Logic and Computation CS245

Dr. Borzoo Bonakdarpour

University of Waterloo (Fall 2012) First-order (Predicate) Logic

Agenda

- Syntax
- Semantics
- Proof System
- Soundness and Completeness

Motivation

In propositional logic, only the logical forms of compound propositions are analyzed.

We need some way to talk about *individuals* (also called *objects*.

Motivation

For example:

- For any natural number n, there is a prime number greater than n.
- $\blacksquare 2^{100}$ is a natural number.
- There is a prime number greater than 2^{100}

First-order logic (also called *predicate logic* gives us means to express and reason about objects.

Motivation

We also need ability to define sets by set comprehension $\{x \mid I \models \varphi(x)\}$

And incorporate *relations*.

As well as *properties* of interpretations (e.g., all graphs that are ...)

Structure of FOL

First-order logic is a scientific theory with the following ingredients:

- Domain of objects (individuals) (e.g., the set of natural numbers)
- Designated individuals (e.g., '0')
- Functions (e.g., '+' and '.')
- Relations (e.g., '=')

Structure of FOL

We use variables that range over the domain to make general statements:

For all $x, x^2 \ge 0$.

and in expressing conditions which individuals may or may not satisfy:

$$x + x = x \cdot x$$

This condition is satisfied only by 0 and 2.

Structure of FOL

One can use connectives to form compound propositions.

We use the terms "*for all*" and "*there exists*" frequently (called *quantifiers*). For example:

For all $\epsilon > 0$, there exists some $\delta > 0$ such that if $|x - a| < \delta$, then $|f(x) - b| < \epsilon$.

"For all" is called the *universal quantifier* and "there exists" is called the *existential quantifier*.

Propositions and Functions

4 is even

is a proposition since 4 is an individual in \mathbb{N} . If we replace 4 by a variable x ranging over \mathbb{N} , then

x is even

is not a proposition and has no truth value. It is a proposition function.

A *proposition function* on a domain D is an n-ary function mapping D^n into $\{0, 1\}$.

Prefixing Quantifiers

Consider:

For all x, x is even. There exists x, such that x is even.

Since x ranges over \mathbb{N} , they mean:

For all natural numbers x, x is even. There exists a natural number x, such that x is even.

These have truth values!

Bound and Quantified Variables

Variables occurring in proposition functions are *free variables*.

Quantified variables are called bound variables.

Quantifiers for Finite Domains

The universal and existential quantifiers may be interpreted respectively as generalization of conjunction and disjunction. If the domain $D = \{\alpha_1, \dots, \alpha_k\}$ is finite then:

For all x st. f(x) iff $R(\alpha_1)$ and ... and $R(\alpha_k)$

There exists x st. R(x) iff $R(\alpha_1)$ or ... or $R(\alpha_k)$

where R is a property.

FOL Language \mathcal{L}

- **1.** Constant (individual) symbols (*CS*): $c, d, c_1, c_2, ..., d_1, d_2 ...$
- **2.** Function Symbols (*FS*): $f, g, h, f_1, f_2, ..., g_1, g_2$
- 3. Variables (VS): $x, y, z, x_1, x_2, \dots, y_1, y_2 \dots$
- 4. Predicate (Relational) Symbols (PS): $P, Q, P_1, P_2, \ldots, Q_1, Q_2, \ldots$
- 5. Logical Connectives: $\neg, \land, \lor, \Rightarrow$
- 6. Quantifiers: \forall (for all) and \exists (there exists)
- 7. Punctuation: '(', ')', '.', and ','.

Example

- 0: constant '0'
- S: function (successor) S(x) stands for: 'x + 1'
- Eq: relation (equality) Eq(x, y) stands for: 'x = y'
- plus: function (addition) plus(x, y) stands for: 'x + y'

$\forall x. Eq(plus(x, S(S(0))), S(S(x)))$

means "Adding two to a number results in the second successor of that number"

$\forall x. \forall y. \text{Eq}(\text{plus}(x, y), \text{plus}(y, x))$ means "Addition is commutative."

 $\neg \exists x. \text{Eq}(0, S(x))$

means "0 is not the successor of any number."

