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Notation

Σ denotes a finite alphabet.

Σ∗ denotes the set of finite words over Σ.

Σω denotes the set of infinite words over Σ.

An initinite word σ is of the form σ(0)σ(1) · · · where each

σ(i) ∈ Σ

Finite words are indicated by u, v, w, · · · and the empty word

by ǫ.

Set of finite words are denoted by U, V,W, · · · , and letters

α, β, · · · for ω-words.

We use L,L′, · · · to denote sets of ω-words (i.e.,

ω-languages).
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Operators

Let W be a set of finite words:

prefW := {u ∈ Σ∗ | ∃v : uv ∈ W},

Wω := {α ∈ Σω | α = w0w1 · · · where wi ∈ W for i ≥ 0},

Let ∃ωn mean “there exists infinitely many n”. For an

ω-sequence σ = σ(0)σ(1) · · · in Sω, the infinity set of σ is:

In(σ) := {s ∈ S | ∃ωnσ(n) = s}.
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Büchi Automata

Büchi automata are non-deterministic finite automata equipped with

an acceptance condition that is appropriate for ω-words:

An ω-word is accepted if the automaton can read it from left to

right while assuming a sequence of states in which some final state

occurs infinitely often (Büchi Condition)
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Example

a, cb, c
a

b

The above Büchi automaton accepts ω-words where any

occurrence of letter a is followed by some occurrence of letter b.
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Büchi Automata

Definition. A Büchi automaton over the alphabet Σ is of the form

A = (Q, q0,∆, F ), where

Q is a finite set of states,

q0 ∈ Q is an initial state,

∆ ⊆ Q× Σ×Q is a transition relation, and

F ⊆ Q is a set of final states.
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Acceptance in Büchi
Automata

A run of A over an ω-word α = α(0)α(1) · · · from Σω is a

sequence σ = σ(0)σ(1) · · · such that σ(0) = q0 and

(σ(i), α(i), σ(i+ 1)) ∈ ∆ for i ≥ 0.

The run is called successful if In(σ) ∩ F 6= ∅.

A büchi automaton A accepts α if there a successful run of A on

α.

Computer-Aided Verification – p. 9/65



Büchi Recognizable

Let

L(A) = {α ∈ Σω | A accepts α}

be the ω-language recognized by A. If L = L(A) for some Büchi

automaton A, L is to be Büchi recognizable.
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Example

Let Σ = {a, b, c}. The language L1 ⊆ Σω defined by:

α ∈ L1 iff after any occurrence of letter a there is some

occurrence of letter b in α.

A büchi automaton recognizing L1 is the following:

a, cb, c
a

b

The complement Σω − L1 is recognized by the following Büchi

automaton:

a

a, c
a, b, c
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Main Theorems
Theorem 1. Deterministic Büchi automata are strictly less expressive

than non-deterministic Büchi automata.

Theorem 2. An ω-language L ⊆ Σω is Büchi recognizable iff L is a

finite union of set U.V ω, where U, V ⊆ Σ∗ are regular sets of finite

words.

Theorem 3. The emptiness problem for Büchi automata is decidable.

Theorem 4. If L ⊆ Σω is Büchi recognizable, so is Σω − L.

Theorem 5. The inclusion problem and the equivalence problem for

Büchi automata are decidable.
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Modal and Temporal
Logic

Modal logic was originally developed by philosophers to study

different modes of truth.

For example, the assertion P may be false in the present world,

and yet the assertion possibly P may be true if there exists an

alternate world where P is true.

Temporal logic is a special type of modal logic; it provides a formal

system for qualitatively describing and reasoning about the truth

values of assertions over time.
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Temporal Logic

In temporal logic various temporal operators or modalities are

provided to describe and reason about how the truth values of

assertions vary with time:

sometimes P which is true now if there is a future moment at

which P becomes true

always Q is true now if Q is true at all future moments.
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Temporal Logic

Example. Two processes p1 and p2 request entering critical

section:

Mutual exclusion: always ‘p1 and p2 do not enter the critical

section simultaneously’.

Non-starvation: sometime ‘p1 (resp. p2) enters the critical

section’.
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Propositional Linear
Temporal Logic (LTL)

Let AP be a set of atomic propositions. A Kripke structure is

M = (S, x, L), where

S is a set of states,

x : N → S is an infinite sequence of states, and

L : S → 2AP is a labelling of each state with the set of atomic

propositions in AP true at the state.

We usually employ the more convenient notation

x = (s0, s1, s2, · · · ). We refer to x as a path, computation, or behavior.
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Labelling

s2

q

p, q

p

s3

s1

What is the labelling function in this example?
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Temporal Operators

The basic temporal operators of LTL are:

�p: always p (also denoted Gp).

♦p: eventually p (also denoted Fp).

