Model Checking Timed Automata Material from "Principles of Model Checking" by C. Baier and J-.P Katoen

Borzoo Bonakdarpour

School of Computer Science University of Waterloo

November 24, 2013

B. Bonakdarpour (School of Computer ScienceUnivers

Model Checking Timed Automata

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Outline

2 TCTL Model Checking

・ロト ・回ト ・ヨト ・ヨ

Presentation outline

-

・ロト ・回ト ・ヨト ・

Timed Computation Tree Logic (TCTL)

Definition (Syntax of TCTL)

Formulae in TCTL are either state or path formulae. TCTL state formulae over the set AP of atomic propositions and set C of clocks are formed according to the following grammar:

$$\Phi ::= true \mid a \mid g \mid \Phi \land \Phi \mid \mathbf{E}\varphi \mid \mathbf{A}\varphi$$

where $a \in AP$, $g \in ACC(C)$ and φ is a path formula defined by:

$$\varphi ::= \Phi \mathbf{U}^J \Phi$$

where $J \subseteq \mathbb{R}_{>0}$ is an interval whose bounds are natural numbers.

Timed Computation Tree Logic (TCTL)

TCTL Tempral Abbreviations

$$\begin{split} \Diamond^{J} \Phi &= true \, \mathbf{U}^{J} \, \Phi \\ \mathbf{E} \Box^{J} \Phi &= \neg \mathbf{A} \Diamond^{J} \neg \Phi \\ \mathbf{A} \Box^{J} \Phi &= \neg \mathbf{E} \Diamond^{J} \neg \Phi \end{split}$$

Timed Computation Tree Logic (TCTL)

TCTL Tempral Abbreviations

$$\begin{split} \Diamond^{J} \Phi &= true \, \mathbf{U}^{J} \, \Phi \\ \mathbf{E} \Box^{J} \Phi &= \neg \mathbf{A} \Diamond^{J} \neg \Phi \\ \mathbf{A} \Box^{J} \Phi &= \neg \mathbf{E} \Diamond^{J} \neg \Phi \end{split}$$

TCTL Interval Abbreviations

Intervals are often denoted by shorthand, e.g., $\Diamond^{\leq 2}$ denotes $\Diamond^{[0,2]}$ and $\Box^{>8}$ denotes $\Box^{(8,\infty)}$

Example

Example

Consider the following timed automata

Example

Example

Consider the following timed automata

Example

The property:

"the light cannot be continously switched on for more than 2 minutes"

is expressed by the TCTL formula:

$${f A} \square (\mathit{on}
ightarrow {f A} \Diamond^{>2}
eg on)$$

Semantics of TCTL

Definition (Satisfaction relation for TCTL)

Let $TA = (L, \Sigma, E, C, L^0, I)$ be a timed automaton, $a \in AP$, $g \in ACC(C)$, and $J \subseteq \mathbb{R}_{\geq 0}$. For state $s = \langle I, \nu \rangle$ in TS(TA) and TCTL formulea Φ and Ψ , and TCTL path formula φ , the satisfaction relation \models is defined for state formulae by

$s \models true$		
$s \models a$	iff	$a \in Label(I)$
$s \models g$	iff	$ u \models g$
$s \models \neg \Phi$	iff	not $s \models \Phi$
$s \models \Phi \land \Psi$	iff	$(s\models\Phi)~\wedge~(s\models\Psi)$
$s \models \mathbf{E} \varphi$	iff	$\pi\models arphi$ for some $\pi\in \mathit{Paths}_{\mathit{div}}(s)$
$s \models \mathbf{A} \varphi$	iff	$\pi\models arphi$ for all $\pi\in \mathit{Paths_{div}}(s)$

Semantics of TCTL (cont'd)

Definition (Satisfaction relation for TCTL (con'd))

For a time-divergent path $\pi = s_0 \stackrel{d_0}{\Longrightarrow} s_1 \stackrel{d_1}{\Longrightarrow} \dots$, the satisfaction relation \models for path formulae is defined by:

$$\pi \models \Phi \, \mathbf{U}^J \, \Psi \quad ext{iff} \quad \exists i \geq 0. s_i + d \models \Psi ext{ for some } d \in [0, d_i] ext{ with}$$

$$\sum_{k=0}^{i-1} d_k + d \in J$$
 and

 $orall j \leq i.s_j + d' \models \Phi \lor \Psi$ for any $d' \in [0, d_j]$ with

$$\sum_{k=0}^{j-1}d_k+d'\leq \sum_{k=0}^{i-1}d_k+d$$

where for $s_i = \langle I_i, \nu_i \rangle$ and $d \ge 0$, we have $s_i + d = \langle I_i, \nu_i + d \rangle$

・ロト ・回ト ・ヨト ・ヨト

Semantics of TCTL (cont'd)

Definition (TCTL Semantics fot Timed Automata)

A timed automaton *TA* satisfies a TCTL formula Φ iff $s_0 \models \Phi$ for each initial state s_0 of *TA*.

