Computer-Aided Verification

CS745/ECE725

Borzoo Bonakdarpour

University of Waterloo (Fall 2013) CTL Model Checking

- Computation Tree Logic (CTL)
- CTL Model Checking
- Binary Decision Diagrams (BDDs)
- The Model Checker SMV

- Computation Tree Logic (CTL)
- CTL Model Checking
- Binary Decision Diagrams (BDDs)
- The Model Checker SMV

CTL

- Computation Tree Logic: Intuitions.
- CTL: Syntax and Semantics.
- CTL in Computer Science.
- CTL and Model Checking: Examples.
 CTL Vs. LTL.

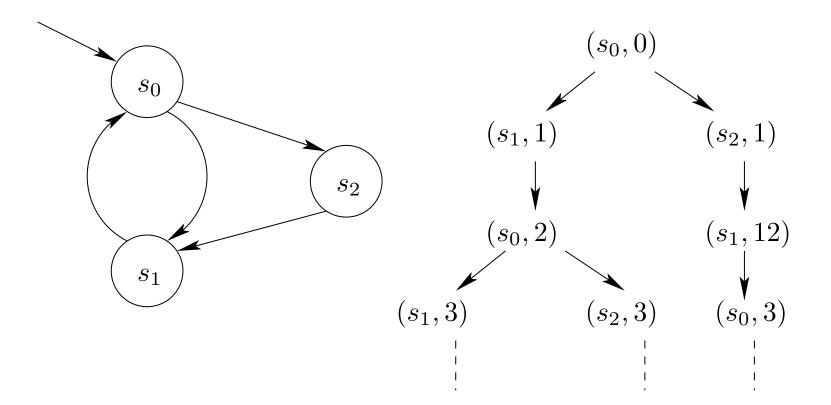
LTL implicitly quantifies universally over paths:

 $\langle M, s \rangle \models \phi$ iff for every path π starting at s, $\langle M, \pi \rangle \models \phi$

Properties that assert the *existence* of a path cannot be expressed in LTL. In particular, properties which mix existential and universal path quantifiers cannot be expressed.

The Computation Tree Logic, CTL, solves these problems:

- CTL explicitly introduces path quantifiers!
- CTL is the natural temporal logic interpreted over Branching Time Structures.



CTL is evaluated over branching-time structures (Trees). CTL explicitly introduces *path quantifiers*:

All Paths: A

Exists a Path: E

Every temporal operator $(\Box, \Diamond, \bigcirc, U)$ is preceded by a path quantifier (A or E).

In universal modalities: $(A\Box, A\Diamond, A\bigcirc, AU)$, the temporal formula is true in *all* the paths starting in the current state.

In existential modalities: $(\mathbf{E}\Box, \mathbf{E}\diamondsuit, \mathbf{E}\bigcirc, \mathbf{E}U)$, The temporal formula is true in *some* path starting in the current state.

Countable set Σ of atomic propositions: p, q, \cdots the set FORM of formulas is:

We interpret our CTL temporal formulae over Kripke models linearized as trees.

Let Σ be a set of atomic propositions. We interpret our CTL temporal formulae over Kripke Models:

 $M = \langle S, I, R, \Sigma, L \rangle$

The semantics of a temporal formula is provided by the satisfaction relation:

$$\models: \langle M \times S \times \text{FORM} \rangle \rightarrow \{ true, false \}$$

We start by defining when an atomic proposition is true at a state/time " s_i "

$$M, s_i \models p \quad \text{iff} \quad p \in L(s_i) \quad \text{(for } p \in \Sigma)$$

The semantics for the classical operators is as expected:

 $M, s_{i} \models \neg \phi \qquad \text{iff} \quad s_{i} \not\models \phi$ $M, s_{i} \models \phi \land \psi \qquad \text{iff} \quad s_{i} \models \phi \land s_{i} \models \psi$ $M, s_{i} \models \phi \lor \psi \qquad \text{iff} \quad s_{i} \models \phi \lor s_{i} \models \psi$ $M, s_{i} \models \top$ $M, s_{i} \not\models \bot$

We start by defining when an atomic proposition is true at a state/time " s_i "

$$M, s_i \models p \quad \text{iff} \quad p \in L(s_i) \quad \text{(for } p \in \Sigma)$$

