Computer-Aided Verification

CS745/ECE725

Borzoo Bonakdarpour

University of Waterloo (Fall 2013) LTL Model Checking

Agenda

- Büchi Automata
- Linear Temporal Logic (LTL)
- Translating LTL into Büchi Automata
- The Spin Model checker

Agenda

- Büchi Automata
- Linear Temporal Logic (LTL)
- Translating LTL into Büchi Automata
- The Spin Model checker

Notation

- $\blacksquare \Sigma$ denotes a finite *alphabet*.
- \square Σ^* denotes the set of *finite words* over Σ .
- $\blacksquare \Sigma^{\omega}$ denotes the set of *infinite words* over Σ .
- An initinite word σ is of the form $\sigma(0)\sigma(1)\cdots$ where each $\sigma(i)\in\Sigma$
- Finite words are indicated by u, v, w, \cdots and the empty word by ϵ .
- Set of finite words are denoted by U, V, W, \cdots , and letters α, β, \cdots for ω -words.
- We use L, L', \cdots to denote sets of ω -words (i.e., ω -languages).

Let W be a set of finite words:

 $\blacksquare \operatorname{pref} W := \{ u \in \Sigma^* \mid \exists v : uv \in W \},\$

 $\blacksquare W^{\omega} := \{ \alpha \in \Sigma^{\omega} \mid \alpha = w_0 w_1 \cdots \text{ where } w_i \in W \text{ for } i \ge 0 \},\$

Let $\exists^{\omega} n$ mean "there exists infinitely many n". For an ω -sequence $\sigma = \sigma(0)\sigma(1)\cdots$ in S^{ω} , the *infinity set* of σ is:

$$\operatorname{In}(\sigma) := \{ s \in S \mid \exists^{\omega} n \sigma(n) = s \}.$$

Büchi Automata

Büchi automata are non-deterministic finite automata equipped with an *acceptance condition* that is appropriate for ω -words:

An ω -word is accepted if the automaton can read it from left to right while assuming a sequence of states in which some final state occurs infinitely often (Büchi Condition)

The above Büchi automaton accepts ω -words where any occurrence of letter *a* is followed by some occurrence of letter *b*.

Büchi Automata

Definition. A *Büchi automaton* over the alphabet Σ is of the form $\mathcal{A} = (Q, q_0, \Delta, F)$, where

- $\blacksquare Q$ is a finite set of *states*,
- $\blacksquare q_0 \in Q$ is an *initial state*,
- $\blacksquare \Delta \subseteq Q \times \Sigma \times Q$ is a *transition* relation, and
- $F \subseteq Q$ is a set of *final states*.

Acceptance in Büchi Automata

A run of \mathcal{A} over an ω -word $\alpha = \alpha(0)\alpha(1)\cdots$ from Σ^{ω} is a sequence $\sigma = \sigma(0)\sigma(1)\cdots$ such that $\sigma(0) = q_0$ and $(\sigma(i), \alpha(i), \sigma(i+1)) \in \Delta$ for $i \ge 0$.

The run is called *successful* if $In(\sigma) \cap F \neq \emptyset$.

A buchi automaton \mathcal{A} accepts α if there a successful run of \mathcal{A} on α .

Büchi Recognizable

Let

$$L(\mathcal{A}) = \{ \alpha \in \Sigma^{\omega} \mid \mathcal{A} \text{ accepts } \alpha \}$$

be the ω -language *recognized* by \mathcal{A} . If $L = L(\mathcal{A})$ for some Büchi automaton \mathcal{A} , L is to be *Büchi recognizable*.

Example

Let $\Sigma = \{a, b, c\}$. The language $L_1 \subseteq \Sigma^{\omega}$ defined by:

 $\alpha \in L_1$ iff after any occurrence of letter *a* there is some occurrence of letter *b* in α .

A büchi automaton recognizing L_1 is the following:

The complement $\Sigma^{\omega} - L_1$ is recognized by the following Büchi automaton:

Main Theorems

Theorem 1. Deterministic Büchi automata are strictly less expressive than non-deterministic Büchi automata.