The set $Term(\mathcal{L})$ of *terms* of \mathcal{L} is defined using the following rules:

- \blacksquare All constants in CS are terms
- \blacksquare All variables in VS are terms
- it $t_1, \ldots, t_n \in Term(\mathcal{L})$ and f is an n-ary function, then $f(t_1, \ldots, t_n) \in Term(\mathcal{L})$.

For example, 0, x, and y are terms and so are S(0), plus(x, y).

Syntax of FOL -Atoms

An expression of \mathcal{L} is an *atom* in $Atoms(\mathcal{L})$ iff it is of one of the forms $P(t_1, \ldots, t_n)$, where t_1, \ldots, t_n are terms in $Term(\mathcal{L})$.

Syntax of FOL -Formulas

We define the set $Form(\mathcal{L})$ of first-order logic formulas inductively as follows:

- **1.** $Atom(\mathcal{L}) \subseteq Form(\mathcal{L})$
- **2.** If $A \in Form(\mathcal{L})$, then $\neg A \in Form(\mathcal{L})$
- 3. If $A, B \in Form(\mathcal{L})$, then $(A * B) \in Form(\mathcal{L})$, where $* \in \{\land, \lor, \Rightarrow\}$
- 4. If $A \in Form(\mathcal{L})$ and $x \in VS$, then $(\forall x.A) \in Form(\mathcal{L})$ and $(\exists x.A) \in Form(\mathcal{L})$

How is the following formula generated?

$\forall x.(F(b) \Rightarrow \exists y.(\forall z.G(y,z) \lor H(u,x,y)))$

Free and Bound Variables

Let $A \in Form(\mathcal{L})$. We define the set FV(A) of *free variables* of A as follows:

- 1. $\{x \mid x \text{ appears in } t_i \text{ for some } 0 < i \leq ar(P)\},\$ for $A = P(t_1, \dots, t_{ar(P)})$
- **2.** FV(A) for $B = (\neg A)$
- 3. $FV(A) \cup FV(B)$ for C = (A * B), where $* \in \{\land, \lor, \Rightarrow\}$
- 4. $FV(A) \{x\}$ for $B = (\forall x.A)$ or $B = (\exists x.A)$

Variables not in FV(A) are called *bound variables*.

Logic and Computation - p. 20/72

Closed Formulas

A first-order formula $A \in Form(\mathcal{L})$ is *closed* (also called a *sentence*) if $FV(A) = \{\}$.

If $\forall x.A(x)$ or $\exists x.A(x)$ is a segment of B, A(x) is called the scope in B of the $\forall x$ or $\exists x$ on the left of A(x).

In the following formula:

$$\exists x. \forall y. \exists z. F(x, y, z)$$

what is the scope of $\forall y$?

First-order formulas are intended to express propositions (i.e, true/false valuation). This is accomplished by *interpretations*

Interpretations for the propositional language are simple: they consist of assigning values to the proposition symbols.

The first-order language includes more ingrediants and, hence, the interpretations for it are more complicated.

- A first order *interpretation* I is a tuple $(D, (.)^I)$:
 - D is a non-empty set called the domain (or universe); and
 - $(.)^{I}$ is an *interpretation function* that maps • constant symbols $c \in CS$ to individuals $c^{I} \in D$;
 - function symbols $f \in FS$ to functions $f^{I}: D^{ar(f)} \rightarrow D$; and
 - predicate symbols $P \in PS$ to relations $P^I \subseteq D^{ar(P)}$.

Let

f(g(a), f(b, c))

be a term. Let individuals a, b, and c be interpreted as 4, 5, and 6 in \mathcal{N} and functions fand g are respectively as addition and squaring. Then, the above term is interpreted as

 $4^2 + (5+6)$

which is the individual 27 in \mathcal{N} .

Let functions f and g are respectively addition and squaring and P be the equality relation. Let

P(f(g(a), g(b)), g(c))

be a closed formula, where individuals a, b, and c be interpreted as 4, 5, and 6 in \mathcal{N} . Then, the above predicate is interpreted as the false proposition (why?).