The semantics for the classical operators is as expected:

$$M, s_i \models \mathbf{A} \bigcirc \phi$$
 iff $\forall \pi = (s_i, s_{i+1}, \cdots) \bullet M, s_{i+1} \models \phi$

$$M, s_i \models \mathbf{E} \bigcirc \phi$$
 iff $\exists \pi = (s_i, s_{i+1}, \cdots) \bullet M, s_{i+1} \models \phi$

$$M, s_i \models \mathbf{A} \Box \phi$$
 iff $\forall \pi = (s_i, s_{i+1}, \cdots) \bullet \forall j \ge i \bullet M, s_j \models \phi$

$$M, s_i \models \mathbf{E} \Box \phi$$
 iff $\exists \pi = (s_i, s_{i+1}, \cdots) \bullet \forall j \ge i \bullet M, s_j \models \phi$

The semantics for the classical operators is as expected:

 $M, s_i \models \mathbf{A} \Diamond \phi$ iff $\forall \pi = (s_i, s_{i+1}, \cdots) \bullet \exists j \ge i \bullet M, s_j \models \phi$

$$M, s_i \models \mathbf{E} \Diamond \phi$$
 iff $\exists \pi = (s_i, s_{i+1}, \cdots) \bullet \exists j \ge i \bullet M, s_j \models \phi$

$$\begin{split} M, s_i \models \mathbf{A}\phi \mathsf{U}\psi & \text{ iff } \quad \forall \pi = (s_i, s_{i+1}, \cdots) \bullet \exists j \ge i \bullet M, s_j \models \psi \land \\ \forall i \le k \le j \bullet M, s_k \models \phi \end{split}$$

$$\begin{split} M, s_i \models \mathbf{E}\phi \mathsf{U}\psi & \text{ iff } \exists \pi = (s_i, s_{i+1}, \cdots) \bullet \exists j \ge i \bullet M, s_j \models \psi \land \\ \forall i \le k \le j \bullet M, s_k \models \phi \end{split}$$

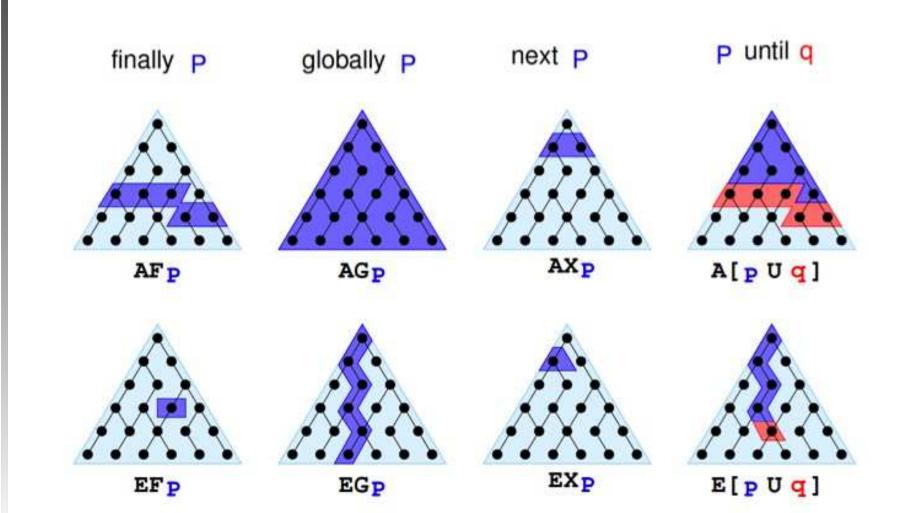
CTL is given by the standard Boolean logic enhanced with temporal operators.

Necessarily Next. A $\bigcirc \phi$ is true in s_t iff ϕ is true in every successor state s_{t+1} .

Possibly Next. $\mathbf{E} \bigcirc \phi$ is true in s_t iff ϕ is true in one successor state s_{t+1} .

Necessarily in the future (or "Inevitably"). $\mathbf{A} \Diamond \phi$ is true in s_t Iff ϕ is inevitably true in some $s_{t'}$ with $t' \ge t$.

Possibly in the future (or "Possibly"). $\mathbf{E} \Diamond \phi$ is true in s_t iff ϕ may be true in some $s_{t'}$ with $t' \ge t$.



