
Computer-Aided
Verification

CS745/ECE745

Dr. Borzoo Bonakdarpour

University of Waterloo

(Fall 2013)

Predicate Logic and Theorem Proving

(Some Slides Adapted from Nancy Day’s Lectures)

Computer-Aided Verification – p. 1/80

Agenda

Predicate Logic Sytax and Semantics

Extension of Sequent Calculus for FOL

Resolution

Definability and Compactness

Computer-Aided Verification – p. 2/80

First-order Logic Syntax and
Semantics

Computer-Aided Verification – p. 3/80

Motivation

There are some kinds of human reasoning that we cannot do in

propositional logic. For example:

Every person likes ice cream.

Billy is a person.

Therefore, Billy likes ice cream.

In propositional logic, the best we can do is (A ∧B) ⇒ C, which

is not a tautology.

Computer-Aided Verification – p. 4/80

Motivation

We need to be able to refer to objects . We want to symbolize

both a claim and the object about which the claim is made. We

also need to refer to relations between objects, as in “Waterloo is

west of Toronto”. If we can refer to objects, we also want to be

able to capture the meaning of every and some of .

The predicates and quantifiers of predicate logic allow us to capture

these concepts.

Computer-Aided Verification – p. 5/80

Examples

All grass is green.

∀y •Grass(y) ⇒ Green(y)

Something is rotten in the state of Denmark.

∃x • Rotten(x) ∧Denmark(x)

We can also have n-ary predicates. Example:

Every even number is divisible by two.

∀x • Even(x) ⇒ Div(x, 2)

The “•” is pronounced “such that”. For the moment, we are not

dealing with types.
Computer-Aided Verification – p. 6/80

Quantifiers

Universal quantification ∀ corresponds to finite or infinite

conjunction of the application of the predicate to all elements of

the domain.

Existential quantification ∃ corresponds to finite or infinite

disjunction of the application of the predicate to all elements of

the domain.

Relationship between ∀ and ∃:

∀x • P (x) is the same as ¬∃x • ¬P (x)

∃x • P (x) is the same as ¬∀x • ¬P (x)

Computer-Aided Verification – p. 7/80

Functions

Consider how to formalize:

Mary’s father likes music

One possible way: ∃x • Father(x,Mary) ∧ Likes(x,Music)

which means: Mary has at least one father and he likes music.

We’d like to capture the idea that Mary only has one father. We

use functions to capture a single object that can be in relation to

another object.

Example: Likes(father(Mary),Music)

We can also have n-ary functions.
Computer-Aided Verification – p. 8/80

Predicate Logic:
Syntax

The syntax of predicate logic consists of:

1. constants

2. variables x, y, · · ·

3. functions

4. predicates

5. logical connectives

6. quantifiers (∀, ∃)

7. punctuation: •, ()

Computer-Aided Verification – p. 9/80

Predicate Logic:
Syntax

Definition. Terms are defined as follows:

1. Every constant is a term.

2. Every variable is a term.

3. If t1, t2, t3, · · · tn are terms then f(t1, t2, t3, · · · tn) is a term,

where f is an n-ary function.

4. Nothing else is a term.

Computer-Aided Verification – p. 10/80

Predicate Logic:
Syntax

Definition. Well-formed formulas are defined as follows:

1. P (t1, t2, t3, · · · tn) is a wff, where ti is a term, and P is an

n-ary predicate. These are called atomic formulas.

2. If A and B are wffs, then so are (¬A), (A ∧B), (A ∨B),

(A⇒ B), and (A⇔ B).

3. If A is a wff, so is ∀x •A.

4. If A is a wff, so is ∃x •A .

5. Nothing else is a wff.

We often omit the brackets using the same precedence rules as

propositional logic for the logical connectives.

Computer-Aided Verification – p. 11/80

Scope and Binding of
Variables

Consider a parse tree for ∀x • (P (x) ⇒ Q(x)) ∧ S(x, y):

∧

⇒ S

P y

yx

∀x

xQ

Computer-Aided Verification – p. 12/80

Scope and Binding of
Variables

Variables occur both in nodes next to quantifiers and as leaf nodes in the parse tree.

