Real Number Proving in PVS

César A. Mufioz

munoz@nianet.org
http://research.nianet.org/ “munoz
National Institute of Aerospace

PVS Class 2007

munoz@nianet.org
http://research.nianet.org/~munoz

Why Real Number Proving in PVS 7

» There are more numbers than integers in real life (despite
what model-checkers are telling you).

» Conceptually, it is easier to reason on a continuous framework
than on a discrete one.

» A lot of classical results in calculus, trigonometry, and
continuous mathematics.

» Sometimes you cannot avoid them: hybrid systems,
engineering applications, etc.

| Use a CAS, Why Should | Bother with PVS?

Computer Algebra Systems (CAS):

» Mathematica, Maple, Matlab, Scilab,. .. offer very powerful
symbolic and numerical engines.

» CAS do not aim soundness. Singularities and exceptions are
well-known problems of CAS.

» CAS do not support specification languages but programming
languages.

CAS vs. Theorem Provers

» Real analysis is not a traditional strength of theorem provers.

» Theorem provers and CAS can be integrated in useful ways:
» Computer algebra systems can be used to perform mechanical
simplifications and find potential solutions.
» Theorem prover are then used to verify the correctness of a
particular solution.

. Real Numbers in PVS

» Reals are defined as an uninterpreted subtype of number in
the prelude library:

real: TYPE+ FROM number

» All numeric constants are real:

» naturals: 0,1,...
> integers: ...,-1,0,1,...
» rationals: ...,-1/10,...,3/2,...

» Decimal notation is supported in PVS 4: The decimal number
3.141516 is syntactic sugar for the rational number
31416/10000.

PVS's real numbers are R
(Rather than floating point numbers)

» All the standard properties: infinite, non-enumerable,
NCZCQCR,....

» Exact arithmetic: 1/3 + 1/3 + 1/3 = 1.
» The type real is unbounded:

107100
10"googol

googol : real
googolplex : real

googol_prop : LEMMA
googolplex > googol * googol

PVS's real is Built-in

» Numerical expressions can be automatically reduced by the
theorem prover (no need to prove 1+1=2), ...

> ...except for machine physical limitations: Try to prove
googol_prop with grind.

You can still prove googol_prop using analytical methods.

Subtypes of real

nzreal : TYPE+
nnreal : TYPE+
npreal : TYPE+
negreal : TYPE+
posreal : TYPE+

rat . TYPE+
int . TYPE+
nat . TYPE+

= {r:
{r:
{r:
{r:
{r:

FROM
FROM
FROM

real |
real |
reall
reall
reall

real
rat
int

r /= 0} % Nonzero reals
r >= 0} % Nonnegative reals
r <= 0} % Nonpositive reals
r < 0} % Negative reals
r > 0} % Positive reals

The uninterpreted type number is the only real’s supertype
predefined in PVS: no complex numbers, no hyper-reals,

no R*°, ...

Predefined Operations

+, —, *: [real, real -> reall]

/: [real, nzreal -> reall
-: [real -> reall

sgn(x:real) : int = IF x >= 0 THEN 1 ELSE -1 ENDIF
abs(x:real) : {nny: nnreal | nny >= x} = ...
max(x,y:real): {z: real | z >= x AND z >= y}
min(x,y:real): {z: real | z <= x AND z <= y} = ...
“(x: real,i:{i:int | x /= 0 OR i >= 0}): real = ...

... and what about \ﬂf, log, exp, sin, cos, tan, 7, lim, ... ?

NASA PVS Libraries

Among many others, the following libraries are available at
http://shemesh.larc.nasa.gov/ftp/larc/PVS-library/
pvslib.html

» reals: Square, square root, quadratic formula, polynomials.

» analysis: Real analysis, limits, continuity, derivatives,
integrals.

» series: Power series, Taylor's theorem.

» 1lnexp and lnexp_fnd: Logarithm, exponential, and
hyperbolic functions.

» trig and trig_fnd: Trigonometry.
» complex: Complex numbers.

» float: Floating point numbers.

http://shemesh.larc.nasa.gov/ftp/larc/PVS-library/pvslib.html
http://shemesh.larc.nasa.gov/ftp/larc/PVS-library/pvslib.html

To Be Or Not To Be (Foundational) ?