Safety Properties

Safety:

"something bad will not happen"

Typical examples:

 $A\Box \neg (reactor_temp > 1000)$

Safety properties are usually of the form:

 $\mathbf{A} \Box \neg \cdots$

Liveness Properties

Liveness:

"something good will happen"

Typical examples:

- $\blacksquare \mathbf{A} \Diamond \mathrm{rich}$
- $\blacksquare \mathbf{A} \Diamond (x > 5)$

 $\blacksquare \mathbf{A} \Box (\text{start} \Rightarrow \mathbf{A} \Diamond \text{terminate})$

Leads-to, unbounded response

and so on.....

Liveness properties are usually of the form:

 \mathbf{A}

In-class Exercise

Write a CTL formula that is equal to the following LTL formula:

 $\Diamond T \Rightarrow \Diamond C$

In-class Exercise

Write a CTL formula that is equal to the following LTL formula:

 $\Diamond T \Rightarrow \Diamond C$

What about:

 $\mathbf{A} \Diamond T \Rightarrow \mathbf{A} \Diamond C$

LTL vs. CTL

Many CTL formulae cannot be expressed in LTL (e.g., those containing paths quantified existentially)

E.g., $\mathbf{E}\phi$

Many LTL formulae cannot be expressed in CTL E.g., $\Diamond T \Rightarrow \Diamond C$ (*Strong Fairness* in LTL) i.e, formulae that select a *range of paths* with a property

Some formulae can be expressed both in LTL and in CTL (typically LTL formulae with operators of nesting depth 1)

- Computation Tree Logic (CTL)
- CTL Model Checking
- Binary Decision Diagrams (BDDs)
- The Model Checker SMV

Problem Statement and Assumptions

Problem. Given a model \mathcal{M} and a CTL formula ϕ , determine whether or not $\mathcal{M} \models \phi$. Assumptions:

- M is a finite model: finite number of states with variables of finite domain.
- $\bullet \phi$ is a finite length CTL formula.

Solution

- 1. Transform ϕ into a formula in terms of: $\mathbf{A}\diamondsuit, \mathbf{E}U, \mathbf{E}\bigcirc, \land, \lor, \bot$.
- 2. For each subformula φ of ϕ , label states of \mathcal{M} , say s, such that $s \models \varphi$.
- 3. If the initial state s_0 satisfies a subformula φ , then $\mathcal{M} \models \varphi$ as well.

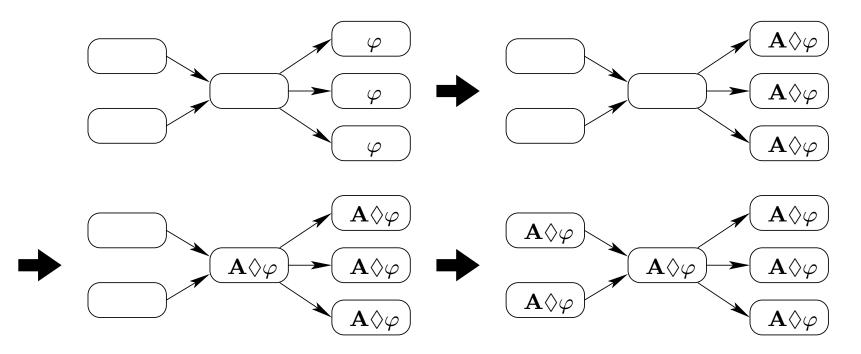
Labelling Algorithm

Let φ be a subformula of ϕ and states satisfying all the immediate subformulas of φ have already been labelled. We want to determine which states to label with φ . If φ is:

- \blacksquare \perp : then no states are labelled with \perp .
- **atomic proposition)**: label s with p if $p \in L(s)$.
- $\varphi_1 \wedge \varphi_2$: label *s* with $\varphi_1 \wedge \varphi_2$ if *s* is already labelled both with φ_1 and with φ_2 :
- $\neg \varphi$: label s with $\neg \varphi$ if s is not already labelled with φ .
- **E** $\bigcirc \varphi$: label any state with **E** $\bigcirc \varphi$ if one of its successors is labelled with φ .