Theorem 2. An ω -language $L \subseteq \Sigma^{\omega}$ is Büchi recognizable iff L is a finite union of set $U.V^{\omega}$, where $U, V \subseteq \Sigma^*$ are regular sets of finite words.

Theorem 3. The emptiness problem for Büchi automata is decidable.

Theorem 4. If $L \subseteq \Sigma^{\omega}$ is Büchi recognizable, so is $\Sigma^{\omega} - L$.

Theorem 5. The inclusion problem and the equivalence problem for Büchi automata are decidable.

- Büchi Automata
- Linear Temporal Logic (LTL)
- Translating LTL into Büchi Automata
- The Spin Model checker

Modal and Temporal Logic

Modal logic was originally developed by philosophers to study different *modes* of truth.

For example, the assertion P may be false in the present world, and yet the assertion *possibly* P may be true if there exists an alternate world where P is true.

Temporal logic is a special type of modal logic; it provides a formal system for qualitatively describing and reasoning about the truth values of assertions over time.

Temporal Logic

In temporal logic various temporal operators or *modalities* are provided to describe and reason about how the truth values of assertions vary with time:

- sometimes P which is true now if there is a future moment at which P becomes true
- **always** Q is true now if Q is true at all future moments.

Temporal Logic

Example. Two processes p_1 and p_2 request entering critical section:

- Mutual exclusion: always ' p_1 and p_2 do not enter the critical section simultaneously'.
- Non-starvation: sometime ' p_1 (resp. p_2) enters the critical section'.

Propositional Linear Temporal Logic (LTL)

Let AP be a set of *atomic propositions*. A *Kripke structure* is $\mathcal{M} = (S, x, L)$, where

- \blacksquare S is a set of *states*,
- $\blacksquare x : \mathbb{N} \to S$ is an *infinite sequence* of states, and
- $L: S \rightarrow 2^{AP}$ is a *labelling* of each state with the set of atomic propositions in *AP* true at the state.

We usually employ the more convenient notation $x = (s_0, s_1, s_2, \cdots)$. We refer to x as a *path*, *computation*, or *behavior*.

What is the labelling function in this example?

Temporal Operators

The basic temporal operators of LTL are:

- \blacksquare $\Box p$: always p (also denoted Gp).
- $\blacksquare \Diamond p$: eventually p (also denoted Fp).
- $\bigcirc p$: nexttime p.
- $\blacksquare p \cup q$: p until q.

Illustration

LTL: Syntax

The set of formulae of LTL is the least set of formulae generated by the following rules:

- \blacksquare each atomic proposition *P* is a formula
- **i** if p and q are formulae then $p \land q$ and $\neg p$ are formulae
- If p and q are formulae then $p \cup q$ and $\bigcirc p$ are formulae.

LTL: Semantics

We define the semantics of LTL with respect to a Kripke structure. We write $\mathcal{M}, x \models p$ to mean that "in structure \mathcal{M} formula p is true of computation x.

Let x be a computation and x^i denote $s_i, s_{i+1}, s_{i+2} \cdots$. We define \models inductively on the structure of the formulae:

1. $x \models P$ iff $P \in L(s_0)$, for atomic proposition P

2.
$$x \models p \land q$$
 iff $x \models p$ and $x \models q$
 $x \models \neg p$ iff it is not the case that $x \models p$

3.
$$x \models p \cup q$$
 iff $\exists j : (x^j \models q)$ and $\forall k < j : (x^k \models p)$,
 $x \models \bigcirc p$ iff $x^1 \models p$

LTL: Abbreviations

 $\blacksquare \Diamond p$ abbreviates $true \ U \ p$

 $\square p$ abbreviates $\neg \Diamond \neg p$.

