Logic and Computation CS245

Dr. Borzoo Bonakdarpour

University of Waterloo

(Fall 2012)
First-order (Predicate) Logic

Agenda

- Syntax
- Semantics
- Proof System
- Soundness and Completeness

Motivation

In propositional logic, only the logical forms of compound propositions are analyzed.

We need some way to talk about individuals (also called objects.

Motivation

For example:
\square For any natural number n, there is a prime number greater than n.
$\square 2^{100}$ is a natural number.

- There is a prime number greater than 2^{100}

First-order logic (also called predicate logic gives us means to express and reason about objects.

Motivation

We also need ability to define sets by set comprehension $\{x \mid I \models \varphi(x)\}$

And incorporate relations.
As well as properties of interpretations (e.g., all graphs that are ...)

Structure of FOL

First-order logic is a scientific theory with the following ingredients:

■ Domain of objects (individuals) (e.g., the set of natural numbers)

- Designated individuals (e.g., '0')

■ Functions (e.g., '+' and '.')
■ Relations (e.g., '=’)

Structure of FOL

We use variables that range over the domain to make general statements:

$$
\text { For all } x, x^{2} \geq 0
$$

and in expressing conditions which individuals may or may not satisfy:

$$
x+x=x . x
$$

This condition is satisfied only by 0 and 2 .

Structure of FOL

One can use connectives to form compound propositions.

We use the terms "for all" and "there exists" frequently (called quantifiers). For example:
\square For all $\epsilon>0$, there exists some $\delta>0$ such that if $|x-a|<\delta$, then $|f(x)-b|<\epsilon$.
"For all" is called the universal quantifier and "there exists" is called the existential quantifier.

Propositions and Functions

4 is even

is a proposition since 4 is an individual in \mathbb{N}. If we replace 4 by a variable x ranging over \mathbb{N}, then

x is even

is not a proposition and has no truth value. It is a proposition function.

A proposition function on a domain D is an n-ary function mapping D^{n} into $\{0,1\}$.

Prefixing Quantifiers

Consider:
For all x, x is even.
There exists x, such that x is even.
Since x ranges over \mathbb{N}, they mean:
For all natural numbers x, x is even.
There exists a natural number x, such that x is even.

These have truth values!

Bound and Quantified Variables

Variables occurring in proposition functions are free variables.

Quantified variables are called bound variables.

Quantifiers for Finite Domains

The universal and existential quantifiers may be interpreted respectively as generalization of conjunction and disjunction. If the domain $D=\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$ is finite then:

For all x st. $f(x) \quad$ iff $\quad R\left(\alpha_{1}\right)$ and \ldots and $R\left(\alpha_{k}\right)$
There exists x st. $R(x)$ iff $R\left(\alpha_{1}\right)$ or \ldots or $R\left(\alpha_{k}\right)$
where R is a property.

FOL Language \mathcal{L}

1. Constant (individual) symbols (CS): $c, d, c_{1}, c_{2}, \ldots, d_{1}, d_{2} \ldots$
2. Function Symbols $(F S)$:
$f, g, h, f_{1}, f_{2}, \ldots, g_{1}, g_{2}$
3. Variables (VS): $x, y, z, x_{1}, x_{2}, \ldots, y_{1}, y_{2} \ldots$
4. Predicate (Relational) Symbols $(P S)$:
$P, Q, P_{1}, P_{2}, \ldots, Q_{1}, Q_{2}, \ldots$
5. Logical Connectives: $\neg, \wedge, \vee, \Rightarrow$
6. Quantifiers: \forall (for all) and \exists (there exists)
7. Punctuation: '(', ')', ‘', and ','.

