Logic and Computation CS245

Dr. Borzoo Bonakdarpour

University of Waterloo (Fall 2012)

Sequent Calculus

Agenda

- Sequents
- LK Inference Rules
- Examples
- Soundness and Completeness

Sequents (syntax)

A sequent is a pair (Γ, Δ) of finite sets of formulae.

We will write a sequent as $\Gamma \vdash \Delta$ and drop the set brackets around the sets of formulae. Γ and Δ are sets of formulae. A and B will represent a single formula.

(Sometimes \vdash is written as \hookrightarrow or just \rightarrow .)

In sequents, we write Γ, A for $\Gamma \cup \{A\}$ and Γ, Δ for $\Gamma \cup \Delta$.

' \vdash ' is called 'proves' or 'turnstile'.

In a sequent $\Gamma \vdash \Delta$, the formulas on the left are called the *antecedent*, and the formulas on right-hand side are called the *succedent*.

When there is nothing on the LHS or RHS of the arrow, we assume it is the empty set of formulae.

Meaning of Sequents

A sequent asserts: if all the formulae on the left of the arrow are true, then at least one of the formulae on the right are true.

Formally, let $\Gamma = \{A_1, \ldots, A_n\}$ and $\Delta = \{B_1, \ldots, B_k\}$.

 $A_1, \ldots, A_n \vdash B_1, \ldots, B_k$ means:

 $\vdash (A_1 \wedge \cdots \wedge A_n) \implies (B_1 \vee \cdots \vee B_k)$

Meaning of Sequents

$$\vdash (A_1 \wedge \cdots \wedge A_n) \implies (B_1 \vee \cdots \vee B_k)$$

means that if there exists *i* such that $A_i = false$, then the sequent is true.

Likewise, if there exists j such that $A_j = true$, then the sequent is true.

Sequent Calculus Inference Rules

Structural Rule (Thinning)

If $\Gamma_1 \subseteq \Gamma_2$ and $\Delta_1 \subseteq \Delta_2$ then:

 $\frac{\Gamma_1 \vdash \Delta_1}{\Gamma_2 \vdash \Delta_2}$

Thinning is like *precondition strengthening* and *postcondition weakening* for those familiar with that terminology.

Adding formulae on the RHS of the sequent is adding them to a disjunction, so this is weakening the RHS formulae.

Adding formulae on the LHS of the sequent is adding them to a conjunction, so this is strengthening the LHS formulae.

Sequent Calculus Rules

Negation Rules

$$\frac{\Gamma \vdash \Delta, A}{\Gamma, \neg A \vdash \Delta} (\neg L)$$

$$\frac{\Gamma, A \vdash \Delta}{\Gamma \vdash \Delta, \neg A} (\neg R)$$

 $\frac{Conjunction Rules}{\Gamma, A, B \vdash \Delta}{\Gamma, A \land B \vdash \Delta}$

$$\frac{\Gamma_1 \vdash \Delta_1, A \quad \Gamma_2 \vdash \Delta_2, B}{\Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2, A \land B}$$

Disjunction Rules

 $\frac{\Gamma\vdash\Delta,A,B}{\Gamma\vdash\Delta,A\vee B}$

$$\frac{\Gamma_1, A \vdash \Delta_1 \quad \Gamma_2, B \vdash \Delta_2}{\Gamma_1, \Gamma_2, A \lor B \vdash \Delta_1, \Delta_2}$$

Logic and Computation - p. 9/15

Sequent Calculus Rules

Implication Rules

 $\frac{\Gamma, A \vdash \Delta, B}{\Gamma \vdash \Delta, A \Rightarrow B} (\Rightarrow R)$

 $\frac{\Gamma_1 \vdash \Delta_1, A \quad \Gamma_2, B \vdash \Delta_2}{\Gamma_1, \Gamma_2, A \Rightarrow B \vdash \Delta_1, \Delta_2} (\Rightarrow L)$

The right-hand rule is similar to *modus ponens*. The idea is that if *X* can be derived, then from $X \Rightarrow Y$, *Y* can be derived, and therefore whatever can be derived from *Y* can be derived. If Γ_2 , and Δ_1 are empty:

$$\frac{\Gamma_1 \vdash A \quad B \vdash \Delta_2}{\Gamma_1, A \Rightarrow B \vdash \Delta_2}$$

This a derived rule:

$$\frac{\Gamma_1 \vdash \Delta_1, A \qquad \Gamma_2, A \vdash \Delta_2}{\Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2}$$

Question: How is it derived?

Proofs in the Sequent Calculus

Definition. A proof is a *tree* labelled with sequents (generally written with the root at the bottom), such that: if node N is labelled with $\Gamma \vdash \Delta$, then if N is a leaf node, $\Gamma \vdash \Delta$ must be an axiom; if N has children, their labels must be the premises from which $\Gamma \vdash \Delta$ follows by one of the rules. The label on the root node is the sequent that is proved.

Definition. A formula X is a theorem of the sequent calculus if the sequent $\vdash X$ has a proof, i.e.,

 $\vdash X$

The sequent calculus for propositional logic is both sound and complete.

Show in sequent calculus

 $\vdash A \lor \neg A$

1.
$$A \vdash A$$

2. $\vdash \neg A, A$
3. $\vdash A \lor \neg A, A$
4. $\vdash A \lor \neg A, \neg A \lor A$
5. $\vdash A \lor \neg A$

(id) $(\neg R)$ (Disjunction)) (Disjunction))

Example

Show $\vdash A \Rightarrow (B \Rightarrow A)$

- 1. $A \vdash A$ 2. $A, B \vdash A$
- **3.** $A \vdash B \Rightarrow A$
- $4. \qquad \vdash A \Rightarrow (B \Rightarrow A)$

(id) (Thinning) (Implication (\Rightarrow R)) (Implication (\Rightarrow R))

Show in sequent calculus

$\vdash (A \Rightarrow (B \Rightarrow C)) \Leftrightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))$