Labelling Algorithm $A\Diamond \varphi$

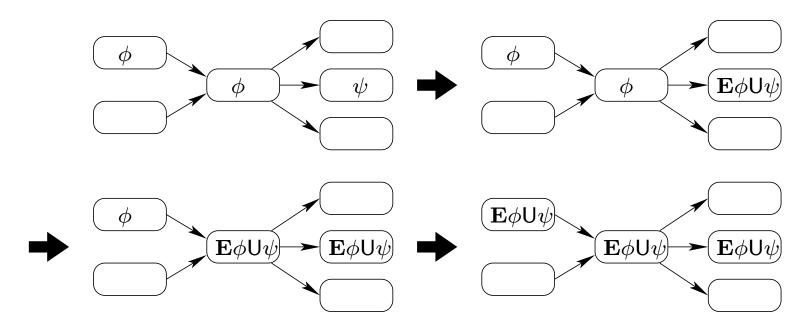
- 1- If any state s is labelled with φ , label it with $\mathbf{A}\Diamond\varphi$.
- 2- **Repeat:** label any state with $\mathbf{A} \Diamond \varphi$, if all successor states are labelled with $\mathbf{A} \Diamond \varphi$, until there is no change.



Labelling Algorithm: $\mathbf{E}\phi \mathbf{U}\psi$

1- If any state s is labelled with ψ , label it with $\mathbf{E}\phi \mathbf{U}\psi$.

2- **Repeat:** label any state with $\mathbf{E}\phi U\psi$, if it is labelled with ϕ and at least one of its successors is labelled with $\mathbf{E}\phi U\psi$, until there is no change.



Complexity: $O(S^2)$, where S is the set of reachable states.

Labelling Algorithm

Handling $\mathbf{E} \Box \varphi$ Directly

1- Label all the states that are already labelled φ , by $\mathbf{E} \Box \varphi$. 2- **Repeat:** Delete the label $\mathbf{E} \Box \varphi$ from any state if none of its successors is labelled with $\mathbf{E} \Box \varphi$; until there is no change.

Labelling Algorithm

There is even a more efficient way to handle $\mathbf{E} \Box \varphi$:

- 1. restrict the graph to states satisfying φ , i.e., delete all other states and their transitions;
- 2. find the maximal strongly connected components (SCCs); these are maximal regions of the reachable states in which every state is reachable from every other one in that region.
- 3. use breadth-first searching on the restricted graph to find any state that can reach an SCC.



Complexity: O(S), where S is the set of reachable states.

State Space Explosion

Notice that in worst case, one has to explore the set of all states to label them:

- Forward reachablity: computing successor states until a fixpoint is reached
- Backward reachability: computing predecessor states until a fixpoint is reached

Question. Is it possible to make this computation more efficient?

- Computation Tree Logic (CTL)
- CTL Model Checking
- Binary Decision Diagrams (BDDs)
- The Model Checker SMV

State Space Explosion

Exhaustive analysis may require to store all the states of the Kripke structure, and to explore them one-by-one.

The state space may be exponential in the number of components and variables (E.g., 300 Boolean vars \Rightarrow up to 2^{300} states!)

State Space Explosion:

Too much memory required;

Too much CPU time required to explore each state.

A solution: Symbolic Model Checking.

Symbolic Model Checking

Symbolic representation of *set of states* by *formulae* in propositional logic:

- manipulation of sets of states, rather than single states;
- manipulation of sets of transitions, rather than single transitions.

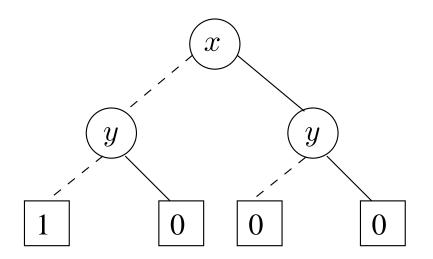
Ordered Binary Decision Diagrams (OBDD) are used to represent formulae in propositional logic.

A simple version: *Binary Decision Trees*:

- Non-Terminal nodes labelled with Boolean variables/propositions;
- Leaves (terminal nodes) are labelled with either 0 or 1;
- Two kinds of lines: dashed and solid;
- Paths leading to 1 represent models, while paths leading to
 0 represent counter-models.

Binary Decision Trees

BDT representing the formula: $\phi = \neg x \land \neg y$:



The assignment, x = 0 and y = 0 makes true the formula.

