
Logic and Computation
CS245

Dr. Borzoo Bonakdarpour

University of Waterloo

(Fall 2012)

Resolution in First-order Predicate Logic

Logic and Computation – p. 1/38



Agenda

Resolution in Propositional Logic

Prenex Normal Form

Skolemization

Ground Resolution in FOL

Unification

General Resolution

Logic and Computation – p. 2/38



Literals and Clauses

A literal is a propositional variable or the negation
of a propositional variable.

Two literals are said to be complements (or
conjugate), if one is the negation of the other
(e.g., p and ¬p)

A formula of the form Ci = p1 ∨ p2 ∨ · · · ∨ pn,
where each pi is a literal is called a clause.

Logic and Computation – p. 3/38



CNF
A formula in the conjunctive normal form (CNF)
is a conjunction of clauses

For example, these formulas are in CNF:

(p ∨ q) ∧ (¬q ∨ r ∨ ¬m) ∧ (m ∨ ¬n)

p ∧ q

It is possible to convert any formula into an
equivalent formula in CNF.

Logic and Computation – p. 4/38



CNF
The CNF equivalent of the following formulas:

(p ∧ q) ∨ r

¬(p ∨ q)

are these:
(p ∨ r) ∧ (q ∨ r)

¬p ∧ ¬q

Logic and Computation – p. 5/38



Resolution Rule

p1 ∨ · · · ∨ pi ∨ . . . pn, q1 ∨ · · · ∨ qj ∨ . . . qm

p1 ∨ · · · ∨ pi−1 ∨ pi+1 ∨ . . . pn ∨ q1 · · · ∨ qj−1 ∨ qj+1 ∨ · · · ∨ qm

where p1 . . . pn, q1 . . . qm are propositions and pi and qj are
complements.

The clause produced by the resolution rule is called the
resolvent of the two input clauses.

The upper side of the rull is in CNF and may have multiple
clauses.

Logic and Computation – p. 6/38



Proof by Resolution

The resolution rule can be used to develop a
finite-step proof for propositional logic:

1- Transform the CNF formual into a set S of
caulses. For example, for formula:

(p ∨ q ∨ r) ∧ (¬r ∨ ¬p ∨m) ∧ q

we have:

S = {{p, q, r}, {¬r,¬p,m}, {q}}

Logic and Computation – p. 7/38



Proof by Resolution

2- The resolution rule is applied to all possible
pairs of clauses that contain complementary
literals. After each application of the resolution
rule, the resulting sentence is simplified by

Removing repeated literals.

If the sentence contains complementary
literals, it is removed (as a validity).

If not, and if it is not yet present in the clause
set S, then it is added to S, and is considered
for further resolution inferences.

Logic and Computation – p. 8/38



Proof by Resolution

Example:

p ∨ q, ¬p ∨ r

q ∨ r

This is equal to (different syntax):

{p, q}, {¬p, r}

{q, r}

Logic and Computation – p. 9/38



Proof by Resolution

Example (in directed acyclic graph):

{p}

{p, q} {p,¬q} {¬p, q}

{q}

3- If the empty clause cannot be derived, and the
resolution rule cannot be applied to derive any
more new clauses, then the original formula is
satisfiable.

Logic and Computation – p. 10/38



Proof by Resolution

4- If after applying a resolution rule the empty
clause is derived, the original formula is
unsatisfiable (i.e., a contradiction).
Example:

{}

{p, q} {p ∨ ¬q} {¬p ∨ q} {¬p ∨ ¬q}

{p} {q}

{¬p}

Logic and Computation – p. 11/38



Example

S = (p∨ r)∧ (r ⇒ q)∧¬q ∧ (p⇒ t)∧¬s∧ (t⇒ s)

S = (p∨ r)∧ (¬r∨ q)∧¬q∧ (¬p∨ t)∧¬s∧ (¬t∨ s)

S = {{p, r}, {¬r, q}, {¬q}, {¬p, t}, {¬s}, {¬t, s}}

{¬p, s}

{p, r}

{¬q}{p, q}

{q,¬r}

{p}

{¬s}

{¬p}

{s,¬t}{¬p, t}

{}

Logic and Computation – p. 12/38



Soundness and
Completeness

Resolution for propositional logic is sound and
complete.

Logic and Computation – p. 13/38



Prenex Normal Form
A first-order formula is in prenex normal form
(PNF), if it is written as a string of quantifiers
followed by a quantifier-free part.

