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What is Verification?
Verification involves checking a satisfaction
relation, usually in the form of a sequent:

M |= φ, where

M is a model,
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What is Verification?
Verification involves checking a satisfaction
relation, usually in the form of a sequent:

M |= φ, where

M is a model,

φ is a property (or specification)

|= is a relationship that should hold between M and φ;
i.e., (M, φ) ∈|=

We say that the model satisfies or “has” the property, or
that we can conclude the property from the model.
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What is Verification?
Verification involves:

1. specifying the model/system/implementation

2. specifying the property/specification

3. choosing the satisfaction relation

4. checking the satisfaction relation

These 4 steps are NOT independent.
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Example
Consider the operation of a soft drink vending machine which

charges 15 cents for a can. The following figure is a model M of

such machine.
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The following regular expression specifies the acceptable behavior

of the machine: φ = n(d+ nn)
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Example (cont’d)
What about this model?
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Models and
Properties

The term model is used loosely here. It might not be executable,
and it might not be a complete description of the system’s
behaviour. The terms implementation and specification are relative.
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Models and
Properties

The term model is used loosely here. It might not be executable,
and it might not be a complete description of the system’s
behaviour. The terms implementation and specification are relative.

An implementation generally contains more details than a
specification. The specification for one level of verification might
be the implementation at a higher level of verification.

In hardware, often the model is a description of the circuit in a
hardware description language such as VHDL or Verilog. The real
thing is the physical realization of the chip.

Sometimes the model is actually a specification and the property
is an attribute such as completeness or consistency.
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Logic and
Verification

Different modelling languages and logics give us different ways of
expressing M and φ and defining membership of the pair (M, φ)
to |=.
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Logic and
Verification

Different modelling languages and logics give us different ways of
expressing M and φ and defining membership of the pair (M, φ)
to |=.

Hopefully, the calculation of the satisfaction relation is compositional

in either the property or the model. This decomposes the
verification task.

The model and property both describes sets of behaviours.

The satisfaction relation is a relation between the set of
behaviours of the model and the set of behaviours of the property.
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Agenda

What is verification?

What is logic?

Propositional logic

Predicate logic
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What is Logic?
According to Kelly:

In general, logic is about reasoning. It is about the validity of
arguments, consistency among statements (. . . ) and
matters of truth and falsehood.

In a formal sense logic is concerned only with the form of

arguments and the principles of valid inferencing .
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What is Logic?
According to Webster’s, logic is:

the science of correct reasoning, valid induction or deduction.
Symbolic logic is a modern type of formal logic using
special mathematical symbols for propositions, quantifiers,
and relationships among propositions and concerned with
the elucidation of permissible operations upon such
symbols.
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Elements of a Logic

A logic consists of:

1. syntax

2. semantics

3. proof procedure(s) (also called proof theory)
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Syntax and
Semantics

syntax:

define “well-formed formula”

semantics:
define “ |= ” (“satisfies”)
M |= φ (satisfaction relation)

define φ1, φ2, φ3 |= ψ (“entails”, or semantic
entailment) means:
from the premises φ1, φ2, φ3, we may conclude ψ,
where φ1, φ2, φ3, and are all well-formed formulae in
the logic.
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Proof Procedure
proof procedure(s):

define “ ⊢ ” (pronounced “proves”)

a proof procedure is a way to calculate φ1, φ2, φ3, · · · ⊢ ψ

(also called a sequent). By “calculation”, we mean that

there is a procedure for determining if

((φ1, φ2, φ3, · · · ), ψ) ∈⊢

there may be multiple proof procedures, which we will

indicate by subscripting ⊢, e.g., the sequent calculus proof

procedure for propositional logic will be ⊢SQ.

for some logics, there is not a proof procedure that

always terminates for any sequent.
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Proof Procedures
Proof procedures are algorithms that perform mechanical
manipulations on strings of symbols. A proof procedure
does not make use of the meanings of sentences, it only
manipulates them as formal strings of symbols.

There may be multiple ways to prove a sequent in a
particular proof procedure.
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Soundness and
Completeness

The semantics and the proof procedures (|= and ⊢ ) are related in the
concepts of soundness and completeness.

Definition. A proof procedure is sound if φ1, φ2, φ3 ⊢ ψ then
φ1, φ2, φ3 |= ψ.
A proof procedure is sound if it proves only tautologies.

