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Motivation

In propositional logic, only the logical forms of
compound propositions are analyzed.

We need some way to talk about individuals (also
called objects.
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Motivation
For example:

For any natural number n, there is a prime
number greater than n.

2100 is a natural number.

There is a prime number greater than 2100

First-order logic (also called predicate logic gives
us means to express and reason about objects.
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Motivation
We also need ability to define sets by set
comprehension {x | I |= ϕ(x)}

And incorporate relations.

As well as properties of interpretations (e.g., all
graphs that are ... )
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Structure of FOL

First-order logic is a scientific theory with the
following ingredients:

Domain of objects (individuals) (e.g., the set
of natural numbers)

Designated individuals (e.g., ‘0’)

Functions (e.g., ‘+’ and ‘.’)

Relations (e.g., ‘=’)
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Structure of FOL
We use variables that range over the domain to
make general statements:

For all x, x2 ≥ 0.
and in expressing conditions which individuals
may or may not satisfy:

x+ x = x.x

This condition is satisfied only by 0 and 2.
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Structure of FOL
One can use connectives to form compound
propositions.

We use the terms “for all ” and “there exists”
frequently (called quantifiers). For example:

For all ǫ > 0, there exists some δ > 0 such
that if |x− a| < δ, then |f(x)− b| < ǫ.

“For all” is called the universal quantifier and
“there exists” is called the existential quantifier.

Logic and Computation – p. 8/72



Propositions and
Functions

4 is even

is a proposition since 4 is an individual in N. If we
replace 4 by a variable x ranging over N, then

x is even

is not a proposition and has no truth value. It is a
proposition function.

A proposition function on a domain D is an n-ary
function mapping Dn into {0, 1}.
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Prefixing Quantifiers

Consider:
For all x, x is even.

There exists x, such that x is even.

Since x ranges over N, they mean:

For all natural numbers x, x is even.
There exists a natural number x, such that x is

even.

These have truth values!

Logic and Computation – p. 10/72



Bound and
Quantified Variables

Variables occurring in proposition functions are
free variables.

Quantified variables are called bound variables.
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Quantifiers for Finite
Domains

The universal and existential quantifiers may be
interpreted respectively as generalization of
conjunction and disjunction. If the domain
D = {α1, . . . , αk} is finite then:

For all x st. f(x) iff R(α1) and ... and R(αk)

There exists x st. R(x) iff R(α1) or ... or R(αk)

where R is a property.
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FOL Language L

1. Constant (individual) symbols (CS):
c, d, c1, c2, . . . , d1, d2 . . .

2. Function Symbols (FS):
f, g, h, f1, f2, . . . , g1, g2

3. Variables (V S): x, y, z, x1, x2, . . . , y1, y2 . . .

4. Predicate (Relational) Symbols (PS):
P,Q, P1, P2, . . . , Q1, Q2, . . .

5. Logical Connectives: ¬,∧,∨,⇒

6. Quantifiers: ∀ (for all) and ∃ (there exists)

7. Punctuation: ‘(’, ‘)’, ‘.’, and ‘,’.
Logic and Computation – p. 13/72



Example

0: constant ‘0’

S: function (successor) S(x) stands for: ‘x+1’

Eq: relation (equality) Eq(x, y) stands for:
‘x = y’

plus: function (addition) plus(x, y) stands for:
‘x+ y’

∀x.Eq(plus(x, S(S(0))), S(S(x))

means “Adding two to a number results in the
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Example

∀x.∀y.Eq(plus(x, y), plus(y, x))

means “Addition is commutative.”

¬∃x.Eq(0, S(x))

means “0 is not the successor of any number.”
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Terms
The set Term(L) of terms of L is defined using
the following rules:

All constants in CS are terms

All variables in V S are terms

it t1, . . . , tn ∈ Term(L) and f is an n-ary
function, then f(t1, . . . , tn) ∈ Term(L).