A variable x is bound if starting at the leaf of x, we walk up the tree and run into a node

with a quantifier and x.

A variable x is free if starting at the leaf of x, we walk up the tree and do not run into a

node with a quantifier and x.

The scope of a variable x is the subtree starting at the node with the variable and its

quantifier (where it is bound) minus any subtrees with ∀x or ∃x at their root.

Example: ∀x • (∀x • (P (x) ∧Q(x))) ⇒ (¬P (x) ∨Q(y))

A wff is closed if it contains no free occurrences of any variable.

Computer-Aided Verification – p. 13/80

Substitution
Variables are place holders. Given a variable x, a term t and a formula

P , we define P [t/x] to be the formula obtained by replacing all free

occurrences of variable x in P with t.

We have to watch out for variable capture in substitution.

Given a term t, a variable x and a formula A, we say that “t is free for x

in A” if no free x leaf in A occurs in the scope of ∀y or ∃y for any free

variable y occurring in t.

Example:

A is ∀y • P (x) ∧Q(y) Whenever we use P [t/x], t and

t is f(y) x must both be free for x in P .

t is NOT free for x in A.

Computer-Aided Verification – p. 14/80

Predicate Logic:
Semantics

Recall that a semantics is a mapping between two worlds. A

model for predicate logic consists of:

1. a non-empty domain of objects: D

2. a mapping I, called an interpretation that associates the terms

of the syntax with objects in a domain

It’s important that D be non-empty, otherwise some tautologies

would not hold such as (∀x.A(x)) ⇒ (∃x.A(x)).

Computer-Aided Verification – p. 15/80

Interpretations

An interpretation assigns:

1. a fixed element c′ ∈ D to each constant c of the syntax

2. an n-ary function f ′ : Dn → D to each n-ary function, f , of

the syntax

3. an n-ary relation R′ ⊆ Dn to each n-ary predicate, R, of the

syntax

Computer-Aided Verification – p. 16/80

Example of a Model

Let’s say our syntax has the constant c, the function f (unary),

and two predicates P , and Q (both binary). In our model, choose

the domain to be the natural numbers.

I(c) is 0

I(f) is suc, the successor function

I(P) is <

I(Q) is =

Computer-Aided Verification – p. 17/80

Example of a Model

What is the meaning of P (c, f(c)) in this model?

I(P (c, f(c))) = I(c) < I(f(c))

= 0 < suc(I(c))

= 0 < suc(0)

= 0 < 1

which is true.

Computer-Aided Verification – p. 18/80

Valuations

Definition. A valuation v, in an interpretation I, is a function from

the terms to the domain D such that:

1. v(c) = I(c)

2. v(f(t1, · · · tn)) = f(v(t1, · · · tn))

3. v(x) ∈ D, i.e., each variable is mapped onto some element

in D

Computer-Aided Verification – p. 19/80

Example of a
Valuation

D is the set of natural numbers

g is the function +

h is the function suc

c (constant) is 3

y (variable) is 1

v(g(h(c), y)) = v(h(c)) + v(y)

= suc(v(c)) + 1

= suc(3) + 1

= 5

Computer-Aided Verification – p. 20/80

Predicate Logic:
Satisfiability

Given a model m, with domain D and interpretation I, and a

valuation v,

1. If A is an atomic wff, P (t1 · · · tn), m and v satisfy A iff

P ′(v(t1) · · · v(tn))

2. If A has form ¬B, then m and v satisfy A iff m and v do not

satisfy B.

3. If A has the form B ∧ C, then m and v satisfy A iff m and v

satisfy B and m and v satisfy C , etc. for the other

connectives.

Computer-Aided Verification – p. 21/80

Predicate Logic:
Satisfiability

5. If A has the form ∀x •B, then m and v satisfy A iff v satisfies

B for all elements of D, i.e., for all v(x) ∈ D.