Binary Decision Trees

Let T be a BDT, then T determines a unique Boolean formula in the following way:

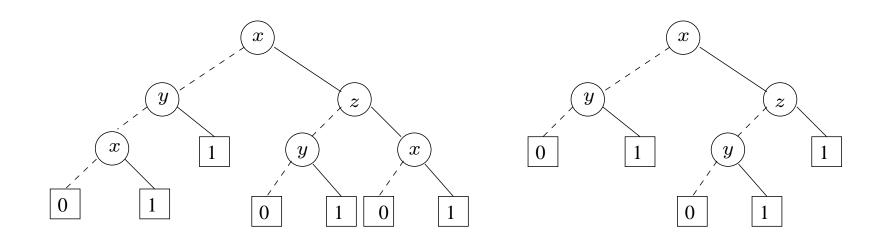
Fixed an assignment for the variables in T we start at the root and:

- If the value of the variable in the current node is 1 we follow the solid line;
- Otherwise, we follow the dashed line;
- The truth value of the formula is given by the value of the leaf we reach.

Binary Decision Trees

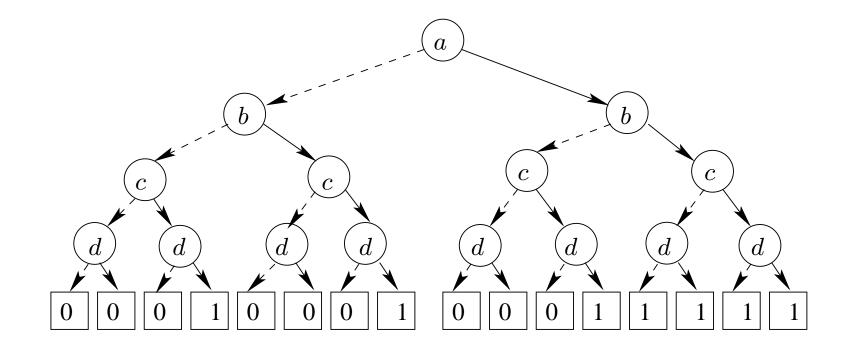
BDT's with multiple occurrences of a variable along a path are:

- Rather inefficient (Redundant paths);
- Difficult to check whether they represent the same formula (equivalence test). Example of two equivalent BDT's



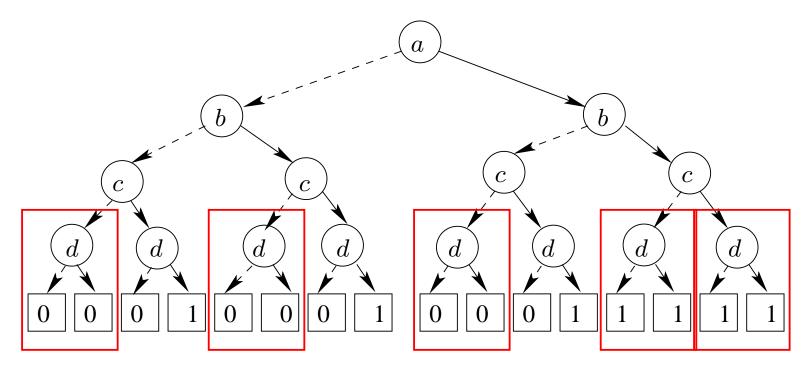
Ordered Binary Decision Trees

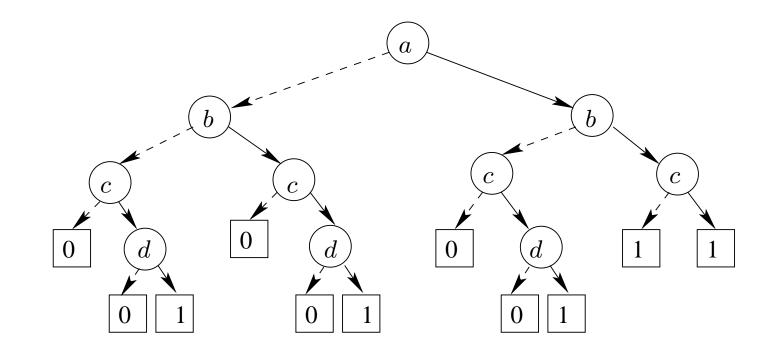
Ordered Decision Tree (OBDT): from root to leaves variables are encountered always in the same order without repetitions along paths. Example: Ordered Decision tree for $\phi = (a \land b) \lor (c \land d)$