LTL: Examples

Discuss the meaning of the following formulae:

- $\square \Diamond p$
- $\blacksquare \Diamond \Box p$
- $\blacksquare \Box (p \Rightarrow \Diamond q)$

 $\blacksquare \neg (\neg p \ \mathsf{U} \ q)$

LTL Model Checking

Question. How can we check whether a Büchi automaton \mathcal{A} satisfies an LTL formula ϕ (i.e., $\mathcal{A} \models \phi$)? Answer. By checking *language inclusion*, i.e., $L(\mathcal{A}) \subseteq L(\phi)$. Alternatively, we can check *language emptyness*; i.e., whether $L(\mathcal{A}) \cap L(\neg \phi) = \emptyset$ as follows:

- 1. Construct a Büchi automaton that produces all computations of $\neg \phi$ (denoted $\mathcal{A}_{\neg \phi}$)
- 2. Compute the product automaton $\mathcal{A}||\mathcal{A}_{\neg\phi}|$

3. If
$$L(\mathcal{A}||\mathcal{A}_{\neg\phi}) \neq \emptyset$$
 then $\mathcal{A} \not\models \phi$.

LTL Model Checking

A *counterexample* is a trace of the system that violates the property. Thus, $L(\mathcal{A}||\mathcal{A}_{\neg\phi}) \neq \emptyset$ includes the set of counter examples.

An error (counterexample) may indicate a problem in the system or it may demonstrate that you did not write your property correctly.

- Büchi Automata
- Linear Temporal Logic (LTL)
- Translating LTL into Büchi Automata
- The Spin Model checker

LTL to Büchi Automata

- Each state of the automata will store a set of properties that should be satisfied on paths starting at that state
 - These properties will be stored in lists Old and New where Old means already processed and New means still needs to be processed
- Each state will also store a set of properties which should be satisfied on paths starting at the next states of that state

These properties will be stored in the list Next

The incoming transitions for a state will be stored in the list Incoming

LTL to Büchi Automata

- We will start with a node which has the input LTL property in its New list
- We will process the formulae in the New list of each node one by one
 - When we have $f \cup g$ in the New list we will use $f \cup g \equiv g \lor (f \land \bigcirc (f \cup g))$

LTL to Büchi Automata

When we process a formula from a node we will either replace the node with a new node or we will replace it with two new nodes (i.e., we will split it to two nodes)

When a node q is replaced by a node q' we will have:

 $(\operatorname{Old}(q) \land \operatorname{New}(q) \land \bigcirc \operatorname{Next}(q)) \Leftrightarrow \\ (\operatorname{Old}(q') \land \operatorname{New}(q') \land \bigcirc \operatorname{Next}(q'))$

■ When a node q is split into two nodes q_1 and q_2 we will have $(Old(q) \land New(q) \land \bigcirc Next(q)) \Leftrightarrow$ $((Old(q_1) \land New(q_1) \land \bigcirc Next(q_1)) \lor$ $(Old(q_2) \land New(q_2) \land \bigcirc Next(q_2)))$

```
Translate(f) {
         Expand([Incoming:=init, Old:=\emptyset, New:=f, Next:=\emptyset], \emptyset)
Expand(q, NodeList) {
If New(q) = \emptyset then
    if \exists r \in \mathsf{NodeList s.t. Old}(r) = \mathsf{Old}(q) and \mathsf{Next}(r) = \mathsf{Next}(q)
    then \text{Incoming}(r) := \text{Incoming}(q) \cup \text{Incoming}(r);
           return(NodeList);
    else create a new node q' s.t. Incoming(q')=q, Old(q')=\emptyset,
                                           New(q')=Next(q), Next(q'):=\emptyset;
           return expand(q', Nodelist \cup {q});
else // New(q) \neq \emptyset
           pick a formula f from New(q) and remove it from New(q);
           if f is already in Old(q) then return Expand(q, Nodelist);
```

 $h \cup k \equiv k \lor (h \land \bigcirc(h \cup k))$

else if $(f \equiv h \cup k)$

create two nodes q_1 and q_2 s.t.

Incoming (q_1) = Incoming (q_2) =Incoming(q), $Old(q_1) = Old(q_2) = Old(q) \cup \{h \cup k\},$ $New(q_1) = New(q) \cup \{h\},$ $New(q_2) = New(q) \cup \{k\},$ $Next(q_1) = Next(q) \cup \{h \cup k\},$ $Next(q_2) = Next(q);$ return Expand $(q_1, Expand(q_2, Nodelist));$

else if $(f \in AP \text{ or } \neg f \in AP \text{ or } f \text{ is a Boolean constant})$ then if $(f \equiv false \lor \neg f \in Old(q))$ then return(Nodelist); else create a node q' s.t. Incoming(q')=Incoming(q), Old(q')=Old $(q) \cup \{f\}$, New(q')=New $(q) - \{f\}$, Next(q')=New $(q) - \{f\}$, return Expand(q', Nodelist);

