
Computer-Aided
Verification

CS745/ECE725

Borzoo Bonakdarpour

University of Waterloo

(Fall 2013)

CTL Model Checking

Computer-Aided Verification – p. 1/50

Agenda

Computation Tree Logic (CTL)

CTL Model Checking

Binary Decision Diagrams (BDDs)

The Model Checker SMV

Computer-Aided Verification – p. 2/50

Agenda

Computation Tree Logic (CTL)

CTL Model Checking

Binary Decision Diagrams (BDDs)

The Model Checker SMV

Computer-Aided Verification – p. 3/50

CTL

Computation Tree Logic: Intuitions.

CTL: Syntax and Semantics.

CTL in Computer Science.

CTL and Model Checking: Examples.

CTL Vs. LTL.

Computer-Aided Verification – p. 4/50

Intuition

LTL implicitly quantifies universally over paths:

〈M, s〉 |= φ iff for every path π starting at s, 〈M,π〉 |= φ

Properties that assert the existence of a path cannot be expressed

in LTL. In particular, properties which mix existential and

universal path quantifiers cannot be expressed.

The Computation Tree Logic, CTL, solves these problems:

CTL explicitly introduces path quantifiers!

CTL is the natural temporal logic interpreted over Branching

Time Structures.

Computer-Aided Verification – p. 5/50

Intuition

(s0, 3)

s0

s1

s2

(s0, 0)

(s0, 2) (s1, 12)

(s1, 3)

(s1, 1) (s2, 1)

(s2, 3)

Computer-Aided Verification – p. 6/50

Intuition

CTL is evaluated over branching-time structures (Trees). CTL

explicitly introduces path quantifiers:

All Paths: A

Exists a Path: E

Every temporal operator (�,♦,©,U) is preceded by a path

quantifier (A or E).

In universal modalities: (A�,A♦,A©,AU), the temporal

formula is true in all the paths starting in the current state.

In existential modalities: (E�,E♦,E©,EU), The temporal

formula is true in some path starting in the current state.
Computer-Aided Verification – p. 7/50

Intuition

Countable set Σ of atomic propositions: p, q, · · · the set FORM of

formulas is:

φ, ψ → p | ⊤ | ⊥ | ¬φ | φ ∧ ψ | φ ∨ ψ |

A�φ | A♦φ | A© φ | AφUψ|

E�φ | E♦φ | E© φ | EφUψ|

Computer-Aided Verification – p. 8/50

CTL Semantics

We interpret our CTL temporal formulae over Kripke models

linearized as trees.

Let Σ be a set of atomic propositions. We interpret our CTL

temporal formulae over Kripke Models:

M = 〈S, I,R,Σ, L〉

The semantics of a temporal formula is provided by the

satisfaction relation:

|=: 〈M × S × FORM〉 → {true, false}

Computer-Aided Verification – p. 9/50

CTL Semantics

We start by defining when an atomic proposition is true at a

state/time “si”

M, si |= p iff p ∈ L(si) (for p ∈ Σ)

The semantics for the classical operators is as expected:

M, si |= ¬φ iff si 6|= φ

M, si |= φ ∧ ψ iff si |= φ ∧ si |= ψ

M, si |= φ ∨ ψ iff si |= φ ∨ si |= ψ

M, si |= ⊤

M, si 6|= ⊥

Computer-Aided Verification – p. 10/50

CTL Semantics

We start by defining when an atomic proposition is true at a

state/time “si”

M, si |= p iff p ∈ L(si) (for p ∈ Σ)

The semantics for the classical operators is as expected:

M, si |= A© φ iff ∀π = (si, si+1, · · ·) •M, si+1 |= φ

M, si |= E© φ iff ∃π = (si, si+1, · · ·) •M, si+1 |= φ

M, si |= A�φ iff ∀π = (si, si+1, · · ·) • ∀j ≥ i •M, sj |= φ

M, si |= E�φ iff ∃π = (si, si+1, · · ·) • ∀j ≥ i •M, sj |= φ

Computer-Aided Verification – p. 11/50

CTL Semantics

The semantics for the classical operators is as expected:

M, si |= A♦φ iff ∀π = (si, si+1, · · ·) • ∃j ≥ i •M, sj |= φ

M, si |= E♦φ iff ∃π = (si, si+1, · · ·) • ∃j ≥ i •M, sj |= φ

M, si |= AφUψ iff ∀π = (si, si+1, · · ·) • ∃j ≥ i •M, sj |= ψ ∧

∀i ≤ k ≤ j •M, sk |= φ

M, si |= EφUψ iff ∃π = (si, si+1, · · ·) • ∃j ≥ i •M, sj |= ψ ∧

∀i ≤ k ≤ j •M, sk |= φ

Computer-Aided Verification – p. 12/50

CTL Semantics

CTL is given by the standard Boolean logic enhanced with

temporal operators.