» Axiomatic theories trig and lnexp typechek faster.

» Fundational theories trig_fnd and lnexp_fnd have no
axioms, and are updated regularly.

To Be Or Not To Be (Foundational) ?

» Axiomatic theories trig and lnexp typechek faster.

» Fundational theories trig_fnd and lnexp_£fnd have no
axioms, and are updated regularly.
» Careful what you wish for:

{1} sin(pi / 2) >1/ 2

Rule? (grind)
Integral rewrites Integral[real] (0, 1, atan_deriv_fn)
to integral(0, 1, atan_deriv_fn)
atan_value rewrites atan_value(1)
to integral(0, 1, atan_deriv_fn)
atan rewrites atan(1)
to integral(0, 1, atan_deriv_fn)
pi rewrites pi
to 4 * integral(0, 1, atan_deriv_fn)
sin_value rewrites sin_value
to ...

Il. Low Level Real Number Proving

Real numbers in PVS are axiomatically defined in the PVS prelude:

» Theory real_axioms:
Commutativity, associativity, identity, etc. These properties
are known to the decision procedures, so they rarely need to
be cited.

» Theory real_props:
Order and cancellation laws. These lemmas are not used
automatically by the standard decision procedures.

If You Really Want to Know ...

real_props: THEORY
BEGIN

both_sides_plus_lel: LEMMA x + z <=y + z IFF x <=y
both_sides_plus_le2: LEMMA z + x <= z + y IFF x <=y
both_sides_minus_lel: LEMMA x - z <= y - z IFF x <=
both_sides_minus_le2: LEMMA z - x <=z - y IFF y <=
both_sides_div_pos_lel: LEMMA x/pz <= y/pz IFF x <=
both_sides_div_neg_lel: LEMMA x/nz <= y/nz IFF y <=

abs_mult: LEMMA abs(x * y) = abs(x) * abs(y)

H <M<

abs_div: LEMMA abs(x / nOy) = abs(x) / abs(nOy)

abs_abs: LEMMA abs(abs(x)) = abs(x)
abs_square: LEMMA abs(x * x) = x * X

abs_limits: LEMMA -(abs(x) + abs(y)) <= x + y AND

x +y <= abs(x) + abs(y)
END real_props

Tip 1: Avoid real_props

{1} nnx / (1 + nnx) <=1

Rule? (grind :theories "real_props")

div_mult_pos_lel rewrites nnx / (1 + nnx) <=1
to TRUE

Q.E.D.

A Toy Example

{1} x*x (1 -x) <=1

Rule?

A Toy Example

{1} x*x (1 -x) <=1

Rule? (grind :theories "real_props")

{13} X - x *xx <=1

Tip 2: Use both-sides To Operate Both Sides of a

Formula
(But only to add/subtract both sides of a formula)

Tip 2: Use both-sides To Operate Both Sides of a

Formula
(But only to add/subtract both sides of a formula)

Rule? (both-sides "-" "1/4")

Applying - 1 / 4 to both sides of an inequality/equality
conjunction, this simplifies to:

toy :

Tip 3: Use case to Prove What You Want ...
(No what PVS offers you)

Rule?

Tip 3: Use case to Prove What You Want . ..

(No what PVS offers you)

Rule? (case "x - x * x -1/ 4 <= 0")
this yields 2 subgoals:

toy.1 :

{-1} x-x*x-1/4<=0

[1] x-x*xx-1/4<=1-1/4

Tip 3: Use case to Prove What You Want . ..

(No what PVS offers you)

Rule? (case "x -~ x * x -1/ 4 <=0")
this yields 2 subgoals:

toy.1 :

{-1} x-x*x-1/4<=0

[1] x-x*xx-1/4<=1-1/4

Rule? (assert)
This completes the proof of toy.1.

