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CTL

Computation Tree Logic: Intuitions.

CTL: Syntax and Semantics.

CTL in Computer Science.

CTL and Model Checking: Examples.

CTL Vs. LTL.

Computer-Aided Verification – p. 4/50



Intuition

LTL implicitly quantifies universally over paths:

〈M, s〉 |= φ iff for every path π starting at s, 〈M,π〉 |= φ

Properties that assert the existence of a path cannot be expressed

in LTL. In particular, properties which mix existential and

universal path quantifiers cannot be expressed.

The Computation Tree Logic, CTL, solves these problems:

CTL explicitly introduces path quantifiers!

CTL is the natural temporal logic interpreted over Branching

Time Structures.

Computer-Aided Verification – p. 5/50



Intuition
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Intuition

CTL is evaluated over branching-time structures (Trees). CTL

explicitly introduces path quantifiers:

All Paths: A

Exists a Path: E

Every temporal operator (�,♦,©,U) is preceded by a path

quantifier (A or E).

In universal modalities: (A�,A♦,A©,AU), the temporal

formula is true in all the paths starting in the current state.

In existential modalities: (E�,E♦,E©,EU), The temporal

formula is true in some path starting in the current state.
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Intuition

Countable set Σ of atomic propositions: p, q, · · · the set FORM of

formulas is:

φ, ψ → p | ⊤ | ⊥ | ¬φ | φ ∧ ψ | φ ∨ ψ |

A�φ | A♦φ | A© φ | AφUψ|

E�φ | E♦φ | E© φ | EφUψ|
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CTL Semantics

We interpret our CTL temporal formulae over Kripke models

linearized as trees.

Let Σ be a set of atomic propositions. We interpret our CTL

temporal formulae over Kripke Models:

M = 〈S, I,R,Σ, L〉

The semantics of a temporal formula is provided by the

satisfaction relation:

|=: 〈M × S × FORM〉 → {true, false}
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CTL Semantics

We start by defining when an atomic proposition is true at a

state/time “si”

M, si |= p iff p ∈ L(si) (for p ∈ Σ)

The semantics for the classical operators is as expected:

M, si |= ¬φ iff si 6|= φ

M, si |= φ ∧ ψ iff si |= φ ∧ si |= ψ

M, si |= φ ∨ ψ iff si |= φ ∨ si |= ψ

M, si |= ⊤

M, si 6|= ⊥
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CTL Semantics

We start by defining when an atomic proposition is true at a

state/time “si”

M, si |= p iff p ∈ L(si) (for p ∈ Σ)

The semantics for the classical operators is as expected:

M, si |= A© φ iff ∀π = (si, si+1, · · · ) •M, si+1 |= φ

M, si |= E© φ iff ∃π = (si, si+1, · · · ) •M, si+1 |= φ

M, si |= A�φ iff ∀π = (si, si+1, · · · ) • ∀j ≥ i •M, sj |= φ

M, si |= E�φ iff ∃π = (si, si+1, · · · ) • ∀j ≥ i •M, sj |= φ
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CTL Semantics

The semantics for the classical operators is as expected:

M, si |= A♦φ iff ∀π = (si, si+1, · · · ) • ∃j ≥ i •M, sj |= φ

M, si |= E♦φ iff ∃π = (si, si+1, · · · ) • ∃j ≥ i •M, sj |= φ

M, si |= AφUψ iff ∀π = (si, si+1, · · · ) • ∃j ≥ i •M, sj |= ψ ∧

∀i ≤ k ≤ j •M, sk |= φ

M, si |= EφUψ iff ∃π = (si, si+1, · · · ) • ∃j ≥ i •M, sj |= ψ ∧

∀i ≤ k ≤ j •M, sk |= φ
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CTL Semantics

CTL is given by the standard Boolean logic enhanced with

temporal operators.

Necessarily Next. A© φ is true in st iff φ is true in every successor

state st+1.

Possibly Next. E© φ is true in st iff φ is true in one successor state

st+1.

Necessarily in the future (or “Inevitably”). A♦φ is true in st Iff φ is

inevitably true in some st′ with t′ ≥ t.

Possibly in the future (or “Possibly”). E♦φ is true in st iff φ may be

true in some st′ with t′ ≥ t.
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CTL Semantics
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Safety Properties

Safety:

“something bad will not happen”

Typical examples:

A�¬(reactor_temp > 1000)

Safety properties are usually of the form:

A�¬ · · ·
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Liveness Properties

Liveness:

“something good will happen”

Typical examples:

A♦rich

A♦(x > 5)

A�(start ⇒ A♦terminate)

Leads-to, unbounded response

and so on.....

