Computer-Aided Verification CS745/ECE725

Borzoo Bonakdarpour

University of Waterloo
(Fall 2013)
LTL Model Checking

Agenda

■ Büchi Automata

- Linear Temporal Logic (LTL)
- Translating LTL into Büchi Automata
- The Spin Model checker

Agenda

■ Büchi Automata

- Linear Temporal Logic (LTL)
- Translating LTL into Büchi Automata
- The Spin Model checker

Notation

$\square \Sigma$ denotes a finite alphabet.
$■ \Sigma^{*}$ denotes the set of finite words over Σ.
$\square \Sigma^{\omega}$ denotes the set of infinite words over Σ.
■ An initinite word σ is of the form $\sigma(0) \sigma(1) \cdots$ where each $\sigma(i) \in \Sigma$
\square Finite words are indicated by u, v, w, \cdots and the empty word by ϵ.
$■$ Set of finite words are denoted by U, V, W, \cdots, and letters α, β, \cdots for ω-words.
\square We use L, L^{\prime}, \cdots to denote sets of ω-words (i.e., ω-languages).

Operators

Let W be a set of finite words:
$\square \operatorname{pref} W:=\left\{u \in \Sigma^{*} \mid \exists v: u v \in W\right\}$,
$\square W^{\omega}:=\left\{\alpha \in \Sigma^{\omega} \mid \alpha=w_{0} w_{1} \cdots\right.$ where $w_{i} \in W$ for $\left.i \geq 0\right\}$,

Let $\exists^{\omega} n$ mean "there exists infinitely many n ". For an
ω-sequence $\sigma=\sigma(0) \sigma(1) \cdots$ in S^{ω}, the infinity set of σ is:

$$
\operatorname{In}(\sigma):=\left\{s \in S \mid \exists^{\omega} n \sigma(n)=s\right\} .
$$

Büchi Automata

Büchi automata are non-deterministic finite automata equipped with an acceptance condition that is appropriate for ω-words:

An ω-word is accepted if the automaton can read it from left to right while assuming a sequence of states in which some final state occurs infinitely often (Büchi Condition)

Example

The above Büchi automaton accepts ω-words where any occurrence of letter a is followed by some occurrence of letter b.

Büchi Automata

Definition. A Büchi automaton over the alphabet Σ is of the form $\mathcal{A}=\left(Q, q_{0}, \Delta, F\right)$, where

- Q is a finite set of states,
- $q_{0} \in Q$ is an initial state,

■ $\Delta \subseteq Q \times \Sigma \times Q$ is a transition relation, and

- $F \subseteq Q$ is a set of final states.

Acceptance in Büchi Automata

A run of \mathcal{A} over an ω-word $\alpha=\alpha(0) \alpha(1) \cdots$ from Σ^{ω} is a sequence $\sigma=\sigma(0) \sigma(1) \cdots$ such that $\sigma(0)=q_{0}$ and $(\sigma(i), \alpha(i), \sigma(i+1)) \in \Delta$ for $i \geq 0$.

The run is called successful if $\operatorname{In}(\sigma) \cap F \neq \emptyset$.

A büchi automaton \mathcal{A} accepts α if there a successful run of \mathcal{A} on α.

Büchi Recognizable

Let

$$
L(\mathcal{A})=\left\{\alpha \in \Sigma^{\omega} \mid \mathcal{A} \text { accepts } \alpha\right\}
$$

be the ω-language recognized by \mathcal{A}. If $L=L(\mathcal{A})$ for some Büchi automaton \mathcal{A}, L is to be Büchi recognizable.

Example

Let $\Sigma=\{a, b, c\}$. The language $L_{1} \subseteq \Sigma^{\omega}$ defined by:
$\alpha \in L_{1}$ iff after any occurrence of letter a there is some occurrence of letter b in α.

A büchi automaton recognizing L_{1} is the following:

The complement $\Sigma^{\omega}-L_{1}$ is recognized by the following Büchi automaton:

Main Theorems

Theorem 1. Deterministic Büchi automata are strictly less expressive than non-deterministic Büchi automata.