{1} x-x*xx-1/4<=0
[2] x-x*xx-1/4<x=1-1/4

Rule? (hide 2)

.And Arrange Expressions With case-replace

.And Arrange Expressions With case-replace

[1] x-x*xx-1/4<=0

Rule? (case-replace
"x —x *x -1/ 4=-(x-1/2)x(x-1/2)"
:hide? t)

this yields 2 subgoals:

toy.2.1 :

.And Arrange Expressions With case-replace

[1] x-x*xx-1/4<=0

Rule? (case-replace
"x —x *x -1/ 4=-(x-1/2)x(x-1/2)"
:hide? t)

this yields 2 subgoals:

toy.2.1 :

{1} -G-1/72)*x &x-1/2)<=0
Rule? (grind :theories "real_props")
this simplifies to:

toy.2.1 :

{1} -Gx-1/72)*«xx-Ux*x-(x-1/2)/2<x=0

Tip 4: Introduce New Names to Avoid Distribution Laws

Tip 4: Introduce New Names to Avoid Distribution Laws

{1} -&x-1/72)*x x-1/2)<=0

Rule? (name-replace "X" "(x-1/2)" :hide? nil)
this simplifies to:

toy.2.1 :

{-1} -1/2) =X

Finally ...

toy.2.1 :
{-1} x-1/2) =X

Rule? (grind :theories "real_props")
This completes the proof of toy.2.1.

toy.2.2 :
{1} x-x*x-1/4=-x-1/2)*%x (x-1/2)
[2] x-x*xx-1/4<=0

Rule? (assert)
Q.E.D.

Tip 5: Don’t Reinvent the Wheel
(Look into the NASA libraries first!)

Theory reals@quadratic

quadratic_le_O : LEMMA
a*sq(x) + b*x + ¢ <= 0 IFF
((discr(a,b,c) >= 0 AND
((a > 0 AND x2(a,b,c) <= x AND x <= x1(a,b,c)) OR
(a < 0 AND (x <= x1(a,b,c) OR x2(a,b,c) <= x)))) OR
(discr(a,b,c) < 0 AND c <= 0))

A Simpler Proof

{1} x*x (1 -%x) <=1

Rule? (lemma "quadratic_le_0"
(Ma" =gt otptotMgrotet tegntotxM o 'x"))
(grind)
Trying repeated skolemization, instantiation, and
if-lifting,
Q.E.D.

[Il. Strategies for Algebraic Manipulations

» Manip: Package for algebraic manipulations of real-valued
expressions.

» Developed by B. Di Vito (NASA LaRC).

» Included as part of the PVS NASA Libraries.

» The package consists of:
» Strategies.
Extended notations for formulas and expressions.
Emacs extensions.
Support functions for strategy developers.

vV vy

Manip Strategies: Basic Manipulations

| Strategy | Description
(swap-rel fnums) Swap sides and reverse relations
(swap! expr-loc) Xoy = yox
(group! expr-loc LR) | (xoy)oz= xo(yoz)
(flip-ineq fnums) Negate and move inequalities
(split-ineq fnum) Split < (>) into < (>) and =

Extended Formula Notation

» Standard
» x: All formulas.
» —: All formulas in the antecedent.
» +: All formulas in the consequent.

» Extended (Manip strategies only)
» (- nl...nk): All formulas but n1,...,nk
» (-~ nil...nk): All antecedent formulas but n1,...,nk
» (+~ nl...nk): All consequent formulas but n1,...,nk

(Basic) Extended Expression Notation

» Term indexes:

v

L,R: Left- or right-hand side of a formula.

n: n-th term from left to right in a formula.

-n: n-th term from right to left in a formula.

*: All terms in a formula.

(" n1...nk): All terms in a formula but n1, ... ,nk.

vV vy vVvyy

» Location references:

» (! fnum LR il...in): Term in formula fnum, Left- or
Right-hand side, at recursive path location i1...ik.

Examples
{-1} x*xr+y*r+1>r-1
{1} r=y*x2*x+1

Rule? (swap-rel -1)

Examples

{-1} x*xr+y*r+1>r-1

Examples

{1} r=y*x2*x+1
Rule? (swap-rel -1)

{-1} r-1<=x*xr+yx*xr+1

Rule? (swap! (! -1 R 1))

Examples

{-1} r-1<=r*xx+yx*xr+1
[1] r=y*x2x*xx+1

Rule? (group! (! 1 R 1) R)

{-1} r-1<=r*xx+yx*xr+1

{-1} r-1<=r*xx+yx*xr+1

{1} r=yx*% (2*xx) +1

Rule? (flip-ineq -1)

