Recursion and Induction

Paul S. Miner

NASA Langley Formal Methods Group

p.s.miner@nasa.gov

28 November 2007

Outline

Recursive definitions in PVS

Simple inductive proofs

Automated proofs by induction

More complicated induction problems
Equivalence between recursive algorithms
Induction on lists

Inductive definitions

definition by recursion

Suppose we want to define a function to sum the first n natural
numbers. The conventional notation for this is:

n

i

i=0
We may define this in PVS using recursion:

sum(n: nat): RECURSIVE nat =
IF n = 0 THEN
0
ELSE
n + sum(n - 1)
ENDIF
MEASURE n

As a result of this definition, PVS generates two proof obligations
called Type Correctness Conditions or TCCs. Proofs involving this
function will not be considered complete until all TCCs have been
proven.

type correctness conditions for sum

» The first TCC is to ensure that the argument for the recursive
call is a natural number. This is necessary because the natural
numbers are not closed under subtraction.

% Subtype TCC generated (line 8) for n - 1
sum_TCC1: OBLIGATION
(FORALL (n): NOT n = 0 IMPLIES n - 1 >= 0);

» The second TCC is to ensure that the recursion terminates:
% Termination TCC generated (line 8) for sum
sum_TCC2: OBLIGATION

(FORALL (n): NOT n = O IMPLIES n - 1 < n);
This goal is determined from the recursive call and the

MEASURE on the function arguments.

a simple property of sum

We'd like to prove the following closed form solution to sum:

Zn:i_ n(n+1)
Lo 2
i=0

In PVS, we state this goal as follows:

closed_form: THEOREM
sum(n) = (o * (n + 1))/2

The usual approach for proving properties of recursively defined
functions is to use induction.

induction proofs in PVS

(induct/$ var &optional (fnum 1) name)

Selects an induction scheme according to the type
of VAR in FNUM and uses formula FNUM to formulate
an induction predicate, then simplifies yielding
base and induction cases. The induction scheme
can be explicitly supplied as the optional NAME
argument.

induction schemes from the prelude

% Weak induction on naturals

nat_induction: LEMMA
(p(0) AND (FORALL j: p(j) IMPLIES p(j+1)))
IMPLIES (FORALL i: p(i))

% Strong induction on naturals.
NAT_induction: LEMMA

(FORALL j: (FORALL k: k < j IMPLIES p(k)) IMPLIES p(j))
IMPLIES (FORALL i: p(i))

proof of closed_form using induction

closed_form :

|
{1} (FORALL (n: nat): sum(n) = (n * (n + 1)) / 2)

Rule? (induct "n")
Inducting on n,
this yields 2 subgoals:

base case

closed_form.1

{1} sum(0) = (0 * (0 + 1)) / 2
Rule? (expand "sum" +)

Expanding the definition of sum,

this simplifies to:
closed_form.1

Rule? (assert)
Simplifying, rewriting, and recording with decision procedures,

This completes the proof of closed_form.1.

induction step

closed_form.2 :

sum(j) = (j * (j + 1)) / 2 IMPLIES
sum(j + 1) = ((G+ 1) * (+1+ 1)) /2

Rule? (skosimp*)

Repeatedly Skolemizing and flattening,
this simplifies to:

closed_form.2 :

{1} sum(j!'1 + 1) = ((G'1 + 1) * (11 +1+ 1)) /2

induction step (continued)

Rule? (expand "sum" +)
Expanding the definition of sum,
this simplifies to:
closed_form.2 :
[-1] sum(j!1) = (G'1 * (G'1 + 1)) / 2
1 1+ sum(G!1) + j!'1 = (2 + j!1 + (G!1 % j1 + 2 x jl1)) / 2
J J J J J J

Rule? (assert)
Simplifying, rewriting, and recording with decision procedures,

This completes the proof of closed_form.2.

Q.E.D.

automated proofs by induction

Suppose we want to prove things about summations of the form
n
>_f()
i=0

for some function f.
The following definition allows us to sum the first n values of some
function f.

n: VAR nat
f: VAR [nat -> nat]

sum(n, f) : RECURSIVE nat =
IF n = 0 THEN £(0) ELSE f(n) + sum(n - 1, f) ENDIF
MEASURE n

closed_form revisited

The PVS prelude includes a definition for the identity function, id.
This unary function simply returns its argument. That is, for all x:

id(x) = x

This allows a restatement of the earlier closed form result using the
new definition of sum.

closed_form2: THEOREM
sum(n, id) = (o * (n + 1)) / 2

PVS has some built-in strategies that automate the steps in a
proof by induction. The above result can be proven using
(induct-and-simplify "n"

The more general definition of summation allows us to establish
results for more complicated summation expressions.

sum of squares

For example, if we define

square(n: nat) : nat = n * n

Then, the sum of the first n squares is

sum(n, square)

with closed form solution

", n(n+1)2n+1)

In PVS notation:

sum(n, square) = (n * (n + 1) * (2 *n+ 1)) / 6

automated proofs

|
{1} (FORALL (n: nat):
sum(n, square) = (n * (n + 1) * (2 *n + 1)) / 6)

Rerunning step: (induct-and-simplify "n")
square rewrites square(0)

to O
sum rewrites sum(0, square)
to O

square rewrites square(l + j!1)
to 1+ j'1+ (§'1 * jr1 + jri
sum rewrites sum(1l + j!1, square)
to 1 + sum(j!l, square) + j!1 * j!1 + j!1 + j!1
By induction on n, and by repeatedly rewriting and simplifying,
Q.E.D.

limitations of automation

The strategy (induct-and-simplify ...) is useful for
automating relatively simple proofs by induction. However,
automation can sometimes lead us astray.