Every first-order formula has an equivalent
formula in PNF. For example, formula

∀x((∃yA(y)) ∨ ((∃zB(z)) → C(x)))

has the following PNF:

∀x∃y∀z(A(y) ∨ (B(z) → C(x)))

Logic and Computation – p. 14/38



Conversion to PNF

The rules for conjunction and disjunction say that

(∀xφ) ∧ ψ is equivalent to ∀x(φ ∧ ψ)
(∀xφ) ∨ ψ is equivalent to ∀x(φ ∨ ψ)

and

(∃xφ) ∧ ψ is equivalent to ∃x(φ ∧ ψ)
(∃xφ) ∨ ψ is equivalent to ∃x(φ ∨ ψ)

Logic and Computation – p. 15/38



Conversion to PNF

The rules for negation say that

¬∃xφ is equivalent to ∀x¬φ

and

¬∀xφ is equivalent to ∃x¬φ

Logic and Computation – p. 16/38



Conversion to PNF

The rules for removing quantifiers from the
antecedent are:

(∀xφ) → ψ is equivalent to ∃x(φ→ ψ)
(∃xφ) → ψ is equivalent to ∀x(φ→ ψ)

The rules for removing quantifiers from the
consequent are:

φ→ (∃xψ) is equivalent to ∃x(φ→ ψ)
φ→ (∀xψ) is equivalent to ∀x(φ→ ψ)

Logic and Computation – p. 17/38



Example

Suppose that φ, ψ, and ρ are quantifier-free
formulas and no two of these formulas share any
free variable. The formula

(φ ∨ ∃xψ) → ∀zρ

can be transformed into PNF as follows:

(∃x(φ ∨ ψ)) → ∀zρ
∀x((φ ∨ ψ) → ∀zρ)
∀x(∀z((φ ∨ ψ) → ρ))
∀x∀z((φ ∨ ψ) → ρ)

Logic and Computation – p. 18/38



NNF
A formula is in negation normal form if negation
occurs only immediately above propositions, and
{¬,∨,∧} are the only allowed Boolean
connectives.

It is possible to convert any first-order formula to
an equivalent formula in NNF:

¬(∀x.G) → ∃x.¬G
¬(∃x.G) → ∀x.¬G
¬¬G→ G
¬(G1 ∧G2) → (¬G1) ∨ (¬G2)
¬(G1 ∨G2) → (¬G1) ∧ (¬G2)

Logic and Computation – p. 19/38



SNM: Skolemization
Reduction to Skolem normal form is a method for
removing existential quantifiers from first-order
formulas

A first-order formula is in SNF, if it is in
conjunctive PNF with only universal first-order
quantifiers.

Important note: Skolemization only preserves
satisfiability.

Logic and Computation – p. 20/38



Skolemization

Skolemization is performed by replacing every
existentially quantified variable y with a term
f(x1, . . . , xn) where function f does not occur
anywhere else in the formula.

If the formula is in PNF, x1, . . . , xn are the
variables that are universally quantified where
quantifiers precede that of y. The function f is
called a Skolem function.

Logic and Computation – p. 21/38



Skolemization
In general,

∀x1 . . . xk∃y.ϕ(x1 . . . xk, y) →
∀x1 . . . xk.ϕ(x1 . . . xk, f(x1 . . . xk))

For example, the formula

∀x∃y∀z.P (x, y, z)

is not in SNF. Skolemization results in

∀x∀z.P (x, f(x), z)

Logic and Computation – p. 22/38



Ground Clauses

A sentence A is in clause form iff it is a
conjunction of (prenex) sentences of the form
∀x1 . . . ∀xm.C, where C is a disjunction of literals,
and the sets of bound variables {x1, . . . , xm} are
disjoint for any two distinct clauses.

Each sentence ∀x1 . . . ∀xm.C is called a clause.

If a clause in A has no quantifiers and does not
contain any variables, we say that it is a ground
clause.

Logic and Computation – p. 23/38



Ground Clauses

Lemma. For every sentence A, a sentence B in
clause form such that A is valid iff B is
unsatisfiable can be constructed.

Logic and Computation – p. 24/38



Example

Let
A = ¬∃y.∀z.(P (z, y) ⇔ ¬∃x.(P (z, x) ∧ P (x, z))).

First, we negate A and eliminate ⇔:

∃y.∀z.[(¬P (z, y) ∨ ¬∃x.(P (z, x) ∧ P (x, z)))∧

(∃x.(P (z, x) ∧ P (x, z)) ∨ P (z, y))]

Logic and Computation – p. 25/38



Example

Next, we put in this formula in NNF:

∃y.∀z.[(¬P (z, y) ∨ ∀x.(¬P (z, x) ∨ ¬P (x, z)))∧

(∃x.(P (z, x) ∧ P (x, z)) ∨ P (z, y))]

Next, we Skolemize:

∀z.[(¬P (z, a) ∨ ∀x.(¬P (z, x) ∨ ¬P (x, z)))∧

((P (z, f(z)) ∧ P (f(z), z)) ∨ P (z, a))]

Logic and Computation – p. 26/38



Example

We now put in prenex form:

∀z.∀x.[(¬P (z, a) ∨ (¬P (z, x) ∨ ¬P (x, z)))∧

((P (z, f(z)) ∧ P (f(z), z)) ∨ P (z, a))]

We put in CNF by distributing ∧ over ∨:

∀z.∀x.[(¬P (z, a) ∨ (¬P (z, x) ∨ ¬P (x, z)))∧

(P (z, f(z)) ∨ P (z, a)) ∧ (P (f(z), z)) ∨ P (z, a))]
Logic and Computation – p. 27/38



Example

Omitting universal quantifiers, we have the
following three clauses:

C1 = (¬P (z1, a) ∨ (¬P (z1, x) ∨ ¬P (x, z1))

C2 = (P (z2, f(z2)) ∨ P (z2, a))

C3 = (P (f(z3), z3)) ∨ P (z3, a))]

Logic and Computation – p. 28/38



Ground Resolution

Suppose, we want to prove (for the previous
example) that B = ¬A is unsatisfiable.