©p: nexttime p.

p U q: p until q.
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Illustration

�p – always p

©p – nexttime p

pUq – p until q

♦p – eventually p
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LTL: Syntax

The set of formulae of LTL is the least set of formulae generated

by the following rules:

each atomic proposition P is a formula

if p and q are formulae then p ∧ q and ¬p are formulae

if p and q are formulae then p U q and ©p are formulae.
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LTL: Semantics

We define the semantics of LTL with respect to a Kripke structure. We

write M, x |= p to mean that “in structure M formula p is true of

computation x.

Let x be a computation and xi denote si, si+1, si+2 · · · . We define |=

inductively on the structure of the formulae:

1. x |= P iff P ∈ L(s0), for atomic proposition P

2. x |= p ∧ q iff x |= p and x |= q

x |= ¬p iff it is not the case that x |= p

3. x |= p U q iff ∃j : (xj |= q) and ∀k < j : (xk |= p),

x |= ©p iff x1 |= p
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LTL: Abbreviations

♦p abbreviates true U p

�p abbreviates ¬♦¬p.
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LTL: Examples

Discuss the meaning of the following formulae:

�♦p

♦�p

�(p ⇒ ♦q)

¬(¬p U q)
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LTL Model Checking

Question. How can we check whether a Büchi automaton A

satisfies an LTL formula φ (i.e., A |= φ)?

Answer. By checking language inclusion, i.e., L(A) ⊆ L(φ).

Alternatively, we can check language emptyness; i.e., whether

L(A) ∩ L(¬φ) = ∅ as follows:

1. Construct a Büchi automaton that produces all

computations of ¬φ (denoted A¬φ)

2. Compute the product automaton A||A¬φ

3. If L(A||A¬φ) 6= ∅ then A 6|= φ.
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LTL Model Checking

A counterexample is a trace of the system that violates the property.

Thus, L(A||A¬φ) 6= ∅ includes the set of counter examples.

An error (counterexample) may indicate a problem in the system

or it may demonstrate that you did not write your property

correctly.
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The Spin Model checker

Computer-Aided Verification – p. 27/65



LTL to Büchi
Automata

Each state of the automata will store a set of properties that

should be satisfied on paths starting at that state

These properties will be stored in lists Old and New where Old

means already processed and New means still needs to be

processed

Each state will also store a set of properties which should

be satisfied on paths starting at the next states of that state

These properties will be stored in the list Next

The incoming transitions for a state will be stored in the list

Incoming
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LTL to Büchi
Automata

We will start with a node which has the input LTL property in

its New list

We will process the formulae in the New list of each node

one by one

When we have f U g in the New list we will use

f U g ≡ g ∨ (f ∧©(f U g))
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LTL to Büchi
Automata

When we process a formula from a node we will either replace

the node with a new node or we will replace it with two new

nodes (i.e., we will split it to two nodes)

When a node q is replaced by a node q′ we will have:

(Old(q) ∧ New(q) ∧ ©Next(q)) ⇔

(Old(q′) ∧ New(q′) ∧ ©Next(q′))

When a node q is split into two nodes q1 and q2 we will have

(Old(q) ∧ New(q) ∧ ©Next(q)) ⇔

((Old(q1) ∧ New(q1) ∧ ©Next(q1)) ∨

(Old(q2) ∧ New(q2) ∧ ©Next(q2)))
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Translation Algorithm

Translate(f ) {

Expand([Incoming:=init, Old:=∅, New:=f , Next:=∅], ∅)

}

Expand(q, NodeList) {

If New(q) = ∅ then

if ∃r ∈ NodeList s.t. Old(r) = Old(q) and Next(r) = Next(q)

then Incoming(r) := Incoming(q) ∪ Incoming(r);

return(NodeList);

else create a new node q′ s.t. Incoming(q′)=q, Old(q′) = ∅,

New(q′)=Next(q), Next(q′):=∅;

return expand(q′, Nodelist ∪ {q});

else // New(q) 6= ∅

pick a formula f from New(q) and remove it from New(q);

if f is already in Old(q) then return Expand(q, Nodelist);
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Translation Algorithm

h U k ≡ k ∨ (h ∧ ©(hUk))

else if (f ≡ h U k)

create two nodes q1 and q2 s.t.