FOL Valuations

Now, consider the non-closed formula:

P(f(g(u), g(b)), g(w))

where only b is interpreted as 5. One can interpret this formula by:

$$x^2 + 5^2 = y^2$$

where x and y are free variables. This is not a proposition, but a binary proposition function in \mathbb{N} . One can obtain a truth value by assigning individuals in \mathbb{N} to x and y. This is called a *valuation*.

FOL Valuations

A *valuation* θ (also called an *assignment*) is a mapping from VS, the set of variables, to domain D.

For example, for the non-closed formula

$$x^2 + 4^2 = y^2$$

 $\theta(x) = 3$ and $\theta(y) = 5$ evaluates the formula to the true proposition.

Meaning of Terms

Let *I* be a first order interpretation and θ a valuation. For a term *t* in $Term(\mathcal{L})$, we define interpretation of *t*, t^I , as follows:

- 1. $c^{I,\theta} = c^I$ for $t \in CS$ (i.e., t is a constant);
- 2. $x^{I,\theta} = \theta(x)$ for $t \in VS$ (i.e., t is a variable); and
- 3. $f(t_1, \ldots, t_{ar(f)})^{I,\theta} = f^I((t_1)^{I,\theta}, \ldots, (t_{ar(f)})^{I,\theta}),$ otherwise (i.e., for *t* a functional term).

Satisfaction Relation

The satisfaction relation \models between an interpretation *I*, a valuation θ , and a first-order formula φ is defined as:

$$I, \theta \models P(t_1, \dots, t_{ar(P)}) \text{ iff } \langle (t_1)^{I, \theta}, \dots, (t_{ar(P)})^{I, \theta} \rangle \in P^I \text{ for } P \in PS$$

•
$$I, \theta \models \neg \varphi$$
 if and only if $I, \theta \models \varphi$ is not true

 $\blacksquare I, \theta \models \varphi \land \psi \text{ if and only if } I, \theta \models \varphi \text{ and } I, \theta \models \psi$

 $\blacksquare I, \theta \models (\forall x. \varphi)$ if and only if $I, \theta([x = v]) \models \varphi$ for all $v \in D$

where the valuation [x = v](y) is defined to be v when x = y and θ otherwise.

Satisfaction Relation

One can also trivially define the following:

I, θ ⊨ φ ∨ ψ if and only if *I*, θ ⊨ φ or *I*, θ ⊨ ψ *I*, θ ⊨ (∃*x*.φ) if and only if *I*, θ([*x* = *v*]) ⊨ φ for some *v* ∈ *D*

where the valuation [x = v](y) is defined to be vwhen x = y and θ otherwise.

Some Remarks

- 1. $\langle (t_1)^{I,\theta}, \dots, (t_{ar(P)})^{I,\theta} \rangle \in P^I$ means that $(t_1)^{I,\theta}, \dots, (t_{ar(P)})^{I,\theta}$ is in relation P^I
- 2. If A(x) is a variable with no free occurrence of u an A(u) is a formula with no free occurrence of x, then A(x) and A(u) have the same intuitive meaning.
- 3. For the same reason, $\forall x.A(x)$ and $\forall u.A(u)$ have the same meaning.

Relevance Lemma

Let φ be a first-order formula, *I* be an interpretation, and θ_1 and θ_2 be two valuations such that $\theta_1(x) = \theta_2(x)$ for all $x \in VS$. Then,

$$I, \theta_1 \models \varphi \text{ iff } I, \theta_2 \models \varphi$$

Proof by structural induction.

Satisfiability and Validity

 $\Sigma \subseteq Form(\mathcal{L})$ is *satisfiable* iff there is some interpretation I and valuation θ , such that $I, \theta \models \varphi$ for all $\varphi \in \Sigma$.

A formula $\varphi \in Form(\mathcal{L})$ is *valid* iff for all interpretations *I* and valuations θ , we have $I, \theta \models \varphi$

Example

Let $\varphi = P(f(g(x), g(y)), g(z))$ be a formula. The formula is satisfiable:

- f^I = summation
- $\blacksquare g^I =$ squaring
- P^I = equality
- $\bullet \theta(x) = 3, \theta(y) = 4, \theta(z) = 5$

 φ is not valid. (why?)