The ground resolution method is the resolution
method applied to sets of ground clauses.

Logic and Computation – p. 29/38



Ground Resolution

For example,

G1 = (¬P (a, a))
(from C1, substituting a for x and z1)

G2 = (P (a, f(a)) ∨ P (a, a))
(from C2, substituting a for z2)

G3 = (P (f(a), a)) ∨ P (a, a))
(from C3, substituting a for z3)

G4 = (¬P (f(a), a) ∨ ¬P (a, f(a)))
(from C1, substituting f(a) for z1 and a for x)

Logic and Computation – p. 30/38



Example

{}

G2

{P (f(a), a)}

G1

{P (a, f(a))}

G3 G4

{¬P (a, f(a))}

Logic and Computation – p. 31/38



Unification
To generalize ground resolution to arbitrary
clauses, one is allowed to apply substitutions to
the parent clauses.

For example, to obtain {P (a, f(a))} from

C1 = (¬P (z1, a) ∨ ¬P (z1, x) ∨ ¬P (x, z1)) and
C2 = (P (z2, f(z2)) ∨ P (z2, a)),
first we substitute a for z1, a for x, and a for z2,
obtaining

G1 = (¬P (a, a)) and G2 = (P (a, f(a)) ∨ P (a, a))

and then we resolve on the literal P (a, a).Logic and Computation – p. 32/38



Unification

Note that the two sets of literals
{P (z1, a), P (z1, x), P (x, z1)} and {P (z2, a)}
obtained by dropping the negation sign in C1

have been unified by the substitution
(a/x, a/z1, a/z2).

Given two terms t and t′ that do not share any
variables, a substitution θ is called a unifier iff

θ(t) = θ(t′)

Logic and Computation – p. 33/38



Example

1. Let t1 = f(x, g(y)) and t2 = f(g(u), g(z)). The
substitution (g(u)/x, y/z) is a most general
unifier yielding the most common instance
f(g(u), g(y)).

2. However, t1 = f(x, g(y)) and t2 = f(g(u), h(z))
are not unifiable since this requires g = h.

3. Let t1 = f(x, g(x), x) and
t2 = f(g(u), g(g(z)), z). To unify these two, we
must have x = g(u) = z. But we also need
g(x) = g(g(z)), that is, x = g(z). This implies
z = g(z).

Logic and Computation – p. 34/38



General Resolution
1. Find two clauses containing the same predicate, where

it is negated in one clause but not in the other.

2. Perform a unification on the two predicates. (If the
unification fails, you made a bad choice of predicates.
Go back to the previous step and try again.)

3. If any unbound variables which were bound in the
unified predicates also occur in other predicates in the
two clauses, replace them with their bound values
(terms) there as well.

4. Discard the unified predicates, and combine the
remaining ones from the two clauses into a new
clause, also joined by the ∨ operator.

Logic and Computation – p. 35/38



Example

For clauses

A = (¬P (z, a) ∨ (¬P (z, x) ∨ ¬P (x, z))
B = (P (z, f(z)) ∨ P (z, a))

We choose subsets A′ = A and B′ = {P (z, a)}
and and unifier (a/z, a/x), we obtain resolvent

C = {P (a, f(a)}

Logic and Computation – p. 36/38



Example

C1 = (¬P (z1, a) ∨ (¬P (z1, x) ∨ ¬P (x, z1))

C2 = (P (z2, f(z2)) ∨ P (z2, a))

C3 = (P (f(z3), z3)) ∨ P (z3, a))]

Logic and Computation – p. 37/38



Example

(f(a)/z1, a/x)

C2

{P (f(a), a)}

C1

(a/z1, a/z3, a/x)

{¬P (a, f(a))}

{P (a, f(a))}
(a/z1, a/z2, a/x)

{}

C3

Logic and Computation – p. 38/38


	Agenda
	Literals and Clauses
	CNF
	CNF
	Resolution Rule
	Proof by Resolution
	Proof by Resolution
	Proof by Resolution
	Proof by Resolution
	Proof by Resolution
	Example
	Soundness and Completeness
	Prenex Normal Form
	Conversion to PNF
	Conversion to PNF
	Conversion to PNF
	Example
	NNF
	SNM: Skolemization
	Skolemization
	Skolemization
	Ground Clauses
	Ground Clauses
	Example
	Example
	Example
	Example
	Ground Resolution
	Ground Resolution
	Example
	Unification
	Unification
	Example
	General Resolution
	Example
	Example
	Example