Consider the nth factorial:

L Lif n=0
" | nx(n=1)!" | otherwise

In PVS:

factorial(n: nat): RECURSIVE posnat =
IF n = 0 THEN 1 ELSE n * factorial(n - 1) ENDIF
MEASURE n

Suppose we wish to prove for n > 3:

n! > 2"

a series of unfortunate events ...

Rule? (induct-and-simplify "n")
factorial rewrites factorial(j!l - 2)
to factorial(j!l - 3) * j!1 - 2 x factorial(j!l - 3)

[..

-]

~ rewrites 2 7 j!1
to 8 * expt(2, j!1 - 3)

Warning:
Warning:
Warning:
Warning:
Warning:

Rewriting depth = 50; Rewriting with factorial
Rewriting depth = 100; Rewriting with factorial
Rewriting depth = 150; Rewriting with factorial
Rewriting depth = 200; Rewriting with factorial
Rewriting depth = 250; Rewriting with factorial

Whenever PVS falls into an infinite loop, C-c C-c will force PVS to
break into lisp. The lisp command (restore) will return you to the
PVS state just prior to the last proof command.

let's try to induct directly on this goal

Rule? (induct "n")
Inducting on n on formula 1,
this yields 2 subgoals:
factorial_gt_expt2_nat.1 :

{1} 0 > 3 IMPLIES factorial(0) > 2 ~ 0

This is a vacuous base case. It does not provide any information
for the induction step to build on.

subsequent induction step

factorial_gt_expt2_nat.2 :

{-1} j'1 > 3 IMPLIES factorial(j'!1) > 2 ~ j!1

{1} factorial(j!l + 1) > 2 ~ (j!1 + 1)

Rule? (split)

The resulting sequents are the actual induction step and actual
base case for the induction.

actual induction cases

The induction step:
factorial_gt_expt2_nat.2.1 :

{-1} factorial(j'!1) > 2 ~ j!1
[-2] j!'1 +1>3

[1] factorial(j'l + 1) > 2 =~ (j!1 + 1)

and the base case, 4! > 2%

factorial_gt_expt2_nat.2.2 :

{1} j!11>3
[2] factorial(j!l + 1) > 2 ~ (j!1 + 1)

choosing an appropriate induction scheme

The PVS Prelude includes both weak and strong induction
schemes for various integer subtypes. These include:

integers: THEORY

[...]
upfrom(i): NONEMPTY_TYPE =
above(i): NONEMPTY_TYPE =

{s: int | s >= i} CONTAINING i
{s: int | s > i} CONTAINING i + 1

[...]
subrange(i, j): TYPE = {k: int | i <= k AND k <= j}
[...]

naturalnumbers: THEORY

[...]
upto(i): NONEMPTY_TYPE = {s: nat | s <= i} CONTAINING i
below(i): TYPE = {s: nat | s < i}

[...]

Note that both subrange(i, j) and below(i) may be empty.

induction using integer subtype “above(3)"

factorial_gt_expt2_aboved :

Rule? (induct "x")

Inducting on x on formula 1,
this yields 2 subgoals:
factorial_gt_expt2_above3.1 :

{1} factorial(3 + 1) > 2 ~ (3 + 1)
Rule?
Note: The proof strategy

(then (auto-rewrite-defs) (assert)) is useful for discharging
subgoals of this form.

functional equivalence between recursive algorithms

The ith Fibonacci number is recursively defined by:

fib(i): RECURSIVE nat =
IF i = 0 THEN 1
ELSIF i = 1 THEN 1
ELSE (£fib(i - 1) + fib(i - 2))
ENDIF
MEASURE i

The above recursive definition is computationally inefficient
(O(2")). An alternative O(i) (linear time) recursive algorithm for
computing the ith Fibonacci is:

tfib(i, j, k): RECURSIVE nat =
IF i = 0 THEN j
ELSE tfib(i - 1, k, j + k)
ENDIF
MEASURE i

our goal

We'd like to prove:

tfib_fib: THEOREM fib(i) = tfib(i, 1, 1)

That is, we want to establish that the linear time algorithm
computes the same function as the exponential time specification.

a fibonacci invariant

First, we introduce a lemma demonstrating that tfib satisfies the
defining recurrence equation for fib
fib_tfib: LEMMA

tfib(i + 2, j, k)
= tfib(i + 1, j, k) + tfib(i, j, k)