Step 7: Nodelist = $\{n_1, n_2, n_3\}$ init n_3 n_4 n_1 n_2 n_2 $Old = \{aUb, a\}$ $New = \{\}$ $New = \{\}$ $Next = \{aUb\}$

Step 8: Nodelist = $\{n_1, n_2, n_3\}$ init n_1 n_3 n_2 $OId = \{a Ub, a\}$ $\mathsf{Old} = \{b, a\mathsf{U}b\}$ Old = { } New = $\{\}$ New = $\{\}$ New = $\{\}$ Next = $\{aUb\}$ Next = $\{\}$ Next = { $\mathsf{OId}=\big\{\big\}$ New = $\{aUb\}$

Next = $\{\}$

Step 9: Nodelist = $\{n_1, n_2, n_3\}$ init n_3 $Old = \{aUb, a\}$ $New = \{\}$ $New = \{\}$ $Next = \{aUb\}$ $Next = \{aUb\}$ $Next = \{\}$ $Next = \{\}$ $Next = \{\}$

else if $(f \equiv h \lor k)$

create two nodes q_1 and q_2 s.t Incoming $(q_1) = \text{Incoming}(q_2) = \text{Incoming}(q)$, $Old(q_1) = Old(q_2) = Old(q) \cup \{h \lor k\}$, $New(q_1) = (New(q) - \{h \lor k\}) \cup \{h\}$, $New(q_2) = (New(q) - \{h \lor k\}) \cup \{k\}$, $Next(q_1) = Next(q_2) = Next(q)$; return Expand $(q_2, Expand(q_1, Nodelist))$;

else if $(f \equiv h \land k)$

create two node q' s.t Incoming(q') = Incoming(q), $OId(q') = OId(q) \cup \{h \land k\}$, $New(q') = (New(q) - \{h \land k\}) \cup \{h\} \cup \{k\}$, Next(q') = Next(q); return Expand(q', Nodelist);

else if $(f \equiv \bigcirc h)$

create two node q' s.t Incoming(q') = Incoming(q), $Old(q') = Old(q) \cup \{\bigcirc h\}$, $New(q') = (New(q) - \{\bigcirc h\})$, $Next(q') = Next(q) \cup \{h\}$; return Expand(q', Nodelist);

Completing the Automaton

The resulting Büchi automaton $\mathcal{A} = (Q, q_0, \Delta, F)$:

- $\square \Sigma = 2^{AP}$
- $\blacksquare Q = \text{Nodelist} \cup \text{init}$
- $\blacksquare q_0 = \text{init}$

■ Δ is defined as follows: $(q, d, q') \in \Delta$ iff $q \in \text{Incoming}(q')$ and d satisfies the conjunction of negated and unnegated propositions in Old(q')

 $\blacksquare F \subseteq 2^Q \text{ i.e., } F = \{F_1, F_2, \cdots, F_k\}$

The acceptance set F contains a set of accepting states $F_i \in F$ for each subformula of the form $h \cup k$ where F_i contains all the states qs.t. either $k \in Old(q)$ or $h \cup k \notin Old(q)$. If there are no subformulas of the form $h \cup k$ then $F = \{Q\}$

Completing the Automaton

The size of the resulting automaton can be *exponential* in the size of the input formula

The resulting automaton is a generalized Büchi automaton we can translate it to a standard Büchi automaton.

$$\Sigma = 2^{AP} = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$$
$$F = \{\{n_1, n_2\}\}$$
$$Q = \{\text{init}, n_1, n_2, n_3\}$$
$$q_0 = \text{init}$$

Checking Emptyness

Let \mathcal{A} be a Büchi automaton. Recall that:

 $L(\mathcal{A}) = \{ \alpha \in \Sigma^{\omega} \mid \mathcal{A} \text{ accepts } \alpha \}$

 $L(\mathcal{A})$ is nonempty if there exists an accepting state $q \in F$ such that:

 $\blacksquare q$ is reachable from initial state in q_0 , and

 \blacksquare q is reachable from itself (i.e., q is contained in a cycle).