Definition. A proof procedure is complete if φ1, φ2, φ3 |= ψ then
φ1, φ2, φ3 ⊢ ψ.
A proof procedure is complete if it proves every tautology.

Note that in the literature, there is not consistent use of the symbols |=

and ⊢.
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Consistency

Definition. A proof procedure is consistent if it is not possible
to prove both A and ¬A, i.e.,

not both ⊢ A and ⊢ ¬A.
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Propositional Logic:
Syntax

Its syntax consists of:

Two constant symbols: true and false

Proposition letters

Propositional connectives

Brackets
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Propositional
Connectives

Definition. The propositional (logical) connectives are:

Symbol Informal Meaning

¬ negation (not)

∧ conjunction (and, both)

∨ disjunction (or, at least one of)

⇒ implication (implies, logical consequence, conditional, if . . . then )

⇔ equivalent (biconditional, if and only if)

Others may use different symbols for these operations.
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Terminology
For an implication p⇒ q:

p is the premise or antecedent or hypothesis

q is the consequent or conclusion

¬b⇒ ¬a is called the contrapositive of a⇒ b.

The set of connectives {∧,¬} are complete in the sense that all

the other connectives can be defined using them, e.g.,

a ∨ b = ¬(¬a ∧ ¬b). Other subsets of the binary connectives are

also complete in the same sense.
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Propositions
Definition. Proposition letters represent declarative sentences, i.e.,

sentences that are true or false. Sentences matching proposition

letters are atomic (non-decomposable), meaning they don’t

contain any of the propositional connectives.

Here are some examples:

It is raining outside.

The sum of 2 and 5 equals 3.

The value of program variable a is 42.

Sentences that are interrogative (questions), or imperative

(commands) are not propositions.
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Using Symbols
Because in logic, we are only concerned with the structure of the

argument and which structures of arguments are valid, we

“encode” the sentences in symbols to create a more compact

and clearer representation of the argument. We call these

propositional symbols or proposition letters.

DO NOT use T , F , t, or f in any font as symbols representing

sentences!
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Well-formed formulas
Definition. The well-formed formulae of propositional logic are those

obtained by the following construction rules:

true , false , and the proposition letters are atomic formulas.

If a is an atomic formula, then a is a formula.

If p and q are formulas, then each of the following are formulas:

(¬p) (p ∧ q) (p ∨ q) (p⇒ q) (p⇔ q)

No other expressions are formulas.

Note that this is an inductive definition, meaning the set is

defined by basis elements, and rules to construct elements from

elements in the set.
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Well-formed formulas
Brackets around the outermost formula are usually omitted.

Brackets can be omitted using the following rules of precedence

of operators: ¬,∧,∨,⇒,⇔.

Associativity: ⇒ is right associative meaning p⇒ q ⇒ r is

p⇒ (q ⇒ r).

Note: Some texts do not use exactly these rules of precedence,

they rank ∧ and ∨ at the same level of precedence, and ⇒ and

⇔ at the same level of precedence.

Computer-Aided Verification – p. 26/79



Semantics
Semantics means “meaning”. Semantics relate two worlds.

Semantics provide an interpretation (mapping) of expressions in

one world in terms of values in another world. Semantics are

often a function from expressions in one world to expressions in

another world.

The semantics (i.e., the mapping) is often called a model or an

interpretation. We write M |= φ to mean the model satisfies the

formula. In propositional logic, models are called Boolean

valuations.

Proof procedures transform the syntax of a logic in ways that

respect the semantics. Computer-Aided Verification – p. 27/79



Semantics of
Propositional Logic

We have described the syntax for propositional logic, which is

the domain of the semantic function.

Classical logic is two-valued. The two possible truth values are T,

and F, which are two distinct values.

The range of the semantic function for propositional logic is the

set of truth values:
Tr = {T, F}

Note that these truth values are distinct from the syntax

elements true , and false .
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Semantics of
Propositional Logic

Truth Values: Tr = {T, F}

There are functions on these truth values that correspond to the
meaning of the propositional connectives. We overload the operators
“∧”, “∨”, etc. to be both part of the syntax of propositional logic, and
operations on the sets of truth values in our model for propositional
logic.

¬ : Tr → Tr

∧ : (Tr × Tr) → Tr

etc.

