
Logic and Computation
CS245

Dr. Borzoo Bonakdarpour

University of Waterloo

(Fall 2012)

First-order (Predicate) Logic

Logic and Computation – p. 1/72

Agenda

Syntax

Semantics

Proof System

Soundness and Completeness

Logic and Computation – p. 2/72

Motivation

In propositional logic, only the logical forms of
compound propositions are analyzed.

We need some way to talk about individuals (also
called objects.

Logic and Computation – p. 3/72

Motivation
For example:

For any natural number n, there is a prime
number greater than n.

2100 is a natural number.

There is a prime number greater than 2100

First-order logic (also called predicate logic gives
us means to express and reason about objects.

Logic and Computation – p. 4/72

Motivation
We also need ability to define sets by set
comprehension {x | I |= ϕ(x)}

And incorporate relations.

As well as properties of interpretations (e.g., all
graphs that are ...)

Logic and Computation – p. 5/72

Structure of FOL

First-order logic is a scientific theory with the
following ingredients:

Domain of objects (individuals) (e.g., the set
of natural numbers)

Designated individuals (e.g., ‘0’)

Functions (e.g., ‘+’ and ‘.’)

Relations (e.g., ‘=’)

Logic and Computation – p. 6/72

Structure of FOL
We use variables that range over the domain to
make general statements:

For all x, x2 ≥ 0.
and in expressing conditions which individuals
may or may not satisfy:

x+ x = x.x

This condition is satisfied only by 0 and 2.

Logic and Computation – p. 7/72

Structure of FOL
One can use connectives to form compound
propositions.

We use the terms “for all ” and “there exists”
frequently (called quantifiers). For example:

For all ǫ > 0, there exists some δ > 0 such
that if |x− a| < δ, then |f(x)− b| < ǫ.

“For all” is called the universal quantifier and
“there exists” is called the existential quantifier.

Logic and Computation – p. 8/72

Propositions and
Functions

4 is even

is a proposition since 4 is an individual in N. If we
replace 4 by a variable x ranging over N, then

x is even

is not a proposition and has no truth value. It is a
proposition function.

A proposition function on a domain D is an n-ary
function mapping Dn into {0, 1}.

Logic and Computation – p. 9/72

Prefixing Quantifiers

Consider:
For all x, x is even.

There exists x, such that x is even.

Since x ranges over N, they mean:

For all natural numbers x, x is even.
There exists a natural number x, such that x is

even.

These have truth values!

Logic and Computation – p. 10/72

Bound and
Quantified Variables

Variables occurring in proposition functions are
free variables.

Quantified variables are called bound variables.

Logic and Computation – p. 11/72

Quantifiers for Finite
Domains

The universal and existential quantifiers may be
interpreted respectively as generalization of
conjunction and disjunction. If the domain
D = {α1, . . . , αk} is finite then:

For all x st. f(x) iff R(α1) and ... and R(αk)

There exists x st. R(x) iff R(α1) or ... or R(αk)

where R is a property.

Logic and Computation – p. 12/72

FOL Language L

1. Constant (individual) symbols (CS):
c, d, c1, c2, . . . , d1, d2 . . .

2. Function Symbols (FS):
f, g, h, f1, f2, . . . , g1, g2

3. Variables (V S): x, y, z, x1, x2, . . . , y1, y2 . . .

4. Predicate (Relational) Symbols (PS):
P,Q, P1, P2, . . . , Q1, Q2, . . .

5. Logical Connectives: ¬,∧,∨,⇒

6. Quantifiers: ∀ (for all) and ∃ (there exists)

7. Punctuation: ‘(’, ‘)’, ‘.’, and ‘,’.
Logic and Computation – p. 13/72

Example

0: constant ‘0’

S: function (successor) S(x) stands for: ‘x+1’

Eq: relation (equality) Eq(x, y) stands for:
‘x = y’

plus: function (addition) plus(x, y) stands for:
‘x+ y’

∀x.Eq(plus(x, S(S(0))), S(S(x))

means “Adding two to a number results in the
second successor of that number” Logic and Computation – p. 14/72

Example

∀x.∀y.Eq(plus(x, y), plus(y, x))

means “Addition is commutative.”