Logical Consequence

Suppose $\Sigma \subseteq Form(\mathcal{L})$ and $\varphi \in Form(\mathcal{L})$. We say that φ is a *logical consequence* of Σ (that is, of the formulas in Σ), written as $\Sigma \models \varphi$, iff for any interpretation I and valuation θ , we have $I, \theta \models \Sigma$ implies $I, \theta \models \varphi$.

 $\models \varphi$ means that φ is valid.
Show that
$$\models \forall x.(\varphi \Rightarrow \psi) \Rightarrow ((\forall x.\varphi) \Rightarrow (\forall x.\psi))$$

Proof by contradiction: there exists *I* and θ st. $I, \theta \not\models \forall x.(\varphi \Rightarrow \psi) \Rightarrow ((\forall x.\varphi) \Rightarrow (\forall x.\psi))$ $I, \theta \models \forall x.(\varphi \Rightarrow \psi)$ $I, \theta \models \forall x.\varphi$ $I, \theta \not\models \forall x.\psi$

$$I, \theta([x = v]) \models \varphi$$

$$I, \theta([x = v]) \not\models \psi$$

$$I, \theta([x = v]) \not\models \varphi \Rightarrow \psi$$

$$I, \theta \not\models \forall x. (\varphi \Rightarrow \psi) \text{ (contradiction)}$$

Show that $\forall x. \neg A(x) \models \neg \exists x. A(x)$

Proof by contradiction: there exists *I* and θ st. $I, \theta \models \forall x. \neg A(x) \text{ and } I, \theta \not\models \neg \exists x. A(x)$ $I, \theta \models \exists x. A(x)$

 $\begin{array}{l} I, \theta([x=v]) \models \neg A(x) \text{ for all } v \\ I, \theta([x=v]) \models A(x) \text{ for some } v \end{array}$

Contradiction!

Show that $((\forall x.\varphi) \Rightarrow (\forall x.\psi)) \not\models \forall x.(\varphi \Rightarrow \psi)$

Replacability and Duality

Theorem. If $B \equiv C$ and A' results from A by *replacing* some (not necessarily all) occurrences of B in A by C, then $A \equiv A'$.

Theorem. Suppose *A* is a formula composed of atoms and the connectives \neg , \wedge , and \lor by the formation rules concerned, and *A'* results by exchanging in *A*, \wedge for \lor and each atom for its negation. Then $A' \equiv \neg A$. (*A'* is the *dual* of *A*)

Substitution

1. For a term t_1 , $(t_1)_t^x$ is t_1 with each occurrence of the variable x replaced by the term t.

2. For
$$\varphi = P(t_1, \dots, t_{ar(P)}), (\varphi)_t^x = P((t_1)_t^x, \dots, (t_{ar(P)})_t^x).$$

3. For
$$\varphi = (\neg \psi)$$
, $(\varphi)_t^x = (\neg (\psi)_t^x)$;

- 4. For $\varphi = (\psi \to \eta)$, $(\varphi)_t^x = ((\psi)_t^x \to (\eta)_t^x)$, and
- 5. for $\varphi = (\forall y.\psi)$, there are two cases:
 - If x is y, then $(\varphi)_t^x = \varphi = (\forall y.\psi)$, and
 - otherwise, then $(\varphi)_t^x = (\forall z.(\psi_z^y)_t^x)$, where z is any variable that is not free in t or in φ .

Substitution

In the last case above, the additional substitution $(.)_{z}^{y}$ (i.e., renaming the variable y to z in ψ) is needed in order to avoid an accidental *capture of a variable* by the quantifier (i.e., capture of any y that is possibly free in t).