For example, 0, x, and y are terms and so are
S(0), plus(x, y).
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Syntax of FOL -
Atoms

An expression of L is an atom in Atoms(L) iff it is
of one of the forms P (t1, . . . , tn), where t1, . . . , tn
are terms in Term(L).
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Syntax of FOL -
Formulas

We define the set Form(L) of first-order logic
formulas inductively as follows:

1. Atom(L) ⊆ Form(L)

2. If A ∈ Form(L), then ¬A ∈ Form(L)

3. If A,B ∈ Form(L), then (A ∗B) ∈ Form(L),
where ∗ ∈ {∧,∨,⇒}

4. If A ∈ Form(L) and x ∈ V S, then
(∀x.A) ∈ Form(L) and (∃x.A) ∈ Form(L)
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Example

How is the following formula generated?

∀x.(F (b) ⇒ ∃y.(∀z.G(y, z) ∨ H(u, x, y)))
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Free and Bound
Variables

Let A ∈ Form(L). We define the set FV(A) of
free variables of A as follows:

1. {x | x appears in ti for some 0 < i ≤ ar(P )},
for A = P (t1, . . . , tar(P ))

2. FV(A) for B = (¬A)

3. FV(A) ∪ FV(B) for C = (A ∗B), where
∗ ∈ {∧,∨,⇒}

4. FV(A)− {x} for B = (∀x.A) or B = (∃x.A)

Variables not in FV(A) are called bound
variables. Logic and Computation – p. 20/72



Closed Formulas

A first-order formula A ∈ Form(L) is closed (also
called a sentence) if FV(A) = {}.
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Scope

If ∀x.A(x) or ∃x.A(x) is a segment of B, A(x) is
called the scope in B of the ∀x or ∃x on the left of
A(x).

In the following formula:

∃x.∀y.∃z.F (x, y, z)

what is the scope of ∀y?
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FOL Interpretations

First-order formulas are intended to express
propositions (i.e, true/false valuation). This is
accomplished by interpretations

Interpretations for the propositional language are
simple: they consist of assigning values to the
proposition symbols.

The first-order language includes more
ingrediants and, hence, the interpretations for it
are more complicated.
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FOL Interpretations

A first order interpretation I is a tuple (D, (.)I):

D is a non-empty set called the domain (or
universe); and

(.)I is an interpretation function that maps
constant symbols c ∈ CS to individuals
cI ∈ D;
function symbols f ∈ FS to functions
f I : Dar(f) → D; and
predicate symbols P ∈ PS to relations
P I ⊆ Dar(P ).
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FOL Interpretations

Let

f(g(a), f(b, c))

be a term. Let individuals a, b, and c be
interpreted as 4, 5, and 6 in N and functions f
and g are respectively as addition and squaring.
Then, the above term is interpreted as

42 + (5 + 6)

which is the individual 27 in N .
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FOL Interpretations

Let functions f and g are respectively addition
and squaring and P be the equality relation. Let

P (f(g(a), g(b)), g(c))

be a closed formula, where individuals a, b, and c
be interpreted as 4, 5, and 6 in N .Then, the
above predicate is interpreted as the false
proposition (why?).
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FOL Valuations
Now, consider the non-closed formula:

P (f(g(u), g(b)), g(w))

where only b is interpreted as 5. One can
interpret this formula by:

x2 + 52 = y2

where x and y are free variables. This is not a
proposition, but a binary proposition function in
N. One can obtain a truth value by assigning
individuals in N to x and y. This is called a
valuation. Logic and Computation – p. 27/72



FOL Valuations

A valuation θ (also called an assignment) is a
mapping from V S, the set of variables, to domain
D.

For example, for the non-closed formula

x2 + 42 = y2

θ(x) = 3 and θ(y) = 5 evaluates the formula to
the true proposition.
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Meaning of Terms

Let I be a first order interpretation and θ a
valuation. For a term t in Term(L), we define
interpretation of t, tI , as follows:

1. cI,θ = cI for t ∈ CS (i.e., t is a constant);

2. xI,θ = θ(x) for t ∈ V S (i.e., t is a variable); and

3. f(t1, . . . , tar(f))I,θ = f I((t1)
I,θ, . . . , (tar(f))

I,θ),
otherwise (i.e., for t a functional term).
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Satisfaction Relation
The satisfaction relation |= between an interpretation I, a
valuation θ, and a first-order formula ϕ is defined as:

I, θ |= P (t1, . . . , tar(P )) iff 〈(t1)I,θ, . . . , (tar(P ))
I,θ〉 ∈ P I for

P ∈ PS

I, θ |= ¬ϕ if and only if I, θ |= ϕ is not true

I, θ |= ϕ ∧ ψ if and only if I, θ |= ϕ and I, θ |= ψ

I, θ |= (∀x.ϕ) if and only if I, θ([x = v]) |= ϕ for all v ∈ D

where the valuation [x = v](y) is defined to be v when
x = y and θ otherwise.
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Satisfaction Relation

One can also trivially define the following:

I, θ |= ϕ ∨ ψ if and only if I, θ |= ϕ or I, θ |= ψ

I, θ |= (∃x.ϕ) if and only if I, θ([x = v]) |= ϕ for
some v ∈ D

where the valuation [x = v](y) is defined to be v
when x = y and θ otherwise.
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Some Remarks
1. 〈(t1)I,θ, . . . , (tar(P ))

I,θ〉 ∈ P I means that
(t1)

I,θ, . . . , (tar(P ))
I,θ is in relation P I

2. If A(x) is a variable with no free occurrence of
u an A(u) is a formula with no free
occurrence of x, then A(x) and A(u) have the
same intuitive meaning.

3. For the same reason, ∀x.A(x) and ∀u.A(u)
have the same meaning.
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Relevance Lemma

Let ϕ be a first-order formula, I be an
interpretation, and θ1 and θ2 be two valuations
such that θ1(x) = θ2(x) for all x ∈ V S. Then,

I, θ1 |= ϕ iff I, θ2 |= ϕ

Proof by structural induction.
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Satisfiability and
Validity

Σ ⊆ Form(L) is satisfiable iff there is some
interpretation I and valuation θ, such that
I, θ |= ϕ for all ϕ ∈ Σ.

A formula ϕ ∈ Form(L) is valid iff for all
interpretations I and valuations θ, we have
I, θ |= ϕ
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Example

Let ϕ = P (f(g(x), g(y)), g(z)) be a formula. The
formula is satisfiable:

f I = summation

gI = squaring

P I = equality

θ(x) = 3, θ(y) = 4, θ(z) = 5

ϕ is not valid. (why?)
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Logical
Consequence

Suppose Σ ⊆ Form(L) and ϕ ∈ Form(L). We
say that ϕ is a logical consequence of Σ (that is, of
the formulas in Σ), written as Σ |= ϕ, iff for any
interpretation I and valuation θ, we have I, θ |= Σ
implies I, θ |= ϕ.

|= ϕ means that ϕ is valid.
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Example

Show that |= ∀x.(ϕ⇒ ψ) ⇒ ((∀x.ϕ) ⇒ (∀x.ψ))

Proof by contradiction: there exists I and θ st.
I, θ 6|= ∀x.(ϕ⇒ ψ) ⇒ ((∀x.ϕ) ⇒ (∀x.ψ))
I, θ |= ∀x.(ϕ⇒ ψ)
I, θ |= ∀x.ϕ
I, θ 6|= ∀x.ψ

I, θ([x = v]) |= ϕ

I, θ([x = v]) 6|= ψ

I, θ([x = v]) 6|= ϕ⇒ ψ

I, θ 6|= ∀x.(ϕ⇒ ψ) (contradiction)
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Example

Show that ∀x.¬A(x) |= ¬∃x.A(x)

Proof by contradiction: there exists I and θ st.
I, θ |= ∀x.¬A(x) and I, θ 6|= ¬∃x.A(x)
I, θ |= ∃x.A(x)

I, θ([x = v]) |= ¬A(x) for all v
I, θ([x = v]) |= A(x) for some v

Contradiction!
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Example

Show that ((∀x.ϕ) ⇒ (∀x.ψ)) 6|= ∀x.(ϕ⇒ ψ)
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Replacability and
Duality

Theorem. If B ≡ C and A′ results from A by
replacing some (not necessarily all) occurrences
of B in A by C, then A ≡ A′.