6. If A has the form ∃x •B, then v satisfies A iff v satisfies B

for some element of D, i.e., there is some v(x) ∈ D for

which B is satisfied.

Notice that if the formula is closed, then the valuation depends

only on the model.

Notational convenience: while we have defined valuations for

terms only, we will extend the use of v to be for wff also, mapping

relations to their counterparts on the domain, and the logical

connectives as we did in Boolean valuations.
Computer-Aided Verification – p. 22/80

Validity (Tautologies)

Definition. A predicate logic formula is satisfiable if there exists a

model and there exists a valuation that satisfies the formula (i.e., in

which the formula returns T).

Definition. A predicate logic formula is logically valid (tautology) if

it is true in every model. It must be satisfied by every valuation in

every model.

Definition. A wff, A, of predicate logic is a contradiction if it is false

in every model. It must be false in every valuation in every

model.

Computer-Aided Verification – p. 23/80

Semantic Entailment

Semantic entailment has the same meaning as it did for

propositional logic.

φ1, φ2, φ3 |= ψ

means that for all v if v(φ1) = T and v(φ2) = T, and v(φ3) = T,

then v(ψ) = T, which is equivalent to saying

(φ1 ∧ φ2 ∧ φ3) ⇒ ψ

is a tautology, i.e.,

φ1, φ2, φ3 |= ψ ≡ (φ1 ∧ φ2 ∧ φ3) ⇒ ψ

Computer-Aided Verification – p. 24/80

Closed Formulas

Recall: A wff is closed if it contains no free occurrences of any

variable.

We will mostly restrict ourselves to closed formulas. For

formulas with free variables, close the formula by universally

quantifying over all its free variables.

Computer-Aided Verification – p. 25/80

Sat., Tautologies,
Contradictions

A closed predicate logic formula, is satisfiable if there is a model I

in which the formula returns T.

A closed predicate logic formula, A, is a tautology if it is T in every

model.

|= A

A closed predicate logic formula is a contradiction if it is F in every

model.

Question. What is the complexity of checking the satisfiability of

a predicate logic formula?.

Computer-Aided Verification – p. 26/80

Counterexamples

How can we show a formula is not a tautology?

Provide a counterexample. A counterexample for a
closed formula is a model in which the formula
does not have the truth value T.

Computer-Aided Verification – p. 27/80

Sequent Calculus in FOL

Computer-Aided Verification – p. 28/80

Sequent Calculus
Rules for FOL

Rules for universal quantifier:

Γ, F (a) →֒ ∆

Γ, ∀x.F (x) →֒ ∆

Γ →֒ ∆, F (a)

Γ →֒ ∆, ∀x.F (x)

Here, the variable a is free in F and F (x) is
obtained from F (a) by replacing all free
occurrences of a by x.

Computer-Aided Verification – p. 29/80

Sequent Calculus
Rules for FOL

Rules for existential quantifier:

Γ →֒ ∆, F (a)

Γ →֒ ∆, ∃x.F (x)

Γ, F (a)∆

Γ, ∃x.F (x) →֒ ∆

Here, the variable a is free in F and F (x) is
obtained from F (a) by replacing all free
occurrences of a by x.

Computer-Aided Verification – p. 30/80

Sequent Calculus
Rules for FOL

Example. Show that ¬∃.A(x) ⇒ ∀x.¬A(x)

Step1: A(a) →֒ A(a)
Step2: A(a) →֒ ∃x.A(x)
Step3: ¬∃x.A(x) →֒ ¬A(a)
Step4: ¬∃x.A(x) →֒ ∀x.¬A(x)
Step4: →֒ ¬∃x.A(x) ⇒ ∀x.¬A(x)

Computer-Aided Verification – p. 31/80

Proof by Resolution

Computer-Aided Verification – p. 32/80

Literals and Clauses

A literal is a propositional variable or the negation
of a propositional variable.