Example

- 0: constant ' 0 ’

■ S : function (successor) $S(x)$ stands for: ' $x+1$ ’
■ Eq: relation (equality) $E q(x, y)$ stands for: ' $x=y$ '

- plus: function (addition) plus(x, y) stands for: ' $x+y$ '

$$
\forall x \cdot \operatorname{Eq}(\operatorname{plus}(x, S(S(0))), S(S(x))
$$

means "Adding two to a number results in the second successor of that number"

Example

$$
\forall x . \forall y \cdot \operatorname{Eq}(\operatorname{plus}(x, y), \operatorname{plus}(y, x))
$$

means "Addition is commutative."

$$
\neg \exists x \cdot \mathrm{Eq}(0, S(x))
$$

means " 0 is not the successor of any number."

Terms

The set $\operatorname{Term}(\mathcal{L})$ of terms of \mathcal{L} is defined using the following rules:

- All constants in $C S$ are terms
- All variables in $V S$ are terms
\square it $t_{1}, \ldots, t_{n} \in \operatorname{Term}(\mathcal{L})$ and f is an n-ary
function, then $f\left(t_{1}, \ldots, t_{n}\right) \in \operatorname{Term}(\mathcal{L})$.
For example, $0, x$, and y are terms and so are $S(0)$, plus (x, y).

Syntax of FOL Atoms

An expression of \mathcal{L} is an atom in Atoms (\mathcal{L}) iff it is of one of the forms $P\left(t_{1}, \ldots, t_{n}\right)$, where t_{1}, \ldots, t_{n} are terms in $\operatorname{Term}(\mathcal{L})$.

Syntax of FOL Formulas

We define the set $\operatorname{Form}(\mathcal{L})$ of first-order logic formulas inductively as follows:

1. $\operatorname{Atom}(\mathcal{L}) \subseteq \operatorname{Form}(\mathcal{L})$
2. If $A \in \operatorname{Form}(\mathcal{L})$, then $\neg A \in \operatorname{Form}(\mathcal{L})$
3. If $A, B \in \operatorname{Form}(\mathcal{L})$, then $(A * B) \in \operatorname{Form}(\mathcal{L})$,
where $* \in\{\wedge, \vee, \Rightarrow\}$
4. If $A \in \operatorname{Form}(\mathcal{L})$ and $x \in V S$, then
$(\forall x . A) \in \operatorname{Form}(\mathcal{L})$ and $(\exists x . A) \in \operatorname{Form}(\mathcal{L})$

Example

How is the following formula generated?

$$
\forall x \cdot(F(b) \Rightarrow \exists y \cdot(\forall z \cdot G(y, z) \vee H(u, x, y)))
$$

Free and Bound Variables

Let $A \in \operatorname{Form}(\mathcal{L})$. We define the set $\mathrm{FV}(A)$ of free variables of A as follows:

1. $\left\{x \mid x\right.$ appears in t_{i} for some $\left.0<i \leq \operatorname{ar}(P)\right\}$, for $A=P\left(t_{1}, \ldots, t_{\operatorname{ar}(P)}\right)$
2. $\mathrm{FV}(A)$ for $B=(\neg A)$
3. $\mathrm{FV}(A) \cup \mathrm{FV}(B)$ for $C=(A * B)$, where $* \in\{\wedge, \vee, \Rightarrow\}$
4. $\mathrm{FV}(A)-\{x\}$ for $B=(\forall x . A)$ or $B=(\exists x . A)$

Variables not in $\mathrm{FV}(A)$ are called bound variables.

Closed Formulas

A first-order formula $A \in \operatorname{Form}(\mathcal{L})$ is closed (also called a sentence) if $\mathrm{FV}(A)=\{ \}$.

Scope

If $\forall x . A(x)$ or $\exists x . A(x)$ is a segment of $B, A(x)$ is called the scope in B of the $\forall x$ or $\exists x$ on the left of $A(x)$.

In the following formula:

$$
\exists x \cdot \forall y \cdot \exists z \cdot F(x, y, z)
$$

what is the scope of $\forall y$?