Theorem. Suppose A is a formula composed of
atoms and the connectives ¬, ∧, and ∨ by the
formation rules concerned, and A′ results by
exchanging in A, ∧ for ∨ and each atom for its
negation. Then A′ ≡ ¬A. (A′ is the dual of A)
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Substitution
1. For a term t1, (t1)xt is t1 with each occurrence of the

variable x replaced by the term t.

2. For ϕ = P (t1, . . . , tar(P )), (ϕ)xt = P
(

(t1)
x
t , . . . , (tar(P ))

x
t

)

.

3. For ϕ = (¬ψ), (ϕ)xt = (¬(ψ)xt );

4. For ϕ = (ψ → η), (ϕ)xt = ((ψ)xt → (η)xt ), and

5. for ϕ = (∀y.ψ), there are two cases:

if x is y, then (ϕ)xt = ϕ = (∀y.ψ), and

otherwise, then (ϕ)xt = (∀z.(ψy
z )

x
t ), where z is any

variable that is not free in t or in ϕ.
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Substitution
In the last case above, the additional substitution
(.)yz (i.e., renaming the variable y to z in ψ) is
needed in order to avoid an accidental capture of
a variable by the quantifier (i.e., capture of any y
that is possibly free in t).
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Substitution Lemma

|= ∀x.ϕ⇒ ϕx
t

I, θ |= ϕx
t iff I, θ[x = (t)I,θ] |= ϕ
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FOL Hilbert System

Ax1 〈∀∗(ϕ→ (ψ → ϕ))〉;
Ax2 〈∀∗((ϕ→ (ψ → η)) → ((ϕ→ ψ) → (ϕ→ η)))〉;
Ax3 〈∀∗(((¬ϕ) → (¬ψ)) → (ψ → ϕ))〉;
Ax4 〈∀∗(∀x.(ϕ→ ψ)) → ((∀x.ϕ) → (∀x.ψ))〉;
Ax5 〈∀∗(∀x.ϕ) → ϕ x

t 〉 for t ∈ T a term;
Ax6 〈∀∗(ϕ→ ∀x.ϕ)〉 for x 6∈ FV(ϕ); and
MP 〈ϕ, (ϕ→ ψ), ψ〉.

where ∀∗ is a finite sequence of universal
quantifiers (e.g., ∀x1.∀y.∀x).
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Generalization of
Axioms (why ∀∗)

Show that if Φ ⊢ ϕ and x 6∈ FV(Φ), then Φ ⊢ ∀x.ϕ.

Proof by structural induction.

Base case: ϕ is an axiom. Then, Φ ⊢ ∀x.ϕ.

Induction step (1): ϕ ∈ Φ

Φ ⊢ ϕ
⊢ ϕ⇒ ∀x.ϕ
Φ ⊢ ∀x.ϕ (MP and x 6∈ FV(ϕ))
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Generalization of
Axioms (why ∀∗)

Induction step (2): ψ ⇒ ϕ

1. Φ ⊢ ψ, Φ ⊢ ψ ⇒ ϕ (Induction hyp.)
2. Φ ⊢ (∀x.ψ) (Ax6)
3. Φ ⊢ ∀x.(ψ ⇒ ϕ) (Ax6)
4. Φ ⊢ (∀x.ψ) ⇒ ∀x.ϕ) (Ax5)
5. Φ ⊢ (∀x.ϕ) (MP)
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Example 1

Show that ⊢ ∀x.∀y.ϕ⇒ ∀y.∀x.ϕ

1. ∀x.∀y.ϕ (Deduction theorem)
2. ∀x.∀y.ϕ⇒ (∀y.ϕ)xt (Ax5)
3. (∀y.ϕ)xt (MP )
4. (∀y.ϕ)xt ⇒ ((ϕ)xt )

y
t′ (Ax5)

5. ((ϕ)xt )
y
t′ (MP )

6. ((ϕ)xt )
y
t′ ⇒ ∀x.(ϕ)xt (Ax6)

7. ∀x.(ϕ)xt (MP )
8. ∀x.(ϕ)xt ⇒ ∀y.∀x.ϕ (Ax6)
9. ∀y.∀x.ϕ (MP )
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Example 2

Show that ⊢ A(a) ⇒ ∃x.A(x)

