Logic and Computation CS745/ECE725

Dr. Borzoo Bonakdarpour

University of Waterloo
(Fall 2013)
Modal Logic

Agenda

- Syntax
- Semantics

Modal Logic

Modal logic is a logic of modal notions.
Let A be a propostition. Can we express " A is necessary" and " A is possible" in propositional logic?

Necessity and possibility are basic modal notions.
Necessarily true propositions are said to be necessary and necessarily false propositions are said to be impossible.

Syntax

The modal propositional logic language $\mathcal{L}^{p m}$ is obained recursively as follows:
[1] $\operatorname{Atom}\left(\mathcal{L}^{p m}\right) \subseteq \operatorname{Form}\left(\mathcal{L}^{p m}\right)$.
[2] If $A \in \operatorname{Form}\left(\mathcal{L}^{p m}\right)$, then

$$
(\neg A),(\square A) \in \operatorname{Form}\left(\mathcal{L}^{p m}\right)
$$

[3] If $A, B \in \operatorname{Form}\left(\mathcal{L}^{p m}\right)$, then $(A * B) \in \operatorname{Form}\left(\mathcal{L}^{p m}\right), *$ being any of $\wedge, \vee, \Rightarrow, \Leftrightarrow$.

Just for completeness

Formally, semantics is a function that mapps a formula to a value in $\{0,1\}$ (also known as truth table).

$$
\begin{aligned}
& \varphi_{1} \vee \varphi_{2}=\neg \varphi_{1} \Rightarrow \varphi_{2} \\
& \varphi_{1} \wedge \varphi_{2}=\neg\left(\varphi_{1} \Rightarrow \neg \varphi_{2}\right) \\
& \varphi_{1} \Leftrightarrow \varphi_{2}=\left(\varphi_{1} \Rightarrow \varphi_{2}\right) \wedge\left(\varphi_{2} \Rightarrow \varphi_{1}\right) \\
& \diamond \varphi=\neg \square \neg \varphi
\end{aligned}
$$

Semantics

Kripke structures (possible worlds structures) are models of basic modal logic.

A Kripke structure (or interpretation is a triple $M=(W, R, V)$, where

■ W is a non-empty set (possible Worlds)
$\square R \subseteq W \times W$ is an accessibility relation

- $V:\left(\operatorname{Atom}\left(\mathcal{L}^{p m}\right) \times W\right) \Rightarrow\{$ true, false $\}$ is a valuation function.

Example

This is just a graph (W, R) with a function V which tells which propositional variables are true at which vertices.

Example

Semantics

Given $M=(W, R, V)$ and $w \in W$, we define what does it mean for a formula to be true (satisfied) in a world w of a model M :

$$
\begin{array}{ll}
M, w \models p & \text { iff } \\
M, w \models \neg \varphi & \text { iff } \quad M, w \neq \varphi \\
M, w \models(\varphi \wedge \psi) & \text { iff } \quad(M, w \models \varphi) \wedge(M, w \models \psi) \\
M, w \models \square \varphi & \text { iff } \quad \text { for all } v \text { accessible from } w \\
& \text { (for all } v \text { such that } R(w, v)), M, v \models \varphi
\end{array}
$$

The pair (W, R) is called the frame of M.

Example

$$
\begin{aligned}
& w_{2}=\{p, q\} \quad w_{3}=\{p\} \\
& M, w_{1} \models \square q \\
& M, w_{1} \models \neg \square p \\
& M, w_{1} \models \neg \square \neg p \\
& M, w_{1} \models \diamond p \\
& M, w_{1} \models \diamond \square p
\end{aligned}
$$

Pointed Models

A pair (M, w), such that $M, w \models \varphi$, is called a (pointed) model of φ. We define $\bmod (\varphi)$ to be

$$
\bmod (\varphi)=\{(M, w) \mid(M, w) \models \varphi\}
$$

In many presentations the term model and interpretation are used as synonyms; such a terminology, however, makes defining validity, satisfiability, and logical implication cumbersome.

Satifiability and Validity

A formula φ is true in a model M if it is satisfied in all of M's worlds

A formula φ is valid if it is true in all models. l.e., If $M, w \models \varphi$ for all interpretations M and all $w \in W$

A formula is satisfiable if its negation is not valid (if it is satisfied in at least one world of one model). l.e., if $M, w \models \varphi$ for some interpretation M and $w \in W$.

Equivalence and Logical Implication

Definitions of logical implication ($\Sigma \models \varphi$) and equivalence, and their properties are now the same as for propositional logic.

Example

$\square p \Rightarrow \square p$ is valid (just an example of a propositional tautology)
$\square(p \Rightarrow p)$ is valid (because $p \Rightarrow p$ is true in all accessible worlds, wherever you are).
$\square p \Rightarrow p$ is not valid (the set $\{\square p, \neg p\}$ is satisfiable in some worlds).

Example

$$
w_{1}=\{p\} \quad w_{2}=\{p, q\} \quad w_{3}=\{p\}
$$

Classes of Modal Logic

A modal formula characterizes a class of frames \mathcal{F} if

- $M, w \models \varphi$ for all $M=(W, R, V)$ and $w \in W$, where the frame $(W, R) \in \mathcal{F}$, and

■ $N, w \notin \varphi$ for some $N=(W, R, V)$ and $w \in W$, where $(W, R) \notin \mathcal{F}$

Classes of Modal Logic

To make $\varphi_{1}=\square p \Rightarrow p$ valid, need to require that R is reflexive.

Then if $M, w \not \models p$, from $R(w, w)$ also $M, w \not \vDash \square p$.
φ_{1} characterizes reflexive relations (modal logic class T)

Classes of Modal ogic

$■\left(\right.$ Class $\left.S_{4}\right) ~ \square p \Rightarrow \square \square p$ corresponds to transitivity of R (easier to see in \diamond form, $\diamond \Delta p \Rightarrow \Delta p$: if you can get somewhere in two steps, you can get there is one step).
$■$ (Class B) $p \Rightarrow \square \diamond p$ corresponds to symmetry
$■($ Class $D) \square p \Rightarrow \Delta p$ corresponds to seriality of R (for every world there is an accessible world)
■ $\diamond p \Rightarrow \square \diamond p$ corresponds to R being euclidean (unique)

Classes of Modal Logic

Show that in T :

$$
\models \square(p \Rightarrow q) \Rightarrow(\square p \Rightarrow \square q)
$$