Incoming(q1) = Incoming(q2) =Incoming(q),

Old(q1) = Old(q2) = Old(q) ∪ {h U k},

New(q1) = New(q) ∪ {h},

New(q2) = New(q) ∪ {k},

Next(q1) = Next(q) ∪{h U k},

Next(q2) = Next(q);

return Expand(q1, Expand(q2, Nodelist));
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Example (a U b)

a U b ≡ b ∨ (a ∧ ©(aUb))

initinit
Denotes
Incoming

Step 1: Nodelist = ∅

Old = {aUb} Old = {aUb}

New = {b}

Next = {}

New = {a}

Next = {aUb}

Old = {}

Next = {}

New = {aUb}

Step 2: Nodelist = ∅

Computer-Aided Verification – p. 33/65



Translation Algorithm

else if (f ∈ AP or ¬f ∈ AP or f is a Boolean constant)

then if (f ≡ false ∨ ¬f ∈ Old(q)) then return(Nodelist);

else create a node q′ s.t.

Incoming(q′)=Incoming(q),

Old(q′)=Old(q) ∪ {f},

New(q′)=New(q) − {f},

Next(q′)=Next(q);

return Expand(q′, Nodelist);
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Example (a U b)

initinit

Old = {b, aUb}Old = {aUb}

New = {}

Next = {}

New = {a}

Next = {aUb}

Step 3: Nodelist = ∅

Old = {aUb} Old = {aUb}

New = {b}

Next = {}

New = {a}

Next = {aUb}

Step 2: Nodelist = ∅
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Example (a U b)

initinit

n1

Old = {}

New = {}

Next = {}

Old = {aUb}

New = {a}

Next = {aUb}

Step 4: Nodelist = {n1}

Old = {aUb}

New = {}

Next = {}

New = {a}

Next = {aUb}

Step 3: Nodelist = ∅

Old = {b, aUb}

New = {}

Next = {}

Old = {b, aUb}
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Example (a U b)

init

n2

Old = {aUb}

New = {a}

Next = {aUb}

New = {}

Next = {}

Old = {b, aUb} Old = {}

New = {}

Next = {}

Old = {}

New = {}

Next = {}

Step 5: Nodelist = {n1, n2}

n1
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Example (a U b)

init

n2

Old = {aUb}

New = {a}

Next = {aUb}

New = {}

Next = {}

Old = {b, aUb} Old = {}

New = {}

Next = {}

Step 6: Nodelist = {n1, n2}

n1
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Example (a U b)

init

n3

Old = {aUb, a}

New = {}

Next = {aUb}

New = {}

Next = {}

Old = {b, aUb} Old = {}

New = {}

Next = {}

Step 7: Nodelist = {n1, n2, n3}

n1

n2
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Example (a U b)

init

Step 8: Nodelist = {n1, n2, n3}

New = {}

Next = {}

Old = {b, aUb} Old = {}

New = {}

Next = {}

n1

n2
n3

Old = {aUb, a}

New = {}

Next = {aUb}

Old = {}

Next = {}

New = {aUb}
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Example (a U b)

init

Step 9: Nodelist = {n1, n2, n3}

New = {}

Next = {}

Old = {b, aUb} Old = {}

New = {}

Next = {}

n1

n2
n3

Old = {aUb, a}

New = {}

Next = {aUb}
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Translation Algorithm

else if (f ≡ h ∨ k)

create two nodes q1 and q2 s.t

Incoming(q1) = Incoming(q2) = Incoming(q),

Old(q1) = Old(q2) = Old(q) ∪ {h ∨ k},

New(q1) = (New(q) −{h ∨ k}) ∪ {h},

New(q2) = (New(q) −{h ∨ k}) ∪ {k},

Next(q1) = Next(q2) = Next(q);

return Expand(q2, Expand(q1, Nodelist));
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Translation Algorithm

else if (f ≡ h ∧ k)

create two node q′ s.t

Incoming(q′) = Incoming(q),

Old(q′) = Old(q) ∪ {h ∧ k},

New(q′) = (New(q) −{h ∧ k}) ∪ {h} ∪ {k},

Next(q′) = Next(q);

return Expand(q′, Nodelist);
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Translation Algorithm

else if (f ≡ ©h)

create two node q′ s.t

Incoming(q′) = Incoming(q),

Old(q′) = Old(q) ∪ {©h},

New(q′) = (New(q) −{©h}),

Next(q′) = Next(q) ∪ {h};

return Expand(q′, Nodelist);
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Completing the
Automaton

The resulting Büchi automaton A = (Q, q0,∆, F ):

Σ = 2AP

Q = Nodelist ∪ init

q0 = init

∆ is defined as follows:

(q, d, q′) ∈ ∆ iff q ∈ Incoming(q′) and

d satisfies the conjunction of negated and

unnegated propositions in Old(q′)

F ⊆ 2Q i.e., F = {F1, F2, · · · , Fk}

The acceptance set F contains a set of accepting states Fi ∈ F for

each subformula of the form h U k where Fi contains all the states q

s.t. either k ∈ Old(q) or hUk 6∈ Old(q). If there are no subformulas of

the form hUk then F = {Q}
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Completing the
Automaton