1. ∀x.¬A(x) ⇒ ¬A(a) (Ax5)
2. A(a) ⇒ (¬∀x.¬A(x)) (Ax3)
3. A(a) ⇒ ∃x.A(x) (Definition of ∃)
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Example 3

Show that
⊢ ∀x.(A(x) ⇒ B(x)) ⇒ (∀x.A(x) ⇒ ∀x.B(x))

1. ∀x.(A(x) ⇒ B(x)) (Assumption)
2. ∀x.A(x) (Assumption)
3. ∀x.A(x) ⇒ A(a) (Ax5)
4. A(a) (MP 2, 3 )
5. ∀x.(A(x) ⇒ B(x)) ⇒ (A(a) ⇒ B(a)) (Ax5)
6. A(a) ⇒ B(a) (MP 1, 5 )
7. B(a) (MP 4, 6 )
8. B(a) ⇒ ∀x.B(x) (Ax6)
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Example 4

Show that ∃x.∀y.A(x, y) ⇒ ∀y.∃x.A(x, y).
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Soundness of FOL
Hilbert System

Step 1: Satisfiability and validity in domain

Suppose Σ ⊆ Forma(L), A ∈ Form(L), and D is
a domain.

1. Σ is satisfiable in D iff there is some model I,
θ over D such that I, θ |= ϕ for all ϕ ∈ Σ.

2. A is valid in D iff for all models I, θ over D,
we have I, θ |= A.
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Soundness of FOL
Hilbert System

Theorem. Suppose formula A contains no
equality symbol and |D| ≤ |D1|.

If A is satifiable in D, then A is satisfiable in
D1.

If A is valid in D1, then A is valid in D.
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Soundness of FOL
Hilbert System

Theorem (Soundness).

If Σ ⊢ A, then Σ |= A.

If ⊢ A, then |= A.
(That is, every formally provable formula is
valid.)
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Consistency

Σ ⊆ Form(L) is consistent iff there is no
A ∈ Form(L) such that Σ ⊢ A and Σ ⊢ ¬A.

Consistency is a syntactical notion

Theorem. If Σ is satifiable, then Σ is consistent.
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Maximal Consistency

Σ ⊆ Form(L) is maximal consistent iff

1. Σ is consistent

2. for any A ∈ Form(L) such that A 6∈ Σ,
Σ ∪ {A} is inconsistent.

Lemma. Suppose Σ is maximal consistent.
Then, A ∈ Σ iff Σ ⊢ A.

Lindenbaum Lemma. Any consistent set of
formulas can be extended to some maximal
consisten set. Logic and Computation – p. 55/72



Completeness of FOL

Theorem. Suppose Σ ⊆ Form(L). If Σ is
consistent, then Σ is satisfiable.

Theorem. Suppose Σ ⊆ Form(L). and
A ∈ Form(L). Then

1. If Σ |= A, then Σ ⊢ A.

2. If |= A, then ⊢ A.
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FOL with Equality

Let ≈ be a binary predicate symbol (written in
infix). We define the First-Order Axioms of
Equality as follows:

EqId 〈∀x.(x ≈ x)〉;
EqCong 〈∀x.∀y.(x ≈ y) → (ϕ z

x → ϕ z
y)〉;
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FOL with Equality

Gödel’s Completeness Theorem. Hilbert system
with (axiomatized) equality is

sound; i.e., if Σ ⊢ ϕ, then Σ |= ϕ and

complete; i.e, if Σ |= ϕ then Σ ⊢ ϕ

with respect to first-order logic with (true)
equality.

Logic and Computation – p. 58/72



Definability

Let I = (D, (.)I) be a first-order interpretation
and ϕ a first-order formula. A set S of k-tuples
over D, S ⊆ Dk, is defined by the formula ϕ if

S = {(θ(x1), . . . , θ(xk)) | I, θ |= ϕ}

A set S is definable in first-order logic if it is
defined by some first-order formula ϕ.
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Definability

Let Σ be a set of first-order sentences and K a
set of interpretations. We say that Σ defines K if

I ∈ K if and only if I |= Σ.

