Logic and Computation CS245

Dr. Borzoo Bonakdarpour

University of Waterloo
(Fall 2012)
Propositional Logic

Agenda

- Syntax
- Semantics
- Tautological Consequence
- Adequate Sets

■ Hilbert System Proofs

Semantics

Informally, semantics of a logic describe how to interpret formulas. A set is a collection of objects called members or elements.

In propositional logic, we need to give meaning to atoms, connectives, and formulas.

Semantics (informally)

Let A and B be two formulas that express propositions \mathcal{A} and \mathcal{B}. Intuitively, we give the following meanings:

$\neg A \quad$ Not \mathcal{A}
$A \wedge B \quad \mathcal{A}$ and \mathcal{B}
$A \vee B \quad \mathcal{A}$ or \mathcal{B}
$A \Rightarrow B \quad$ If \mathcal{A} then \mathcal{B}
$A \Leftrightarrow B \quad \mathcal{A}$ iff \mathcal{B}

Semantics

Formally, semantics is a function that mapps a formula to a value in $\{0,1\}$ (also known as truth table).

A	$\neg A$
1	0
0	1

Semantics

A	B	$A \wedge B$	$A \vee B$	$A \Rightarrow B$	$A \Leftrightarrow B$
1	1	1	1	1	1
1	0	0	1	0	0
0	1	0	1	1	0
0	0	0	0	1	1

A truth valuation is a function with the set of all proposition symbols as domain and $\{0,1\}$ as range.

Formula Values

The value assigned to formulas by a truth valuation t is defined by recursion:
$[1] p^{t} \in\{0,1\}$.
[2] $(\neg A)^{t}= \begin{cases}1 & \text { if } A^{t}=0 \\ 0 & \text { if } A^{t}=1\end{cases}$
[3] $(A \wedge B)^{t}= \begin{cases}1 & \text { if } A^{t}=B^{t}=1 \\ 0 & \text { otherwise }\end{cases}$
[3] $(A \vee B)^{t}= \begin{cases}1 & \text { if } A^{t}=1 \text { or } B^{t}=1 \\ 0 & \text { otherwise }\end{cases}$
[4] $(A \Rightarrow B)^{t}= \begin{cases}1 & \text { if } A^{t}=0 \text { or } B^{t}=1 \\ 0 & \text { otherwise }\end{cases}$
[5] $(A \Leftrightarrow B)^{t}= \begin{cases}1 & \text { if } A^{t}=B^{t} \\ 0 & \text { otherwise }\end{cases}$

Formula Values (Example)

Suppose $A=p \vee q \Rightarrow q \wedge r$.

- If $p^{t}=q^{t}=r^{t}=1$, then $A^{t}=1$. (why?)

■ If $p^{t_{1}}=q^{t_{1}}=r^{t_{1}}=0$, then $A^{t_{1}}=1$. (why?)

Theorem. For any $A \in \operatorname{Form}\left(\mathcal{L}^{p}\right)$ and any truth valuation, $A^{t} \in\{0,1\}$.

Satisfiability

Let Σ denote a set of formulas and
$\Sigma^{t}= \begin{cases}1 & \text { if for each } B \in \Sigma, B^{t}=1 \\ 0 & \text { otherwise }\end{cases}$
We say that Σ is satisfiable iff there is some truth valuation t such that $\Sigma^{t}=1$. When $\Sigma^{t}=1, t$ is said to satisfy Σ.

Tautology (validity), Contradiction

A formula A is a tautology iff for any truth valuation $t, A^{t}=1$.

A formula A is a contradiction iff for any truth valuation $t, A^{t}=0$.

Example. Let
$A=(p \wedge q \Rightarrow r) \wedge(p \Rightarrow q) \Rightarrow(p \Rightarrow r)$. Is A a tautology?

"Expressions"

$\neg 1$	0
$\neg 0$	1
$A \wedge 1$	A
$1 \wedge A$	A
$A \wedge 0$	0
$0 \wedge A$	0
$A \vee 1$	1
$A \vee 0$	A
$1 \vee A$	1
$0 \vee A$	A

Tautology (validity), Contradiction

A faster way to evaluate a propositional formula is by using valution trees and "expressions".