¬∃x.Eq(0, S(x))

means “0 is not the successor of any number.”

Logic and Computation – p. 15/72

Terms
The set Term(L) of terms of L is defined using
the following rules:

All constants in CS are terms

All variables in V S are terms

it t1, . . . , tn ∈ Term(L) and f is an n-ary
function, then f(t1, . . . , tn) ∈ Term(L).

For example, 0, x, and y are terms and so are
S(0), plus(x, y).

Logic and Computation – p. 16/72

Syntax of FOL -
Atoms

An expression of L is an atom in Atoms(L) iff it is
of one of the forms P (t1, . . . , tn), where t1, . . . , tn
are terms in Term(L).

Logic and Computation – p. 17/72

Syntax of FOL -
Formulas

We define the set Form(L) of first-order logic
formulas inductively as follows:

1. Atom(L) ⊆ Form(L)

2. If A ∈ Form(L), then ¬A ∈ Form(L)

3. If A,B ∈ Form(L), then (A ∗B) ∈ Form(L),
where ∗ ∈ {∧,∨,⇒}

4. If A ∈ Form(L) and x ∈ V S, then
(∀x.A) ∈ Form(L) and (∃x.A) ∈ Form(L)

Logic and Computation – p. 18/72

Example

How is the following formula generated?

∀x.(F (b) ⇒ ∃y.(∀z.G(y, z) ∨ H(u, x, y)))

Logic and Computation – p. 19/72

Free and Bound
Variables

Let A ∈ Form(L). We define the set FV(A) of
free variables of A as follows:

1. {x | x appears in ti for some 0 < i ≤ ar(P)},
for A = P (t1, . . . , tar(P))

2. FV(A) for B = (¬A)

3. FV(A) ∪ FV(B) for C = (A ∗B), where
∗ ∈ {∧,∨,⇒}

4. FV(A)− {x} for B = (∀x.A) or B = (∃x.A)

Variables not in FV(A) are called bound
variables. Logic and Computation – p. 20/72

Closed Formulas

A first-order formula A ∈ Form(L) is closed (also
called a sentence) if FV(A) = {}.

Logic and Computation – p. 21/72

Scope

If ∀x.A(x) or ∃x.A(x) is a segment of B, A(x) is
called the scope in B of the ∀x or ∃x on the left of
A(x).

In the following formula:

∃x.∀y.∃z.F (x, y, z)

what is the scope of ∀y?

Logic and Computation – p. 22/72

FOL Interpretations

First-order formulas are intended to express
propositions (i.e, true/false valuation). This is
accomplished by interpretations

Interpretations for the propositional language are
simple: they consist of assigning values to the
proposition symbols.

The first-order language includes more
ingrediants and, hence, the interpretations for it
are more complicated.

Logic and Computation – p. 23/72

FOL Interpretations

A first order interpretation I is a tuple (D, (.)I):

D is a non-empty set called the domain (or
universe); and

(.)I is an interpretation function that maps
constant symbols c ∈ CS to individuals
cI ∈ D;
function symbols f ∈ FS to functions
f I : Dar(f) → D; and
predicate symbols P ∈ PS to relations
P I ⊆ Dar(P).

Logic and Computation – p. 24/72

FOL Interpretations

Let

f(g(a), f(b, c))

be a term. Let individuals a, b, and c be
interpreted as 4, 5, and 6 in N and functions f
and g are respectively as addition and squaring.
Then, the above term is interpreted as

42 + (5 + 6)

which is the individual 27 in N .

Logic and Computation – p. 25/72

FOL Interpretations

Let functions f and g are respectively addition
and squaring and P be the equality relation. Let

P (f(g(a), g(b)), g(c))

be a closed formula, where individuals a, b, and c
be interpreted as 4, 5, and 6 in N .Then, the
above predicate is interpreted as the false
proposition (why?).

