
Computer-Aided
Verification

CS745/ECE745

Dr. Borzoo Bonakdarpour

University of Waterloo

(Fall 2013)

Propositional Logic and SAT Solving

(Some Slides Adapted from Nancy Day’s Lectures)

Computer-Aided Verification – p. 1/70

Agenda

What is verification?

What is logic?

Propositional logic

SAT Solvers

Computer-Aided Verification – p. 2/70

Agenda

What is verification?

What is logic?

Propositional logic

SAT Solvers

Computer-Aided Verification – p. 3/70

What is Verification?

Verification involves checking a satisfaction

relation, usually in the form of a sequent:

M |= φ, where

M is a model,

Computer-Aided Verification – p. 4/70

What is Verification?

Verification involves checking a satisfaction

relation, usually in the form of a sequent:

M |= φ, where

M is a model,

φ is a property (or specification)

Computer-Aided Verification – p. 4/70

What is Verification?

Verification involves checking a satisfaction

relation, usually in the form of a sequent:

M |= φ, where

M is a model,

φ is a property (or specification)

|= is a relationship that should hold between M and φ;

i.e., (M, φ) ∈|=

Computer-Aided Verification – p. 4/70

What is Verification?

Verification involves checking a satisfaction

relation, usually in the form of a sequent:

M |= φ, where

M is a model,

φ is a property (or specification)

|= is a relationship that should hold between M and φ;

i.e., (M, φ) ∈|=

We say that the model satisfies or “has” the property, or

that we can conclude the property from the model.

Computer-Aided Verification – p. 4/70

What is Verification?

Verification involves:

1. specifying the model/system/implementation

2. specifying the property/specification

3. choosing the satisfaction relation

4. checking the satisfaction relation

These 4 steps are NOT independent.

Computer-Aided Verification – p. 5/70

Example

Consider the operation of a soft drink vending machine which

charges 15 cents for a can. The following figure is a model M of

such a machine.

d
510

15

0

d

n

n

n

d

20

The following regular expression specifies the acceptable behavior

of the machine: φ = n(d+ nn)

Question. M |= φ?
Computer-Aided Verification – p. 6/70

Example (cont’d)

What about this model?

d

510

15

0

d

n

n

n

20

d

Computer-Aided Verification – p. 7/70

Models and
Properties

The term model is used loosely here. It might not be executable,

and it might not be a complete description of the system’s

behavior. The terms implementation and specification are relative.

Computer-Aided Verification – p. 8/70

Models and
Properties

The term model is used loosely here. It might not be executable,

and it might not be a complete description of the system’s

behavior. The terms implementation and specification are relative.

An implementation generally contains more details than a

specification. The specification for one level of verification might

be the implementation at a higher level of verification.

Computer-Aided Verification – p. 8/70

Models and
Properties

The term model is used loosely here. It might not be executable,

and it might not be a complete description of the system’s

behavior. The terms implementation and specification are relative.

An implementation generally contains more details than a

specification. The specification for one level of verification might

be the implementation at a higher level of verification.

In hardware, often the model is a description of the circuit in a

hardware description language such as VHDL or Verilog. The real

thing is the physical realization of the chip.

Computer-Aided Verification – p. 8/70

Models and
Properties

The term model is used loosely here. It might not be executable,

and it might not be a complete description of the system’s

behavior. The terms implementation and specification are relative.

An implementation generally contains more details than a

specification. The specification for one level of verification might

be the implementation at a higher level of verification.

In hardware, often the model is a description of the circuit in a

hardware description language such as VHDL or Verilog. The real

thing is the physical realization of the chip.

Sometimes the model is actually a specification and the property

is an attribute such as completeness or consistency.

Computer-Aided Verification – p. 8/70

Logic and
Verification

Different modelling languages and logics give us different ways of

expressing M and φ and defining membership of the pair (M, φ)

to |=.

Computer-Aided Verification – p. 9/70

Logic and
Verification

Different modelling languages and logics give us different ways of

expressing M and φ and defining membership of the pair (M, φ)

to |=.

Hopefully, the calculation of the satisfaction relation is compositional

in either the property or the model. This decomposes the

verification task.