Truth tables are used to describe the functions of operations on these
truth values.
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Truth Tables
p ¬p

T F

F T

p q p ∧ q p ∨ q p ⇒ q p ⇔ q

T T T T T T

T F F T F F

F T F T T F

F F F F T T
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Boolean Valuations
Definition. A Boolean valuation is a mapping v from the set of

propositional formulas to the set Tr meeting the conditions:

v(true) = T, v(false) = F

v(¬p) = ¬(v(p))

for all the connectives: v(p ◦ q) = v(p) ◦ v(q)

Note that ¬(v(p)) and v(p) ◦ v(q) are given by the truth tables on

the previous slide.
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Satisfiability
Definition. A formula a is satisfiable if there is a Boolean valuation

v such that v(a) = T.

We sometimes say that the formula “has a satisfying

assignment” to mean that it is satisfiable.

We are mostly interested in the propositional formulas that map

to T in all the possible Boolean valuations (i.e., in all model).
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Tautologies
Definition. A propositional formula a is a tautology (also called

valid or a theorem) if v(a) = T for every Boolean valuation v.

i.e., , a tautology is a formula that is true for all possible truth

values of the propositional letters used in the formula. The last

column of the truth table for a tautology contains all T.

Note that a formula a is a tautology iff ¬a is not satisfiable.
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Semantic Entailment

φ1, φ2, φ3 |= ψ

means that for all v, if v(φ1) = T and v(φ2) = T and v(φ3) = T,

then v(ψ) = T, which is equivalent to saying

(φ1 ∧ φ2 ∧ φ3) ⇒ ψ

is a tautology, i.e.,

(φ1, φ2, φ3 |= ψ) ≡ (φ1 ∧ φ2 ∧ φ3) ⇒ ψ
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Models and
Entailment

In propositional (and predicate) logic, |= is overloaded and has

two meanings:

M |= φ relates a model to a formula, saying that M satisfies

the formula. This is called a satisfaction relation.

ψ |= φ relates two formulas, saying that forall v (i.e., for all

possible models), if v(ψ) = T, then v(φ) = T. This is called

semantic entailment.

These two uses can be distinguished by their context.
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Falsehood

Definition. A falsehood (contradiction) is a formula that is
false for all possible truth values of the propositional
symbols used in the formula. The last column of the truth
table for a tautology contains all F.

Computer-Aided Verification – p. 36/79



Decidability

A logic is decidable if there is an algorithm to determine if any

formula of the logic is a tautology (is a theorem, is valid).

Propositional logic is decidable because we can always

construct the truth table for the formula.

Question: What is the complexity of deciding propositional logic?

Discuss!
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Proof Procedures

We can always determine if a formula is a tautology by using

truth tables to determine the value of the formula for every

possible combination of values for its proposition letters, but this

would be very tedious since the size of the truth table grows

exponentially.

Proof procedures for propositional logic are alternate means to

determine tautologies. As long as the proof procedure is sound,

we can use the proof procedure in place of truth tables to

determine tautologies.
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Proof Styles

A proof procedure is a set of rules we use to transform premises

and conclusions into new premises and conclusions.

A goal is a formula that we want to prove is a tautology. It has

premises and conclusions.

A proof is a sequence of proof rules that when chained together

relate the premise of the goal to the conclusion of the goal.
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Sequent Calculus
Definition. A sequent is a pair (Γ,∆) of finite sets of formulae.

We will write a sequent as Γ →֒ ∆ and drop the set brackets

around the sets of formulae. X will represent a single formula,

where as Γ is a set of formulae.

(More commonly, →֒ is written as →.)

The →֒ is like implication. A sequent asserts: if all the formulae

on the left of the arrow are true, then at least one of the formulae

on the right are true.
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Meaning of a Sequent
We can extend Boolean valuations to describe the meaning of a

sequent.

v(Γ →֒ ∆) = T

iff v(X) = F for some X in Γ

or v(X) = T for some X in ∆.

When there is nothing on the LHS or RHS of the arrow, we

assume it is the empty set of formulae.

This means v(→֒) = F, and v(→֒ X) = v(X).
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Axioms

X →֒ X (Id)

false →֒

→֒ true
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Sequent Schemata
The rules of the sequent calculus are written in the form:

S1

S2

If a formula matches the schema S1, then it can be replaced by

one matching S2.

Stated another way: if you know S1 is true, then S2 is also true.
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Sequent Calculus
Rules

Structural Rule (Thinning)

If Γ1 ⊆ Γ2 and ∆1 ⊆ ∆2 then:

Γ1 →֒ ∆1

Γ2 →֒ ∆2

Thinning is like precondition strengthening and postcondition weakening for
those familiar with that terminology.