FOL Interpretations

First-order formulas are intended to express propositions (i.e, true/false valuation). This is accomplished by interpretations

Interpretations for the propositional language are simple: they consist of assigning values to the proposition symbols.

The first-order language includes more ingrediants and, hence, the interpretations for it are more complicated.

FOL Interpretations

A first order interpretation I is a tuple $\left(D,(.)^{I}\right)$:
$■ D$ is a non-empty set called the domain (or universe); and

- (. $)^{I}$ is an interpretation function that maps - constant symbols $c \in C S$ to individuals $c^{I} \in D$;
- function symbols $f \in F S$ to functions $f^{I}: D^{\operatorname{ar}(f)} \rightarrow D$; and
\square predicate symbols $P \in P S$ to relations

$$
P^{I} \subseteq D^{a r(P)}
$$

FOL Interpretations

Let

$$
f(g(a), f(b, c))
$$

be a term. Let individuals a, b, and c be interpreted as 4,5 , and 6 in \mathcal{N} and functions f and g are respectively as addition and squaring. Then, the above term is interpreted as

$$
4^{2}+(5+6)
$$

which is the individual 27 in \mathcal{N}.

FOL Interpretations

Let functions f and g are respectively addition and squaring and P be the equality relation. Let

$$
P(f(g(a), g(b)), g(c))
$$

be a closed formula, where individuals a, b, and c be interpreted as 4,5 , and 6 in \mathcal{N}. Then, the above predicate is interpreted as the false proposition (why?).

FOL Valuations

Now, consider the non-closed formula:

$$
P(f(g(u), g(b)), g(w))
$$

where only b is interpreted as 5 . One can interpret this formula by:

$$
x^{2}+5^{2}=y^{2}
$$

where x and y are free variables. This is not a proposition, but a binary proposition function in \mathbb{N}. One can obtain a truth value by assigning individuals in \mathbb{N} to x and y. This is called a valuation.

FOL Valuations

A valuation θ (also called an assignment) is a mapping from $V S$, the set of variables, to domain D.

For example, for the non-closed formula

$$
x^{2}+4^{2}=y^{2}
$$

$\theta(x)=3$ and $\theta(y)=5$ evaluates the formula to the true proposition.

Meaning of Terms

Let I be a first order interpretation and θ a valuation. For a term t in $\operatorname{Term}(\mathcal{L})$, we define interpretation of t, t^{I}, as follows:

1. $c^{I, \theta}=c^{I}$ for $t \in C S$ (i.e., t is a constant);
2. $x^{I, \theta}=\theta(x)$ for $t \in V S$ (i.e., t is a variable); and
3. $f\left(t_{1}, \ldots, t_{a r(f)}\right)^{I, \theta}=f^{I}\left(\left(t_{1}\right)^{I, \theta}, \ldots,\left(t_{a r(f)}\right)^{I, \theta}\right)$, otherwise (i.e., for t a functional term).

Satisfaction Relation

The satisfaction relation \models between an interpretation I, a valuation θ, and a first-order formula φ is defined as:
$\square I, \theta \models P\left(t_{1}, \ldots, t_{\operatorname{ar}(P)}\right)$ iff $\left\langle\left(t_{1}\right)^{I, \theta}, \ldots,\left(t_{\operatorname{ar}(P)}\right)^{I, \theta}\right\rangle \in P^{I}$ for $P \in P S$
$\square I, \theta \models \neg \varphi$ if and only if $I, \theta \models \varphi$ is not true
$\square I, \theta \models \varphi \wedge \psi$ if and only if $I, \theta \models \varphi$ and $I, \theta \models \psi$
$\square I, \theta \models(\forall x . \varphi)$ if and only if $I, \theta([x=v]) \models \varphi$ for all $v \in D$
where the valuation $[x=v](y)$ is defined to be v when $x=y$ and θ otherwise.