Checking Emptyness

Any run of a Büchi automaton has a suffix in which all the states on that suffix appear infinitely many times:

- Each state on that suffix is reachable from any other state
- Hence these states form a strongly connected component
- If there is an accepting state among those states than the run is an accepting run

So emptiness check involves finding a *strongly connected component* that contains an accepting state and is reachable from an initial state

Checking Emptyness

To find cycles in a graph one can use a *depth-first search algorithm* which constructs the strongly connected components in linear time by adding two integer numbers to every state reached.

If a strongly connected component reachable from an initial state contains an accepting state then the language accepted by the Büchi automaton is not empty.

There is a more memory efficient algorithm for checking the same condition which is called *nested depth first search*.

Agenda

- Büchi Automata
- Linear Temporal Logic (LTL)
- Translating LTL into Büchi Automata
- The Spin Model checker

Spin

- Model-checker
- Based on automata theory
- Allows LTL or automata specification
- Efficient (on-the-fly model checking, partial order reduction).
- Developed in Bell Laboratories.

The Language of Spin (Promela)

- The expressions are from C.
- The communication is from CSP.
- The constructs are from Guarded Command.

Expressions

- Arithmetic: +, -, *, /, %
- Comparison: >, >=, <, <=, ==, !=
- Boolean: & & , ||, !
- Assignment: :=
- Increment/decrement: ++, -

Expressions

- byte name1, name2=4, name3;
- bit b1,b2,b3;
- short s1,s2;
- int arr1[5];

Message types and channels

- mtype = {OK, READY, ACK}
- mtype Mvar = ACK
- chan Ng=[2] of {byte, byte, mtype}, Next=[0] of {byte}

Ng has a buffer of 2, each message consists of two bytes and an enumerable type (mtype). Next is used with handshake message passing.

Sending and receiving a message

Channel declaration:

chan qname=[3] of mtype, byte, byte

In sender:

qname!tag3(expr1, expr2) or equivalently: qname!tag3, expr1, expr2

In Receiver: qname?tag3(var1,var2)

Condition

```
if
...<sub>v</sub>o/
```

fi

```
:: x%2==1 -> z=z*y; x-
:: x%2==0 -> y=y*y; x=x/2
```

If more than one guard is enabled: a non-deterministic choice.

If no guard is enabled: the process waits (until a guard becomes enabled).

Looping

do

- :: x>y -> x=x-y
- :: y>x -> y=y-x
- :: else break

od;

Normal way to terminate a loop: with break. (or goto).

As in condition, we may have a non-deterministic loop or have to wait.

Process Declaration

```
Definition of a process:
```

proctype prname (byte Id; chan Comm)

statements

Activation of a process: run prname (7, Con[1]);

init process is the root of all others

```
init{ statements }
init {byte I=0;
atomic{do
::I<10 \rightarrow run prname(I, chan[I]);
I=I+1
::I=10 \rightarrow break;
od}}
```

atomic allows performing several actions as one atomic step.

Mutual Exclusion

loop

Non_Critical_Section; TR:Pre_Protocol; CR:Critical_Section; Post_protocol; end loop;

Mutual Exclusion

task P0 is begin loop Non Critical Sec; Wait Turn=0; Critical Sec; Turn:=1; end loop end P0.

task P1 is begin loop Non Critical Sec; Wait Turn=1; Critical Sec; Turn :=0; end loop end P1

Translating into Spin

```
#define t (P@try)
#define c (P@cr)
#define critical (incrit[0] && incrit[1])
byte turn=0, incrit[2]=0;
proctype P (bool id)
{ do
    :: 1 ->
      do
         :: 1 -> skip
         :: 1 -> break
      od
```

```
try:do
    ::turn==id -> break
    od;
cr:incrit[id]=1;
    incrit[id]=0;
    turn=1-turn
    od}
init{ atomic{
    run P(0); run P(1) } };
```

LTL Verification Using Spin

Both process do not enter the critical section:

```
spin -f '[] !critical'
```

```
spin -f '[](t -> <>C)'
```

In old versions of Spin, one could verify properties expressed as *never claims*.