{-1} r-1<=r*xx+yx*xr+1

{1} r-1>r*xx+y*xr+1
2] r=y* (2*xx) +1

{1} r-1>r*xx+yx*xr+1
2] r=y*x (2 *xx)+1

Rule? (split-ineq 1)

{1} r-1>r*xx+y*xr+1
2] r=y*x (2 *xx)+1

Rule? (split-ineq 1)

Splitting off the equality case from formula 1,
this yields 2 subgoals:

{-1} r-1=r*xx+y*xr+1

[1] r-1>r*xx+yx*xr+1

2] r=y*x (2 *%xx)+1
Rule? (postpone)

[
{1} r-1=r*xx+y*xr+1
2] r-1>r*xx+yx*xr+1
3] r=yx*x (2x*xx)+1

More Strategies

Strategy

Description

(mult-by fnums term)

Multiply formula by term

(div-by fnums term)

Divide formula by term

(move-terms fnum L|R tnums)

Move additive terms left and right

(isolate fnum L|R tnum)

Isolate additive terms

(cross-mult fnums)

Perform cross-multiplications

(factor fnums)

Factorize formulas

(factor! expr-loc)

Factorize terms

(mult-eq fnum fnum)

Multiply equalities

(mult-ineq fnum fnum)

Multiply inequalities

More Examples

Rule? (cross-mult -1)

More Examples

Rule? (cross-mult -1)

{-1} pb*r * x + pb *xy >pa*xr - pa

More Examples

Rule? (cross-mult -1)

{-1} pb*r *x x + pb *xy>pax*r - pa

Rule? (isolate 1 L 1)

More Examples

Rule? (cross-mult -1)

{-1} pb*r *x x + pb *xy>pax*r - pa

{-1} x *y - pa + na < x * na * pa
{-2} r-y*x2*xx=1

{1} 2*xpa=2*x+ 2%y

Rule? (move-terms -1 L (2 3))

{-1} x *y - pa + na < x * na * pa
{-2} r-y*x2*xx=1

{1} 2*xpa=2*x+ 2%y
Rule? (move-terms -1 L (2 3))

{-1} (x * y < x * na * pa + pa - na)
[-2] r-y*x2*x=1

[1] 2*xpa=2*x+2 %y

{-1} x *xy - pa + na < x * na * pa
{-2} r-y*x2*xx=1

{1} 2*xpa=2*x+ 2%y
Rule? (move-terms -1 L (2 3))

{-1} (x * y < x * na * pa + pa - na)
[-2] r-y*x2x*xx=1

[1] 2*pa=2x*xx+2x*xy

Rule? (factor 1)

{-1} x *xy - pa + na < x * na * pa
{-2} r-y*x2*xx=1

{1} 2*xpa=2*x+ 2%y
Rule? (move-terms -1 L (2 3))

{-1} (x * y < x * na * pa + pa - na)
[-2] r-y*x2*x=1

[1] 2*pa=2x*xx+2x*xy
Rule? (factor 1)

[-1] (x * y < x * na * pa + pa - na)
[-2] r-y*x2x*xx=1

{1} 2*xpa=2x* (x +7y)

[-1] (x * y < x * na * pa + pa - na)
[-2] r-y*x2*xx=1

{1} 2*pa=2x* (x+y)

Rule? (mult-eq -1 -2)

[-1] (x * y < x * na * pa + pa - na)
[-2] r -y *2*x=1

{1} 2 *xpa=2=* (x +y)

Rule? (mult-eq -1 -2)

{-1} (& * y*x(r -y * 2 * x) < (x * na * pa + pa - na)*l
[-2] (x * y < x * na * pa + pa - na)

[-3] r-y*x2x*xx=1

[1] 2 *pa=2%* (x +y)

[-1] (x * y < x * na * pa + pa - na)
[-2] r -y *2*xx=1

{1} 2 *xpa=2=* (x +y)

Rule? (mult-eq -1 -2)

{-1} (* y)*x(r -y * 2 * x) < (x * na * pa + pa - na)*l
[-2] (x * y < x * na * pa + pa - na)

[-3] r-y*x2x*xx=1

[1] 2 *pa=2x* (x+7y)

Rule? (div-by 1 "2")

[-1] (x * y < x * na * pa + pa - na)
[-2] r -y *2*xx=1

{1} 2 *xpa=2=* (x +y)

Rule? (mult-eq -1 -2)

{-1} (* y)*x(r -y * 2 * x) < (x * na * pa + pa - na)*l
[-2] (x * y < x * na * pa + pa - na)

[-3] r-y*x2x*xx=1

[11 2 *pa=2x* (x+7y)

Rule? (div-by 1 "2")

The Field Package

» Field: A simplification procedure for the field of real numbers.