Logic and Computation – p. 26/72

FOL Valuations
Now, consider the non-closed formula:

P (f(g(u), g(b)), g(w))

where only b is interpreted as 5. One can
interpret this formula by:

x2 + 52 = y2

where x and y are free variables. This is not a
proposition, but a binary proposition function in
N. One can obtain a truth value by assigning
individuals in N to x and y. This is called a
valuation. Logic and Computation – p. 27/72

FOL Valuations

A valuation θ (also called an assignment) is a
mapping from V S, the set of variables, to domain
D.

For example, for the non-closed formula

x2 + 42 = y2

θ(x) = 3 and θ(y) = 5 evaluates the formula to
the true proposition.

Logic and Computation – p. 28/72

Meaning of Terms

Let I be a first order interpretation and θ a
valuation. For a term t in Term(L), we define
interpretation of t, tI , as follows:

1. cI,θ = cI for t ∈ CS (i.e., t is a constant);

2. xI,θ = θ(x) for t ∈ V S (i.e., t is a variable); and

3. f(t1, . . . , tar(f))I,θ = f I((t1)
I,θ, . . . , (tar(f))

I,θ),
otherwise (i.e., for t a functional term).

Logic and Computation – p. 29/72

Satisfaction Relation
The satisfaction relation |= between an interpretation I, a
valuation θ, and a first-order formula ϕ is defined as:

I, θ |= P (t1, . . . , tar(P)) iff 〈(t1)I,θ, . . . , (tar(P))
I,θ〉 ∈ P I for

P ∈ PS

I, θ |= ¬ϕ if and only if I, θ |= ϕ is not true

I, θ |= ϕ ∧ ψ if and only if I, θ |= ϕ and I, θ |= ψ

I, θ |= (∀x.ϕ) if and only if I, θ([x = v]) |= ϕ for all v ∈ D

where the valuation [x = v](y) is defined to be v when
x = y and θ otherwise.

Logic and Computation – p. 30/72

Satisfaction Relation

One can also trivially define the following:

I, θ |= ϕ ∨ ψ if and only if I, θ |= ϕ or I, θ |= ψ

I, θ |= (∃x.ϕ) if and only if I, θ([x = v]) |= ϕ for
some v ∈ D

where the valuation [x = v](y) is defined to be v
when x = y and θ otherwise.

Logic and Computation – p. 31/72

Some Remarks
1. 〈(t1)I,θ, . . . , (tar(P))

I,θ〉 ∈ P I means that
(t1)

I,θ, . . . , (tar(P))
I,θ is in relation P I

2. If A(x) is a variable with no free occurrence of
u an A(u) is a formula with no free
occurrence of x, then A(x) and A(u) have the
same intuitive meaning.

3. For the same reason, ∀x.A(x) and ∀u.A(u)
have the same meaning.

Logic and Computation – p. 32/72

Relevance Lemma

Let ϕ be a first-order formula, I be an
interpretation, and θ1 and θ2 be two valuations
such that θ1(x) = θ2(x) for all x ∈ V S. Then,

I, θ1 |= ϕ iff I, θ2 |= ϕ

Proof by structural induction.

Logic and Computation – p. 33/72

Satisfiability and
Validity

Σ ⊆ Form(L) is satisfiable iff there is some
interpretation I and valuation θ, such that
I, θ |= ϕ for all ϕ ∈ Σ.

A formula ϕ ∈ Form(L) is valid iff for all
interpretations I and valuations θ, we have
I, θ |= ϕ

Logic and Computation – p. 34/72

Example

Let ϕ = P (f(g(x), g(y)), g(z)) be a formula. The
formula is satisfiable:

f I = summation

gI = squaring

P I = equality

θ(x) = 3, θ(y) = 4, θ(z) = 5

ϕ is not valid. (why?)

Logic and Computation – p. 35/72

Logical
Consequence

Suppose Σ ⊆ Form(L) and ϕ ∈ Form(L). We
say that ϕ is a logical consequence of Σ (that is, of
the formulas in Σ), written as Σ |= ϕ, iff for any
interpretation I and valuation θ, we have I, θ |= Σ
implies I, θ |= ϕ.

|= ϕ means that ϕ is valid.