Theorem 2. An ω-language $L \subseteq \Sigma^{\omega}$ is Büchi recognizable iff L is a finite union of set $U . V^{\omega}$, where $U, V \subseteq \Sigma^{*}$ are regular sets of finite words.

Theorem 3. The emptiness problem for Büchi automata is decidable.
Theorem 4. If $L \subseteq \Sigma^{\omega}$ is Büchi recognizable, so is $\Sigma^{\omega}-L$.
Theorem 5. The inclusion problem and the equivalence problem for Büchi automata are decidable.

Agenda

■ Büchi Automata

- Linear Temporal Logic (LTL)
- Translating LTL into Büchi Automata
- The Spin Model checker

Modal and Temporal Logic

Modal logic was originally developed by philosophers to study different modes of truth.

For example, the assertion P may be false in the present world, and yet the assertion possibly P may be true if there exists an alternate world where P is true.

Temporal logic is a special type of modal logic; it provides a formal system for qualitatively describing and reasoning about the truth values of assertions over time.

Temporal Logic

In temporal logic various temporal operators or modalities are provided to describe and reason about how the truth values of assertions vary with time:

■ sometimes P which is true now if there is a future moment at which P becomes true
always Q is true now if Q is true at all future moments.

Temporal Logic

Example. Two processes p_{1} and p_{2} request entering critical section:

■ Mutual exclusion: always ' p_{1} and p_{2} do not enter the critical section simultaneously'.

■ Non-starvation: sometime ' p_{1} (resp. p_{2}) enters the critical section'.

Propositional Linear Temporal Logic (LTL)

Let $A P$ be a set of atomic propositions. A Kripke structure is $\mathcal{M}=(S, x, L)$, where
$\square S$ is a set of states,
■ $x: \mathbb{N} \rightarrow S$ is an infinite sequence of states, and
$\square L: S \rightarrow 2^{A P}$ is a labelling of each state with the set of atomic propositions in $A P$ true at the state.

We usually employ the more convenient notation $x=\left(s_{0}, s_{1}, s_{2}, \cdots\right)$. We refer to x as a path, computation, or behavior.

Labelling

What is the labelling function in this example?

Temporal Operators

The basic temporal operators of LTL are:
$\square \square p$: always p (also denoted $\mathrm{G} p$).
$\square \diamond p$: eventually p (also denoted $\mathrm{F} p$).

- $\bigcirc p$: nexttime p.

■ $p \mathrm{U} q$: p until q.

Illustration

$\bigcirc p$ - nexttime p

$p \mathrm{U} q-p$ until q

LTL: Syntax

The set of formulae of LTL is the least set of formulae generated by the following rules:

■ each atomic proposition P is a formula
\square if p and q are formulae then $p \wedge q$ and $\neg p$ are formulae
\square if p and q are formulae then $p \cup q$ and $\bigcirc p$ are formulae.

LTL: Semantics

We define the semantics of LTL with respect to a Kripke structure. We write $\mathcal{M}, x \models p$ to mean that "in structure \mathcal{M} formula p is true of computation x.

Let x be a computation and x^{i} denote $s_{i}, s_{i+1}, s_{i+2} \cdots$. We define \models inductively on the structure of the formulae:

1. $x \models P$ iff $P \in L\left(s_{0}\right)$, for atomic proposition P
2. $x \models p \wedge q$ iff $x \models p$ and $x \models q$
$x \models \neg p$ iff it is not the case that $x \models p$
3. $x \models p \cup q$ iff $\exists j:\left(x^{j} \models q\right)$ and $\forall k<j:\left(x^{k} \models p\right)$,
$x \models \bigcirc p$ iff $x^{1} \models p$

LTL: Abbreviations

■ Δp abbreviates true $\mathrm{U} p$
$■ \square p$ abbreviates $\neg \diamond \neg p$.