Substitution Lemma

 $\models \forall x.\varphi \Rightarrow \varphi_t^x$

 $I, \theta \models \varphi_t^x \text{ iff } I, \theta[x = (t)^{I, \theta}] \models \varphi$

FOL Hilbert System

$$\begin{array}{ll} \mathsf{Ax1} & \langle \forall^*(\varphi \to (\psi \to \varphi)) \rangle; \\ \mathsf{Ax2} & \langle \forall^*((\varphi \to (\psi \to \eta)) \to ((\varphi \to \psi) \to (\varphi \to \eta))) \rangle; \\ \mathsf{Ax3} & \langle \forall^*(((\neg \varphi) \to (\neg \psi)) \to (\psi \to \varphi)) \rangle; \\ \mathsf{Ax4} & \langle \forall^*(\forall x.(\varphi \to \psi)) \to ((\forall x.\varphi) \to (\forall x.\psi)) \rangle; \\ \mathsf{Ax5} & \langle \forall^*(\forall x.\varphi) \to \varphi_t^x \rangle \text{ for } t \in \mathsf{T} \text{ a term}; \\ \mathsf{Ax6} & \langle \forall^*(\varphi \to \forall x.\varphi) \rangle \text{ for } x \not\in \mathsf{FV}(\varphi); \text{ and} \\ \mathsf{MP} & \langle \varphi, (\varphi \to \psi), \psi \rangle. \end{array}$$

where \forall^* is a finite sequence of universal quantifiers (e.g., $\forall x_1 . \forall y . \forall x$).

Generalization of Axioms (why ∀*)

Show that if $\Phi \vdash \varphi$ and $x \notin FV(\Phi)$, then $\Phi \vdash \forall x.\varphi$.

Proof by structural induction.

<u>Base case:</u> φ is an axiom. Then, $\Phi \vdash \forall x.\varphi$.

Induction step (1): $\varphi \in \Phi$

 $\begin{array}{l} \Phi \vdash \varphi \\ \vdash \varphi \Rightarrow \forall x.\varphi \\ \Phi \vdash \forall x.\varphi \text{ (MP and } x \notin \mathsf{FV}(\varphi)\text{)} \end{array}$

Generalization of Axioms (why ∀*)

Induction step (2): $\psi \Rightarrow \varphi$

1. $\Phi \vdash \psi, \Phi \vdash \psi \Rightarrow \varphi$ 2. $\Phi \vdash (\forall x.\psi)$ 3. $\Phi \vdash \forall x.(\psi \Rightarrow \varphi)$ 4. $\Phi \vdash (\forall x.\psi) \Rightarrow \forall x.\varphi)$ 5. $\Phi \vdash (\forall x.\varphi)$ (Induction hyp.) (Ax_6) (Ax_6) (Ax_5) (MP)

Show that $\vdash \forall x. \forall y. \varphi \Rightarrow \forall y. \forall x. \varphi$

1. $\forall x. \forall y. \varphi$ 2. $\forall x. \forall y. \varphi \Rightarrow (\forall y. \varphi)_t^x$ 3. $(\forall y. \varphi)_t^x$ 4. $(\forall y. \varphi)_t^x \Rightarrow ((\varphi)_t^x)_{t'}^y$ 5. $((\varphi)_t^x)_{t'}^y$ 6. $((\varphi)_t^x)_{t'}^y \Rightarrow \forall x. (\varphi)_t^x$ 7. $\forall x. (\varphi)_t^x$ 8. $\forall x. (\varphi)_t^x \Rightarrow \forall y. \forall x. \varphi$ 9. $\forall y. \forall x. \varphi$ (Deduction theorem) (Ax_5) (MP) (Ax_5) (MP) (Ax_6) (MP) (Ax_6) (MP)

Show that $\vdash A(a) \Rightarrow \exists x.A(x)$

1. $\forall x. \neg A(x) \Rightarrow \neg A(a)$ (Ax₅)2. $A(a) \Rightarrow (\neg \forall x. \neg A(x))$ (Ax₃)3. $A(a) \Rightarrow \exists x. A(x)$ (Definition of \exists)

Show that

 $\vdash \forall x. (A(x) \Rightarrow B(x)) \Rightarrow (\forall x. A(x) \Rightarrow \forall x. B(x))$ 1. $\forall x.(A(x) \Rightarrow B(x))$ **2.** $\forall x.A(x)$ **3.** $\forall x.A(x) \Rightarrow A(a)$ **4.** A(a)**5.** $\forall x.(A(x) \Rightarrow B(x)) \Rightarrow (A(a) \Rightarrow B(a))$ **6.** $A(a) \Rightarrow B(a)$ **7.** B(a)**8.** $B(a) \Rightarrow \forall x.B(x)$

(Assumption) (Assumption) (Ax_5) (MP 2, 3) (Ax_5) (MP 1, 5) (MP 4, 6) (Ax_6)

Show that $\exists x. \forall y. A(x, y) \Rightarrow \forall y. \exists x. A(x, y).$

Soundness of FOL Hilbert System

Step 1: Satisfiability and validity in domain

Suppose $\Sigma \subseteq Forma(\mathcal{L})$, $A \in Form(\mathcal{L})$, and D is a domain.