Logic and Computation – p. 36/72

Example

Show that |= ∀x.(ϕ⇒ ψ) ⇒ ((∀x.ϕ) ⇒ (∀x.ψ))

Proof by contradiction: there exists I and θ st.
I, θ 6|= ∀x.(ϕ⇒ ψ) ⇒ ((∀x.ϕ) ⇒ (∀x.ψ))
I, θ |= ∀x.(ϕ⇒ ψ)
I, θ |= ∀x.ϕ
I, θ 6|= ∀x.ψ

I, θ([x = v]) |= ϕ

I, θ([x = v]) 6|= ψ

I, θ([x = v]) 6|= ϕ⇒ ψ

I, θ 6|= ∀x.(ϕ⇒ ψ) (contradiction)
Logic and Computation – p. 37/72

Example

Show that ∀x.¬A(x) |= ¬∃x.A(x)

Proof by contradiction: there exists I and θ st.
I, θ |= ∀x.¬A(x) and I, θ 6|= ¬∃x.A(x)
I, θ |= ∃x.A(x)

I, θ([x = v]) |= ¬A(x) for all v
I, θ([x = v]) |= A(x) for some v

Contradiction!

Logic and Computation – p. 38/72

Example

Show that ((∀x.ϕ) ⇒ (∀x.ψ)) 6|= ∀x.(ϕ⇒ ψ)

Logic and Computation – p. 39/72

Replacability and
Duality

Theorem. If B ≡ C and A′ results from A by
replacing some (not necessarily all) occurrences
of B in A by C, then A ≡ A′.

Theorem. Suppose A is a formula composed of
atoms and the connectives ¬, ∧, and ∨ by the
formation rules concerned, and A′ results by
exchanging in A, ∧ for ∨ and each atom for its
negation. Then A′ ≡ ¬A. (A′ is the dual of A)

Logic and Computation – p. 40/72

Substitution
1. For a term t1, (t1)xt is t1 with each occurrence of the

variable x replaced by the term t.

2. For ϕ = P (t1, . . . , tar(P)), (ϕ)xt = P
(

(t1)
x
t , . . . , (tar(P))

x
t

)

.

3. For ϕ = (¬ψ), (ϕ)xt = (¬(ψ)xt);

4. For ϕ = (ψ → η), (ϕ)xt = ((ψ)xt → (η)xt), and

5. for ϕ = (∀y.ψ), there are two cases:

if x is y, then (ϕ)xt = ϕ = (∀y.ψ), and

otherwise, then (ϕ)xt = (∀z.(ψy
z)

x
t), where z is any

variable that is not free in t or in ϕ.

Logic and Computation – p. 41/72

Substitution
In the last case above, the additional substitution
(.)yz (i.e., renaming the variable y to z in ψ) is
needed in order to avoid an accidental capture of
a variable by the quantifier (i.e., capture of any y
that is possibly free in t).

Logic and Computation – p. 42/72

Substitution Lemma

|= ∀x.ϕ⇒ ϕx
t

I, θ |= ϕx
t iff I, θ[x = (t)I,θ] |= ϕ

Logic and Computation – p. 43/72

FOL Hilbert System

Ax1 〈∀∗(ϕ→ (ψ → ϕ))〉;
Ax2 〈∀∗((ϕ→ (ψ → η)) → ((ϕ→ ψ) → (ϕ→ η)))〉;
Ax3 〈∀∗(((¬ϕ) → (¬ψ)) → (ψ → ϕ))〉;
Ax4 〈∀∗(∀x.(ϕ→ ψ)) → ((∀x.ϕ) → (∀x.ψ))〉;
Ax5 〈∀∗(∀x.ϕ) → ϕ x

t 〉 for t ∈ T a term;
Ax6 〈∀∗(ϕ→ ∀x.ϕ)〉 for x 6∈ FV(ϕ); and
MP 〈ϕ, (ϕ→ ψ), ψ〉.

where ∀∗ is a finite sequence of universal
quantifiers (e.g., ∀x1.∀y.∀x).