Computer-Aided Verification – p. 9/70

Logic and
Verification

Different modelling languages and logics give us different ways of

expressing M and φ and defining membership of the pair (M, φ)

to |=.

Hopefully, the calculation of the satisfaction relation is compositional

in either the property or the model. This decomposes the

verification task.

The model and property both describes sets of behaviors.

Computer-Aided Verification – p. 9/70

Logic and
Verification

Different modelling languages and logics give us different ways of

expressing M and φ and defining membership of the pair (M, φ)

to |=.

Hopefully, the calculation of the satisfaction relation is compositional

in either the property or the model. This decomposes the

verification task.

The model and property both describes sets of behaviors.

The satisfaction relation is a relation between the set of behaviors

of the model and the set of behaviors of the property.

Computer-Aided Verification – p. 9/70

Agenda

What is verification?

What is logic?

Propositional logic

SAT Solvers

Computer-Aided Verification – p. 10/70

What is Logic?

According to Kelly:

In general, logic is about reasoning. It is about the validity of

arguments, consistency among statements (. . .) and

matters of truth and falsehood.

In a formal sense logic is concerned only with the form of

arguments and the principles of valid inferencing .

Computer-Aided Verification – p. 11/70

What is Logic?

According to Webster’s, logic is:

the science of correct reasoning, valid induction or deduction.

Symbolic logic is a modern type of formal logic using

special mathematical symbols for propositions, quantifiers,

and relationships among propositions and concerned with

the elucidation of permissible operations upon such

symbols.

Computer-Aided Verification – p. 12/70

What is Logic?

According to the Free On-Line Dictionary of Computing:

A branch of philosophy and mathematics that deals with the formal principles, methods

and criteria of validity of inference, reasoning and knowledge.

Logic is concerned with what is true and how we can know whether something is true.

This involves the formalization of logical arguments and proofs in terms of symbols

representing propositions and logical connectives. The meanings of these logical

connectives are expressed by a set of rules which are assumed to be self-evident .

In symbolic logic, arguments and proofs are made in terms of symbols representing

propositions and logical connectives. The meanings of these begin with a set of rules or

primitives which are assumed to be self-evident. Fortunately, even from vague primitives,

functions can be defined with precise meaning.

Computer-Aided Verification – p. 13/70

Elements of a Logic

A logic consists of:

1. syntax

2. semantics

3. proof procedure(s) (also called proof theory)

Computer-Aided Verification – p. 14/70

Syntax and
Semantics

syntax:

define “well-formed formula”

semantics:

define “ |= ” (“satisfies”)

M |= φ (satisfaction relation)

define φ1, φ2, φ3 |= ψ (“entails”, or semantic

entailment) means:

from the premises φ1, φ2, φ3, we may conclude ψ,

where φ1, φ2, φ3, and are all well-formed formulae in

the logic.

Computer-Aided Verification – p. 15/70

Proof Procedure

proof procedure(s):

define “ ⊢ ” (pronounced “proves”)

a proof procedure is a way to calculate φ1, φ2, φ3, · · · ⊢ ψ

(also called a sequent). By “calculation”, we mean that

there is a procedure for determining if

((φ1, φ2, φ3, · · ·), ψ) ∈⊢

there may be multiple proof procedures, which we will

indicate by subscripting ⊢, e.g., the sequent calculus proof

procedure for propositional logic will be ⊢SQ.

for some logics, there is not a proof procedure that

always terminates for any sequent.

Computer-Aided Verification – p. 16/70

Proof Procedures

Proof procedures are algorithms that perform mechanical

manipulations on strings of symbols. A proof procedure

does not make use of the meanings of sentences, it only

manipulates them as formal strings of symbols.

There may be multiple ways to prove a sequent in a

particular proof procedure.

Computer-Aided Verification – p. 17/70

Soundness and
Completeness

The semantics and the proof procedures (|= and ⊢) are related in the

concepts of soundness and completeness.

Definition. A proof procedure is sound if φ1, φ2, φ3 ⊢ ψ then

φ1, φ2, φ3 |= ψ.

A proof procedure is sound if it proves only tautologies.

Definition. A proof procedure is complete if φ1, φ2, φ3 |= ψ then

φ1, φ2, φ3 ⊢ ψ.