Necessarily Next. A© φ is true in st iff φ is true in every successor

state st+1.

Possibly Next. E© φ is true in st iff φ is true in one successor state

st+1.

Necessarily in the future (or “Inevitably”). A♦φ is true in st Iff φ is

inevitably true in some st′ with t′ ≥ t.

Possibly in the future (or “Possibly”). E♦φ is true in st iff φ may be

true in some st′ with t′ ≥ t.
Computer-Aided Verification – p. 13/50

CTL Semantics

Computer-Aided Verification – p. 14/50

Safety Properties

Safety:

“something bad will not happen”

Typical examples:

A�¬(reactor_temp > 1000)

Safety properties are usually of the form:

A�¬ · · ·

Computer-Aided Verification – p. 15/50

Liveness Properties

Liveness:

“something good will happen”

Typical examples:

A♦rich

A♦(x > 5)

A�(start ⇒ A♦terminate)

Leads-to, unbounded response

and so on.....

Liveness properties are usually of the form:

A♦¬ · · ·
Computer-Aided Verification – p. 16/50

In-class Exercise

Write a CTL formula that is equal to the following
LTL formula:

♦T ⇒ ♦C

Computer-Aided Verification – p. 17/50

In-class Exercise

Write a CTL formula that is equal to the following
LTL formula:

♦T ⇒ ♦C

What about:

A♦T ⇒ A♦C

Computer-Aided Verification – p. 18/50

LTL vs. CTL

Many CTL formulae cannot be expressed in LTL (e.g., those

containing paths quantified existentially)

E.g., Eφ

Many LTL formulae cannot be expressed in CTL

E.g., ♦T ⇒ ♦C (Strong Fairness in LTL)

i.e, formulae that select a range of paths with a property

Some formulae can be expressed both in LTL and in CTL

(typically LTL formulae with operators of nesting depth 1)

Computer-Aided Verification – p. 19/50

Agenda

Computation Tree Logic (CTL)

CTL Model Checking

Binary Decision Diagrams (BDDs)

The Model Checker SMV

Computer-Aided Verification – p. 20/50

Problem Statement
and Assumptions

Problem. Given a model M and a CTL formula φ, determine

whether or not M |= φ.

Assumptions:

M is a finite model: finite number of states with variables of

finite domain.

φ is a finite length CTL formula.

Computer-Aided Verification – p. 21/50

Solution

1. Transform φ into a formula in terms of:

A♦,EU,E©,∧,∨,⊥.

2. For each subformula ϕ of φ, label states of M, say s, such

that s |= ϕ.

3. If the initial state s0 satisfies a subformula ϕ, then M |= ϕ as

well.

Computer-Aided Verification – p. 22/50

Labelling Algorithm

Let ϕ be a subformula of φ and states satisfying all the

immediate subformulas of ϕ have already been labelled. We

want to determine which states to label with ϕ. If ϕ is:

⊥: then no states are labelled with ⊥.

p (atomic proposition): label s with p if p ∈ L(s).

ϕ1 ∧ ϕ2: label s with ϕ1 ∧ ϕ2 if s is already labelled both with

ϕ1 and with ϕ2:

¬ϕ: label s with ¬ϕ if s is not already labelled with ϕ.

E© ϕ: label any state with E© ϕ if one of its successors is

labelled with ϕ.

Computer-Aided Verification – p. 23/50

Labelling Algorithm
A♦ϕ

1- If any state s is labelled with ϕ, label it with A♦ϕ.

2- Repeat: label any state with A♦ϕ, if all successor states are

labelled with A♦ϕ, until there is no change.

A♦ϕ

ϕ

A♦ϕA♦ϕ

A♦ϕ

A♦ϕ

ϕ

ϕ

A♦ϕA♦ϕ

A♦ϕ

A♦ϕ

A♦ϕ

A♦ϕ

A♦ϕ

A♦ϕ

Computer-Aided Verification – p. 24/50

Labelling Algorithm:
EφUψ

1- If any state s is labelled with ψ, label it with EφUψ.