Satisfaction Relation

One can also trivially define the following:
$\square I, \theta \models \varphi \vee \psi$ if and only if $I, \theta \models \varphi$ or $I, \theta \models \psi$
$\square I, \theta \models(\exists x . \varphi)$ if and only if $I, \theta([x=v]) \models \varphi$ for some $v \in D$
where the valuation $[x=v](y)$ is defined to be v when $x=y$ and θ otherwise.

Some Remarks

1. $\left\langle\left(t_{1}\right)^{I, \theta}, \ldots,\left(t_{\text {ar }(P)}\right)^{I, \theta}\right\rangle \in P^{I}$ means that $\left(t_{1}\right)^{I, \theta}, \ldots,\left(t_{\operatorname{ar}(P)}\right)^{I, \theta}$ is in relation P^{I}
2. If $A(x)$ is a variable with no free occurrence of u an $A(u)$ is a formula with no free occurrence of x, then $A(x)$ and $A(u)$ have the same intuitive meaning.
3. For the same reason, $\forall x . A(x)$ and $\forall u . A(u)$ have the same meaning.

Relevance Lemma

Let φ be a first-order formula, I be an interpretation, and θ_{1} and θ_{2} be two valuations such that $\theta_{1}(x)=\theta_{2}(x)$ for all $x \in V S$. Then,

$$
I, \theta_{1} \models \varphi \text { iff } I, \theta_{2} \models \varphi
$$

Proof by structural induction.

Satisfiability and Validity

$\Sigma \subseteq \operatorname{Form}(\mathcal{L})$ is satisfiable iff there is some interpretation I and valuation θ, such that $I, \theta \models \varphi$ for all $\varphi \in \Sigma$.

A formula $\varphi \in \operatorname{Form}(\mathcal{L})$ is valid iff for all interpretations I and valuations θ, we have $I, \theta \models \varphi$

Example

Let $\varphi=P(f(g(x), g(y)), g(z))$ be a formula. The formula is satisfiable:

- $f^{I}=$ summation
- $g^{I}=$ squaring
- $P^{I}=$ equality
- $\theta(x)=3, \theta(y)=4, \theta(z)=5$
φ is not valid. (why?)

Logical Consequence

Suppose $\Sigma \subseteq \operatorname{Form}(\mathcal{L})$ and $\varphi \in \operatorname{Form}(\mathcal{L})$. We say that φ is a logical consequence of Σ (that is, of the formulas in Σ), written as $\Sigma \models \varphi$, iff for any interpretation I and valuation θ, we have $I, \theta \models \Sigma$ implies $I, \theta \models \varphi$.
$\models \varphi$ means that φ is valid.

Example

Show that $\models \forall x .(\varphi \Rightarrow \psi) \Rightarrow((\forall x . \varphi) \Rightarrow(\forall x . \psi))$
Proof by contradiction: there exists I and θ st.
$I, \theta \not \vDash \forall x .(\varphi \Rightarrow \psi) \Rightarrow((\forall x . \varphi) \Rightarrow(\forall x . \psi))$
$I, \theta \models \forall x .(\varphi \Rightarrow \psi)$
$I, \theta \models \forall x . \varphi$
$I, \theta \not \vDash \forall x . \psi$
$I, \theta([x=v]) \models \varphi$
$I, \theta([x=v]) \not \vDash \psi$
$I, \theta([x=v]) \not \vDash \varphi \Rightarrow \psi$
$I, \theta \not \vDash \forall x .(\varphi \Rightarrow \psi)$ (contradiction)

Example

Show that $\forall x . \neg A(x) \models \neg \exists x . A(x)$
Proof by contradiction: there exists I and θ st.
$I, \theta \models \forall x . \neg A(x)$ and $I, \theta \not \vDash \neg \exists x . A(x)$
$I, \theta \models \exists x . A(x)$
$I, \theta([x=v]) \models \neg A(x)$ for all v
$I, \theta([x=v]) \models A(x)$ for some v
Contradiction!