Logic and Computation – p. 44/72

Generalization of
Axioms (why ∀∗)

Show that if Φ ⊢ ϕ and x 6∈ FV(Φ), then Φ ⊢ ∀x.ϕ.

Proof by structural induction.

Base case: ϕ is an axiom. Then, Φ ⊢ ∀x.ϕ.

Induction step (1): ϕ ∈ Φ

Φ ⊢ ϕ
⊢ ϕ⇒ ∀x.ϕ
Φ ⊢ ∀x.ϕ (MP and x 6∈ FV(ϕ))

Logic and Computation – p. 45/72

Generalization of
Axioms (why ∀∗)

Induction step (2): ψ ⇒ ϕ

1. Φ ⊢ ψ, Φ ⊢ ψ ⇒ ϕ (Induction hyp.)
2. Φ ⊢ (∀x.ψ) (Ax6)
3. Φ ⊢ ∀x.(ψ ⇒ ϕ) (Ax6)
4. Φ ⊢ (∀x.ψ) ⇒ ∀x.ϕ) (Ax5)
5. Φ ⊢ (∀x.ϕ) (MP)

Logic and Computation – p. 46/72

Example 1

Show that ⊢ ∀x.∀y.ϕ⇒ ∀y.∀x.ϕ

1. ∀x.∀y.ϕ (Deduction theorem)
2. ∀x.∀y.ϕ⇒ (∀y.ϕ)xt (Ax5)
3. (∀y.ϕ)xt (MP)
4. (∀y.ϕ)xt ⇒ ((ϕ)xt)

y
t′ (Ax5)

5. ((ϕ)xt)
y
t′ (MP)

6. ((ϕ)xt)
y
t′ ⇒ ∀x.(ϕ)xt (Ax6)

7. ∀x.(ϕ)xt (MP)
8. ∀x.(ϕ)xt ⇒ ∀y.∀x.ϕ (Ax6)
9. ∀y.∀x.ϕ (MP)

Logic and Computation – p. 47/72

Example 2

Show that ⊢ A(a) ⇒ ∃x.A(x)

1. ∀x.¬A(x) ⇒ ¬A(a) (Ax5)
2. A(a) ⇒ (¬∀x.¬A(x)) (Ax3)
3. A(a) ⇒ ∃x.A(x) (Definition of ∃)

Logic and Computation – p. 48/72

Example 3

Show that
⊢ ∀x.(A(x) ⇒ B(x)) ⇒ (∀x.A(x) ⇒ ∀x.B(x))

1. ∀x.(A(x) ⇒ B(x)) (Assumption)
2. ∀x.A(x) (Assumption)
3. ∀x.A(x) ⇒ A(a) (Ax5)
4. A(a) (MP 2, 3)
5. ∀x.(A(x) ⇒ B(x)) ⇒ (A(a) ⇒ B(a)) (Ax5)
6. A(a) ⇒ B(a) (MP 1, 5)
7. B(a) (MP 4, 6)
8. B(a) ⇒ ∀x.B(x) (Ax6)

Logic and Computation – p. 49/72

Example 4

Show that ∃x.∀y.A(x, y) ⇒ ∀y.∃x.A(x, y).

Logic and Computation – p. 50/72

Soundness of FOL
Hilbert System

Step 1: Satisfiability and validity in domain

Suppose Σ ⊆ Forma(L), A ∈ Form(L), and D is
a domain.

1. Σ is satisfiable in D iff there is some model I,
θ over D such that I, θ |= ϕ for all ϕ ∈ Σ.

2. A is valid in D iff for all models I, θ over D,
we have I, θ |= A.

Logic and Computation – p. 51/72

Soundness of FOL
Hilbert System

Theorem. Suppose formula A contains no
equality symbol and |D| ≤ |D1|.

If A is satifiable in D, then A is satisfiable in
D1.

If A is valid in D1, then A is valid in D.

Logic and Computation – p. 52/72

Soundness of FOL
Hilbert System

Theorem (Soundness).

If Σ ⊢ A, then Σ |= A.