2- Repeat: label any state with EφUψ, if it is labelled with φ and at

least one of its successors is labelled with EφUψ, until there is

no change.

EφUψ

ψ

φ

φ

φ

φ EφUψ

EφUψEφUψ

φ

EφUψEφUψ

Complexity: O(S2), where S is the set of reachable states.
Computer-Aided Verification – p. 25/50

Labelling Algorithm

Handling E�ϕ Directly

1- Label all the states that are already labelled ϕ, by E�ϕ.

2- Repeat: Delete the label E�ϕ from any state if none of its

successors is labelled with E�ϕ; until there is no change.

Computer-Aided Verification – p. 26/50

Labelling Algorithm

There is even a more efficient way to handle E�ϕ:

1. restrict the graph to states satisfying ϕ, i.e., delete all other states and their

transitions;

2. find the maximal strongly connected components (SCCs); these are maximal

regions of the reachable states in which every state is reachable from every other

one in that region.

3. use breadth-first searching on the restricted graph to find any state that can reach

an SCC.

SCC

SCC

SCC

E�ϕ

Complexity: O(S), where S is the set of reachable states.

Computer-Aided Verification – p. 27/50

State Space
Explosion

Notice that in worst case, one has to explore the set of all states

to label them:

Forward reachablity: computing successor states until a fixpoint

is reached

Backward reachability: computing predecessor states until a

fixpoint is reached

Question. Is it possible to make this computation more efficient?

Computer-Aided Verification – p. 28/50

Agenda

Computation Tree Logic (CTL)

CTL Model Checking

Binary Decision Diagrams (BDDs)

The Model Checker SMV

Computer-Aided Verification – p. 29/50

State Space
Explosion

Exhaustive analysis may require to store all the states of the

Kripke structure, and to explore them one-by-one.

The state space may be exponential in the number of

components and variables (E.g., 300 Boolean vars ⇒ up to 2300

states!)

State Space Explosion:

Too much memory required;

Too much CPU time required to explore each state.

A solution: Symbolic Model Checking.

Computer-Aided Verification – p. 30/50

Symbolic Model
Checking

Symbolic representation of set of states by formulae in propositional

logic:

manipulation of sets of states, rather than single states;

manipulation of sets of transitions, rather than single transitions.

Computer-Aided Verification – p. 31/50

OBDDs

Ordered Binary Decision Diagrams (OBDD) are used to represent

formulae in propositional logic.

A simple version: Binary Decision Trees:

Non-Terminal nodes labelled with Boolean

variables/propositions;

Leaves (terminal nodes) are labelled with either 0 or 1;

Two kinds of lines: dashed and solid;

Paths leading to 1 represent models, while paths leading to

0 represent counter-models.

Computer-Aided Verification – p. 32/50

Binary Decision
Trees

BDT representing the formula: φ = ¬x ∧ ¬y:

01 0 0

y

x

y

The assignment, x = 0 and y = 0 makes true the formula.

Computer-Aided Verification – p. 33/50

Binary Decision
Trees

Let T be a BDT, then T determines a unique Boolean formula in

the following way:

Fixed an assignment for the variables in T we start at the root

and:

If the value of the variable in the current node is 1 we follow

the solid line;

Otherwise, we follow the dashed line;

The truth value of the formula is given by the value of the

leaf we reach.

Computer-Aided Verification – p. 34/50

Binary Decision
Trees

BDT’s with multiple occurrences of a variable along a path are:

Rather inefficient (Redundant paths);

Difficult to check whether they represent the same formula

(equivalence test). Example of two equivalent BDT’s

0 1

1 10

0 1 0 1 0 1

1

y

y

z

x

y

y x

z

x

x

Computer-Aided Verification – p. 35/50

Ordered Binary
Decision Trees

Ordered Decision Tree (OBDT): from root to leaves variables are

encountered always in the same order without repetitions along

paths. Example: Ordered Decision tree for φ = (a ∧ b) ∨ (c ∧ d)

0 0 0 1 0 00 1 0 00 1 1 11 1

d

b

c

a

b

cc
c

ddddddd

Computer-Aided Verification – p. 36/50

Reducing the Size of
OBDDs

OBDT’s are still exponential in the number of variables: Given n

variables the OBDT’s will have 2n+1 − 1 nodes!

We can reduce the size of OBDT’s by a recursive applications of

the following reductions:

Remove Redundancies: Nodes with same left and right children

can be eliminated;

Share Subnodes: Roots of structurally identical sub-trees can

be collapsed.