Liveness properties are usually of the form:

A♦¬ · · ·
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In-class Exercise

Write a CTL formula that is equal to the following
LTL formula:

♦T ⇒ ♦C
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In-class Exercise

Write a CTL formula that is equal to the following
LTL formula:

♦T ⇒ ♦C

What about:

A♦T ⇒ A♦C
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LTL vs. CTL

Many CTL formulae cannot be expressed in LTL (e.g., those

containing paths quantified existentially)

E.g., Eφ

Many LTL formulae cannot be expressed in CTL

E.g., ♦T ⇒ ♦C (Strong Fairness in LTL)

i.e, formulae that select a range of paths with a property

Some formulae can be expressed both in LTL and in CTL

(typically LTL formulae with operators of nesting depth 1)
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Problem Statement
and Assumptions

Problem. Given a model M and a CTL formula φ, determine

whether or not M |= φ.

Assumptions:

M is a finite model: finite number of states with variables of

finite domain.

φ is a finite length CTL formula.
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Solution

1. Transform φ into a formula in terms of:

A♦,EU,E©,∧,∨,⊥.

2. For each subformula ϕ of φ, label states of M, say s, such

that s |= ϕ.

3. If the initial state s0 satisfies a subformula ϕ, then M |= ϕ as

well.
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Labelling Algorithm

Let ϕ be a subformula of φ and states satisfying all the

immediate subformulas of ϕ have already been labelled. We

want to determine which states to label with ϕ. If ϕ is:

⊥: then no states are labelled with ⊥.

p (atomic proposition): label s with p if p ∈ L(s).

ϕ1 ∧ ϕ2: label s with ϕ1 ∧ ϕ2 if s is already labelled both with

ϕ1 and with ϕ2:

¬ϕ: label s with ¬ϕ if s is not already labelled with ϕ.

E© ϕ: label any state with E© ϕ if one of its successors is

labelled with ϕ.
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Labelling Algorithm
A♦ϕ

1- If any state s is labelled with ϕ, label it with A♦ϕ.

2- Repeat: label any state with A♦ϕ, if all successor states are

labelled with A♦ϕ, until there is no change.

A♦ϕ

ϕ

A♦ϕA♦ϕ

A♦ϕ

A♦ϕ

ϕ

ϕ

A♦ϕA♦ϕ

A♦ϕ

A♦ϕ

A♦ϕ

A♦ϕ

A♦ϕ

A♦ϕ
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Labelling Algorithm:
EφUψ

1- If any state s is labelled with ψ, label it with EφUψ.

2- Repeat: label any state with EφUψ, if it is labelled with φ and at

least one of its successors is labelled with EφUψ, until there is

no change.

EφUψ

ψ

φ

φ

φ

φ EφUψ

EφUψEφUψ

φ

EφUψEφUψ

Complexity: O(S2), where S is the set of reachable states.
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Labelling Algorithm

Handling E�ϕ Directly

1- Label all the states that are already labelled ϕ, by E�ϕ.

2- Repeat: Delete the label E�ϕ from any state if none of its

successors is labelled with E�ϕ; until there is no change.
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Labelling Algorithm

There is even a more efficient way to handle E�ϕ:

1. restrict the graph to states satisfying ϕ, i.e., delete all other states and their

transitions;

2. find the maximal strongly connected components (SCCs); these are maximal

regions of the reachable states in which every state is reachable from every other

one in that region.

3. use breadth-first searching on the restricted graph to find any state that can reach

an SCC.

SCC

SCC

SCC

E�ϕ

Complexity: O(S), where S is the set of reachable states.
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State Space
Explosion

Notice that in worst case, one has to explore the set of all states

to label them:

Forward reachablity: computing successor states until a fixpoint

is reached

Backward reachability: computing predecessor states until a

fixpoint is reached

Question. Is it possible to make this computation more efficient?

Computer-Aided Verification – p. 28/50



Agenda

Computation Tree Logic (CTL)

CTL Model Checking

Binary Decision Diagrams (BDDs)

The Model Checker SMV

Computer-Aided Verification – p. 29/50



State Space
Explosion

Exhaustive analysis may require to store all the states of the

Kripke structure, and to explore them one-by-one.

The state space may be exponential in the number of

components and variables (E.g., 300 Boolean vars ⇒ up to 2300

states!)

State Space Explosion:

Too much memory required;

Too much CPU time required to explore each state.