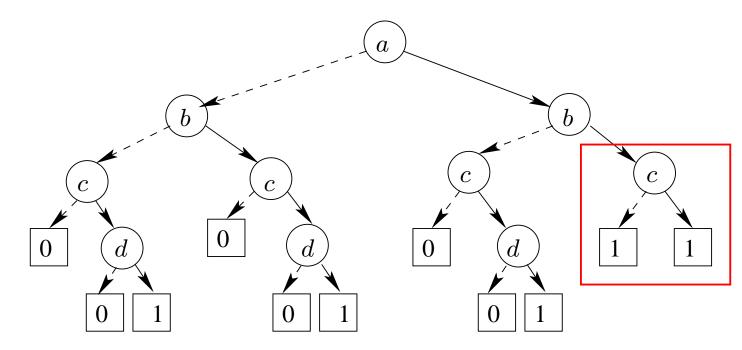


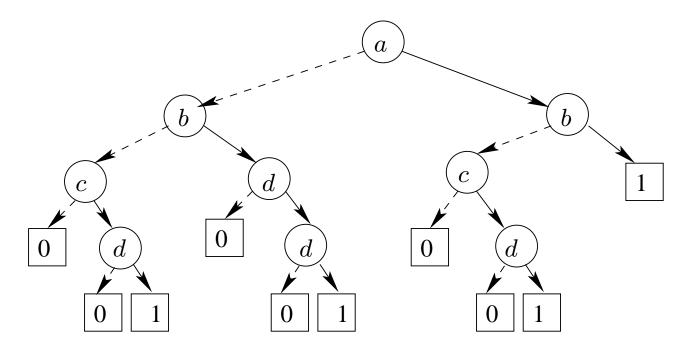
OBDT's are still exponential in the number of variables: Given n variables the OBDT's will have $2^{n+1} - 1$ nodes! We can reduce the size of OBDT's by a recursive applications of the following reductions:

- Remove Redundancies: Nodes with same left and right children can be eliminated;
- Share Subnodes: Roots of structurally identical sub-trees can be collapsed.

