty if there exists an accepting state q ∈ F such

that:

q is reachable from initial state in q0, and

q is reachable from itself (i.e., q is contained in a cycle).

Computer-Aided Verification – p. 48/65

Checking Emptyness

Any run of a Büchi automaton has a suffix in which all the states

on that suffix appear infinitely many times:

Each state on that suffix is reachable from any other state

Hence these states form a strongly connected component

If there is an accepting state among those states than the

run is an accepting run

So emptiness check involves finding a strongly connected component

that contains an accepting state and is reachable from an initial

state

Computer-Aided Verification – p. 49/65

Checking Emptyness

To find cycles in a graph one can use a depth-first search algorithm

which constructs the strongly connected components in linear

time by adding two integer numbers to every state reached.

If a strongly connected component reachable from an initial state

contains an accepting state then the language accepted by the

Büchi automaton is not empty.

There is a more memory efficient algorithm for checking the

same condition which is called nested depth first search.

Computer-Aided Verification – p. 50/65

Agenda

Büchi Automata

Linear Temporal Logic (LTL)

Translating LTL into Büchi Automata

The Spin Model checker

Computer-Aided Verification – p. 51/65

Spin

Model-checker

Based on automata theory

Allows LTL or automata specification

Efficient (on-the-fly model checking, partial
order reduction).

Developed in Bell Laboratories.

Computer-Aided Verification – p. 52/65

The Language of
Spin (Promela)

The expressions are from C.

The communication is from CSP.

The constructs are from Guarded Command.

Computer-Aided Verification – p. 53/65

Expressions

Arithmetic: +, -, *, /, %

Comparison: >, >=, <, <=, ==, !=

Boolean: &&, ||, !

Assignment: :=

Increment/decrement: ++, - -

Computer-Aided Verification – p. 54/65

Expressions

byte name1, name2=4, name3;

bit b1,b2,b3;

short s1,s2;

int arr1[5];

Computer-Aided Verification – p. 55/65

Message types and
channels

mtype = {OK, READY, ACK}

mtype Mvar = ACK

chan Ng=[2] of {byte, byte, mtype},
Next=[0] of {byte}

Ng has a buffer of 2, each message consists
of two bytes and an enumerable type (mtype).
Next is used with handshake message
passing.

Computer-Aided Verification – p. 56/65

Sending and
receiving a message

Channel declaration:
chan qname=[3] of mtype, byte, byte

In sender:
qname!tag3(expr1, expr2) or equivalently:
qname!tag3, expr1, expr2

In Receiver:
qname?tag3(var1,var2)

Computer-Aided Verification – p. 57/65

Condition
if
:: x%2==1 -> z=z*y; x–
:: x%2==0 -> y=y*y; x=x/2
fi

If more than one guard is enabled: a non-deterministic
choice.

If no guard is enabled: the process waits (until a guard
becomes enabled).

Computer-Aided Verification – p. 58/65

Looping
do
:: x>y -> x=x-y
:: y>x -> y=y-x
:: else break
od;

Normal way to terminate a loop: with break. (or goto).

As in condition, we may have a non-deterministic loop or
have to wait.

Computer-Aided Verification – p. 59/65

Process Declaration
Definition of a process:
proctype prname (byte Id; chan Comm)
{

statements
}

Activation of a process:
run prname (7, Con[1]);

Computer-Aided Verification – p. 60/65

init process is the
root of all others

init{ statements }
init {byte I=0;

atomic{do
::I<10 -> run prname(I, chan[I]);

I=I+1
::I=10 -> break;
od}}

atomic allows performing several actions as one atomic
step.

Computer-Aided Verification – p. 61/65

Mutual Exclusion

loop
Non_Critical_Section;
TR:Pre_Protocol;
CR:Critical_Section;
Post_protocol;

end loop;

Computer-Aided Verification – p. 62/65

Mutual Exclusion
task P0 is task P1 is
begin begin

loop loop
Non_Critical_Sec; Non_Critical_Sec;
Wait Turn=0; Wait Turn=1;
Critical_Sec; Critical_Sec;
Turn:=1; Turn :=0;

end loop end loop
end P0. end P1

Computer-Aided Verification – p. 63/65

Translating into Spin

#define t (P@try)

#define c (P@cr)

#define critical (incrit[0] && incrit[1]) try:do

byte turn=0, incrit[2]=0; ::turn==id -> break

proctype P (bool id) od;

{ do cr:incrit[id]=1;

:: 1 -> incrit[id]=0;

do turn=1-turn

:: 1 -> skip od}

:: 1 -> break init{ atomic{

od run P(0); run P(1) } };

Computer-Aided Verification – p. 64/65

LTL Verification
Using Spin

Both process do not enter the critical section:

spin -f ‘[] !critical’

spin -f ‘[](t -> <>c)’

In old versions of Spin, one could verify properties
expressed as never claims.

Computer-Aided Verification – p. 65/65

	Agenda
	Agenda
	Notation
	Operators
	B"uchi Automata
	Example
	B"uchi Automata
	Acceptance in B"uchi Automata
	B"uchi Recognizable
	Example
	Main Theorems
	Agenda
	Modal and Temporal Logic
	Temporal Logic
	Temporal Logic
	Propositional Linear Temporal Logic (LTL)
	Labelling
	Temporal Operators
	Illustration
	LTL: Syntax
	LTL: Semantics
	LTL: Abbreviations
	LTL: Examples
	LTL Model Checking
	LTL Model Checking
	Agenda
	LTL to B"uchi Automata
	LTL to B"uchi Automata
	LTL to B"uchi Automata
	Translation Algorithm
	Translation Algorithm
	Example $(a ; un ; b)$
	Translation Algorithm
	Example $(a ; un ; b)$
	Example $(a ; un ; b)$
	Example $(a ; un ; b)$
	Example $(a ; un ; b)$
	Example $(a ; un ; b)$
	Example $(a ; un ; b)$
	Example $(a ; un ; b)$
	Translation Algorithm
	Translation Algorithm
	Translation Algorithm
	Completing the Automaton
	Completing the Automaton
	Example $(a ; un ; b)$
	Checking Emptyness
	Checking Emptyness
	Checking Emptyness
	Agenda
	Spin
	The Language of Spin (Promela)
	Expressions
	Expressions
	Message types and channels
	Sending and receiving a message
	Condition
	Looping
	Process Declaration
	init process is the root of all others
	Mutual Exclusion
	Mutual Exclusion
	Translating into Spin
	LTL Verification Using Spin