Example

Show that $((\forall x . \varphi) \Rightarrow(\forall x . \psi)) \not \vDash \forall x .(\varphi \Rightarrow \psi)$

Replacability and Duality

Theorem. If $B \equiv C$ and A^{\prime} results from A by replacing some (not necessarily all) occurrences of B in A by C, then $A \equiv A^{\prime}$.

Theorem. Suppose A is a formula composed of atoms and the connectives \neg, \wedge, and \vee by the formation rules concerned, and A^{\prime} results by exchanging in A, \wedge for \vee and each atom for its negation. Then $A^{\prime} \equiv \neg A$. $\left(A^{\prime}\right.$ is the dual of $\left.A\right)$

Substitution

1. For a term $t_{1},\left(t_{1}\right)_{t}^{x}$ is t_{1} with each occurrence of the variable x replaced by the term t.
2. For $\varphi=P\left(t_{1}, \ldots, t_{\operatorname{ar}(P)}\right),(\varphi)_{t}^{x}=P\left(\left(t_{1}\right)_{t}^{x}, \ldots,\left(t_{\operatorname{ar}(P)}\right)_{t}^{x}\right)$.
3. For $\varphi=(\neg \psi),(\varphi)_{t}^{x}=\left(\neg(\psi)_{t}^{x}\right)$;
4. For $\varphi=(\psi \rightarrow \eta),(\varphi)_{t}^{x}=\left((\psi)_{t}^{x} \rightarrow(\eta)_{t}^{x}\right)$, and
5. for $\varphi=(\forall y . \psi)$, there are two cases:
\square if x is y, then $(\varphi)_{t}^{x}=\varphi=(\forall y . \psi)$, and
■ otherwise, then $(\varphi)_{t}^{x}=\left(\forall z .\left(\psi_{z}^{y}\right)_{t}^{x}\right)$, where z is any variable that is not free in t or in φ.

Substitution

In the last case above, the additional substitution (.) ${ }_{z}^{y}$ (i.e., renaming the variable y to z in ψ) is needed in order to avoid an accidental capture of a variable by the quantifier (i.e., capture of any y that is possibly free in t).

Substitution Lemma

$$
\begin{gathered}
\models \forall x . \varphi \Rightarrow \varphi_{t}^{x} \\
I, \theta \models \varphi_{t}^{x} \text { iff } I, \theta\left[x=(t)^{I, \theta}\right] \models \varphi
\end{gathered}
$$

FOL Hilbert System

Ax1 $\left\langle\forall^{*}(\varphi \rightarrow(\psi \rightarrow \varphi))\right\rangle ;$
Ax2 $\left\langle\forall^{*}((\varphi \rightarrow(\psi \rightarrow \eta)) \rightarrow((\varphi \rightarrow \psi) \rightarrow(\varphi \rightarrow \eta)))\right\rangle$;
Ax3 $\left\langle\forall^{*}(((\neg \varphi) \rightarrow(\neg \psi)) \rightarrow(\psi \rightarrow \varphi))\right\rangle$;
Ax4 $\left\langle\forall^{*}(\forall x .(\varphi \rightarrow \psi)) \rightarrow((\forall x . \varphi) \rightarrow(\forall x . \psi))\right\rangle$;
Ax5 $\left\langle\forall^{*}(\forall x . \varphi) \rightarrow \varphi_{t}^{x}\right\rangle$ for $t \in \mathrm{~T}$ a term;
Ax6 $\left\langle\forall^{*}(\varphi \rightarrow \forall x . \varphi)\right\rangle$ for $x \notin \mathrm{FV}(\varphi)$; and MP $\langle\varphi,(\varphi \rightarrow \psi), \psi\rangle$.
where \forall^{*} is a finite sequence of universal quantifiers (e.g., $\forall x_{1} . \forall y . \forall x$).