A proof procedure is complete if it proves every tautology.

Note that in the literature, there is not consistent use of the symbols |=

and ⊢.

Computer-Aided Verification – p. 18/70

Consistency

Definition. A proof procedure is consistent if it is not possible

to prove both A and ¬A, i.e.,

not both ⊢ A and ⊢ ¬A.

Computer-Aided Verification – p. 19/70

Agenda

What is verification?

What is logic?

Propositional logic

SAT Solvers

Computer-Aided Verification – p. 20/70

Propositional Logic:
Syntax

Its syntax consists of:

Two constant symbols: true and false

Proposition letters

Propositional connectives

Brackets

Computer-Aided Verification – p. 21/70

Propositional
Connectives

Definition. The propositional (logical) connectives are:

Symbol Informal Meaning

¬ negation (not)

∧ conjunction (and, both)

∨ disjunction (or, at least one of)

⇒ implication (implies, logical consequence, conditional, if . . . then)

⇔ equivalent (biconditional, if and only if)

Others may use different symbols for these operations.

Computer-Aided Verification – p. 22/70

Terminology

For an implication p⇒ q:

p is the premise or antecedent or hypothesis

q is the consequent or conclusion

¬b⇒ ¬a is called the contrapositive of a⇒ b.

The set of connectives {∧,¬} are complete in the sense that all

the other connectives can be defined using them, e.g.,

a ∨ b = ¬(¬a ∧ ¬b). Other subsets of the binary connectives are

also complete in the same sense.

Computer-Aided Verification – p. 23/70

Propositions

Definition. Proposition letters represent declarative sentences, i.e.,

sentences that are true or false. Sentences matching proposition

letters are atomic (non-decomposable), meaning they don’t

contain any of the propositional connectives.

Here are some examples:

It is raining outside.

The sum of 2 and 5 equals 3.

The value of program variable a is 42.

Sentences that are interrogative (questions), or imperative

(commands) are not propositions.

Computer-Aided Verification – p. 24/70

Using Symbols

Because in logic, we are only concerned with the structure of the

argument and which structures of arguments are valid, we

“encode” the sentences in symbols to create a more compact

and clearer representation of the argument. We call these

propositional symbols or proposition letters.

DO NOT use T , F , t, or f in any font as symbols representing

sentences!

Computer-Aided Verification – p. 25/70

Well-formed formulas

Definition. The well-formed formulae of propositional
logic are those obtained as follows:

ϕ ::= true | false | p | ¬ϕ | ϕ1 ∧ ϕ2

where p is an atomic proposition.

Note that this is an inductive definition, meaning
the set is defined by basis elements, and rules to
construct elements from elements in the set.
Thus, the best strategy to prove properties of
propositional formulas is using structural induction.

Computer-Aided Verification – p. 26/70

Well-formed formulas

Brackets around the outermost formula are
usually omitted using the following rules of
precedence: ¬,∧,∨,⇒,⇔.

⇒ is right associative, meaning p⇒ q ⇒ r is
p⇒ (q ⇒ r).

Computer-Aided Verification – p. 27/70

Semantics

Semantics means “meaning”. Semantics relate two worlds.

Semantics provide an interpretation (mapping) of expressions in

one world in terms of values in another world. Semantics are

often a function from expressions in one world to expressions in

another world.

The semantics (i.e., the mapping) is often called a model or an

interpretation. We write M |= φ to mean the model satisfies the

formula. In propositional logic, models are called Boolean

valuations.

Proof procedures transform the syntax of a logic in ways that

respect the semantics.
Computer-Aided Verification – p. 28/70

Semantics of
Propositional Logic

We have described the syntax for propositional logic, which is

the domain of the semantic function.

Classical logic is two-valued. The two possible truth values are T,

and F, which are two distinct values.

The range of the semantic function for propositional logic is the

set of truth values:

Tr = {T, F}

Note that these truth values are distinct from the syntax

elements true, and false.

Computer-Aided Verification – p. 29/70

Semantics of
Propositional Logic

Truth Values: Tr = {T, F}

There are functions on these truth values that correspond to the

meaning of the propositional connectives. We overload the operators

“∧”, “∨”, etc. to be both part of the syntax of propositional logic, and

operations on the sets of truth values in our model for propositional

logic.