Computer-Aided Verification – p. 37/50

Reducing the Size of
OBDDs

Remove Redundancies:

0 0 0 1 0 00 1 0 00 1 1 11 1

d

b

c

a

b

cc
c

ddddddd

Computer-Aided Verification – p. 38/50

Reducing the Size of
OBDDs

Remove Redundancies:

0

0 1 0 1 0 1

1100

b

c

a

b

cc
c

ddd

Computer-Aided Verification – p. 39/50

Reducing the Size of
OBDDs

Remove Redundancies:

0

0 1 0 1 0 1

1100

b

c

a

b

cc
c

ddd

Computer-Aided Verification – p. 40/50

Reducing the Size of
OBDDs

Remove Redundancies:

1

0 1 0 1 0 1

000

b

c

a

b

c
d

ddd

Computer-Aided Verification – p. 41/50

Reducing the Size of
OBDDs

Share identical nodes:

1

0 1 0 1 0 1

000

b

c

a

b

c
c

ddd

Computer-Aided Verification – p. 42/50

Reducing the Size of
OBDDs

Share identical nodes:

1

0 1 0 1 0 1

000

b

c

a

b

c
c

ddd

Computer-Aided Verification – p. 43/50

Reducing the Size of
OBDDs

0

1

b

c

a

b

d

Computer-Aided Verification – p. 44/50

Reducing the Size of
OBDDs

Remove Redundancies:

0

1

b

c

a

b

d

Computer-Aided Verification – p. 45/50

Reducing the Size of
OBDDs

The final OBDD!

0

1

c

a

b

d

Computer-Aided Verification – p. 46/50

OBDDs as Canonical
Forms

Theorem. A Reduced OBDD is a Canonical
Form of a Boolean formula: Once a variable
ordering is established (i.e., OBDD’s have
compatible variable ordering), equivalent
formulae are represented by the same OBDD:

φ1 ⇔ φ2 iff OBDD(φ1) = OBDD(φ2)

Computer-Aided Verification – p. 47/50

Impact of Variable
Ordering

Changing the ordering of variables may increase the size of

OBDD’s. Example, two OBDD’s for the formula:

φ = (a1 ⇔ b1) ∧ (a2 ⇔ b2) ∧ (a3 ⇔ b3)

1 0 1 0

b2

b1

b2 b2

b3

b1

b3

a2

a1

a3

a1

b3b3

a2a2

a3 a3 a3 a3

b1 b1 b1 b1 b1 b1 b1 b1

b2 b2 b2

Computer-Aided Verification – p. 48/50

BDD Operations

We do not cover the algorithm for constructing BDDs of

propositional operators (∧,∨,¬). You can find the algorithm in

Randy Bryant, Graph-Based Algorithms for Boolean Function

Manipulation.

Computer-Aided Verification – p. 49/50

BDD-based
Reachability Analysis

BDD frontier = InitStates;

BDD current = bddZero();

BDD ReachableStates = InitStates;

while (ReachableStates != current)

{

current = ReachableStates;

BDD image = frontier * Transitions;

frontier = Unprime(image);

ReachableStates = current + frontier;

}

Computer-Aided Verification – p. 50/50

	Agenda
	Agenda
	CTL
	Intuition
	Intuition
	Intuition
	Intuition
	CTL Semantics
	CTL Semantics
	CTL Semantics
	CTL Semantics
	CTL Semantics
	CTL Semantics
	Safety Properties
	Liveness Properties
	In-class Exercise
	In-class Exercise
	LTL vs. CTL
	Agenda
	Problem Statement and Assumptions
	Solution
	Labelling Algorithm
	Labelling Algorithm $�a Diamond varphi $
	Labelling Algorithm: $	e phi un psi $
	Labelling Algorithm
	Labelling Algorithm
	State Space Explosion
	Agenda
	State Space Explosion
	Symbolic Model Checking
	OBDDs
	Binary Decision Trees
	Binary Decision Trees
	Binary Decision Trees
	Ordered Binary Decision Trees
	Reducing the Size of OBDDs
	Reducing the Size of OBDDs
	Reducing the Size of OBDDs
	Reducing the Size of OBDDs
	Reducing the Size of OBDDs
	Reducing the Size of OBDDs
	Reducing the Size of OBDDs
	Reducing the Size of OBDDs
	Reducing the Size of OBDDs
	Reducing the Size of OBDDs
	OBDDs as Canonical Forms
	Impact of Variable Ordering
	BDD Operations
	BDD-based Reachability Analysis