Two literals are said to be complements (or
conjugate), if one is the negation of the other
(e.g., p and ¬p)

A formula of the form Ci = p1 ∨ p2 ∨ · · · ∨ pn,
where each pi is a literal is called a clause.

Computer-Aided Verification – p. 33/80

CNF

A formula in the conjunctive normal form (CNF)
is a conjunction of clauses

For example, these formulas are in CNF:

(p ∨ q) ∧ (¬q ∨ r ∨ ¬m) ∧ (m ∨ ¬n)

p ∧ q

It is possible to convert any formula into an
equivalent formula in CNF.

Computer-Aided Verification – p. 34/80

CNF

The CNF equivalent of the following formulas:

(p ∧ q) ∨ r

¬(p ∨ q)

are these:

(p ∨ r) ∧ (q ∨ r)

¬p ∧ ¬q

Computer-Aided Verification – p. 35/80

Resolution Rule

p1 ∨ · · · ∨ pi ∨ . . . pn, q1 ∨ · · · ∨ qj ∨ . . . qm

p1 ∨ · · · ∨ pi−1 ∨ pi+1 ∨ . . . pn ∨ q1 · · · ∨ qj−1 ∨ qj+1 ∨ · · · ∨ qm

where p1 . . . pn, q1 . . . qm are propositions and pi and qj are

complements.

The clause produced by the resolution rule is called the

resolvent of the two input clauses.

The upper side of the rull is in CNF and may have multiple

clauses.

Computer-Aided Verification – p. 36/80

Proof by Resolution

The resolution rule can be used to develop a
finite-step proof for propositional logic:

1- Transform the CNF formual into a set S of
caulses. For example, for formula:

(p ∨ q ∨ r) ∧ (¬r ∨ ¬p ∨m) ∧ q

we have:

S = {{p, q, r}, {¬r,¬p,m}, {q}}

Computer-Aided Verification – p. 37/80

Proof by Resolution

2- The resolution rule is applied to all possible
pairs of clauses that contain complementary
literals. After each application of the resolution
rule, the resulting sentence is simplified by

Removing repeated literals.

If the sentence contains complementary
literals, it is removed (as a validity).

If not, and if it is not yet present in the clause
set S, then it is added to S, and is considered
for further resolution inferences.

Computer-Aided Verification – p. 38/80

Proof by Resolution

Example:

p ∨ q, ¬p ∨ r

q ∨ r

This is equal to (different syntax):

{p, q}, {¬p, r}

{q, r}

Computer-Aided Verification – p. 39/80

Proof by Resolution

Example (in directed acyclic graph):

{p}

{p, q} {p,¬q} {¬p, q}

{q}

3- If the empty clause cannot be derived, and the
resolution rule cannot be applied to derive any
more new clauses, then the original formula is
satisfiable.

Computer-Aided Verification – p. 40/80

Proof by Resolution

4- If after applying a resolution rule the empty
clause is derived, the original formula is
unsatisfiable (i.e., a contradiction).
Example:

{}

{p, q} {p ∨ ¬q} {¬p ∨ q} {¬p ∨ ¬q}

{p} {q}

{¬p}

Computer-Aided Verification – p. 41/80

Example

S = (p∨ r)∧ (r ⇒ q)∧¬q ∧ (p⇒ t)∧¬s∧ (t⇒ s)

S = (p∨ r)∧ (¬r∨ q)∧¬q∧ (¬p∨ t)∧¬s∧ (¬t∨ s)

S = {{p, r}, {¬r, q}, {¬q}, {¬p, t}, {¬s}, {¬t, s}}

{¬p, s}

{p, r}

{¬q}{p, q}

{q,¬r}

{p}

{¬s}

{¬p}

{s,¬t}{¬p, t}

{}

Computer-Aided Verification – p. 42/80

Soundness and
Completeness

Resolution for propositional logic is sound and
complete.