LTL: Examples

Discuss the meaning of the following formulae:
$\square \square \diamond p$
$\square \diamond \square p$
$\square \square(p \Rightarrow \diamond q)$
$■ \neg(\neg p \mathrm{U} q)$

LTL Model Checking

Question. How can we check whether a Büchi automaton \mathcal{A} satisfies an LTL formula ϕ (i.e., $\mathcal{A} \models \phi$)?
Answer. By checking language inclusion, i.e., $L(\mathcal{A}) \subseteq L(\phi)$. Alternatively, we can check language emptyness; i.e., whether $L(\mathcal{A}) \cap L(\neg \phi)=\emptyset$ as follows:

1. Construct a Büchi automaton that produces all computations of $\neg \phi$ (denoted $\mathcal{A}_{\neg \phi}$)
2. Compute the product automaton $\mathcal{A} \| \mathcal{A}_{\neg \phi}$
3. If $L\left(\mathcal{A} \| \mathcal{A}_{\neg \phi}\right) \neq \emptyset$ then $\mathcal{A} \not \vDash \phi$.

LTL Model Checking

A counterexample is a trace of the system that violates the property. Thus, $L\left(\mathcal{A} \| \mathcal{A}_{\neg \phi}\right) \neq \emptyset$ includes the set of counter examples.

An error (counterexample) may indicate a problem in the system or it may demonstrate that you did not write your property correctly.

Agenda

■ Büchi Automata

- Linear Temporal Logic (LTL)
- Translating LTL into Büchi Automata
- The Spin Model checker

LTL to Büchi Automata

■ Each state of the automata will store a set of properties that should be satisfied on paths starting at that state
■ These properties will be stored in lists Old and New where Old means already processed and New means still needs to be processed

- Each state will also store a set of properties which should be satisfied on paths starting at the next states of that state
- These properties will be stored in the list Next
\square The incoming transitions for a state will be stored in the list Incoming

LTL to Büchi Automata

\square We will start with a node which has the input LTL property in its New list
\square We will process the formulae in the New list of each node one by one

- When we have $f \mathrm{U} g$ in the New list we will use

$$
f \cup g \equiv g \vee(f \wedge \bigcirc(f \cup g))
$$

LTL to Büchi Automata

When we process a formula from a node we will either replace the node with a new node or we will replace it with two new nodes (i.e., we will split it to two nodes)

■ When a node q is replaced by a node q^{\prime} we will have:

$$
\begin{gathered}
(\operatorname{Old}(q) \wedge \operatorname{New}(q) \wedge \bigcirc \operatorname{Next}(q)) \Leftrightarrow \\
\left(\operatorname{Old}\left(q^{\prime}\right) \wedge \operatorname{New}\left(q^{\prime}\right) \wedge \bigcirc \operatorname{Next}\left(q^{\prime}\right)\right)
\end{gathered}
$$

\square When a node q is split into two nodes q_{1} and q_{2} we will have $(\operatorname{Old}(q) \wedge \operatorname{New}(q) \wedge \bigcirc \operatorname{Next}(q)) \Leftrightarrow$
$\left(\left(\operatorname{Old}\left(q_{1}\right) \wedge \operatorname{New}\left(q_{1}\right) \wedge \bigcirc \operatorname{Next}\left(q_{1}\right)\right) \vee\right.$
$\left.\left(\operatorname{Old}\left(q_{2}\right) \wedge \operatorname{New}\left(q_{2}\right) \wedge \bigcirc \operatorname{Next}\left(q_{2}\right)\right)\right)$

Translation Algorithm

\}

Translate (f) \{
Expand([Incoming:=init, Old:=Ø, New:=f, Next:=Ø], Ø)

Expand(q, NodeList) \{
If $\operatorname{New}(q)=\emptyset$ then
if $\exists r \in \operatorname{NodeList~s.t.~} \operatorname{Old}(r)=\operatorname{Old}(q)$ and $\operatorname{Next}(r)=\operatorname{Next}(q)$
then Incoming $(r):=\operatorname{Incoming}(q) \cup$ Incoming (r);
return(NodeList);
else create a new node q^{\prime} s.t. $\operatorname{Incoming}\left(q^{\prime}\right)=q, \operatorname{Old}\left(q^{\prime}\right)=\emptyset$,

$$
\operatorname{New}\left(q^{\prime}\right)=\operatorname{Next}(q), \operatorname{Next}\left(q^{\prime}\right):=\emptyset ;
$$

return expand $\left(q^{\prime}\right.$, Nodelist $\left.\cup\{q\}\right)$;
else // New $(q) \neq \emptyset$
pick a formula f from $\operatorname{New}(q)$ and remove it from $\operatorname{New}(q)$; if f is already in $\operatorname{Old}(q)$ then return $\operatorname{Expand}(q$, Nodelist);