We try the automated strategy (induct-and-simplify "i")
t£ib(i + 2, j, k) = t£ib(i + 1, j, k) + t£ib(i, j, k))
Rule? (induct-and-simplify "i")

By induction on i, and by repeatedly rewriting and simplifying,
this simplifies to:

an unfortunate sequent

fib_tfib :

{-1} tfib(j!1, 12 + k!1, j12 + 2 * k!1)
= t£fib(j!1, j!2, k!1) + tfib(j!1, k!1, j!2 + k!1)

|
{1} tfib(§!1, j12 + 2 * k!1, 2 * §12 + 3 * k!1)
= t£fib(j!1, j12 + k!1, j!2 + 2 * k!1)
+ t£ib(!1, k!1, j!12 + k!1)

Rule? (undo)y

And we get a mess. We need a sequent where the arguments j and
k match for both the goal and the induction hypothesis. The
automated strategy guessed an incorrect instantiation. We have to
manually step through the proof.

Hint: A relatively simple proof by induction works.

(left as an exercise)

using strong induction

With this lemma, we can now prove the desired equivalence:

tfib_fib: THEOREM fib(i) = tfib(i, 1, 1)

In this case, the default induction scheme is not strong enough to
establish the result. The proof requires strong induction. This
induction scheme has to be explicitly invoked.

|
{1} (FORALL (i: nat): fib(i) = tfib(i, 1, 1))

Rule? (induct "i" :name "NAT_induction")
Inducting on i using induction scheme NAT_induction,
this simplifies to:
tfib_fib :

JES——
{1} (FORALL (j: nat):

(FORALL (k: nat): k < j IMPLIES fib(k) = tfib(k, 1, 1))
IMPLIES fib(j) = tfib(j, 1, 1))

completing the proof

After expanding the definition of “fib” and discharging the cases
for j'1 = Oand j!'1 = 1, we are left with the following goal:

[-1] (FORALL (k: nat): k < j!1 IMPLIES fib(k) = tfib(k, 1, 1))

|
{1} jri=1
{2} (£ib(j!1 - 1) + £ib(j'!'1 - 2)) = tfib(j!1, 1, 1)
{3} j11 =0

Rule?
If we instantiate the antecedent twice; once with j!1-1 and once

with j!1-2, and invoke lemma fib_tfib, we can complete the
proof. The PVS commands for the instantiations are:

(inst-cp - "j!'1 - 1")
(inst - "j!1 - 2")

Command (inst-cp ...) preserves a copy of the instantiated
formula in the resulting sequent.

induction on lists

The PVS prelude includes a declaration of lists as an abstract data
type (more on how PVS does abstract datatypes in a later lecture).

For each datatype declaration, PVS automatically generates an
induction scheme.

list [T: TYPE]: DATATYPE

BEGIN

null: null?

cons (car: T, cdr:list):cons?
END list

list append

append (11, 12): RECURSIVE list[T] =
CASES 11 OF
null: 12,
cons(x, y): cons(x, append(y, 12))
ENDCASES
MEASURE length(11)

associativity of append

append_assoc: LEMMA
append(11, append(12, 13)) = append(append(11, 12), 13)

This is easily proven using (induct-and-simplify “I1")

inductive definitions

» An inductive definition gives rules for generating members of
a set

» An object is in the set, only if it has been generated according
to the rules

» An inductively defined set is the smallest set closed under the
rules

» PVS automatically generates weak and strong induction
schemas that are used by the (rule-induct ...) command

sample inductive definitions

even(n:nat): INDUCTIVE bool =
n=00R (n>1 AND even(n - 2))

odd(n:nat): INDUCTIVE bool =
n=10R (n>1AND odd(n - 2))

The definition of even generates the following induction schemas:

even_weak_induction: AXIOM
FORALL (P: [nat -> boolean]):
(FORALL (n: nat): n =0 OR (n > 1 AND P(n - 2)) IMPLIES P(n))
IMPLIES
(FORALL (n: nat): even(n) IMPLIES P(n));

even_induction: AXIOM
FORALL (P: [nat -> boolean]):
(FORALL (n: nat):
n=00R (n>1 AND even(n - 2) AND P(n - 2)) IMPLIES P(n))
IMPLIES (FORALL (n: nat): even(n) IMPLIES P(n));

sample proof using (rule-induct ...)

even_odd :

Rule? (rule-induct "even")
Applying rule induction over even,
this simplifies to:

even_odd :

n=00R (n>1 AND odd(n - 2 + 1)) IMPLIES odd(n + 1)

The proof can then be completed using

(skosimp*) (rewrite "odd" +) (ground)

exercise 6

If you get stuck, you may want to refer back to these slides.
All proofs begin with some form of induction. Do not begin any
proofs in this exercise with any variation of (skolem ...).

	Recursive definitions in PVS
	Simple inductive proofs
	Automated proofs by induction
	More complicated induction problems
	Equivalence between recursive algorithms
	Induction on lists
	Inductive definitions