Computer-Aided Verification – p. 43/80

Prenex Normal Form

A first-order formula is in prenex normal form
(PNF), if it is written as a string of quantifiers
followed by a quantifier-free part.

Every first-order formula has an equivalent
formula in PNF. For example, formula

∀x((∃yA(y)) ∨ ((∃zB(z)) → C(x)))

has the following PNF:

∀x∃y∀z(A(y) ∨ (B(z) → C(x)))

Computer-Aided Verification – p. 44/80

Conversion to PNF

The rules for conjunction and disjunction say that

(∀xφ) ∧ ψ is equivalent to ∀x(φ ∧ ψ)
(∀xφ) ∨ ψ is equivalent to ∀x(φ ∨ ψ)

and

(∃xφ) ∧ ψ is equivalent to ∃x(φ ∧ ψ)
(∃xφ) ∨ ψ is equivalent to ∃x(φ ∨ ψ)

Computer-Aided Verification – p. 45/80

Conversion to PNF

The rules for negation say that

¬∃xφ is equivalent to ∀x¬φ

and

¬∀xφ is equivalent to ∃x¬φ

Computer-Aided Verification – p. 46/80

Conversion to PNF

The rules for removing quantifiers from the
antecedent are:

(∀xφ) → ψ is equivalent to ∃x(φ→ ψ)
(∃xφ) → ψ is equivalent to ∀x(φ→ ψ)

The rules for removing quantifiers from the
consequent are:

φ→ (∃xψ) is equivalent to ∃x(φ→ ψ)
φ→ (∀xψ) is equivalent to ∀x(φ→ ψ)

Computer-Aided Verification – p. 47/80

Example

Suppose that φ, ψ, and ρ are quantifier-free
formulas and no two of these formulas share any
free variable. The formula

(φ ∨ ∃xψ) → ∀zρ

can be transformed into PNF as follows:

(∃x(φ ∨ ψ)) → ∀zρ
∀x((φ ∨ ψ) → ∀zρ)
∀x(∀z((φ ∨ ψ) → ρ))
∀x∀z((φ ∨ ψ) → ρ)

Computer-Aided Verification – p. 48/80

NNF

A formula is in negation normal form if negation
occurs only immediately above propositions, and
{¬,∨,∧} are the only allowed Boolean
connectives.

It is possible to convert any first-order formula to
an equivalent formula in NNF. For exmple:

¬(∀x.G) is ∃x.¬G
¬(∃x.G) is ∀x.¬G
¬¬G is G
¬(G1 ∧G2) is (¬G1) ∨ (¬G2)
¬(G1 ∨G2) is (¬G1) ∧ (¬G2)

Computer-Aided Verification – p. 49/80

SNF: Skolemization

Reduction to Skolem normal form is a method for
removing existential quantifiers from first-order
formulas

A first-order formula is in SNF, if it is in
conjunctive PNF with only universal first-order
quantifiers.

Important note: Skolemization only preserves
satisfiability.

Computer-Aided Verification – p. 50/80

Skolemization

Skolemization is performed by replacing every
existentially quantified variable y with a term
f(x1, . . . , xn) where function f does not occur
anywhere else in the formula.

If the formula is in PNF, x1, . . . , xn are the
variables that are universally quantified where
quantifiers precede that of y. The function f is
called a Skolem function.

Computer-Aided Verification – p. 51/80

Skolemization

In general,

∀x1 . . . xk∃y.ϕ(x1 . . . xk, y) is
∀x1 . . . xk.ϕ(x1 . . . xk, f(x1 . . . xk))

For example, the formula

∀x∃y∀z.P (x, y, z)

is not in SNF. Skolemization results in

∀x∀z.P (x, f(x), z)

Computer-Aided Verification – p. 52/80

Ground Clauses

A sentence A is in clause form iff it is a
conjunction of (prenex) sentences of the form
∀x1 . . . ∀xm.C, where C is a disjunction of literals,
and the sets of bound variables {x1, . . . , xm} are
disjoint for any two distinct clauses.