・ロン ・回 と ・ ヨン・

Presentation outline

1 Timed Computation Tree Logic (TCTL)

2 TCTL Model Checking

・ロト ・回ト ・ヨト ・ヨト

Reduction to CTL Model Checking

Idea

Given a time automaton *TA* and a TCTL formula Φ , our goal is to find a finite transition system *S* and an CTL formula $\hat{\Phi}$, such that

 $TA \models_{TCTL} \Phi$ iff $R(TA, \Phi) \models_{CTL} \hat{\Phi}$

- **Input**: timed automaton *TA* and TCTL formula Φ (both over propositions *AP* and clocks *C*. **Output**: *TA* $\models \Phi$
- 1 $\hat{\Phi}$:= eliminate the timing parameters from Φ ;
- 2 determine the clock equivalence classes under \cong ;
- 3 construct the region transition system $TS = R(TA, \Phi)$;
- 4 apply the CTL model checking algorithm to check $\mathit{TS} \models \hat{\Phi}$
- 5 $TA \models \Phi$ if and only if $TS \models \hat{\Phi}$

Algorithm 1: A recipe for TCTL model checking

Elimination of Timing Parameters

Notation

For clock evaluation ν , $z \notin C$, and $d \in \mathbb{R}_{\geq 0}$, let $\nu\{z := d\}$ denote the clock valuation for $C \cup \{z\}$ that extends ν by setting z to d while keeping the value of all other clocks unchanged:

$$\nu\{z := d\}(x) = \begin{cases} \nu(x) & \text{if } x \in C \\ d & \text{if } x = z \end{cases}$$

イロト イヨト イヨト イヨ

(1)

Elimination of Timing Parameters

Notation

For clock evaluation ν , $z \notin C$, and $d \in \mathbb{R}_{\geq 0}$, let $\nu\{z := d\}$ denote the clock valuation for $C \cup \{z\}$ that extends ν by setting z to d while keeping the value of all other clocks unchanged:

$$\nu\{z := d\}(x) = \begin{cases} \nu(x) & \text{if } x \in C \\ d & \text{if } x = z \end{cases}$$

Notation

Let *TA* be a timed automaton over clocks *C*. For state $s = \langle I, \nu \rangle$ in *TS*(*TA*) let $s\{z := d\}$ denote the state, $\nu\{z := d\}$. Note that $s\{z := d\}$ is a state in *TS*(*TA* $\oplus z$) where *TA* $\oplus z$ is the timed automaton *TA* with the set of clocks $C \cup \{z\}$.

イロト 不得下 イヨト イヨト

(1)

Elimination of Timing Parameters

Theorem

Let TA be timed automaton $(L, \Sigma, C, E, L^0, I)$, and $\Phi U^J \Psi$ a TCTL formula over C and AP. For clock $z \notin C$ and for any state s of TS(TA) it holds that

3 $s \models_{TCTL} \mathbf{A}(\Phi \mathbf{U}^J \Psi)$ iff $s\{z := 0\} \models_{CTL} \mathbf{A}((\Phi \lor \Psi) \mathbf{U} ((z \in J) \land \Psi)).$

(日) (同) (三) (三)

Example

Example

Light Switch Consider the following timed automaton *TA* and the TCTL formula $\Phi = \mathbf{E} Q^{\leq 1} on$.

As a first step, Φ is replaced by $\hat{\Phi} = \mathbf{E} \Diamond ((z \le 1) \land on)$ and *TA* is equipped with an additional clock *z*. The maximal constants for the clocks *x* and *z* are $c_x = 1$ and $c_z = 1$. The region transition system $TS = R(TA \oplus z, \Phi)$ is on the next slide.

イロト 不得下 イヨト イヨト

Example (con'd)

Example

Light Switch (cont'd)

Example (con'd)

Example

Light Switch (cont'd) The state region

$$\langle \textit{on}, [x=0, z=1]
angle \models (z \leq 1) \land \textit{on}$$

and is reachable from the initial state region. Therefore,

 $TS \models_{CTL} \mathbf{E} \Diamond ((z \leq 1) \land on)$

and thus

$$TA| = \mathbf{E} \Diamond^{\leq 1} on$$

Handling Multiple Clocks

Eliminating Multiple Clocks

A simple way of treating formulae with nested time bounds is to introduce a fresh clock for each subformula.

Example

For example, the followling TCTL formula

$$\Phi = \mathbf{A} \Box^{\geq 3} \mathbf{E} \Diamond^{]1,2]}$$
on

is transformed into:

$$\hat{\Phi} = \mathbf{A} \Box ((z_1 \geq 3) \Rightarrow \mathbf{E} \Diamond (z_2 \in]1, 2]) \land \textit{on}))$$

イロト イポト イヨト イヨ