If ⊢ A, then |= A.
(That is, every formally provable formula is
valid.)

Logic and Computation – p. 53/72

Consistency

Σ ⊆ Form(L) is consistent iff there is no
A ∈ Form(L) such that Σ ⊢ A and Σ ⊢ ¬A.

Consistency is a syntactical notion

Theorem. If Σ is satifiable, then Σ is consistent.

Logic and Computation – p. 54/72

Maximal Consistency

Σ ⊆ Form(L) is maximal consistent iff

1. Σ is consistent

2. for any A ∈ Form(L) such that A 6∈ Σ,
Σ ∪ {A} is inconsistent.

Lemma. Suppose Σ is maximal consistent.
Then, A ∈ Σ iff Σ ⊢ A.

Lindenbaum Lemma. Any consistent set of
formulas can be extended to some maximal
consisten set. Logic and Computation – p. 55/72

Completeness of FOL

Theorem. Suppose Σ ⊆ Form(L). If Σ is
consistent, then Σ is satisfiable.

Theorem. Suppose Σ ⊆ Form(L). and
A ∈ Form(L). Then

1. If Σ |= A, then Σ ⊢ A.

2. If |= A, then ⊢ A.

Logic and Computation – p. 56/72

FOL with Equality

Let ≈ be a binary predicate symbol (written in
infix). We define the First-Order Axioms of
Equality as follows:

EqId 〈∀x.(x ≈ x)〉;
EqCong 〈∀x.∀y.(x ≈ y) → (ϕ z

x → ϕ z
y)〉;

Logic and Computation – p. 57/72

FOL with Equality

Gödel’s Completeness Theorem. Hilbert system
with (axiomatized) equality is

sound; i.e., if Σ ⊢ ϕ, then Σ |= ϕ and

complete; i.e, if Σ |= ϕ then Σ ⊢ ϕ

with respect to first-order logic with (true)
equality.

Logic and Computation – p. 58/72

Definability

Let I = (D, (.)I) be a first-order interpretation
and ϕ a first-order formula. A set S of k-tuples
over D, S ⊆ Dk, is defined by the formula ϕ if

S = {(θ(x1), . . . , θ(xk)) | I, θ |= ϕ}

A set S is definable in first-order logic if it is
defined by some first-order formula ϕ.

Logic and Computation – p. 59/72

Definability

Let Σ be a set of first-order sentences and K a
set of interpretations. We say that Σ defines K if

I ∈ K if and only if I |= Σ.

A set K is (strongly) definable if it is defined by a
(finite) set of first-order formulas Σ.

Logic and Computation – p. 60/72

Compactness in FOL

Theorem. Σ ⊆ Form(L) is satisfiable iff every
finite subset of Σ is satisfiable.

Corollary. Σ ⊆ Form(L) is satisfiable in a finite
domain, then Σ is satisfiable in an infinite
domain.

Corollary. The class of interpretations with finite
domain is not definable in first-order logic.

Logic and Computation – p. 61/72

Graphs

An undirected graph is a tuple (V,E), where V is
a set of vertices and E is a set of edges. An
edge is a pair (v1, v2), where v1, v2 ∈ V .

v5

v2v1 v3

v4

V = {v1, v2, v3, v4, v5}
E = {(v1, v2), (v2, v3), (v2, v4), (v1, v4), (v1, v5)}

Logic and Computation – p. 62/72

Graphs in FOL

If (v1, v2) ∈ E, we say that v1 is adjacent to v2.

Adjacency in a graph can be expressed by a
binary relation. Thus, relation E(v1, v2) is
interpreted as “v1 is adjacent to v2". A graph is
any model of the following 2 axioms:

1. ∀x.∀y.E(x, y) ⇒ E(y, x) (“if x is adjacent to y,
then y is adjacent to x”)

2. ∀x.¬E(x, x) (“no x is adjacent to itself”)

Logic and Computation – p. 63/72

Graphs in FOL

We can express many properties of a graph in
the language of first-order logic.

