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Literals and Clauses

A literal is a propositional variable or the negation
of a propositional variable.

Two literals are said to be complements (or
conjugate), if one is the negation of the other
(e.g., p and ¬p)

A formula of the form Ci = p1 ∨ p2 ∨ · · · ∨ pn,
where each pi is a literal is called a clause.
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CNF
A formula in the conjunctive normal form (CNF)
is a conjunction of clauses

For example, these formulas are in CNF:

(p ∨ q) ∧ (¬q ∨ r ∨ ¬m) ∧ (m ∨ ¬n)

p ∧ q

It is possible to convert any formula into an
equivalent formula in CNF.
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CNF
The CNF equivalent of the following formulas:

(p ∧ q) ∨ r

¬(p ∨ q)

are these:
(p ∨ r) ∧ (q ∨ r)

¬p ∧ ¬q
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Resolution Rule

p1 ∨ · · · ∨ pi ∨ . . . pn, q1 ∨ · · · ∨ qj ∨ . . . qm

p1 ∨ · · · ∨ pi−1 ∨ pi+1 ∨ . . . pn ∨ q1 · · · ∨ qj−1 ∨ qj+1 ∨ · · · ∨ qm

where p1 . . . pn, q1 . . . qm are propositions and pi and qj are
complements.

The clause produced by the resolution rule is called the
resolvent of the two input clauses.

The upper side of the rull is in CNF and may have multiple
clauses.
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Proof by Resolution

The resolution rule can be used to develop a
finite-step proof for propositional logic:

1- Transform the CNF formual into a set S of
caulses. For example, for formula:

(p ∨ q ∨ r) ∧ (¬r ∨ ¬p ∨m) ∧ q

we have:

S = {{p, q, r}, {¬r,¬p,m}, {q}}
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Proof by Resolution

2- The resolution rule is applied to all possible
pairs of clauses that contain complementary
literals. After each application of the resolution
rule, the resulting sentence is simplified by

Removing repeated literals.

If the sentence contains complementary
literals, it is removed (as a validity).

If not, and if it is not yet present in the clause
set S, then it is added to S, and is considered
for further resolution inferences.
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Proof by Resolution

Example:

p ∨ q, ¬p ∨ r

q ∨ r

This is equal to (different syntax):

{p, q}, {¬p, r}

{q, r}
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Proof by Resolution

Example (in directed acyclic graph):

{p}

{p, q} {p,¬q} {¬p, q}

{q}

3- If the empty clause cannot be derived, and the
resolution rule cannot be applied to derive any
more new clauses, then the original formula is
satisfiable.
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Proof by Resolution

4- If after applying a resolution rule the empty
clause is derived, the original formula is
unsatisfiable (i.e., a contradiction).
Example:

{}

{p, q} {p ∨ ¬q} {¬p ∨ q} {¬p ∨ ¬q}

{p} {q}

{¬p}
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Example

S = (p∨ r)∧ (r ⇒ q)∧¬q ∧ (p⇒ t)∧¬s∧ (t⇒ s)

S = (p∨ r)∧ (¬r∨ q)∧¬q∧ (¬p∨ t)∧¬s∧ (¬t∨ s)

S = {{p, r}, {¬r, q}, {¬q}, {¬p, t}, {¬s}, {¬t, s}}

{¬p, s}

{p, r}

{¬q}{p, q}

{q,¬r}

{p}

{¬s}

{¬p}

{s,¬t}{¬p, t}

{}
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Soundness and
Completeness

Resolution for propositional logic is sound and
complete.
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Prenex Normal Form
A first-order formula is in prenex normal form
(PNF), if it is written as a string of quantifiers
followed by a quantifier-free part.