» Included as part of the PVS NASA Libraries.

» The package consists of:

> The strategy field.
> Several extra-tegies.

{-1} wvox > 0

{-2} s *x s -D*xD >D

{-3} s *x vix * voy - s * viy * vox /= 0

{-4} ((s * s - D*D) * voy - D * vox * sqrt(s*s - D*D))/
(s * (vix * voy - vox * viy)) * s * vox /= 0

{-56} voy * sqrt(s * s - D*D) - D * vox /= 0

{1} (viy * sqrt(s * s - DxD) - vix * D) /
(voy * sqrt(s * s - D#D) - vox * D) =
(D#D - s * s) / (((s x s - D*¥D) * voy - D * vox *
sqrt(s * s - D*D)) /
(s * (vix * voy - vox * viy)) * s * vox) +
vix / vox

Rule? (field 1)

{-1} wvox > 0

{-2} s *x s -D*xD >D

{-3} s *x vix * voy - s * viy * vox /= 0

{-4} ((s * s - D*D) * voy - D * vox * sqrt(s*s - D*D))/
(s * (vix * voy - vox * viy)) * s * vox /= 0

{-56} voy * sqrt(s * s - D*D) - D * vox /= 0

{1} (viy * sqrt(s * s - DxD) - vix * D) /
(voy * sqrt(s * s - D#D) - vox * D) =
(D#D - s * s) / (((s x s - D*¥D) * voy - D * vox *
sqrt(s * s - D*D)) /
(s * (vix * voy - vox * viy)) * s * vox) +
vix / vox

Rule? (field 1)
Q.E.D.

Some Extra-tegies

| Strategy | Description
(grind-reals) grind + real_props
(cancel-by fnum term) Cancel a common term in a formula
(skoletin fnum) Skolemize let-in expressions
(skeep fnum) Skolemize with same variable names
(neg-formula fnum) Negate a formula
(add-formula fnum fnum) | Add two formulas

Forget Tip 1 and Tip 4, Use grind-reals

{1} -1/72) % &x-1/2)>0

Rule? (grind-reals :nodistrib 1)

Forget Tip 1 and Tip 4, Use grind-reals

{1} -1/2)x&x-1/2)>0
Rule? (grind-reals :nodistrib 1)

Q.E.D.

cancel-by

{-1} 4 * (pa * pb) + (pa * 6) * pa = pa * ((c + 1) * 2)
{1} 2 xpb + 3 * pa =c

Rule? (cancel-by -1 "2%pa")

cancel-by

{-1} 4 * (pa * pb) + (pa * 6) * pa = pa * ((c + 1) * 2)
{1} 2% pb+ 3 xpa=c

Rule? (cancel-by -1 "2%pa")

{-1} (@ *pa) + (2 *xpb) =1 + ¢

{1} 2 *xpa=0
{2} 3 xpa+ 2 *pb=c

PVS's Let-in Expressions

> Let-in expressions are used in PVS to introduce local
definitions.

» They are automatically unfolded by the theorem prover.

{1} LET a =a *xy + 2 IN
LET b a + x IN
LET a+bIN-b+4*xaxc/2=0

(¢}
]

Rule? (assert)

PVS's Let-in Expressions

> Let-in expressions are used in PVS to introduce local
definitions.

» They are automatically unfolded by the theorem prover.