Translation Algorithm

$$
h \cup k \equiv k \vee(h \wedge \bigcirc(h \cup k))
$$

else if $(f \equiv h \cup k)$
create two nodes q_{1} and q_{2} s.t.
$\operatorname{Incoming}\left(q_{1}\right)=\operatorname{Incoming}\left(q_{2}\right)=\operatorname{Incoming}(q)$,
$\operatorname{Old}\left(q_{1}\right)=\operatorname{Old}\left(q_{2}\right)=\operatorname{Old}(q) \cup\{h \cup k\}$,
$\operatorname{New}\left(q_{1}\right)=\operatorname{New}(q) \cup\{h\}$,
$\operatorname{New}\left(q_{2}\right)=\operatorname{New}(q) \cup\{k\}$,
$\operatorname{Next}\left(q_{1}\right)=\operatorname{Next}(q) \cup\{h \cup k\}$,
$\operatorname{Next}\left(q_{2}\right)=\operatorname{Next}(q) ;$
return Expand(q_{1}, Expand(q_{2}, Nodelist));

Example ($a \mathrm{U} b$)

Step 1: Nodelist $=\emptyset$
Step 2: Nodelist = \emptyset

Translation Algorithm

else if $(f \in A P$ or $\neg f \in A P$ or f is a Boolean constant) then if ($f \equiv$ false $\vee \neg f \in \operatorname{Old}(q)$) then return(Nodelist); else create a node q^{\prime} s.t.

Incoming $\left(q^{\prime}\right)=$ Incoming (q),
$\operatorname{Old}\left(q^{\prime}\right)=\operatorname{Old}(q) \cup\{f\}$,
$\operatorname{New}\left(q^{\prime}\right)=\operatorname{New}(q)-\{f\}$,
$\operatorname{Next}\left(q^{\prime}\right)=\operatorname{Next}(q)$;
return Expand(q^{\prime}, Nodelist);

Example ($a \cup b$)

Step 2: Nodelist = \emptyset

Step 3: Nodelist = \emptyset

Example ($a \cup b$)

Step 3: Nodelist = \emptyset
Step 4: Nodelist $=\left\{n_{1}\right\}$

Example ($a \cup b$)

Step 5: Nodelist $=\left\{n_{1}, n_{2}\right\}$

Example ($a \cup b$)

Step 6: Nodelist $=\left\{n_{1}, n_{2}\right\}$

Example ($a \cup b$)

Step 7: Nodelist $=\left\{n_{1}, n_{2}, n_{3}\right\}$

Example ($a \cup b$)

Step 8: Nodelist $=\left\{n_{1}, n_{2}, n_{3}\right\}$

Example ($a \cup b$)

Step 9: Nodelist $=\left\{n_{1}, n_{2}, n_{3}\right\}$

Translation Algorithm

else if $(f \equiv h \vee k)$
create two nodes q_{1} and q_{2} s.t
$\operatorname{Incoming}\left(q_{1}\right)=\operatorname{Incoming}\left(q_{2}\right)=\operatorname{Incoming}(q)$,
$\operatorname{Old}\left(q_{1}\right)=\operatorname{Old}\left(q_{2}\right)=\operatorname{Old}(q) \cup\{h \vee k\}$,
$\operatorname{New}\left(q_{1}\right)=(\operatorname{New}(q)-\{h \vee k\}) \cup\{h\}$,
$\operatorname{New}\left(q_{2}\right)=(\operatorname{New}(q)-\{h \vee k\}) \cup\{k\}$,
$\operatorname{Next}\left(q_{1}\right)=\operatorname{Next}\left(q_{2}\right)=\operatorname{Next}(q) ;$
return $\operatorname{Expand}\left(q_{2}, \operatorname{Expand}\left(q_{1}\right.\right.$, Nodelist) $) ;$