Example. Show that
$A=(p \wedge q \Rightarrow r) \wedge(p \Rightarrow q) \Rightarrow(p \Rightarrow r)$ is a A a tautology.

Tautological Consequence

Suppose $\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$, and \mathcal{A} are propositions. Deductive logic studies whether \mathcal{A} is deducible from $\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$.

Suppose $\Sigma \subseteq \operatorname{Form}\left(\mathcal{L}^{p}\right)$ and $A \in \operatorname{Form}\left(\mathcal{L}^{p}\right)$. We say that A is a tautological consequence of Σ (that is, of the formulas in Σ), written as $\Sigma \models A$, iff for any truth valuation $t, \Sigma^{t}=1$ implies $A^{t}=1$.

Note that $\Sigma \models A$ is not a formula.

Tautological Consequence

We write $\Sigma \not \models A$ for "not $\Sigma \models A$ ". That is, there exists some truth valuation t such that $\Sigma^{t}=1$ and $A^{t}=0$.
$\emptyset \models A$ means that A is a tautology. (why?)
Example. $A \Rightarrow B, B \Rightarrow C \models A \Rightarrow C$.
Example. $\quad(A \Rightarrow \neg B) \vee C, B \wedge \neg C$, $A \Leftrightarrow C \notin A \wedge(B \Rightarrow C)$.

Associativity of Commutativity

$$
\begin{aligned}
A \wedge B & \equiv B \wedge A \\
(A \wedge B) \wedge C & \equiv A \wedge(B \wedge C) \\
A \vee B & \equiv B \vee A \\
(A \vee B) \vee C & \equiv A \vee(B \vee C)
\end{aligned}
$$

Tautological Consequence

Theorem.

[1] $A_{1}, \ldots, A_{n} \models A$ iff $\emptyset \models A_{1} \wedge \cdots \wedge A_{n} \Rightarrow A_{n}$
[2] $A_{1}, \ldots, A_{n} \models A$ iff $\emptyset \models A_{1} \Rightarrow\left(\ldots\left(A_{n} \Rightarrow A\right) \ldots\right)$

Tautological Consequence

Lemma.
If $A \equiv A^{\prime}$ and $B \equiv B^{\prime}$, then

1. $\neg A \equiv A^{\prime}$
2. $A \wedge B \equiv A^{\prime} \wedge B^{\prime}$
3. $A \vee B \equiv A^{\prime} \vee B^{\prime}$
4. $A \Rightarrow B \equiv A^{\prime} \Rightarrow B^{\prime}$
5. $A \Leftrightarrow B \equiv A^{\prime} \Leftrightarrow B^{\prime}$

Replaceability

Theorem. If $B \equiv C$ and A^{\prime} results from A by replacing some (not nessessarily all) occurrences of B in A by C, then $A \equiv A^{\prime}$.

Duality

Theorem. Suppose A is a formula composed of atoms and the connectives \neg, \wedge, and \vee by the formation rules concerned, and A^{\prime} results by exhchanging in A, \wedge for \vee and each atom for its negation. Then $A^{\prime} \equiv \neg A$. $\left(A^{\prime}\right.$ is the dual of $\left.A\right)$

Adequate Sets

Formulas $A \Rightarrow B$ and $\neg A \vee B$ are tautologocally equivalent. Then \Rightarrow is said to be definable in terms of (or reducible) \neg and \vee.

Let f and g be two n-ary connectives.
We shall write $f A_{1} \ldots A_{n}$ for the formula formed by an n-ary connective f connecting formulas A_{1}, \ldots, A_{n}.

Question. Given $n \geq 1$, how many n-ary connectives exist?

Adequate Sets

Example. Suppose f_{1}, f_{2}, and f_{3} are distinct unary connectives. They have the following truth tables:

A	$f_{1} A$	$f_{2} A$	$f_{3} A$	$f_{4} A$
1	1	1	0	0
0	1	0	1	0

A set of connetives is said to be adequate iff any n-ary $(n \geq 1)$ connective can be defined in terms of them.

Adequate Sets

Theorem. $\quad\{\wedge, \vee, \neg\}$ is an adequate set of connectives.

Corollary. $\quad\{\wedge, \neg\},\{\vee, \neg\},\{\Rightarrow, \neg\}$ are adequate.