Generalization of Axioms (why $\forall *$)

Show that if $\Phi \vdash \varphi$ and $x \notin \mathrm{FV}(\Phi)$, then $\Phi \vdash \forall x . \varphi$.
Proof by structural induction.
Base case: φ is an axiom. Then, $\Phi \vdash \forall x . \varphi$.
Induction step (1): $\varphi \in \Phi$
$\Phi \vdash \varphi$
$\vdash \varphi \stackrel{\forall}{\Rightarrow} \forall x . \varphi$
$\Phi \vdash \forall x . \varphi(\mathrm{MP}$ and $x \notin \mathrm{FV}(\varphi))$

Generalization of Axioms (why $\forall *$)

Induction step (2): $\psi \Rightarrow \varphi$

1. $\Phi \vdash \psi, \Phi \vdash \psi \Rightarrow \varphi$
2. $\Phi \vdash(\forall x . \psi)$
3. $\Phi \vdash \forall x .(\psi \Rightarrow \varphi)$
4. $\Phi \vdash(\forall x . \psi) \Rightarrow \forall x . \varphi)$
5. $\Phi \vdash(\forall x . \varphi)$
(Induction hyp.)
$\left(A x_{6}\right)$
$\left(A x_{6}\right)$
$\left(A x_{5}\right)$
(MP)

Example 1

Show that $\vdash \forall x . \forall y . \varphi \Rightarrow \forall y . \forall x . \varphi$

Example 2

Show that $\vdash A(a) \Rightarrow \exists x . A(x)$

1. $\forall x . \neg A(x) \Rightarrow \neg A(a)$
2. $A(a) \Rightarrow(\neg \forall x . \neg A(x))$
3. $A(a) \Rightarrow \exists x \cdot A(x)$
($A x_{5}$)
$\left(A x_{3}\right)$
(Definition of \exists)

Example 3

Show that

$\vdash \forall x .(A(x) \Rightarrow B(x)) \Rightarrow(\forall x \cdot A(x) \Rightarrow \forall x \cdot B(x))$

1. $\forall x .(A(x) \Rightarrow B(x))$
2. $\forall x \cdot A(x)$
3. $\forall x \cdot A(x) \Rightarrow A(a)$
4. $A(a)$
5. $\forall x .(A(x) \Rightarrow B(x)) \Rightarrow(A(a) \Rightarrow B(a))$
6. $A(a) \Rightarrow B(a)$
7. $B(a)$
8. $B(a) \Rightarrow \forall x . B(x)$
(Assumption)
(Assumption)
($A x_{5}$)
(MP 2, 3)
($A x_{5}$)
(MP 1, 5)
(MP 4, 6)
$\left(A x_{6}\right)$

Example 4

Show that $\exists x \cdot \forall y \cdot A(x, y) \Rightarrow \forall y \cdot \exists x \cdot A(x, y)$.

Soundness of FOL Hilbert System

Step 1: Satisfiability and validity in domain
Suppose $\Sigma \subseteq \operatorname{Forma}(\mathcal{L}), A \in \operatorname{Form}(\mathcal{L})$, and D is a domain.

1. Σ is satisfiable in D iff there is some model I, θ over D such that $I, \theta \models \varphi$ for all $\varphi \in \Sigma$.
2. A is valid in D iff for all models I, θ over D, we have $I, \theta \models A$.

Soundness of FOL Hilbert System

Theorem. Suppose formula A contains no equality symbol and $|D| \leq\left|D_{1}\right|$.

- If A is satifiable in D, then A is satisfiable in D_{1}.
\square If A is valid in D_{1}, then A is valid in D.

Soundness of FOL Hilbert System

Theorem (Soundness).

- If $\Sigma \vdash A$, then $\Sigma \models A$.
- If $\vdash A$, then $\vDash A$.
(That is, every formally provable formula is valid.)

