Logic and Computation CS745/ECE725

Dr. Borzoo Bonakdarpour

University of Waterloo (Fall 2013) Modal Logic

Logic and Computation - p. 1/22

Agenda

- Syntax
- Semantics

Modal Logic

Modal logic is a logic of modal notions.

Let A be a proposition. Can we express "A is necessary" and "A is possible" in propositional logic?

Necessity and *possibility* are basic modal notions.

Necessarily true propositions are said to be *necessary* and necessarily false propositions are said to be *impossible*.

The *modal propositional logic language* \mathcal{L}^{pm} is obtained recursively as follows:

[1] $Atom(\mathcal{L}^{pm}) \subseteq Form(\mathcal{L}^{pm}).$

[2] If $A \in Form(\mathcal{L}^{pm})$, then $(\neg A), (\Box A) \in Form(\mathcal{L}^{pm})$

[3] If $A, B \in Form(\mathcal{L}^{pm})$, then $(A * B) \in Form(\mathcal{L}^{pm})$, * being any of $\land, \lor, \Rightarrow, \Leftrightarrow$.

Just for completeness

Formally, semantics is a function that mapps a formula to a value in $\{0, 1\}$ (also known as *truth table*).

 $\varphi_{1} \lor \varphi_{2} = \neg \varphi_{1} \Rightarrow \varphi_{2}$ $\varphi_{1} \land \varphi_{2} = \neg (\varphi_{1} \Rightarrow \neg \varphi_{2})$ $\varphi_{1} \Leftrightarrow \varphi_{2} = (\varphi_{1} \Rightarrow \varphi_{2}) \land (\varphi_{2} \Rightarrow \varphi_{1})$ $\Diamond \varphi = \neg \Box \neg \varphi$

Semantics

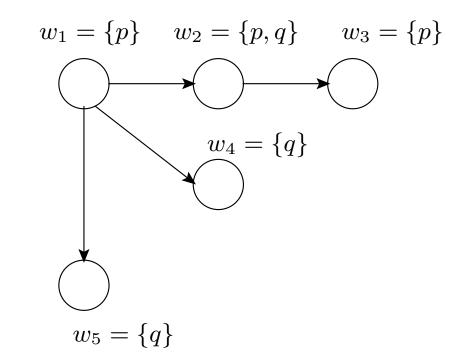
Kripke structures (possible worlds structures) are models of basic modal logic.

A Kripke structure (or *interpretation* is a triple M = (W, R, V), where

- W is a non-empty set (possible Worlds)
- $\blacksquare R \subseteq W \times W \text{ is an accessibility relation}$
- $V : (Atom(\mathcal{L}^{pm}) \times W) \Rightarrow \{true, false\}$ is a *valuation function*.

This is just a graph (W, R) with a function V which tells which propositional variables are true at which vertices.

 $w_1 \qquad w_2 \qquad w_3$ $(w_4 \qquad V(p, w_1) = true, V(q, w_1) = false$ $V(p, w_2) = true, V(q, w_2) = true$ $V(p, w_3) = true, V(q, w_3) = false$ $V(p, w_4) = false, V(q, w_4) = true$ $w_5 \qquad V(p, w_5) = false, V(q, w_5) = true$

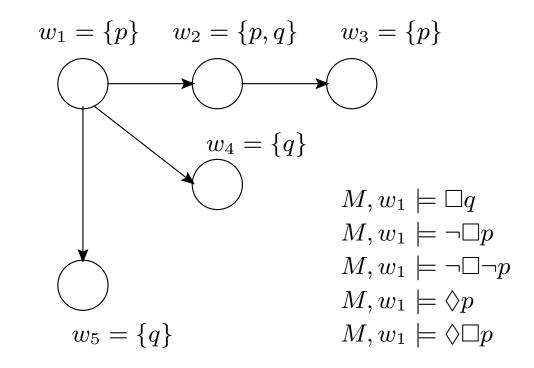


Semantics

Given M = (W, R, V) and $w \in W$, we define what does it mean for a formula to be true (satisfied) in a world w of a model M:

 $\begin{array}{lll} M,w\models p & \text{iff} \quad V(p,w)=true \\ M,w\models \neg\varphi & \text{iff} \quad M,w\not\models\varphi \\ M,w\models (\varphi\wedge\psi) & \text{iff} \quad (M,w\models\varphi) \wedge \ (M,w\models\psi) \\ M,w\models \Box\varphi & \text{iff} \quad \text{for all } v \text{ accessible from } w \\ & \text{(for all } v \text{ such that } R(w,v)), \ M,v\models\varphi \end{array}$

The pair (W, R) is called the *frame* of M.



Pointed Models

A pair (M, w), such that $M, w \models \varphi$, is called a *(pointed) model* of φ . We define $\mod(\varphi)$ to be

$$\mod(\varphi) = \{(M, w) \mid (M, w) \models \varphi\}$$

In many presentations the term *model* and *interpretation* are used as synonyms; such a terminology, however, makes defining validity, satisfiability, and logical implication cumbersome.

Satifiability and Validity

A formula φ is *true* in a model *M* if it is satisfied in all of *M*'s worlds

A formula φ is *valid* if it is true in all models. I.e., If $M, w \models \varphi$ for all interpretations M and all $w \in W$

A formula is *satisfiable* if its negation is not valid (if it is satisfied in at least one world of one model). I.e., if $M, w \models \varphi$ for some interpretation M and $w \in W$.

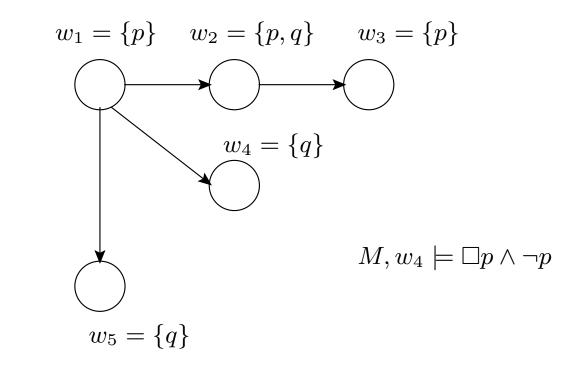
Equivalence and Logical Implication

Definitions of *logical implication* ($\Sigma \models \varphi$) and *equivalence*, and their properties are now the same as for propositional logic.

 $\Box p \Rightarrow \Box p$ is valid (just an example of a propositional tautology)

 $\Box(p \Rightarrow p)$ is valid (because $p \Rightarrow p$ is true in all accessible worlds, wherever you are).

 $\Box p \Rightarrow p$ is not valid (the set $\{\Box p, \neg p\}$ is satisfiable in some worlds).



A modal formula *characterizes a class of frames* \mathcal{F} if

• $M, w \models \varphi$ for all M = (W, R, V) and $w \in W$, where the frame $(W, R) \in \mathcal{F}$, and

■ $N, w \not\models \varphi$ for some N = (W, R, V) and $w \in W$, where $(W, R) \notin \mathcal{F}$

To make $\varphi_1 = \Box p \Rightarrow p$ valid, need to require that R is *reflexive*.

Then if $M, w \not\models p$, from R(w, w) also $M, w \not\models \Box p$.

 φ_1 characterizes reflexive relations (modal logic class T)

- (Class S_4) $\Box p \Rightarrow \Box \Box p$ corresponds to *transitivity* of R (easier to see in \Diamond form, $\Diamond \Diamond p \Rightarrow \Diamond p$: if you can get somewhere in two steps, you can get there is one step).
- (Class *B*) $p \Rightarrow \Box \Diamond p$ corresponds to *symmetry*
- (Class D) $\Box p \Rightarrow \Diamond p$ corresponds to *seriality* of *R* (for every world there is an accessible world)
- $\Diamond p \Rightarrow \Box \Diamond p$ corresponds to R being *euclidean* (*unique*)

Show that in *T*:

$\models \Box(p \Rightarrow q) \Rightarrow (\Box p \Rightarrow \Box q)$