{1} LET a = y + 2 IN
LET b = a + x IN
LIET c=a+bIN-b+4*a*xc/2=0

)
*

Rule? (assert)

{1} (32 + 8 * (xxx * y*y) + 4 * (xxx*xy) + 16 * (xxy) +
16 * (x*xy) + 8*x) / 2 + -(2 + xxy + x) =0

Let-in Expressions Go Wild

{1} LET a
LET ¢

(x + 1) INLET b =a *x a IN
b*x b INcx*c >= a

Rule? (assert)

Let-in Expressions Go Wild

{1} LET a
LET ¢

(x+ 1) INLET b =a *x a IN
b*x b INcx*c >= a

Rule? (assert)

{1} 1 + x + (X*Xkxk0kXKRORXKRX + XROKXROKXKR KKK)
+ (XRXRORXRXKRXKK + XKROKXRXKRXKX)
+ (XRXKXKXKRXHRIKRK + XKXKXKXKKKK)

+ (x*x

+ x)
+ (x*x + X)
+ (x*x + x)
> 1 + x

Tip 8. To unfold a let-in, use skoletin

{1} LET a
LET c

(x + 1) INLET b = a * a IN
b*x b INcx*xc > a

Rule? (skoletin 1)

Tip 8. To unfold a let-in, use skoletin

{1} LET a
LET c

(x + 1) INLET b = a * a IN
b*x b INcx*xc > a

Rule? (skoletin 1)
{-1} a=(x+ 1)

{1} LETb=a*aINLET c=Dbx*xbINcx*c> a

Rule?

Tip 8. To unfold a let-in, use skoletin

{1} LET a
LET c

(x + 1) INLET b = a * a IN
b*x b INcx*xc > a

Rule? (skoletin 1)
{-1} a=(x+1)

{1} LET b =a * a INLET ¢c = b * b IN c * ¢ >= a

Rule? (skoletinx* 1)

Tip 8. To unfold a let-in, use skoletin

{1} LET a
LET c

(x + 1) INLET b = a * a IN
b*x b INcx*xc > a

Rule? (skoletin 1)
{-1} a=(x+1)

{1} LET b =a * a INLET ¢c = b * b IN c * ¢ >= a

Rule? (skoletinx* 1)

{-1} c=b=xb
{-2} b=ax*xa
[-3] a=(x+1)

~
[y
-]
O
*
O
\4
]
o))

More examples

{1} FORALL (nnx: nnreal, x: real):
nnx > x - nnx*nnx AND x + 2 * nnx*nnx >= 4 * nnx
IMPLIES nnx > 1

Rule? (skeep)

More examples

{1} FORALL (nnx: nnreal, x: real):
nnx > x - nnx*nnx AND x + 2 * nnx*nnx >= 4 * nnx

IMPLIES nnx > 1
Rule? (skeep)
{-1} nnx > x - nnx*nnx

{-2} x + 2 *nnx*nnx >= 4 * nnx

{1} nonx > 1

More examples

{1} FORALL (nnx: nnreal, x: real):
nnx > x - nnx*nnx AND x + 2 *x nnx*nnx >= 4 * nnx

IMPLIES nnx > 1
Rule? (skeep)
{-1} nnx > x - nnx*nnx
{-2} x + 2 *nnx*nnx >= 4 * nnx

{1} nnx > 1

Rule? (neg-formula -1)

More examples

{1} FORALL (nnx: nnreal, x: real):
nnx > x - nnx*nnx AND x + 2 *x nnx*nnx >= 4 * nnx
IMPLIES nnx > 1

Rule? (skeep)
{-1} nnx > x - nnx*nnx
{-2} x + 2 *nnx*nnx >= 4 * nnx

{1} nnx > 1
Rule? (neg-formula -1)

{-1} nnx*nnx - x > -nnx
[-2] x + 2 * nnx*nnx >= 4 * nnx

{-1} nnx*nnx - x > -nnx
[-2] x + 2 * nnx*nnx >= 4 * nnx

Rule? (add-formulas -1 -2)

{-1} nnx*nnx - x > -nnx
[-2] x + 2 * nnx*nnx >= 4 * nnx

Rule? (add-formulas -1 -2)
{-1} 3 * (nnx*nnx) > -nnx + 4 * nnx

{-1} nnx*nnx - x > -nnx
[-2] x + 2 * nnx*nnx >= 4 * nnx

Rule? (add-formulas -1 -2)
{-1} 3 * (nnx*nnx) > -nnx + 4 * nnx

Rule? (cancel-by -1 "nnx")

Q.E.D.