Consistency

$\Sigma \subseteq \operatorname{Form}(\mathcal{L})$ is consistent iff there is no $A \in \operatorname{Form}(\mathcal{L})$ such that $\Sigma \vdash A$ and $\Sigma \vdash \neg A$.

Consistency is a syntactical notion
Theorem. If Σ is satifiable, then Σ is consistent.

Maximal Consistency

$\Sigma \subseteq \operatorname{Form}(\mathcal{L})$ is maximal consistent iff

1. Σ is consistent
2. for any $A \in \operatorname{Form}(\mathcal{L})$ such that $A \notin \Sigma$, $\Sigma \cup\{A\}$ is inconsistent.

Lemma. Suppose Σ is maximal consistent.
Then, $A \in \Sigma$ iff $\Sigma \vdash A$.
Lindenbaum Lemma. Any consistent set of formulas can be extended to some maximal consisten set.

Completeness of FOL

Theorem. Suppose $\Sigma \subseteq \operatorname{Form}(\mathcal{L})$. If Σ is consistent, then Σ is satisfiable.

Theorem. Suppose $\Sigma \subseteq \operatorname{Form}(\mathcal{L})$. and $A \in \operatorname{Form}(\mathcal{L})$. Then

1. If $\Sigma \models A$, then $\Sigma \vdash A$.
2. If $\models A$, then $\vdash A$.

FOL with Equality

Let \approx be a binary predicate symbol (written in infix). We define the First-Order Axioms of Equality as follows:

Eqld $\quad\langle\forall x .(x \approx x)\rangle$;
EqCong $\left\langle\forall x . \forall y .(x \approx y) \rightarrow\left(\varphi_{x}^{z} \rightarrow \varphi_{y}^{z}\right)\right\rangle$;

FOL with Equality

Gödel's Completeness Theorem. Hilbert system with (axiomatized) equality is
$■$ sound; i.e., if $\Sigma \vdash \varphi$, then $\Sigma \models \varphi$ and
$■$ complete; i.e, if $\Sigma \models \varphi$ then $\Sigma \vdash \varphi$
with respect to first-order logic with (true) equality.

Definability

Let $I=\left(D,(.)^{I}\right)$ be a first-order interpretation and φ a first-order formula. A set S of k-tuples over $D, S \subseteq D^{k}$, is defined by the formula φ if

$$
S=\left\{\left(\theta\left(x_{1}\right), \ldots, \theta\left(x_{k}\right)\right) \mid I, \theta \models \varphi\right\}
$$

A set S is definable in first-order logic if it is defined by some first-order formula φ.

Definability

Let Σ be a set of first-order sentences and \mathcal{K} a set of interpretations. We say that Σ defines \mathcal{K} if

$$
I \in \mathcal{K} \text { if and only if } I \models \Sigma \text {. }
$$

A set \mathcal{K} is (strongly) definable if it is defined by a (finite) set of first-order formulas Σ.

Compactness in FOL

Theorem. $\quad \Sigma \subseteq \operatorname{Form}(\mathcal{L})$ is satisfiable iff every finite subset of Σ is satisfiable.

Corollary. $\quad \Sigma \subseteq \operatorname{Form}(\mathcal{L})$ is satisfiable in a finite domain, then Σ is satisfiable in an infinite domain.

Corollary. The class of interpretations with finite domain is not definable in first-order logic.

Graphs

An undirected graph is a tuple (V, E), where V is a set of vertices and E is a set of edges. An edge is a pair $\left(v_{1}, v_{2}\right)$, where $v_{1}, v_{2} \in V$.

$$
\begin{aligned}
& V=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\} \\
& E=\left\{\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right),\left(v_{2}, v_{4}\right),\left(v_{1}, v_{4}\right),\left(v_{1}, v_{5}\right)\right\}
\end{aligned}
$$

Graphs in FOL

If $\left(v_{1}, v_{2}\right) \in E$, we say that v_{1} is adjacent to v_{2}.
Adjacency in a graph can be expressed by a binary relation. Thus, relation $E\left(v_{1}, v_{2}\right)$ is interpreted as " v_{1} is adjacent to v_{2} ". A graph is any model of the following 2 axioms:

1. $\forall x \cdot \forall y \cdot E(x, y) \Rightarrow E(y, x)$ ("if x is adjacent to y, then y is adjacent to x ")
2. $\forall x . \neg E(x, x)$ ("no x is adjacent to itself")

Graphs in FOL

We can express many properties of a graph in the language of first-order logic.