Translation Algorithm

else if $(f \equiv h \wedge k)$
create two node q^{\prime} s.t
Incoming $\left(q^{\prime}\right)=\operatorname{Incoming}(q)$,
$\operatorname{Old}\left(q^{\prime}\right)=\operatorname{Old}(q) \cup\{h \wedge k\}$,
$\operatorname{New}\left(q^{\prime}\right)=(\operatorname{New}(q)-\{h \wedge k\}) \cup\{h\} \cup\{k\}$,
$\operatorname{Next}\left(q^{\prime}\right)=\operatorname{Next}(q)$;
return Expand(q^{\prime}, Nodelist);

Translation Algorithm

else if $(f \equiv \bigcirc h)$
create two node q^{\prime} s.t
Incoming $\left(q^{\prime}\right)=\operatorname{Incoming}(q)$,
$\operatorname{Old}\left(q^{\prime}\right)=\operatorname{Old}(q) \cup\{\bigcirc h\}$,
$\operatorname{New}\left(q^{\prime}\right)=(\operatorname{New}(q)-\{\bigcirc h\})$,
$\operatorname{Next}\left(q^{\prime}\right)=\operatorname{Next}(q) \cup\{h\} ;$
return Expand(q^{\prime}, Nodelist);

Completing the Automaton

The resulting Büchi automaton $\mathcal{A}=\left(Q, q_{0}, \Delta, F\right)$:
$■ \Sigma=2^{A P}$
■ $Q=$ Nodelist \cup init
$\square q_{0}=$ init
$\square \Delta$ is defined as follows:
$\left(q, d, q^{\prime}\right) \in \Delta$ iff $q \in \operatorname{Incoming}\left(q^{\prime}\right)$ and d satisfies the conjunction of negated and unnegated propositions in $\operatorname{Old}\left(q^{\prime}\right)$
$\square F \subseteq 2^{Q}$ i.e., $F=\left\{F_{1}, F_{2}, \cdots, F_{k}\right\}$
The acceptance set F contains a set of accepting states $F_{i} \in F$ for each subformula of the form $h \mathrm{U} k$ where F_{i} contains all the states q s.t. either $k \in \operatorname{Old}(q)$ or $h \mathrm{U} k \notin \operatorname{Old}(q)$. If there are no subformulas of the form $h \cup k$ then $F=\{Q\}$

Completing the Automaton

The size of the resulting automaton can be exponential in the size of the input formula

The resulting automaton is a generalized Büchi automaton we can translate it to a standard Büchi automaton.

Example ($a \mathrm{U} b$)

$$
\begin{aligned}
& \Sigma=2^{A P}=\{\emptyset,\{a\},\{b\},\{a, b\}\} \\
& F=\left\{\left\{n_{1}, n_{2}\right\}\right\} \\
& Q=\left\{\text { init, } n_{1}, n_{2}, n_{3}\right\} \\
& q_{0}=\text { init }
\end{aligned}
$$

Checking Emptyness

Let \mathcal{A} be a Büchi automaton. Recall that:

$$
L(\mathcal{A})=\left\{\alpha \in \Sigma^{\omega} \mid \mathcal{A} \text { accepts } \alpha\right\}
$$

$L(\mathcal{A})$ is nonempty if there exists an accepting state $q \in F$ such that:
$\square q$ is reachable from initial state in q_{0}, and
$\square q$ is reachable from itself (i.e., q is contained in a cycle).

Checking Emptyness

Any run of a Büchi automaton has a suffix in which all the states on that suffix appear infinitely many times:

■ Each state on that suffix is reachable from any other state

- Hence these states form a strongly connected component
- If there is an accepting state among those states than the run is an accepting run

So emptiness check involves finding a strongly connected component that contains an accepting state and is reachable from an initial state

Checking Emptyness

To find cycles in a graph one can use a depth-first search algorithm which constructs the strongly connected components in linear time by adding two integer numbers to every state reached.

