Logic and Computation CS245

Dr. Borzoo Bonakdarpour

University of Waterloo (Fall 2012) Propositional Logic

Logic and Computation – p. 1/22

Agenda

- Syntax
- Semantics
- Tautological Consequence
- Adequate Sets
- Hilbert System Proofs

Semantics

Informally, *semantics* of a logic describe how to interpret formulas. A *set* is a collection of objects called *members* or *elements*.

In propositional logic, we need to give *meaning* to atoms, connectives, and formulas.

Semantics (informally)

Let A and B be two formulas that express propositions \mathcal{A} and \mathcal{B} . Intuitively, we give the following meanings :

$\neg A$	Not \mathcal{A}
$A \wedge B$	${\cal A}$ and ${\cal B}$
$A \lor B$	${\mathcal A}$ or ${\mathcal B}$
$A \Rightarrow B$	If ${\mathcal A}$ then ${\mathcal B}$
$A \Leftrightarrow B$	${\cal A}$ iff ${\cal B}$

Semantics

Formally, semantics is a function that mapps a formula to a value in $\{0, 1\}$ (also known as *truth table*).

$$\begin{array}{c|c} A & \neg A \\ \hline 1 & 0 \\ 0 & 1 \end{array}$$

Semantics

A	B	$A \wedge B$	$A \lor B$	$A \Rightarrow B$	$A \Leftrightarrow B$
1	1	1	1	1	1
1	0	0	1	0	0
0	1	0	1	1	0
0	0	0	0	1	1

A *truth valuation* is a function with the set of all proposition symbols as domain and $\{0, 1\}$ as range.

Formula Values

The *value* assigned to formulas by a truth valuation t is defined by recursion:

$[1] p^t \in \{0, 1\}.$		
$[2] (\neg A)^t = \begin{cases} 1 \end{cases}$		$\text{if } A^t = 0$
		$\text{if } A^t = 1$
$[3] (A \land B)^t = \int$	1	$\text{if } A^t = B^t = 1$
$\begin{bmatrix} \mathbf{J} \end{bmatrix} (A \land B) = \begin{cases} \\ \\ \\ \\ \\ \\ \end{bmatrix}$	0	otherwise
$\int (A \times (D)^{\dagger})^{\dagger}$	1	if $A^t = 1$ or $B^t = 1$
$[3] (A \lor B)^{\iota} = \left\{ \right.$	0	otherwise
	1	if $A^t = 0$ or $B^t = 1$
$[4] (A \Rightarrow B)^{\iota} = \langle$	0	otherwise
	1	if $A^t = B^t$
$[5] (A \Leftrightarrow B)^t = \left\{ \right.$	0	otherwise
(

Formula Values (Example)

Suppose $A = p \lor q \Rightarrow q \land r$.

• If
$$p^t = q^t = r^t = 1$$
, then $A^t = 1$. (why?)

If
$$p^{t_1} = q^{t_1} = r^{t_1} = 0$$
, then $A^{t_1} = 1$. (why?)

Theorem. For any $A \in Form(\mathcal{L}^p)$ and any truth valuation, $A^t \in \{0, 1\}$.

Satisfiability

Let Σ denote a set of formulas and

$$\Sigma^{t} = \begin{cases} 1 & \text{if for each } B \in \Sigma, B^{t} = 1 \\ 0 & \text{otherwise} \end{cases}$$

We say that Σ is *satisfiable* iff there is some truth valuation t such that $\Sigma^t = 1$. When $\Sigma^t = 1$, t is said to *satisfy* Σ .

Tautology (validity), Contradiction

A formula A is a *tautology* iff for any truth valuation $t, A^t = 1$.

A formula A is a *contradiction* iff for any truth valuation t, $A^t = 0$.

Example. Let $A = (p \land q \Rightarrow r) \land (p \Rightarrow q) \Rightarrow (p \Rightarrow r)$. Is A a tautology?