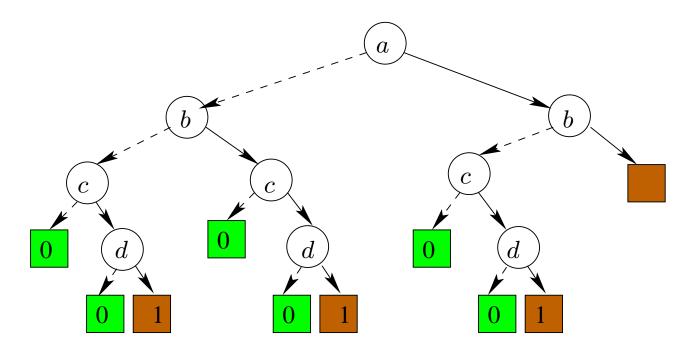




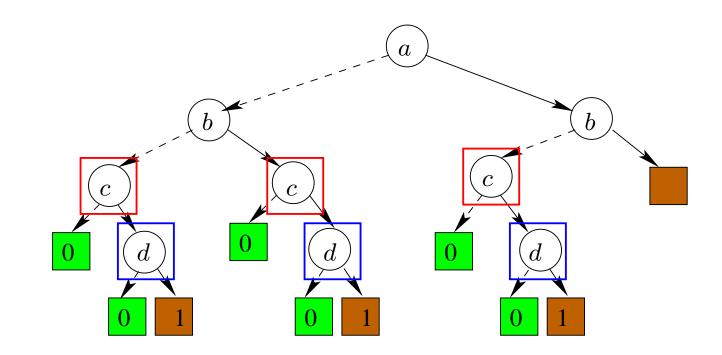


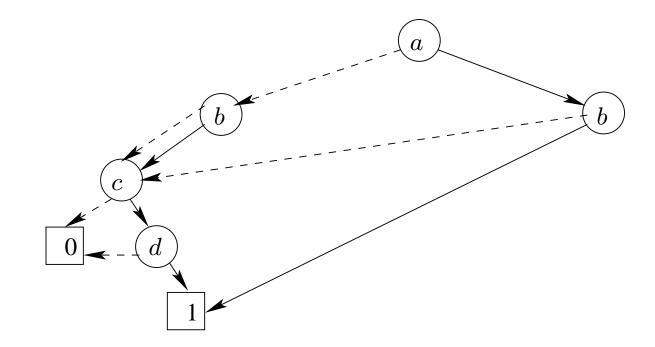


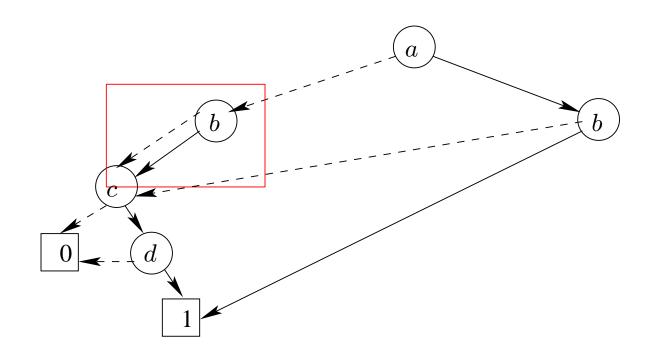
Share identical nodes:



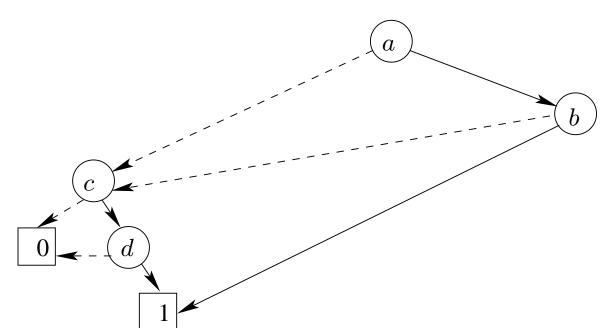
Share identical nodes:







The final OBDD!



OBDDs as Canonical Forms

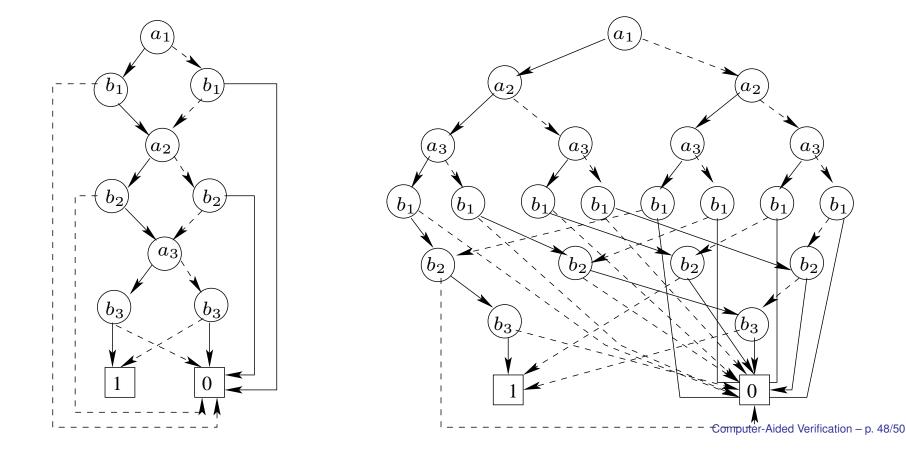
Theorem. A Reduced OBDD is a Canonical Form of a Boolean formula: Once a variable ordering is established (i.e., OBDD's have compatible variable ordering), equivalent formulae are represented by the same OBDD:

 $\phi_1 \Leftrightarrow \phi_2 \quad \text{iff} \quad OBDD(\phi_1) = OBDD(\phi_2)$

Impact of Variable Ordering

Changing the ordering of variables may increase the size of OBDD's. Example, two OBDD's for the formula:

$$\phi = (a_1 \Leftrightarrow b_1) \land (a_2 \Leftrightarrow b_2) \land (a_3 \Leftrightarrow b_3)$$



BDD Operations

We do not cover the algorithm for constructing BDDs of propositional operators (\land,\lor,\neg). You can find the algorithm in

Randy Bryant, *Graph-Based Algorithms for Boolean Function Manipulation*.

BDD-based Reachability Analysis

```
BDD frontier = InitStates;
BDD current = bddZero();
BDD ReachableStates = InitStates;
```

```
while (ReachableStates != current)
```

```
current = ReachableStates;
BDD image = frontier * Transitions;
frontier = Unprime(image);
ReachableStates = current + frontier;
```