Adding formulae on the RHS of the sequent is adding them to a
disjunction, so this is weakening the RHS formulae.

Adding formulae on the LHS of the sequent is adding them to a
conjunction, so this is strengthening the LHS formulae.
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Sequent Calculus
Rules

Negation Rules

Γ →֒ ∆, X

Γ,¬X →֒ ∆

Γ, X →֒ ∆

Γ →֒ ∆,¬X

Conjunction Rules

Γ, X, Y →֒ ∆

Γ, X ∧ Y →֒ ∆

Γ1 →֒ ∆1, X Γ2 →֒ ∆2, Y

Γ1,Γ2 →֒ ∆1,∆2, X ∧ Y

Disjunction Rules

Γ →֒ ∆, X, Y

Γ →֒ ∆, X ∨ Y

Γ1, X →֒ ∆1 Γ2, Y →֒ ∆2

Γ1,Γ2, X ∨ Y →֒ ∆1,∆2
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Sequent Calculus
Rules

Implication Rules

#1 #2

Γ, X →֒ ∆, Y

Γ →֒ ∆, X ⇒ Y

Γ1 →֒ ∆1, X Γ2, Y →֒ ∆2

Γ1,Γ2, X ⇒ Y →֒ ∆1,∆2

The right-hand rule is similar to modus ponens. The idea is that if X can
be derived, then from X ⇒ Y , Y can be derived, and therefore
whatever can be derived from Y can be derived. If Γ2, and ∆1 are
empty:

Γ1 →֒ X Y →֒ ∆2

Γ1, X ⇒ Y →֒ ∆2
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Cut Rule
This a derived rule:

Γ1 →֒ ∆1, X Γ2, X →֒ ∆2

Γ1,Γ2 →֒ ∆1,∆2

Question: How is it derived?
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Proofs in the Sequent
Calculus

Definition. A proof is a tree labelled with sequents (generally written
with the root at the bottom), such that: if node N is labelled with
Γ →֒ ∆, then if N is a leaf node, Γ →֒ ∆ must be an axiom; if N has
children, their labels must be the premises from which Γ →֒ ∆ follows
by one of the rules. The label on the root node is the sequent that is
proved.

Definition. A formula X is a theorem of the sequent calculus if the
sequent →֒ X has a proof, i.e.,

⊢SQ X

The sequent calculus for propositional logic is both sound and
complete.

Computer-Aided Verification – p. 48/79



Example

Show →֒ A⇒ (B ⇒ A)

1. A →֒ A (id)

2. A,B →֒ A (Thinning)

3. A →֒ B ⇒ A (Implication #1)

4. →֒ A⇒ (B ⇒ A) (Implication #1)
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Motivation
There are some kinds of human reasoning that we cannot do in

propositional logic. For example:

Every person likes ice cream.

Billy is a person.

Therefore, Billy likes ice cream.

In propositional logic, the best we can do is (A ∧B) ⇒ C, which

is not a tautology.

Computer-Aided Verification – p. 51/79



Motivation
We need to be able to refer to objects . We want to symbolize

both a claim and the object about which the claim is made. We

also need to refer to relations between objects, as in “Waterloo is

west of Toronto”. If we can refer to objects, we also want to be

able to capture the meaning of every and some of .

The predicates and quantifiers of predicate logic allow us to capture

these concepts.
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Examples
All grass is green.

∀y • Grass(y) ⇒ Green(y)

Something is rotten in the state of Denmark.

∃x • Rotten(x) ∧ Denmark(x)

We can also have n-ary predicates. Example:

Every even number is divisible by two.

∀x • Even(x) ⇒ Div(x, 2)

The “•” is pronounced “such that”. For the moment, we are not

dealing with types. Computer-Aided Verification – p. 53/79



Quantifiers
Universal quantification ∀ corresponds to finite or infinite

conjunction of the application of the predicate to all elements of

the domain.

Existential quantification ∃ corresponds to finite or infinite

disjunction of the application of the predicate to all elements of

the domain.

Relationship between ∀ and ∃:

∀x • P (x) is the same as ¬∃x • ¬P (x)

∃x • P (x) is the same as ¬∀x • ¬P (x)
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Functions
Consider how to formalize:

Mary’s father likes music

One possible way: ∃x • Father(x,Mary) ∧ Likes(x,Music)

which means: Mary has at least one father and he likes music.