A set K is (strongly) definable if it is defined by a
(finite) set of first-order formulas Σ.
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Compactness in FOL

Theorem. Σ ⊆ Form(L) is satisfiable iff every
finite subset of Σ is satisfiable.

Corollary. Σ ⊆ Form(L) is satisfiable in a finite
domain, then Σ is satisfiable in an infinite
domain.

Corollary. The class of interpretations with finite
domain is not definable in first-order logic.
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Graphs

An undirected graph is a tuple (V,E), where V is
a set of vertices and E is a set of edges. An
edge is a pair (v1, v2), where v1, v2 ∈ V .

v5

v2v1 v3

v4

V = {v1, v2, v3, v4, v5}
E = {(v1, v2), (v2, v3), (v2, v4), (v1, v4), (v1, v5)}
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Graphs in FOL

If (v1, v2) ∈ E, we say that v1 is adjacent to v2.

Adjacency in a graph can be expressed by a
binary relation. Thus, relation E(v1, v2) is
interpreted as “v1 is adjacent to v2". A graph is
any model of the following 2 axioms:

1. ∀x.∀y.E(x, y) ⇒ E(y, x) (“if x is adjacent to y,
then y is adjacent to x”)

2. ∀x.¬E(x, x) (“no x is adjacent to itself”)
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Graphs in FOL

We can express many properties of a graph in
the language of first-order logic.

For instance, the property “G contains a triangle”
is the following formula:

∃x.∃y.∃z.(E(x, y) ∧ E(y, z) ∧ E(z, x))
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Example

Define first-order formulas for :

A graph has girth of size 4

A graph is 3-colorable
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Graph Connectivity
in FOL

We cannot express graph connectivity in FOL
(i.e., graph connectivity is not definable in FOL).

Proof.

Let predicate C express “G is a connected
graph". We add constants s and t vertices.

For any k, let Lk be the proposition “there is
no path of length k between s and t”. For
example,

L3 = ¬∃x.∃y.(E(s, x) ∧ E(x, y) ∧ E(y, t))
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Graph Connectivity
in FOL

Now consider the set of propositions

Σ = {axiom(1), axiom(2), C, L1, L2, . . . }

Σ is finitely satisfiable: there do exist
connected graphs with s and t, that are
connected by an arbitrarily long path. This is
because any finite subset F ⊂ Σ must have
bounded k’s, such a graph satisifes F .
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Graph Connectivity
in FOL

By the compactness theorem, Σ is satisfiable;
i.e., there exists some model G of all
propositions Σ, which is a graph that cannot
be connected by a path of length k, for any k,
for all k.

This is clearly wrong. In a connected graph,
any 2 nodes are connected by a path of finite
length!
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Cyclic Graphs in FOL

Prove that there is no first order sentence ϕ with
the property that for each undirected graph G,
there is G |= ϕ iff every vertex of G belongs to a
(finite) cycle in the graph.
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Cyclic Graphs in FOL

Assume that such a set Σ of sentences
exists. Extend the signature with a new
constant c and extend Σ with the set

{¬∃v1.∃v2 . . . ∃vn−1.∃vn.E(c, v1) ∧ E(v1, v2)∧
E(v2, v3) ∧ · · · ∧ E(vn−1, vn) ∧ E(vn, c)|n ∈ N}.
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Cyclic Graphs in FOL

The extended set satisfies the conditions of
the compactnes theorem: its every finite
subset is satisfiable, since a finite number of
added sentences prevent c from being on a
cycle of a few finite sizes, so as a model one
may take a finite cycle of sufficiently many
vertices.

As a result, the entire set has a model: a
contradiction, as c does not belong to any
cycle in it.
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Löwenheim-Skolem’s
Theorems

Theorem 1. Suppose Σ ⊆ Form(L).

1. Σ not containing equality is satisfiable iff Σ is
satisfiable in a countably infinite domain.

2. Σ containing equality is satisfiable iff Σ is
satisfiable in a countably infinite domain or in
some finite domain.
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Löwenheim-Skolem’s
Theorems

Theorem 2. Suppose A ∈ Form(L).

1. A not containing equality is valid iff A is valid
in a countably infinite domain.

2. A containing equality is valid iff A is valid in a
countably infinite domain or in every finite
domain.
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