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Semantics

Informally, semantics of a logic describe how to
interpret formulas. A set is a collection of objects
called members or elements.

In propositional logic, we need to give meaning to
atoms, connectives, and formulas.
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Semantics
(informally)

Let A and B be two formulas that express
propositions A and B. Intuitively, we give the
following meanings :

¬A Not A
A ∧ B A and B

A ∨ B A or B
A ⇒ B If A then B

A ⇔ B A iff B
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Semantics
Formally, semantics is a function that mapps a
formula to a value in {0, 1} (also known as truth
table).

A ¬A

1 0
0 1
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Semantics

A B A ∧B A ∨B A ⇒ B A ⇔ B

1 1 1 1 1 1
1 0 0 1 0 0
0 1 0 1 1 0
0 0 0 0 1 1

A truth valuation is a function with the set of all
proposition symbols as domain and {0, 1} as
range.
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Formula Values
The value assigned to formulas by a truth
valuation t is defined by recursion:
[1] pt ∈ {0, 1}.

[2] (¬A)t =







1 if At = 0

0 if At = 1

[3] (A ∧B)t =







1 if At = Bt = 1

0 otherwise

[3] (A ∨B)t =







1 if At = 1 or Bt = 1

0 otherwise

[4] (A ⇒ B)t =







1 if At = 0 or Bt = 1

0 otherwise

[5] (A ⇔ B)t =







1 if At = Bt

0 otherwise
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Formula Values
(Example)

Suppose A = p ∨ q ⇒ q ∧ r.

If pt = qt = rt = 1, then At = 1. (why?)

If pt1 = qt1 = rt1 = 0, then At1 = 1. (why?)

Theorem. For any A ∈ Form(Lp) and any truth
valuation, At ∈ {0, 1}.
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Satisfiability

Let Σ denote a set of formulas and

Σt =

{

1 if for each B ∈ Σ, Bt = 1

0 otherwise

We say that Σ is satisfiable iff there is some truth
valuation t such that Σt = 1. When Σt = 1, t is
said to satisfy Σ.
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Tautology (validity),
Contradiction

A formula A is a tautology iff for any truth valuation
t, At = 1.

A formula A is a contradiction iff for any truth
valuation t, At = 0.

Example. Let
A = (p ∧ q ⇒ r) ∧ (p ⇒ q) ⇒ (p ⇒ r). Is A a
tautology?
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“Expressions”

¬1 0

¬0 1

A ∧ 1 A

1 ∧ A A

A ∧ 0 0

0 ∧ A 0

A ∨ 1 1

A ∨ 0 A

1 ∨ A 1
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Tautology (validity),
Contradiction

A faster way to evaluate a propositional formula
is by using valution trees and “expressions”.

Example. Show that
A = (p ∧ q ⇒ r) ∧ (p ⇒ q) ⇒ (p ⇒ r) is a A a
tautology.
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Tautological
Consequence

Suppose A1, . . . ,An, and A are propositions.
Deductive logic studies whether A is deducible
from A1, . . . ,An.

Suppose Σ ⊆ Form(Lp) and A ∈ Form(Lp). We
say that A is a tautological consequence of Σ (that is,
of the formulas in Σ), written as Σ |= A, iff for any
truth valuation t, Σt = 1 implies At = 1.

Note that Σ |= A is not a formula.
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Tautological
Consequence

We write Σ 6|= A for “not Σ |= A". That is, there
exists some truth valuation t such that Σt = 1 and
At = 0.

∅ |= A means that A is a tautology. (why?)

Example. A ⇒ B, B ⇒ C |= A ⇒ C.

Example. (A ⇒ ¬B) ∨ C, B ∧ ¬C,
A ⇔ C 6|=A ∧ (B ⇒ C).
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Associativity of
Commutativity

A ∧ B ≡ B ∧ A

(A ∧ B) ∧ C ≡ A ∧ (B ∧ C)

A ∨ B ≡ B ∨ A

(A ∨ B) ∨ C ≡ A ∨ (B ∨ C)
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Tautological
Consequence

Theorem.

[1] A1, . . . , An |= A iff ∅ |= A1 ∧ · · · ∧ An ⇒ An

[2] A1, . . . , An |= A iff ∅ |= A1 ⇒ (. . . (An ⇒ A) . . . )
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Tautological
Consequence

Lemma.
If A ≡ A′ and B ≡ B′, then

1. ¬A ≡ A′

2. A ∧ B ≡ A′ ∧ B′

3. A ∨ B ≡ A′ ∨ B′

4. A ⇒ B ≡ A′ ⇒ B′

5. A ⇔ B ≡ A′ ⇔ B′
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Replaceability

Theorem. If B ≡ C and A′ results from A by
replacing some (not nessessarily all)
occurrences of B in A by C, then A ≡ A′.
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Duality

Theorem. Suppose A is a formula composed of
atoms and the connectives ¬, ∧, and ∨ by the
formation rules concerned, and A′ results by
exhchanging in A, ∧ for ∨ and each atom for its
negation. Then A′ ≡ ¬A. (A′ is the dual of A)
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Adequate Sets

Formulas A ⇒ B and ¬A ∨B are tautologocally
equivalent. Then ⇒ is said to be definable in terms
of (or reducible) ¬ and ∨.

Let f and g be two n-ary connectives.

We shall write fA1 . . . An for the formula formed
by an n-ary connective f connecting formulas
A1, . . . , An.

Question. Given n ≥ 1, how many n-ary
connectives exist?
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Adequate Sets

Example. Suppose f1, f2, and f3 are distinct
unary connectives. They have the following truth
tables:

A f1A f2A f3A f4A

1 1 1 0 0
0 1 0 1 0

A set of connetives is said to be adequate iff any
n-ary (n ≥ 1) connective can be defined in terms
of them.
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Adequate Sets

Theorem. {∧,∨,¬} is an adequate set of
connectives.

Corollary. {∧,¬}, {∨,¬}, {⇒,¬} are adequate.
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