We’d like to capture the idea that Mary only has one father. We

use functions to capture a single object that can be in relation to

another object.

Example: Likes(father(Mary),Music)

We can also have n-ary functions. Computer-Aided Verification – p. 55/79



Predicate Logic:
Syntax

The syntax of predicate logic consists of:

1. constants

2. variables x, y, · · ·

3. functions

4. predicates

5. logical connectives

6. quantifiers (∀,∃)

7. punctuation: •, ( )
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Predicate Logic:
Syntax

Definition. Terms are defined as follows:

1. Every constant is a term.

2. Every variable is a term.

3. If t1, t2, t3, · · · tn are terms then f(t1, t2, t3, · · · tn) is a term,

where f is an n-ary function.

4. Nothing else is a term.
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Predicate Logic:
Syntax

Definition. Well-formed formulas are defined as follows:

1. P (t1, t2, t3, · · · tn) is a wff, where ti is a term, and P is an

n-ary predicate. These are called atomic formulas.

2. If A and B are wffs, then so are (¬A), (A ∧B), (A ∨B),

(A⇒ B), and (A⇔ B).

3. If A is a wff, so is ∀x •A.

4. If A is a wff, so is ∃x •A .

5. Nothing else is a wff.

We often omit the brackets using the same precedence rules as

propositional logic for the logical connectives.
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Scope and Binding of
Variables

Consider a parse tree for ∀x • (P (x) ⇒ Q(x)) ∧ S(x, y):

∧

⇒ S

P y

yx

∀x

xQ
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Scope and Binding of
Variables

Variables occur both in nodes next to quantifiers and as leaf nodes in the parse tree.

A variable x is bound if starting at the leaf of x, we walk up the tree and run into a node
with a quantifier and x.

A variable x is free if starting at the leaf of x, we walk up the tree and do not run into a
node with a quantifier and x.

The scope of a variable x is the subtree starting at the node with the variable and its
quantifier (where it is bound) minus any subtrees with ∀x or ∃x at their root.

Example: ∀x • (∀x • (P (x) ∧ Q(x))) ⇒ (¬P (x) ∨ Q(y))

A wff is closed if it contains no free occurrences of any variable.
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Substitution
Variables are place holders. Given a variable x, a term t and a formula
P , we define P [t/x] to be the formula obtained by replacing all free

occurrences of variable x in P with t.

We have to watch out for variable capture in substitution.

Given a term t, a variable x and a formula A, we say that “t is free for x
in A” if no free x leaf in A occurs in the scope of ∀y or ∃y for any free
variable y occurring in t.

Example:

A is ∀y • P (x) ∧Q(y) Whenever we use P [t/x], t and
t is f(y) x must both be free for x in P .
t is NOT free for x in A.
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Predicate Logic:
Semantics

Recall that a semantics is a mapping between two worlds. A

model for predicate logic consists of:

1. a non-empty domain of objects: D

2. a mapping I, called an interpretation that associates the terms

of the syntax with objects in a domain

It’s important that D be non-empty, otherwise some tautologies

would not hold such as (∀x.A(x)) ⇒ (∃x.A(x)).
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Interpretations
An interpretation assigns:

1. a fixed element c′ ∈ D to each constant c of the syntax

2. an n-ary function f ′ : Dn → D to each n-ary function, f , of

the syntax

3. an n-ary relation R′ ⊆ Dn to each n-ary predicate, R, of the

syntax
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Example of a Model
Let’s say our syntax has the constant c, the function f (unary),

and two predicates P , and Q (both binary). In our model, choose

the domain to be the natural numbers.

I(c) is 0

I(f) is suc, the successor function

I(P ) is <

I(Q) is =
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Example of a Model
What is the meaning of P (c, f(c)) in this model?

I(P (c, f(c))) = I(c) < I(f(c))

= 0 < suc(I(c))

= 0 < suc(0)

= 0 < 1

which is true.
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Valuations
Definition. A valuation v, in an interpretation I, is a function from

the terms to the domain D such that:

1. v(c) = I(c)

2. v(f(t1, · · · tn)) = f ′(v(t1, · · · tn))

3. v(x) ∈ D, i.e., each variable is mapped onto some element

in D
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Example of a
Valuation

D is the set of natural numbers

g is the function +

h is the function suc

c (constant) is 3

y (variable) is 1

v(g(h(c), y)) = v(h(c)) + v(y)

= suc(v(c)) + 1

= suc(3) + 1

= 5
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Predicate Logic:
Satisfiability

Given a model m, with domain D and interpretation I, and a

valuation v,

1. If A is an atomic wff, P (t1 · · · tn), m and v satisfy A iff

P ′(v(t1) · · · v(tn))

2. If A has form ¬B, then m and v satisfy A iff m and v do not

satisfy B.