A solution: Symbolic Model Checking.
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Symbolic Model
Checking

Symbolic representation of set of states by formulae in propositional

logic:

manipulation of sets of states, rather than single states;

manipulation of sets of transitions, rather than single transitions.
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OBDDs

Ordered Binary Decision Diagrams (OBDD) are used to represent

formulae in propositional logic.

A simple version: Binary Decision Trees:

Non-Terminal nodes labelled with Boolean

variables/propositions;

Leaves (terminal nodes) are labelled with either 0 or 1;

Two kinds of lines: dashed and solid;

Paths leading to 1 represent models, while paths leading to

0 represent counter-models.
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Binary Decision
Trees

BDT representing the formula: φ = ¬x ∧ ¬y:

01 0 0

y

x

y

The assignment, x = 0 and y = 0 makes true the formula.
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Binary Decision
Trees

Let T be a BDT, then T determines a unique Boolean formula in

the following way:

Fixed an assignment for the variables in T we start at the root

and:

If the value of the variable in the current node is 1 we follow

the solid line;

Otherwise, we follow the dashed line;

The truth value of the formula is given by the value of the

leaf we reach.
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Binary Decision
Trees

BDT’s with multiple occurrences of a variable along a path are:

Rather inefficient (Redundant paths);

Difficult to check whether they represent the same formula

(equivalence test). Example of two equivalent BDT’s

0 1

1 10

0 1 0 1 0 1

1

y

y

z

x

y

y x

z

x

x
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Ordered Binary
Decision Trees

Ordered Decision Tree (OBDT): from root to leaves variables are

encountered always in the same order without repetitions along

paths. Example: Ordered Decision tree for φ = (a ∧ b) ∨ (c ∧ d)

0 0 0 1 0 00 1 0 00 1 1 11 1

d

b

c

a

b

cc
c

ddddddd
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Reducing the Size of
OBDDs

OBDT’s are still exponential in the number of variables: Given n

variables the OBDT’s will have 2n+1 − 1 nodes!

We can reduce the size of OBDT’s by a recursive applications of

the following reductions:

Remove Redundancies: Nodes with same left and right children

can be eliminated;

Share Subnodes: Roots of structurally identical sub-trees can

be collapsed.
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Reducing the Size of
OBDDs

Remove Redundancies:

0 0 0 1 0 00 1 0 00 1 1 11 1

d

b

c

a

b

cc
c

ddddddd
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Reducing the Size of
OBDDs

Remove Redundancies:

0

0 1 0 1 0 1

1100

b

c

a

b

cc
c

ddd
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Reducing the Size of
OBDDs

Remove Redundancies:

0

0 1 0 1 0 1

1100

b

c

a

b

cc
c

ddd
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Reducing the Size of
OBDDs

Remove Redundancies:

1

0 1 0 1 0 1

000

b

c

a

b

c
d

ddd
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Reducing the Size of
OBDDs

Share identical nodes:

1

0 1 0 1 0 1

000

b

c

a

b

c
c

ddd
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Reducing the Size of
OBDDs

Share identical nodes:

1

0 1 0 1 0 1

000

b

c

a

b

c
c
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Reducing the Size of
OBDDs

0

1

b

c

a

b

d
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Reducing the Size of
OBDDs

Remove Redundancies:

0

1

b

c

a

b

d
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Reducing the Size of
OBDDs

The final OBDD!

0

1

c

a

b

d
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OBDDs as Canonical
Forms

Theorem. A Reduced OBDD is a Canonical
Form of a Boolean formula: Once a variable
ordering is established (i.e., OBDD’s have
compatible variable ordering), equivalent
formulae are represented by the same OBDD:

φ1 ⇔ φ2 iff OBDD(φ1) = OBDD(φ2)
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Impact of Variable
Ordering

Changing the ordering of variables may increase the size of

OBDD’s. Example, two OBDD’s for the formula:

φ = (a1 ⇔ b1) ∧ (a2 ⇔ b2) ∧ (a3 ⇔ b3)

1 0 1 0

b2

b1

b2 b2

b3

b1

b3

a2

a1

a3

a1

b3b3

a2a2

a3 a3 a3 a3

b1 b1 b1 b1 b1 b1 b1 b1

b2 b2 b2
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BDD Operations

We do not cover the algorithm for constructing BDDs of

propositional operators (∧,∨,¬). You can find the algorithm in

Randy Bryant, Graph-Based Algorithms for Boolean Function

Manipulation.
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BDD-based
Reachability Analysis

BDD frontier = InitStates;

BDD current = bddZero();

BDD ReachableStates = InitStates;

while (ReachableStates != current)

{

current = ReachableStates;

BDD image = frontier * Transitions;

frontier = Unprime(image);

ReachableStates = current + frontier;

}
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