"Expressions"

$\neg 1$	0
$\neg 0$	1
$A \wedge 1$	A
$1 \wedge A$	A
$A \wedge 0$	0
$0 \wedge A$	0
$A \lor 1$	1
$A \lor 0$	A
$1 \lor A$	1
$0 \lor A$	A

Tautology (validity), Contradiction

A faster way to evaluate a propositional formula is by using valution *trees* and "expressions".

Example. Show that $A = (p \land q \Rightarrow r) \land (p \Rightarrow q) \Rightarrow (p \Rightarrow r)$ is a A a tautology.

Tautological Consequence

Suppose A_1, \ldots, A_n , and A are propositions. Deductive logic studies whether A is *deducible* from A_1, \ldots, A_n .

Suppose $\Sigma \subseteq Form(\mathcal{L}^p)$ and $A \in Form(\mathcal{L}^p)$. We say that A is a *tautological consequence* of Σ (that is, of the formulas in Σ), written as $\Sigma \models A$, iff for any truth valuation t, $\Sigma^t = 1$ implies $A^t = 1$.

Note that $\Sigma \models A$ is not a formula.

Tautological Consequence

We write $\Sigma \not\models A$ for "not $\Sigma \models A$ ". That is, there exists some truth valuation t such that $\Sigma^t = 1$ and $A^t = 0$.

 $\emptyset \models A$ means that A is a tautology. (why?)

Example. $A \Rightarrow B, B \Rightarrow C \models A \Rightarrow C.$

Example. $(A \Rightarrow \neg B) \lor C, B \land \neg C,$ $A \Leftrightarrow C \not\models A \land (B \Rightarrow C).$

Associativity of Commutativity

 $A \wedge B \equiv B \wedge A$ $(A \wedge B) \wedge C \equiv A \wedge (B \wedge C)$ $A \vee B \equiv B \vee A$ $(A \vee B) \vee C \equiv A \vee (B \vee C)$

Tautological Consequence

Theorem.

[1]
$$A_1, \ldots, A_n \models A \text{ iff } \emptyset \models A_1 \land \cdots \land A_n \Rightarrow A_n$$

[2] $A_1, \ldots, A_n \models A \text{ iff } \emptyset \models A_1 \Rightarrow (\ldots (A_n \Rightarrow A) \ldots)$

Tautological Consequence

Lemma. If $A \equiv A'$ and $B \equiv B'$, then **1.** $\neg A \equiv A'$ **2.** $A \wedge B \equiv A' \wedge B'$ **3.** $A \lor B \equiv A' \lor B'$ 4. $A \Rightarrow B \equiv A' \Rightarrow B'$ 5. $A \Leftrightarrow B \equiv A' \Leftrightarrow B'$

Replaceability

Theorem. If $B \equiv C$ and A' results from A by replacing some (not nessessarily all) occurrences of B in A by C, then $A \equiv A'$.

Duality

Theorem. Suppose *A* is a formula composed of atoms and the connectives \neg , \wedge , and \lor by the formation rules concerned, and *A'* results by exhchanging in *A*, \wedge for \lor and each atom for its negation. Then $A' \equiv \neg A$. (*A'* is the *dual* of *A*)

Adequate Sets

Formulas $A \Rightarrow B$ and $\neg A \lor B$ are tautologocally equivalent. Then \Rightarrow is said to be *definable* in terms of (or *reducible*) \neg and \lor .

Let f and g be two n-ary connectives.

We shall write $fA_1 \dots A_n$ for the formula formed by an *n*-ary connective *f* connecting formulas A_1, \dots, A_n .

Question. Given $n \ge 1$, how many *n*-ary connectives exist?

Adequate Sets

Example. Suppose f_1 , f_2 , and f_3 are distinct unary connectives. They have the following truth tables:

A set of connetives is said to be *adequate* iff any n-ary ($n \ge 1$) connective can be defined in terms of them.

Adequate Sets

Theorem. $\{\land, \lor, \neg\}$ is an adequate set of connectives.

Corollary. $\{\wedge, \neg\}, \{\vee, \neg\}, \{\Rightarrow, \neg\}$ are adequate.