- 1. Σ is satisfiable in *D* iff there is some model *I*, θ over *D* such that $I, \theta \models \varphi$ for all $\varphi \in \Sigma$.
- 2. A is valid in D iff for all models I, θ over D, we have $I, \theta \models A$.

Soundness of FOL Hilbert System

Theorem. Suppose formula *A* contains no equality symbol and $|D| \leq |D_1|$.

- If A is satifiable in D, then A is satisfiable in D₁.
- If A is valid in D_1 , then A is valid in D.

Soundness of FOL Hilbert System

Theorem (Soundness).

• If
$$\Sigma \vdash A$$
, then $\Sigma \models A$.

If ⊢ A, then ⊨ A.
 (That is, every formally provable formula is valid.)

 $\Sigma \subseteq Form(\mathcal{L})$ is *consistent* iff there is no $A \in Form(\mathcal{L})$ such that $\Sigma \vdash A$ and $\Sigma \vdash \neg A$.

Consistency is a syntactical notion

Theorem. If Σ is satifiable, then Σ is consistent.

Maximal Consistency

 $\Sigma \subseteq Form(\mathcal{L})$ is *maximal consistent* iff

- 1. Σ is consistent
- 2. for any $A \in Form(\mathcal{L})$ such that $A \notin \Sigma$, $\Sigma \cup \{A\}$ is inconsistent.

Lemma. Suppose Σ is maximal consistent. Then, $A \in \Sigma$ iff $\Sigma \vdash A$.

Lindenbaum Lemma. Any consistent set of formulas can be extended to some maximal consisten set.

Completeness of FOL

Theorem. Suppose $\Sigma \subseteq Form(\mathcal{L})$. If Σ is consistent, then Σ is satisfiable.

Theorem. Suppose $\Sigma \subseteq Form(\mathcal{L})$. and $A \in Form(\mathcal{L})$. Then

1. If
$$\Sigma \models A$$
, then $\Sigma \vdash A$.

2. If $\models A$, then $\vdash A$.

FOL with Equality

Let \approx be a binary predicate symbol (written in infix). We define the *First-Order Axioms of Equality* as follows:

EqID $\langle \forall x.(x \approx x) \rangle;$ EqCong $\langle \forall x.\forall y.(x \approx y) \rightarrow (\varphi_x^z \rightarrow \varphi_y^z) \rangle;$

FOL with Equality

Gödel's Completeness Theorem. Hilbert system with (axiomatized) equality is

- sound; i.e., if $\Sigma \vdash \varphi$, then $\Sigma \models \varphi$ and
- complete; i.e, if $\Sigma \models \varphi$ then $\Sigma \vdash \varphi$

with respect to first-order logic with (true) equality.

Definability

Let $I = (D, (.)^{I})$ be a first-order interpretation and φ a first-order formula. A set *S* of *k*-tuples over $D, S \subseteq D^{k}$, is *defined* by the formula φ if

$$S = \{ (\theta(x_1), \dots, \theta(x_k)) \mid I, \theta \models \varphi \}$$

A set S is *definable* in first-order logic if it is defined by some first-order formula φ .

Definability

Let Σ be a set of first-order sentences and \mathcal{K} a set of interpretations. We say that Σ defines \mathcal{K} if

 $I \in \mathcal{K}$ if and only if $I \models \Sigma$.

A set \mathcal{K} is *(strongly) definable* if it is defined by a (finite) set of first-order formulas Σ .

Compactness in FOL

Theorem. $\Sigma \subseteq Form(\mathcal{L})$ is satisfiable iff every finite subset of Σ is satisfiable.

Corollary. $\Sigma \subseteq Form(\mathcal{L})$ is satisfiable in a finite domain, then Σ is satisfiable in an infinite domain.