¬ : Tr → Tr

∧ : (Tr×Tr) → Tr

etc.

Truth tables are used to describe the functions of operations on these

truth values.

Computer-Aided Verification – p. 30/70

Truth Tables

p ¬p

T F

F T

p q p ∧ q p ∨ q p ⇒ q p ⇔ q

T T T T T T

T F F T F F

F T F T T F

F F F F T T

Computer-Aided Verification – p. 31/70

Boolean Valuations

Definition. A Boolean valuation is a mapping v from the set of

propositional formulas to the set Tr meeting the conditions:

v(true) = T, v(false) = F

v(¬p) = ¬(v(p))

for all the connectives: v(p ◦ q) = v(p) ◦ v(q)

Note that ¬(v(p)) and v(p) ◦ v(q) are given by the truth tables on

the previous slide.

Computer-Aided Verification – p. 32/70

Satisfiability

Definition. A formula a is satisfiable if there is a
Boolean valuation v such that v(a) = T.

We sometimes say that the formula “has a
satisfying assignment” to mean that it is
satisfiable.

We are mostly interested in the propositional
formulas that map to T in all the possible
Boolean valuations (i.e., in all model).

Computer-Aided Verification – p. 33/70

Tautologies

Definition. A propositional formula a is a tautology

(also called valid or a theorem) if v(a) = T for every
Boolean valuation v.

i.e., , a tautology is a formula that is true for all
possible truth values of the propositional letters
used in the formula. The last column of the truth
table for a tautology contains all T.

Note that a formula a is a tautology iff ¬a is not
satisfiable.

Computer-Aided Verification – p. 34/70

Semantic Entailment

φ1, φ2, φ3 |= ψ

means that for all v, if v(φ1) = T and v(φ2) = T and v(φ3) = T,

then v(ψ) = T, which is equivalent to saying

(φ1 ∧ φ2 ∧ φ3) ⇒ ψ

is a tautology, i.e.,

(φ1, φ2, φ3 |= ψ) ≡ (φ1 ∧ φ2 ∧ φ3) ⇒ ψ

Computer-Aided Verification – p. 35/70

Models and
Entailment

In propositional (and predicate) logic, |= is overloaded and has

two meanings:

M |= φ relates a model to a formula, saying that M satisfies

the formula. This is called a satisfaction relation.

ψ |= φ relates two formulas, saying that forall v (i.e., for all

possible models), if v(ψ) = T, then v(φ) = T. This is called

semantic entailment.

These two uses can be distinguished by their context.

Computer-Aided Verification – p. 36/70

Contradiction

Definition. A contradiction is a formula that is false
for all possible truth values of the propositional
symbols used in the formula. The last column of
the truth table for a tautology contains all F.

Computer-Aided Verification – p. 37/70

Decidability

A logic is decidable if there is an algorithm to determine if any

formula of the logic is a tautology (is a theorem, is valid).

Propositional logic is decidable because we can always

construct the truth table for the formula.

Question: What is the complexity of deciding propositional logic?

Computer-Aided Verification – p. 38/70

Proof Procedures

We can always determine if a formula is a tautology by using

truth tables to determine the value of the formula for every

possible combination of values for its proposition letters, but this

would be very tedious since the size of the truth table grows

exponentially.

Proof procedures for propositional logic are alternate means to

determine tautologies. As long as the proof procedure is sound,

we can use the proof procedure in place of truth tables to

determine tautologies.

Computer-Aided Verification – p. 39/70

Proof Styles

A proof procedure is a set of rules we use to transform premises

and conclusions into new premises and conclusions.

A goal is a formula that we want to prove is a tautology. It has

premises and conclusions.

A proof is a sequence of proof rules that when chained together

relate the premise of the goal to the conclusion of the goal.

Computer-Aided Verification – p. 40/70

Sequent Calculus

Definition. A sequent is a pair (Γ,∆) of finite sets of formulae.

We will write a sequent as Γ →֒ ∆ and drop the set brackets

around the sets of formulae. X will represent a single formula,

where as Γ is a set of formulae.