If a strongly connected component reachable from an initial state contains an accepting state then the language accepted by the Büchi automaton is not empty.

There is a more memory efficient algorithm for checking the same condition which is called nested depth first search.

Agenda

- Büchi Automata
- Linear Temporal Logic (LTL)
- Translating LTL into Büchi Automata

■ The Spin Model checker

Spin

■ Model-checker

- Based on automata theory
- Allows LTL or automata specification
- Efficient (on-the-fly model checking, partial order reduction).
■ Developed in Bell Laboratories.

The Language of Spin (Promela)

- The expressions are from C.
- The communication is from CSP.
- The constructs are from Guarded Command.

Expressions

■Arithmetic: +, -, *, /, \%
■ Comparison: >, $>=,<,<=, \quad==, \quad!=$
■Boolean: \&\&, ||, !
■ Assignment: : =
■ Increment/decrement: ++, - -

Expressions

■ byte name1, name2=4, name3;
■ bit b1,b2,b3;

- short s1,s2;
- int arr1[5];

Message types and channels

■ mtype $=\{O K$, READY, ACK\}

- mtype Mvar = ACK

■ chan $\mathrm{Ng}=[2]$ of $\{$ byte, byte, mtype $\}$, Next=[0] of \{byte\}

Ng has a buffer of 2, each message consists of two bytes and an enumerable type (mtype). Next is used with handshake message passing.

Sending and receiving a message

- Channel declaration: chan qname=[3] of mtype, byte, byte
- In sender:
qname!tag3(expr1, expr2) or equivalently: qname!tag3, expr1, expr2

■ In Receiver:
qname?tag3(var1,var2)

Condition

if
$:: x \% 2==1->z=z^{*} y ; x-$
$:: x \% 2==0->y=y^{*} y ; x=x / 2$
fi

If more than one guard is enabled: a non-deterministic choice.

If no guard is enabled: the process waits (until a guard becomes enabled).

Looping

do
$:: x>y->x=x-y$
$:: y>x->y=y-x$
:: else break od;

Normal way to terminate a loop: with break. (or goto).

As in condition, we may have a non-deterministic loop or have to wait.

Process Declaration

Definition of a process:

proctype prname (byte Id; chan Comm)
\{
statements
\}

Activation of a process:
run prname (7, Con[1]);

init process is the root of all others

init\{ statements \}
init \{byte $\mathrm{I}=0$;
atomic\{do

$$
\begin{aligned}
& :: I<10 \text {-> run prname(I, chan[I]); } \\
& \quad I=I+1 \\
& :: I=10->\text { break; } \\
& \text { od }\}\}
\end{aligned}
$$

atomic allows performing several actions as one atomic step.

Mutual Exclusion

loop
Non_Critical_Section;
TR:Pre_Protocol;
CR:Critical_Section;
Post_protocol;
end loop;

Mutual Exclusion

task P0 is
begin
loop
Non_Critical_Sec;
Wait Turn=0;
Critical_Sec;
Turn:=1;
end loop
end PO .

task P1 is
begin
loop
Non_Critical_Sec;
Wait Turn=1;
Critical_Sec;
Turn :=0;
end loop
end P1

Translating into Spin

```
\#define t (P@try)
\#define c (P@cr)
byte turn=0, incrit[2]=0;
proctype P (bool id)
\{ do
:: 1 ->
do
    :: 1 -> skip
    :: 1 -> break
    od
```

\#define critical (incrit[0] \&\& incrit[1]) try:do
try:do
::turn==id -> break od;
cr: $:$ incrit[id] $=1$;
incrit[id]=0;
turn=1-turn
od\}
init\{ atomic\{
run $\mathrm{P}(0)$; run $\mathrm{P}(1)$ \} \};

LTL Verification Using Spin

Both process do not enter the critical section:
spin -f ‘[] !critical’
spin -f []$(\mathrm{t}-><>c)$ '

In old versions of Spin, one could verify properties expressed as never claims.