Each sentence ∀x1 . . . ∀xm.C is called a clause.

If a clause in A has no quantifiers and does not
contain any variables, we say that it is a ground
clause.

Computer-Aided Verification – p. 53/80

Ground Clauses

Lemma. For every sentence A, a sentence B in
clause form such that A is valid iff B is
unsatisfiable can be constructed.

Computer-Aided Verification – p. 54/80

Example

Let
A = ¬∃y.∀z.(P (z, y) ⇔ ¬∃x.(P (z, x) ∧ P (x, z))).

First, we negate A and eliminate ⇔:

∃y.∀z.[(¬P (z, y) ∨ ¬∃x.(P (z, x) ∧ P (x, z)))∧

(∃x.(P (z, x) ∧ P (x, z)) ∨ P (z, y))]

Computer-Aided Verification – p. 55/80

Example

Next, we put in this formula in NNF:

∃y.∀z.[(¬P (z, y) ∨ ∀x.(¬P (z, x) ∨ ¬P (x, z)))∧

(∃x.(P (z, x) ∧ P (x, z)) ∨ P (z, y))]

Next, we Skolemize:

∀z.[(¬P (z, a) ∨ ∀x.(¬P (z, x) ∨ ¬P (x, z)))∧

((P (z, f(z)) ∧ P (f(z), z)) ∨ P (z, a))]

Computer-Aided Verification – p. 56/80

Example

We now put in prenex form:

∀z.∀x.[(¬P (z, a) ∨ (¬P (z, x) ∨ ¬P (x, z)))∧

((P (z, f(z)) ∧ P (f(z), z)) ∨ P (z, a))]

We put in CNF by distributing ∧ over ∨:

∀z.∀x.[(¬P (z, a) ∨ (¬P (z, x) ∨ ¬P (x, z)))∧

(P (z, f(z)) ∨ P (z, a)) ∧ (P (f(z), z)) ∨ P (z, a))]

Computer-Aided Verification – p. 57/80

Example

Omitting universal quantifiers, we have the
following three clauses:

C1 = (¬P (z1, a) ∨ (¬P (z1, x) ∨ ¬P (x, z1))

C2 = (P (z2, f(z2)) ∨ P (z2, a))

C3 = (P (f(z3), z3)) ∨ P (z3, a))]

Computer-Aided Verification – p. 58/80

Ground Resolution

Suppose, we want to prove (for the previous
example) that B = ¬A is unsatisfiable.

The ground resolution method is the resolution
method applied to sets of ground clauses.

Computer-Aided Verification – p. 59/80

Ground Resolution

For example,

G1 = (¬P (a, a))
(from C1, substituting a for x and z1)

G2 = (P (a, f(a)) ∨ P (a, a))
(from C2, substituting a for z2)

G3 = (P (f(a), a)) ∨ P (a, a))
(from C3, substituting a for z3)

G4 = (¬P (f(a), a) ∨ ¬P (a, f(a)))
(from C1, substituting f(a) for z1 and a for x)

Computer-Aided Verification – p. 60/80

Example

{}

G2

{P (f(a), a)}

G1

{P (a, f(a))}

G3 G4

{¬P (a, f(a))}

Computer-Aided Verification – p. 61/80

Unification

To generalize ground resolution to arbitrary
clauses, one is allowed to apply substitutions to
the parent clauses.

For example, to obtain {P (a, f(a))} from

C1 = (¬P (z1, a) ∨ ¬P (z1, x) ∨ ¬P (x, z1)) and
C2 = (P (z2, f(z2)) ∨ P (z2, a)),
first we substitute a for z1, a for x, and a for z2,
obtaining

G1 = (¬P (a, a)) and G2 = (P (a, f(a)) ∨ P (a, a))

and then we resolve on the literal P (a, a).
Computer-Aided Verification – p. 62/80

Unification

Note that the two sets of literals
{P (z1, a), P (z1, x), P (x, z1)} and {P (z2, a)}
obtained by dropping the negation sign in C1

have been unified by the substitution
(a/x, a/z1, a/z2).