3. If A has the form B ∧ C, then m and v satisfy A iff m and v

satisfy B and m and v satisfy C , etc. for the other

connectives.
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Predicate Logic:
Satisfiability

5. If A has the form ∀x •B, then m and v satisfy A iff v satisfies

B for all elements of D, i.e., for all v(x) ∈ D.

6. If A has the form ∃x •B, then v satisfies A iff v satisfies B

for some element of D, i.e., there is some v(x) ∈ D for

which B is satisfied.

Notice that if the formula is closed, then the valuation depends

only on the model.

Notational convenience: while we have defined valuations for

terms only, we will extend the use of v to be for wff also, mapping

relations to their counterparts on the domain, and the logical

connectives as we did in Boolean valuations. Computer-Aided Verification – p. 69/79



Validity (Tautologies)
Definition. A predicate logic formula is satisfiable if there exists a

model and there exists a valuation that satisfies the formula (i.e., in

which the formula returns T).

Definition. A predicate logic formula is logically valid (tautology) if

it is true in every model. It must be satisfied by every valuation in

every model.

Definition. A wff, A, of predicate logic is a contradiction if it is false

in every model. It must be false in every valuation in every

model.
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Semantic Entailment
Semantic entailment has the same meaning as it did for

propositional logic.

φ1, φ2, φ3 |= ψ

means that for all v if v(φ1) = T and v(φ2) = T, and v(φ3) = T,

then v(ψ) = T, which is equivalent to saying

(φ1 ∧ φ2 ∧ φ3) ⇒ ψ

is a tautology, i.e.,

φ1, φ2, φ3 |= ψ ≡ (φ1 ∧ φ2 ∧ φ3) ⇒ ψ
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Closed Formulas
Recall: A wff is closed if it contains no free occurrences of any

variable.

We will mostly restrict ourselves to closed formulas. For

formulas with free variables, close the formula by universally

quantifying over all its free variables.
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Sat., Tautologies,
Contradictions

A closed predicate logic formula, is satisfiable if there is a model I

in which the formula returns T.

A closed predicate logic formula, A, is a tautology if it is T in every

model.

|= A

A closed predicate logic formula is a contradiction if it is F in every

model.

Question. What is the complexity of checking the satisfiability of

a predicate logic formula?.
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Proof by Refutation

A closed formula is a tautology (valid) iff its negation is a

contradiction.

In other words, a closed formula is a valid iff its negation is not

satisfiable.
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Counterexamples
How can we show a formula is not a tautology?

Provide a counterexample. A counterexample for a closed formula

is a model in which the formula does not have the truth value T.
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What does first-order
mean?

We can only quantify over variables.

In higher-order logics, we can quantify over functions, and

predicates. For example, in second-order logic, we can express

the induction principle:

∀P • (P (0) ∧ (∀n • P (n) ⇒ P (n+ 1))) ⇒ (∀n • P (n))

Propositional logic can also be thought of as zero-order.
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An Axiomatic System
for Predicate Logic

An extension of the axiomatic system for propositional logic.

Called FO_AL. Use only: ⇒,¬,∀

Five axiom (schemes):

1. A⇒ (B ⇒ A)

2. (A⇒ (B ⇒ C)) ⇒ ((A⇒ B) ⇒ (A⇒ C))

3. (¬A⇒ ¬B) ⇒ (B ⇒ A)

4. (∀x •A(x)) ⇒ A(t), where t is free for x in A

5. ∀x • (A⇒ B) ⇒ (A⇒ (∀x •B)), where A contains no free

occurrences of x
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FO_AL Rules of
Inference

Two rules of inference:

1. (modus ponens - MP) From A and A⇒ B, B can be

derived, where A and B are any well-formed formulas.

2. (generalization) From A,∀x •A can be derived, where A is

any well-formed formula and x is any variable.
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Deduction Theorem

Theorem. If H ∪ {A} ⊢ph B by a deduction containing no

application of generalization to a variable that occurs free in A,

then H ⊢ph (A⇒ B).
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