The size of the resulting automaton can be exponential in the size

of the input formula

The resulting automaton is a generalized Büchi automaton we

can translate it to a standard Büchi automaton.
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Example (a U b)

init

n2

{a}, {a, b}

n3

{a}, {a, b} {b}, {a, b}

{b}, {a, b} ∅, {a}

{b}, {a, b}

Old =

{b, aUb}
Old = ∅

{aUb, a}

Old =

n1

∅, {a}

{b}, {a, b}

Σ = 2AP = {∅, {a}, {b}, {a, b}}

F = {{n1, n2}}

Q = {init, n1, n2, n3}

q0 = init
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Checking Emptyness

Let A be a Büchi automaton. Recall that:

L(A) = {α ∈ Σω | A accepts α}

L(A) is nonempty if there exists an accepting state q ∈ F such

that:

q is reachable from initial state in q0, and

q is reachable from itself (i.e., q is contained in a cycle).
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Checking Emptyness

Any run of a Büchi automaton has a suffix in which all the states

on that suffix appear infinitely many times:

Each state on that suffix is reachable from any other state

Hence these states form a strongly connected component

If there is an accepting state among those states than the

run is an accepting run

So emptiness check involves finding a strongly connected component

that contains an accepting state and is reachable from an initial

state
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Checking Emptyness

To find cycles in a graph one can use a depth-first search algorithm

which constructs the strongly connected components in linear

time by adding two integer numbers to every state reached.

If a strongly connected component reachable from an initial state

contains an accepting state then the language accepted by the

Büchi automaton is not empty.

There is a more memory efficient algorithm for checking the

same condition which is called nested depth first search.
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Spin

Model-checker

Based on automata theory

Allows LTL or automata specification

Efficient (on-the-fly model checking, partial
order reduction).

Developed in Bell Laboratories.
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The Language of
Spin (Promela)

The expressions are from C.

The communication is from CSP.

The constructs are from Guarded Command.
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Expressions

Arithmetic: +, -, *, /, %

Comparison: >, >=, <, <=, ==, !=

Boolean: &&, ||, !

Assignment: :=

Increment/decrement: ++, - -
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Expressions

byte name1, name2=4, name3;

bit b1,b2,b3;

short s1,s2;

int arr1[5];
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Message types and
channels

mtype = {OK, READY, ACK}

mtype Mvar = ACK

chan Ng=[2] of {byte, byte, mtype},
Next=[0] of {byte}

Ng has a buffer of 2, each message consists
of two bytes and an enumerable type (mtype).
Next is used with handshake message
passing.
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Sending and
receiving a message

Channel declaration:

chan qname=[3] of mtype, byte, byte

In sender:

qname!tag3(expr1, expr2) or equivalently:
qname!tag3, expr1, expr2

In Receiver:

qname?tag3(var1,var2)
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Condition

if

:: x%2==1 -> z=z*y; x–

:: x%2==0 -> y=y*y; x=x/2

fi

If more than one guard is enabled: a non-deterministic

choice.

If no guard is enabled: the process waits (until a guard

becomes enabled).
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Looping

do

:: x>y -> x=x-y

:: y>x -> y=y-x

:: else break

od;

Normal way to terminate a loop: with break. (or goto).

As in condition, we may have a non-deterministic loop or

have to wait.
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Process Declaration

Definition of a process:

proctype prname (byte Id; chan Comm)

{

statements

}

Activation of a process:

run prname (7, Con[1]);
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init process is the
root of all others

init{ statements }

init {byte I=0;

atomic{do

::I<10 -> run prname(I, chan[I]);

I=I+1

::I=10 -> break;

od}}

atomic allows performing several actions as one atomic

step.
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Mutual Exclusion

loop

Non_Critical_Section;

TR:Pre_Protocol;

CR:Critical_Section;

Post_protocol;

end loop;
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Mutual Exclusion

task P0 is task P1 is

begin begin

loop loop

Non_Critical_Sec; Non_Critical_Sec;

Wait Turn=0; Wait Turn=1;

Critical_Sec; Critical_Sec;

Turn:=1; Turn :=0;

end loop end loop

end P0. end P1
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Translating into Spin

#define t (P@try)

#define c (P@cr)

#define critical (incrit[0] && incrit[1]) try:do

byte turn=0, incrit[2]=0; ::turn==id -> break

proctype P (bool id) od;

{ do cr:incrit[id]=1;

:: 1 -> incrit[id]=0;

do turn=1-turn

:: 1 -> skip od}

:: 1 -> break init{ atomic{

od run P(0); run P(1) } };
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LTL Verification
Using Spin

Both process do not enter the critical section:

spin -f ‘[] !critical’

spin -f ‘[](t -> <>c)’

In old versions of Spin, one could verify properties

expressed as never claims.
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