Given two terms t and t′ that do not share any
variables, a substitution θ is called a unifier iff

θ(t) = θ(t′)

Computer-Aided Verification – p. 63/80

Example

1. Let t1 = f(x, g(y)) and t2 = f(g(u), g(z)). The
substitution (g(u)/x, y/z) is a most general
unifier yielding the most common instance
f(g(u), g(y)).

2. However, t1 = f(x, g(y)) and t2 = f(g(u), h(z))
are not unifiable since this requires g = h.

3. Let t1 = f(x, g(x), x) and
t2 = f(g(u), g(g(z)), z). To unify these two, we
must have x = g(u) = z. But we also need
g(x) = g(g(z)), that is, x = g(z). This implies
z = g(z).

Computer-Aided Verification – p. 64/80

General Resolution

1. Find two clauses containing the same predicate, where

it is negated in one clause but not in the other.

2. Perform a unification on the two predicates. (If the

unification fails, you made a bad choice of predicates.

Go back to the previous step and try again.)

3. If any unbound variables which were bound in the

unified predicates also occur in other predicates in the

two clauses, replace them with their bound values

(terms) there as well.

4. Discard the unified predicates, and combine the

remaining ones from the two clauses into a new

clause, also joined by the ∨ operator. Computer-Aided Verification – p. 65/80

Example

For clauses

A = (¬P (z, a) ∨ (¬P (z, x) ∨ ¬P (x, z))
B = (P (z, f(z)) ∨ P (z, a))

We choose subsets A′ = A and B′ = {P (z, a)}
and and unifier (a/z, a/x), we obtain resolvent

C = {P (a, f(a)}

Computer-Aided Verification – p. 66/80

Example

C1 = (¬P (z1, a) ∨ (¬P (z1, x) ∨ ¬P (x, z1))

C2 = (P (z2, f(z2)) ∨ P (z2, a))

C3 = (P (f(z3), z3)) ∨ P (z3, a))]

Computer-Aided Verification – p. 67/80

Example

(f(a)/z1, a/x)

C2

{P (f(a), a)}

C1

(a/z1, a/z3, a/x)

{¬P (a, f(a))}

{P (a, f(a))}
(a/z1, a/z2, a/x)

{}

C3

Computer-Aided Verification – p. 68/80

Definability and Compactness

Computer-Aided Verification – p. 69/80

Definability

Let I = (D, (.)I) be a first-order interpretation
and ϕ a first-order formula. A set S of k-tuples

over D, S ⊆ Dk, is defined by the formula ϕ if

S = {(θ(x1), . . . , θ(xk)) | I, θ |= ϕ}

A set S is definable in first-order logic if it is
defined by some first-order formula ϕ.

Computer-Aided Verification – p. 70/80

Definability

Let Σ be a set of first-order sentences and K a
set of interpretations. We say that Σ defines K if

I ∈ K if and only if I |= Σ.

A set K is (strongly) definable if it is defined by a
(finite) set of first-order formulas Σ.

Computer-Aided Verification – p. 71/80

Compactness in FOL

Theorem. Let Σ be a set of first-order formulas.
Σ is satisfiable iff every finite subset of Σ is
satisfiable.

Computer-Aided Verification – p. 72/80

Graphs

An undirected graph is a tuple (V,E), where V is
a set of vertices and E is a set of edges. An
edge is a pair (v1, v2), where v1, v2 ∈ V .

v5

v2v1 v3

v4

V = {v1, v2, v3, v4, v5}
E = {(v1, v2), (v2, v3), (v2, v4), (v1, v4), (v1, v5)}

Computer-Aided Verification – p. 73/80

Graphs in FOL

If (v1, v2) ∈ E, we say that v1 is adjacent to v2.