Every first-order formula has an equivalent
formula in PNF. For example, formula

∀x((∃yA(y)) ∨ ((∃zB(z)) → C(x)))

has the following PNF:

∀x∃y∀z(A(y) ∨ (B(z) → C(x)))
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Conversion to PNF

The rules for conjunction and disjunction say that

(∀xφ) ∧ ψ is equivalent to ∀x(φ ∧ ψ)
(∀xφ) ∨ ψ is equivalent to ∀x(φ ∨ ψ)

and

(∃xφ) ∧ ψ is equivalent to ∃x(φ ∧ ψ)
(∃xφ) ∨ ψ is equivalent to ∃x(φ ∨ ψ)
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Conversion to PNF

The rules for negation say that

¬∃xφ is equivalent to ∀x¬φ

and

¬∀xφ is equivalent to ∃x¬φ
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Conversion to PNF

The rules for removing quantifiers from the
antecedent are:

(∀xφ) → ψ is equivalent to ∃x(φ→ ψ)
(∃xφ) → ψ is equivalent to ∀x(φ→ ψ)

The rules for removing quantifiers from the
consequent are:

φ→ (∃xψ) is equivalent to ∃x(φ→ ψ)
φ→ (∀xψ) is equivalent to ∀x(φ→ ψ)
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Example

Suppose that φ, ψ, and ρ are quantifier-free
formulas and no two of these formulas share any
free variable. The formula

(φ ∨ ∃xψ) → ∀zρ

can be transformed into PNF as follows:

(∃x(φ ∨ ψ)) → ∀zρ
∀x((φ ∨ ψ) → ∀zρ)
∀x(∀z((φ ∨ ψ) → ρ))
∀x∀z((φ ∨ ψ) → ρ)
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NNF
A formula is in negation normal form if negation
occurs only immediately above propositions, and
{¬,∨,∧} are the only allowed Boolean
connectives.

It is possible to convert any first-order formula to
an equivalent formula in NNF:

¬(∀x.G) → ∃x.¬G
¬(∃x.G) → ∀x.¬G
¬¬G→ G
¬(G1 ∧G2) → (¬G1) ∨ (¬G2)
¬(G1 ∨G2) → (¬G1) ∧ (¬G2)
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SNM: Skolemization
Reduction to Skolem normal form is a method for
removing existential quantifiers from first-order
formulas

A first-order formula is in SNF, if it is in
conjunctive PNF with only universal first-order
quantifiers.

Important note: Skolemization only preserves
satisfiability.
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Skolemization

Skolemization is performed by replacing every
existentially quantified variable y with a term
f(x1, . . . , xn) where function f does not occur
anywhere else in the formula.

If the formula is in PNF, x1, . . . , xn are the
variables that are universally quantified where
quantifiers precede that of y. The function f is
called a Skolem function.
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Skolemization
In general,

∀x1 . . . xk∃y.ϕ(x1 . . . xk, y) →
∀x1 . . . xk.ϕ(x1 . . . xk, f(x1 . . . xk))

For example, the formula

∀x∃y∀z.P (x, y, z)

is not in SNF. Skolemization results in

∀x∀z.P (x, f(x), z)
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Ground Clauses

A sentence A is in clause form iff it is a
conjunction of (prenex) sentences of the form
∀x1 . . . ∀xm.C, where C is a disjunction of literals,
and the sets of bound variables {x1, . . . , xm} are
disjoint for any two distinct clauses.

Each sentence ∀x1 . . . ∀xm.C is called a clause.

If a clause in A has no quantifiers and does not
contain any variables, we say that it is a ground
clause.
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Ground Clauses

Lemma. For every sentence A, a sentence B in
clause form such that A is valid iff B is
unsatisfiable can be constructed.

Logic and Computation – p. 24/38



Example

Let
A = ¬∃y.∀z.(P (z, y) ⇔ ¬∃x.(P (z, x) ∧ P (x, z))).

First, we negate A and eliminate ⇔:

∃y.∀z.[(¬P (z, y) ∨ ¬∃x.(P (z, x) ∧ P (x, z)))∧

(∃x.(P (z, x) ∧ P (x, z)) ∨ P (z, y))]
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Example

Next, we put in this formula in NNF:

∃y.∀z.[(¬P (z, y) ∨ ∀x.(¬P (z, x) ∨ ¬P (x, z)))∧

(∃x.(P (z, x) ∧ P (x, z)) ∨ P (z, y))]

Next, we Skolemize:

∀z.[(¬P (z, a) ∨ ∀x.(¬P (z, x) ∨ ¬P (x, z)))∧

((P (z, f(z)) ∧ P (f(z), z)) ∨ P (z, a))]
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Example

We now put in prenex form:

∀z.∀x.[(¬P (z, a) ∨ (¬P (z, x) ∨ ¬P (x, z)))∧

((P (z, f(z)) ∧ P (f(z), z)) ∨ P (z, a))]

We put in CNF by distributing ∧ over ∨:

∀z.∀x.[(¬P (z, a) ∨ (¬P (z, x) ∨ ¬P (x, z)))∧

(P (z, f(z)) ∨ P (z, a)) ∧ (P (f(z), z)) ∨ P (z, a))]
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Example

Omitting universal quantifiers, we have the
following three clauses:

C1 = (¬P (z1, a) ∨ (¬P (z1, x) ∨ ¬P (x, z1))

C2 = (P (z2, f(z2)) ∨ P (z2, a))

C3 = (P (f(z3), z3)) ∨ P (z3, a))]
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Ground Resolution

Suppose, we want to prove (for the previous
example) that B = ¬A is unsatisfiable.

The ground resolution method is the resolution
method applied to sets of ground clauses.
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Ground Resolution

For example,

G1 = (¬P (a, a))
(from C1, substituting a for x and z1)

G2 = (P (a, f(a)) ∨ P (a, a))
(from C2, substituting a for z2)

G3 = (P (f(a), a)) ∨ P (a, a))
(from C3, substituting a for z3)

G4 = (¬P (f(a), a) ∨ ¬P (a, f(a)))
(from C1, substituting f(a) for z1 and a for x)
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Example

{}

G2

{P (f(a), a)}

G1

{P (a, f(a))}

G3 G4

{¬P (a, f(a))}
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Unification
To generalize ground resolution to arbitrary
clauses, one is allowed to apply substitutions to
the parent clauses.

For example, to obtain {P (a, f(a))} from

C1 = (¬P (z1, a) ∨ ¬P (z1, x) ∨ ¬P (x, z1)) and
C2 = (P (z2, f(z2)) ∨ P (z2, a)),
first we substitute a for z1, a for x, and a for z2,
obtaining

G1 = (¬P (a, a)) and G2 = (P (a, f(a)) ∨ P (a, a))
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Unification

Note that the two sets of literals
{P (z1, a), P (z1, x), P (x, z1)} and {P (z2, a)}
obtained by dropping the negation sign in C1

have been unified by the substitution
(a/x, a/z1, a/z2).

Given two terms t and t′ that do not share any
variables, a substitution θ is called a unifier iff

θ(t) = θ(t′)
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Example

1. Let t1 = f(x, g(y)) and t2 = f(g(u), g(z)). The
substitution (g(u)/x, y/z) is a most general
unifier yielding the most common instance
f(g(u), g(y)).

2. However, t1 = f(x, g(y)) and t2 = f(g(u), h(z))
are not unifiable since this requires g = h.

3. Let t1 = f(x, g(x), x) and
t2 = f(g(u), g(g(z)), z). To unify these two, we
must have x = g(u) = z. But we also need
g(x) = g(g(z)), that is, x = g(z). This implies
z = g(z).
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General Resolution
1. Find two clauses containing the same predicate, where

it is negated in one clause but not in the other.

2. Perform a unification on the two predicates. (If the
unification fails, you made a bad choice of predicates.
Go back to the previous step and try again.)

3. If any unbound variables which were bound in the
unified predicates also occur in other predicates in the
two clauses, replace them with their bound values
(terms) there as well.

4. Discard the unified predicates, and combine the
remaining ones from the two clauses into a new
clause, also joined by the ∨ operator.
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Example

For clauses

A = (¬P (z, a) ∨ (¬P (z, x) ∨ ¬P (x, z))
B = (P (z, f(z)) ∨ P (z, a))

We choose subsets A′ = A and B′ = {P (z, a)}
and and unifier (a/z, a/x), we obtain resolvent

C = {P (a, f(a)}
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Example

C1 = (¬P (z1, a) ∨ (¬P (z1, x) ∨ ¬P (x, z1))

C2 = (P (z2, f(z2)) ∨ P (z2, a))

C3 = (P (f(z3), z3)) ∨ P (z3, a))]
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Example

(f(a)/z1, a/x)

C2

{P (f(a), a)}

C1

(a/z1, a/z3, a/x)

{¬P (a, f(a))}

{P (a, f(a))}
(a/z1, a/z2, a/x)

{}

C3
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