For instance, the property " G contains a triangle" is the following formula:

$$
\exists x \cdot \exists y \cdot \exists z \cdot(E(x, y) \wedge E(y, z) \wedge E(z, x))
$$

Example

Define first-order formulas for :

- A graph has girth of size 4

■ A graph is 3-colorable

Graph Connectivity in FOL

We cannot express graph connectivity in FOL (i.e., graph connectivity is not definable in FOL).

Proof.

- Let predicate C express " G is a connected graph". We add constants s and t vertices.
\square For any k, let L_{k} be the proposition "there is no path of length k between s and t ". For example,

$$
L_{3}=\neg \exists x \cdot \exists y \cdot(E(s, x) \wedge E(x, y) \wedge E(y, t))
$$

Graph Connectivity in FOL

■ Now consider the set of propositions

$$
\Sigma=\left\{\operatorname{axiom}(1), \operatorname{axiom}(2), C, L_{1}, L_{2}, \ldots\right\}
$$

$\square \Sigma$ is finitely satisfiable: there do exist connected graphs with s and t, that are connected by an arbitrarily long path. This is because any finite subset $F \subset \Sigma$ must have bounded k 's, such a graph satisifes F.

Graph Connectivity in FOL

■ By the compactness theorem, Σ is satisfiable; i.e., there exists some model G of all propositions Σ, which is a graph that cannot be connected by a path of length k, for any k, for all k.

- This is clearly wrong. In a connected graph, any 2 nodes are connected by a path of finite length!

Cyclic Graphs in FOL

Prove that there is no first order sentence φ with the property that for each undirected graph G, there is $G \models \varphi$ iff every vertex of G belongs to a (finite) cycle in the graph.

Cyclic Graphs in FOL

- Assume that such a set Σ of sentences exists. Extend the signature with a new constant c and extend Σ with the set
$\left\{\neg \exists v_{1} \cdot \exists v_{2} \ldots \exists v_{n-1} \cdot \exists v_{n} \cdot E\left(c, v_{1}\right) \wedge E\left(v_{1}, v_{2}\right) \wedge\right.$ $\left.E\left(v_{2}, v_{3}\right) \wedge \cdots \wedge E\left(v_{n-1}, v_{n}\right) \wedge E\left(v_{n}, c\right) \mid n \in \mathbb{N}\right\}$.

Cyclic Graphs in FOL

- The extended set satisfies the conditions of the compactnes theorem: its every finite subset is satisfiable, since a finite number of added sentences prevent c from being on a cycle of a few finite sizes, so as a model one may take a finite cycle of sufficiently many vertices.

■ As a result, the entire set has a model: a contradiction, as c does not belong to any cycle in it.

Löwenheim-Skolem's Theorems

Theorem 1. Suppose $\Sigma \subseteq \operatorname{Form}(\mathcal{L})$.

1. Σ not containing equality is satisfiable iff Σ is satisfiable in a countably infinite domain.
2. Σ containing equality is satisfiable iff Σ is satisfiable in a countably infinite domain or in some finite domain.

Löwenheim-Skolem's Theorems

Theorem 2. Suppose $A \in \operatorname{Form}(\mathcal{L})$.

1. A not containing equality is valid iff A is valid in a countably infinite domain.
2. A containing equality is valid iff A is valid in a countably infinite domain or in every finite domain.