Adjacency in a graph can be expressed by a
binary relation. Thus, relation E(v1, v2) is
interpreted as “v1 is adjacent to v2". A graph is
any model of the following 2 axioms:

1. ∀x.∀y.E(x, y) ⇒ E(y, x) (“if x is adjacent to y,
then y is adjacent to x”)

2. ∀x.¬E(x, x) (“no x is adjacent to itself”)

Computer-Aided Verification – p. 74/80

Graphs in FOL

We can express many properties of a graph in
the language of first-order logic.

For instance, the property “G contains a triangle”
is the following formula:

∃x.∃y.∃z.(E(x, y) ∧ E(y, z) ∧ E(z, x))

Computer-Aided Verification – p. 75/80

Example

Define first-order formulas for :

A graph has girth of size 4

A graph is 3-colorable

Computer-Aided Verification – p. 76/80

Graph Connectivity
in FOL

We cannot express graph connectivity in FOL
(i.e., graph connectivity is not definable in FOL).

Proof.

Let predicate C express “G is a connected
graph". We add constants s and t vertices.

For any k, let Lk be the proposition “there is
no path of length k between s and t”. For
example,

L3 = ¬∃x.∃y.(E(s, x) ∧ E(x, y) ∧ E(y, t))

Computer-Aided Verification – p. 77/80

Graph Connectivity
in FOL

Now consider the set of propositions

Σ = {axiom(1), axiom(2), C, L1, L2, . . . }

Σ is finitely satisfiable: there do exist
connected graphs with s and t, that are
connected by an arbitrarily long path. This is
because any finite subset F ⊂ Σ must have
bounded k’s, such a graph satisifes F .

Computer-Aided Verification – p. 78/80

Graph Connectivity
in FOL

By the compactness theorem, Σ is satisfiable;
i.e., there exists some model G of all
propositions Σ, which is a graph that cannot
be connected by a path of length k, for any k,
for all k.

This is clearly wrong. In a connected graph,
any 2 nodes are connected by a path of finite
length!

Computer-Aided Verification – p. 79/80

What does first-order
mean?

We can only quantify over variables.

In higher-order logics, we can quantify over
functions, and predicates. For example, in
second-order logic, we can express the induction
principle:

∀P •(P (0)∧(∀n•P (n) ⇒ P (n+1))) ⇒ (∀n•P (n))

Propositional logic can also be thought of as
zero-order.

Computer-Aided Verification – p. 80/80

	Agenda
	Motivation
	Motivation
	Examples
	Quantifiers
	Functions
	Predicate Logic: Syntax
	Predicate Logic: Syntax
	Predicate Logic: Syntax
	Scope and Binding of Variables
	Scope and Binding of Variables
	Substitution
	Predicate Logic: Semantics
	Interpretations
	Example of a Model
	Example of a Model
	Valuations
	Example of a Valuation
	Predicate Logic: Satisfiability
	Predicate Logic: Satisfiability
	Validity (Tautologies)
	Semantic Entailment
	Closed Formulas
	Sat., Tautologies, Contradictions
	Counterexamples
	Sequent Calculus Rules for FOL
	Sequent Calculus Rules for FOL
	Sequent Calculus Rules for FOL
	Literals and Clauses
	CNF
	CNF
	Resolution Rule
	Proof by Resolution
	Proof by Resolution
	Proof by Resolution
	Proof by Resolution
	Proof by Resolution
	Example
	Soundness and Completeness
	Prenex Normal Form
	Conversion to PNF
	Conversion to PNF
	Conversion to PNF
	Example
	NNF
	SNF: Skolemization
	Skolemization
	Skolemization
	Ground Clauses
	Ground Clauses
	Example
	Example
	Example
	Example
	Ground Resolution
	Ground Resolution
	Example
	Unification
	Unification
	Example
	General Resolution
	Example
	Example
	Example
	Definability
	Definability
	Compactness in FOL
	Graphs
	Graphs in FOL
	Graphs in FOL
	Example
	Graph Connectivity in FOL
	Graph Connectivity in FOL
	Graph Connectivity in FOL
	What does first-order mean?