(More commonly, →֒ is written as →.)

The →֒ is like implication. A sequent asserts: if all the formulae

on the left of the arrow are true, then at least one of the formulae

on the right are true.

Computer-Aided Verification – p. 41/70

Meaning of a Sequent

We can extend Boolean valuations to describe the meaning of a

sequent.

v(Γ →֒ ∆) = T

iff v(X) = F for some X in Γ

or v(X) = T for some X in ∆.

When there is nothing on the LHS or RHS of the arrow, we

assume it is the empty set of formulae.

This means v(→֒) = F, and v(→֒ X) = v(X).

Computer-Aided Verification – p. 42/70

Axioms

X →֒ X (Id)

false →֒

→֒ true

Computer-Aided Verification – p. 43/70

Sequent Schemata

The rules of the sequent calculus are written in the form:

S1

S2

If a formula matches the schema S1, then it can be replaced by

one matching S2.

Stated another way: if you know S1 is true, then S2 is also true.

Computer-Aided Verification – p. 44/70

Sequent Calculus
Rules

Structural Rule (Thinning)

If Γ1 ⊆ Γ2 and ∆1 ⊆ ∆2 then:

Γ1 →֒ ∆1

Γ2 →֒ ∆2

Thinning is like precondition strengthening and postcondition weakening for

those familiar with that terminology.

Adding formulae on the RHS of the sequent is adding them to a

disjunction, so this is weakening the RHS formulae.

Adding formulae on the LHS of the sequent is adding them to a

conjunction, so this is strengthening the LHS formulae.
Computer-Aided Verification – p. 45/70

Sequent Calculus
Rules

Negation Rules

Γ →֒ ∆, X

Γ,¬X →֒ ∆

Γ, X →֒ ∆

Γ →֒ ∆,¬X

Conjunction Rules

Γ, X, Y →֒ ∆

Γ, X ∧ Y →֒ ∆

Γ1 →֒ ∆1, X Γ2 →֒ ∆2, Y

Γ1,Γ2 →֒ ∆1,∆2, X ∧ Y

Disjunction Rules

Γ →֒ ∆, X, Y

Γ →֒ ∆, X ∨ Y

Γ1, X →֒ ∆1 Γ2, Y →֒ ∆2

Γ1,Γ2, X ∨ Y →֒ ∆1,∆2

Computer-Aided Verification – p. 46/70

Sequent Calculus
Rules

Implication Rules

#1 #2

Γ, X →֒ ∆, Y

Γ →֒ ∆, X ⇒ Y

Γ1 →֒ ∆1, X Γ2, Y →֒ ∆2

Γ1,Γ2, X ⇒ Y →֒ ∆1,∆2

The right-hand rule is similar to modus ponens. The idea is that if X can

be derived, then from X ⇒ Y , Y can be derived, and therefore

whatever can be derived from Y can be derived. If Γ2, and ∆1 are

empty:

Γ1 →֒ X Y →֒ ∆2

Γ1, X ⇒ Y →֒ ∆2

Computer-Aided Verification – p. 47/70

Cut Rule
This a derived rule:

Γ1 →֒ ∆1, X Γ2, X →֒ ∆2

Γ1,Γ2 →֒ ∆1,∆2

Question: How is it derived?

Computer-Aided Verification – p. 48/70

Proofs in the Sequent
Calculus

Definition. A proof is a tree labelled with sequents (generally written

with the root at the bottom), such that: if node N is labelled with

Γ →֒ ∆, then if N is a leaf node, Γ →֒ ∆ must be an axiom; if N has

children, their labels must be the premises from which Γ →֒ ∆ follows

by one of the rules. The label on the root node is the sequent that is

proved.

Definition. A formula X is a theorem of the sequent calculus if the

sequent →֒ X has a proof, i.e.,

⊢SQ X

The sequent calculus for propositional logic is both sound and

complete.

Computer-Aided Verification – p. 49/70

Example

Show →֒ A⇒ (B ⇒ A)

1. A →֒ A (id)

2. A,B →֒ A (Thinning)

3. A →֒ B ⇒ A (Implication #1)

4. →֒ A⇒ (B ⇒ A) (Implication #1)

Computer-Aided Verification – p. 50/70

Agenda

What is verification?