Corollary. The class of interpretations with finite domain is not definable in first-order logic.

An undirected *graph* is a tuple (V, E), where V is a set of vertices and E is a set of edges. An edge is a pair (v_1, v_2) , where $v_1, v_2 \in V$.

$$V = \{v_1, v_2, v_3, v_4, v_5\}$$

$$E = \{(v_1, v_2), (v_2, v_3), (v_2, v_4), (v_1, v_4), (v_1, v_5)\}$$

Graphs in FOL

If $(v_1, v_2) \in E$, we say that v_1 is *adjacent* to v_2 .

Adjacency in a graph can be expressed by a binary relation. Thus, relation $E(v_1, v_2)$ is interpreted as " v_1 is adjacent to v_2 ". A graph is any model of the following 2 axioms:

1. $\forall x. \forall y. E(x, y) \Rightarrow E(y, x)$ ("if x is adjacent to y, then y is adjacent to x")

2. $\forall x. \neg E(x, x)$ ("no x is adjacent to itself")

Graphs in FOL

We can express many properties of a graph in the language of first-order logic.

For instance, the property "G contains a triangle" is the following formula:

 $\exists x. \exists y. \exists z. (E(x, y) \land E(y, z) \land E(z, x))$

Define first-order formulas for :

- A graph has *girth* of size 4
- A graph is 3-colorable

Graph Connectivity in FOL

We cannot express graph *connectivity* in FOL (i.e., graph connectivity is not definable in FOL).

Proof.

- Let predicate C express "G is a connected graph". We add constants s and t vertices.
- For any k, let L_k be the proposition "there is no path of length k between s and t". For example,

$$L_3 = \neg \exists x. \exists y. (E(s, x) \land E(x, y) \land E(y, t))$$

Graph Connectivity in FOL

Now consider the set of propositions

 $\Sigma = \{ \mathsf{axiom}(1), \mathsf{axiom}(2), C, L_1, L_2, \dots \}$

• Σ is finitely satisfiable: there do exist connected graphs with *s* and *t*, that are connected by an arbitrarily long path. This is because any finite subset $F \subset \Sigma$ must have bounded *k*'s, such a graph satisifes *F*.

Graph Connectivity in FOL

- By the compactness theorem, Σ is satisfiable; i.e., there exists some model G of all propositions Σ, which is a graph that cannot be connected by a path of length k, for any k, for all k.
- This is clearly wrong. In a connected graph, any 2 nodes are connected by a path of finite length!

Cyclic Graphs in FOL

Prove that there is no first order sentence φ with the property that for each undirected graph G, there is $G \models \varphi$ iff every vertex of G belongs to a (finite) cycle in the graph.

Cyclic Graphs in FOL

Assume that such a set Σ of sentences exists. Extend the signature with a new constant c and extend Σ with the set

 $\{\neg \exists v_1. \exists v_2 \dots \exists v_{n-1}. \exists v_n. E(c, v_1) \land E(v_1, v_2) \land E(v_2, v_3) \land \dots \land E(v_{n-1}, v_n) \land E(v_n, c) | n \in \mathbb{N} \}.$

Cyclic Graphs in FOL

- The extended set satisfies the conditions of the compactnes theorem: its every finite subset is satisfiable, since a finite number of added sentences prevent c from being on a cycle of a few finite sizes, so as a model one may take a finite cycle of sufficiently many vertices.
- As a result, the entire set has a model: a contradiction, as c does not belong to any cycle in it.

Löwenheim-Skolem's Theorems

Theorem 1. Suppose $\Sigma \subseteq Form(\mathcal{L})$.

- 1. Σ not containing equality is satisfiable iff Σ is satisfiable in a countably infinite domain.
- 2. Σ containing equality is satisfiable iff Σ is satisfiable in a countably infinite domain or in some finite domain.
Löwenheim-Skolem's Theorems

- **Theorem 2.** Suppose $A \in Form(\mathcal{L})$.
 - 1. A not containing equality is valid iff A is valid in a countably infinite domain.
- 2. A containing equality is valid iff A is valid in a countably infinite domain or in every finite domain.