{-1} nnx*nnx - x > -nnx
[-2] x + 2 * nnx*nnx >= 4 * nnx

Rule? (add-formulas -1 -2)
{-1} 3 * (nnx*nnx) > -nnx + 4 * nnx

Rule? (cancel-by -1 "nnx")

Q.E.D.

IV. Strategies for Specialized Domains

» Linear arithmetic via Yices.

» Numerical calculations via Interval.

Yices

> Yices is a SMT (Satisfiability Modulo Theories) solver
developed at SRI.

» Background theories supported by Yices:

>

vV vy VY VvVYYy

Linear arithmetic (real and integer): addition and
multiplication by scalar.

Arrays.

Uninterpreted functions.

Datatypes.

Bit vectors.

Quantifiers.

{1} EXISTS (%, y: real): x /=y

Rule? (yices)

{1} EXISTS (%, y: real): x /=y

Rule? (yices)
(assert
(not (exists (x_l::real y_2::real) (/= x_1 y_2))))

Result = unsat

Logical context is inconsistent. Use (reset) to reset.
unsat

Yices translation of negation is unsatisfiable
Simplifying with Yices,

Q.E.D.

yices

{1} EXISTS (x, y: real):
1<=3%x-3x*%xyAND 3 *x x -3 *xy <=2

Rule? (yices)

yices

{1} EXISTS (x, y: real):
1<=3%x-3x*%xyAND 3 *x x -3 *xy <=2

Rule? (yices)
Yices translation of negation is unsatisfiable

Simplifying with Yices,

Q.E.D.

yices

{1} EXISTS (x, y: real):
1<=3%x-3x*%xyAND 3 *x x -3 *xy <=2

Rule? (yices)

Yices translation of negation is unsatisfiable
Simplifying with Yices,

Q.E.D.

Behind this QED there is no a “real” PVS proof!

The Interval Package

» A package for interval analysis.

» Exact real calculations including trigonometric and
transcendental functions.

» http://research.nianet.org/ “munoz/Interval

http://research.nianet.org/~munoz/Interval

numerical

{1} sin(6 * pi / 180) + sqrt(2) <= 2.11

Rule? (numerical)

numerical

{1} sin(6 * pi / 180) + sqrt(2) <= 2.11
Rule? (numerical)

Evaluating formula using numerical approximations,
Q.E.D.

numerical

{1} sin(6 * pi / 180) + sqrt(2) <= 2.11
Rule? (numerical)

Evaluating formula using numerical approximations,
Q.E.D.

Behind this QED there is a “real” PVS proof!

instint

{-1y x ## [l 0, 2 |]
{1} sqrt(x) + sqrt(3) < 315 / 100

Rule? (instint)

instint

{-1} x ## [l 0, 2 |]
{1} sqrt(x) + sqrt(3) < 315 / 100
Rule? (instint)

Proving that an expression is in a given interval,
Q.E.D.

instint with Splitting

{-1} x ## [l 0, 1 |]

{1} x+ @ -x)## [l 0,1/31]

Rule? (instint)

instint with Splitting

{-1} x## [| 0, 1 |]

{1y x*x @ -x)## [l 0, 1/31]

Rule? (instint)

{-1} x * (1 - x) ## Mult([l0, 111, SubC[I11], [lo, 111))
{-23 =x ## [lo, 1/]

{1} Mult([lO, 111, Sub(Ll1l], C[lO, 111)) < [lo, 1 / 3I]

Rule? (undo)
Rule? (instint :splitting 6)

instint with Splitting

{-1} x ## [| 0, 1 |]

{1} x*x (1 -x) ## [| 0, 1/ 3 1]

Rule? (instint)

{-1} x * (1 - x) ## Mult([l0, 111, SubC[I11], [lo, 111))
{-23 =x ## [lo, 1/]

{1} Mult([lO, 1|1, Sub([I1l], [lO, 111)) < [lo, 1 / 3I]
Rule? (undo)

Rule? (instint :splitting 6)
Q.E.D.

Essential Tools for the Real Practitioner

» PVS NASA libraries.

» Manip/Field packages.

» Depending on your application: Yices and Interval.