What is logic?

Propositional logic

SAT Solvers

Computer-Aided Verification – p. 51/70

SAT Solving

A SAT solver is an algorithm that determines
whether or not a propositional formula is
satisfiable.

A naive (and costly) algorithm is forming the truth
table of a formula.

More efficient algorithms can be designed based
on the structure of formulas.

Computer-Aided Verification – p. 52/70

SAT Solving - Horn
Formulas

A Horn formula is a formula ϕ if it can be generated
as follows:

P ::= ⊥ | ⊤ | p
A ::= P | P ∧ A
C ::= A⇒ P
H ::= C | C ∧H

We call each instance of C a Horn clause. I.e.,
horn formulas are conjunctions of Horn clauses.

Computer-Aided Verification – p. 53/70

SAT Solving - Horn
Formulas

Example of Horn formulas:

(p ∧ q ∧ s⇒ p) ∧ (q ∧ r ⇒ p) ∧ (p ∧ s⇒ s)
(p ∧ q ∧ s⇒ ⊥) ∧ (q ∧ r ⇒ p) ∧ (⊤ ⇒ s)

These formulas are not Horn formulas:

(p ∧ q ∧ s⇒ ¬p) ∧ (q ∧ r ⇒ p) ∧ (p ∧ s⇒ s)
(p ∧ q ∧ s⇒ ⊥) ∧ (¬q ∧ r ⇒ p) ∧ (⊤ ⇒ s)

Computer-Aided Verification – p. 54/70

SAT Solving - Horn
Formulas

Algorithm: For a Horn formulas ϕ, maintain a list
of occurrences of type P in ϕ and proceed as
follows:

1. Mark ⊤ if it occurs in that list.

2. If there is a conjunct P1 ∧ P2 ∧ · · ·Pki ⇒ P ′ of
ϕ such that all Pj (1 ≤ j ≤ ki) are marked,

then mark P ′ and go to 2.

3. If ⊥ is marked, print out ‘unsatisfiable’ and
stop.

4. Print out ‘satisfiable’.
Computer-Aided Verification – p. 55/70

SAT Solving - Horn
Formulas

This technique is called unit propagation. I.e., we
first find the necessary assignments that are
propagated in the rest of clauses.

Computer-Aided Verification – p. 56/70

SAT Solving - Horn
Formulas

Example. Consider formula

ϕ = (p⇒ q) ∧ (p ∧ q ⇒ r) ∧ (⊤ ⇒ p) ∧ (r ⇒ ⊥)

Step 1: marked = {⊤}

Step 2 marked = {⊤, p} (3rd conjunct)

Step 2 marked = {⊤, p, q} (1st conjunct)

Step 2 marks {⊤, p, q, r} in the 2nd conjunct

Step 2 marks {⊤, p, q, r,⊥} in the 4th conjunct

Step 3 declared unsatifiability of ϕ

Computer-Aided Verification – p. 57/70

SAT Solving - A
Linear Solver

We now generalize the marking algorithm on
parse tree of formulas by translating them into
the following fragment:

ϕ ::= p | (¬ϕ) | (ϕ1 ∧ ϕ2)

and then share common subformulas of the
resulting parse tree, making the tree into a DAG:

T (p) = p T (ϕ1 ∧ ϕ2) = T (ϕ1) ∧ T (ϕ2)

T (ϕ) = ¬T (ϕ) T (ϕ1 ∨ ϕ2) = ¬(¬T (ϕ1) ∧ ¬T (ϕ2))

T (ϕ1 ⇒ ϕ2) = ¬(T (ϕ1) ∧ ¬T (ϕ2))

Computer-Aided Verification – p. 58/70

SAT Solving - A
Linear Solver

Example. For formula ϕ = p ∧ ¬(q ∨ ¬p), the parse
tree and DAG of T (ϕ) are the following:

Computer-Aided Verification – p. 59/70

SAT Solving - A
Linear Solver

Unit propagation rules for the formulas DAGs:

Computer-Aided Verification – p. 60/70

SAT Solving - A
Linear Solver

Unit propagation rules for the formulas DAGs:

Computer-Aided Verification – p. 61/70

SAT Solving - A
Linear Solver

Figure 1: ¬((p ∧ q ⇒ r) ⇒ p⇒ q ⇒ r)
Computer-Aided Verification – p. 62/70

SAT Solving - A
Linear Solver

Computer-Aided Verification – p. 63/70

SAT Solving - A
Cubic Solver

The linear solver may get stuck on some
formulas. For instance, the following formula:

(p∨q∨r)∧(p∨¬q)∧(q∨¬r)∧(r∨¬p)∧(¬p∨¬q∨¬r)

a SAT solving algorithm should reach a
contradiction quickly (why?), but the linear
algorithm gets stuck (see the next slide).

Computer-Aided Verification – p. 64/70

SAT Solving - A
Cubic Solver

Computer-Aided Verification – p. 65/70

SAT Solving - A
Cubic Solver

The cubic solver works as follows:

1. Pick an umakred node n, where the linear
solver got stuck:

2. determine which temporary marks are forced
by adding mark T only to n

3. determine which temporary marks are forced
by adding mark F only to n

4. If steps 2 and 3 find contradictory constraints,
the algorithm reports unsatisfiability and
stops.

Computer-Aided Verification – p. 66/70

SAT Solving - A
Cubic Solver

5. Nodes that received the same mark in both
runs, receive a permanent mark

6. If there exists an unmarked node, then go to
step 1.

7. We continue this until either

find contradictory permanenet markes

complete witness to satisfiability, or

we have tested all currently unmarked
nodes in this manner without detecting any
shared marks (no solution).

Computer-Aided Verification – p. 67/70

SAT Solving - A
Cubic Solver

Computer-Aided Verification – p. 68/70

SAT Solving - A
Cubic Solver

Computer-Aided Verification – p. 69/70

SAT Solving - A
Cubic Solver

The cubic complexity in the size of the DAG is
due to:

one factor of the linear solver for each test run

a second factor is introduced since each
unmarked node has to be tested

the third factor is needed since each new
permanent mark causes all unmarked nodes
to be tested again.

Computer-Aided Verification – p. 70/70

	Agenda
	Agenda
	What is Verification?
	What is Verification?
	What is Verification?
	What is Verification?

	What is Verification?
	Example
	Example (cont'd)
	Models and Properties
	Models and Properties
	Models and Properties
	Models and Properties

	Logic and Verification
	Logic and Verification
	Logic and Verification
	Logic and Verification

	Agenda
	What is Logic?
	What is Logic?
	What is Logic?
	Elements of a Logic
	Syntax and Semantics
	Proof Procedure
	Proof Procedures
	Soundness and Completeness
	Consistency
	Agenda
	Propositional Logic: Syntax
	Propositional Connectives
	Terminology
	Propositions
	Using Symbols
	Well-formed formulas
	Well-formed formulas
	Semantics
	Semantics of Propositional Logic
	Semantics of Propositional Logic
	Truth Tables
	Boolean Valuations
	Satisfiability
	Tautologies
	Semantic Entailment
	Models and Entailment
	Contradiction
	Decidability
	Proof Procedures
	Proof Styles
	Sequent Calculus
	Meaning of a Sequent
	Axioms
	Sequent Schemata
	Sequent Calculus Rules
	Sequent Calculus Rules
	Sequent Calculus Rules
	Cut Rule
	Proofs in the Sequent Calculus
	Example
	Agenda
	SAT Solving
	SAT Solving - Horn Formulas
	SAT Solving - Horn Formulas
	SAT Solving - Horn Formulas
	SAT Solving - Horn Formulas
	SAT Solving - Horn Formulas
	SAT Solving - A Linear Solver
	SAT Solving - A Linear Solver
	SAT Solving - A Linear Solver
	SAT Solving - A Linear Solver
	SAT Solving - A Linear Solver
	SAT Solving - A Linear Solver
	SAT Solving - A Cubic Solver
	SAT Solving - A Cubic Solver
	SAT Solving - A Cubic Solver
	SAT Solving - A Cubic Solver
	SAT Solving - A Cubic Solver
	SAT Solving - A Cubic Solver
	SAT Solving - A Cubic Solver