For instance, the property “G contains a triangle”
is the following formula:

∃x.∃y.∃z.(E(x, y) ∧ E(y, z) ∧ E(z, x))

Logic and Computation – p. 64/72

Example

Define first-order formulas for :

A graph has girth of size 4

A graph is 3-colorable

Logic and Computation – p. 65/72

Graph Connectivity
in FOL

We cannot express graph connectivity in FOL
(i.e., graph connectivity is not definable in FOL).

Proof.

Let predicate C express “G is a connected
graph". We add constants s and t vertices.

For any k, let Lk be the proposition “there is
no path of length k between s and t”. For
example,

L3 = ¬∃x.∃y.(E(s, x) ∧ E(x, y) ∧ E(y, t))
Logic and Computation – p. 66/72

Graph Connectivity
in FOL

Now consider the set of propositions

Σ = {axiom(1), axiom(2), C, L1, L2, . . . }

Σ is finitely satisfiable: there do exist
connected graphs with s and t, that are
connected by an arbitrarily long path. This is
because any finite subset F ⊂ Σ must have
bounded k’s, such a graph satisifes F .

Logic and Computation – p. 67/72

Graph Connectivity
in FOL

By the compactness theorem, Σ is satisfiable;
i.e., there exists some model G of all
propositions Σ, which is a graph that cannot
be connected by a path of length k, for any k,
for all k.

This is clearly wrong. In a connected graph,
any 2 nodes are connected by a path of finite
length!

Logic and Computation – p. 68/72

Cyclic Graphs in FOL

Prove that there is no first order sentence ϕ with
the property that for each undirected graph G,
there is G |= ϕ iff every vertex of G belongs to a
(finite) cycle in the graph.

Logic and Computation – p. 69/72

Cyclic Graphs in FOL

Assume that such a set Σ of sentences
exists. Extend the signature with a new
constant c and extend Σ with the set

{¬∃v1.∃v2 . . . ∃vn−1.∃vn.E(c, v1) ∧ E(v1, v2)∧
E(v2, v3) ∧ · · · ∧ E(vn−1, vn) ∧ E(vn, c)|n ∈ N}.

Logic and Computation – p. 70/72

Cyclic Graphs in FOL

The extended set satisfies the conditions of
the compactnes theorem: its every finite
subset is satisfiable, since a finite number of
added sentences prevent c from being on a
cycle of a few finite sizes, so as a model one
may take a finite cycle of sufficiently many
vertices.

As a result, the entire set has a model: a
contradiction, as c does not belong to any
cycle in it.

Logic and Computation – p. 71/72

Löwenheim-Skolem’s
Theorems

Theorem 1. Suppose Σ ⊆ Form(L).

1. Σ not containing equality is satisfiable iff Σ is
satisfiable in a countably infinite domain.

2. Σ containing equality is satisfiable iff Σ is
satisfiable in a countably infinite domain or in
some finite domain.

Logic and Computation – p. 72/72

Löwenheim-Skolem’s
Theorems

Theorem 2. Suppose A ∈ Form(L).

1. A not containing equality is valid iff A is valid
in a countably infinite domain.

2. A containing equality is valid iff A is valid in a
countably infinite domain or in every finite
domain.

Logic and Computation – p. 73/72

	Agenda
	Motivation
	Motivation
	Motivation
	Structure of FOL
	Structure of FOL
	Structure of FOL
	Propositions and Functions
	Prefixing Quantifiers
	Bound and Quantified Variables
	Quantifiers for Finite Domains
	FOL Language $cal L$
	Example
	Example
	Terms
	Syntax of FOL - Atoms
	Syntax of FOL - Formulas
	Example
	Free and Bound Variables
	Closed Formulas
	Scope
	FOL Interpretations
	FOL Interpretations
	FOL Interpretations
	FOL Interpretations
	FOL Valuations
	FOL Valuations
	Meaning of Terms
	Satisfaction Relation
	Satisfaction Relation
	Some Remarks
	Relevance Lemma
	Satisfiability and Validity
	Example
	Logical Consequence
	Example
	Example
	Example
	Replacability and Duality
	Substitution
	Substitution
	Substitution Lemma
	FOL Hilbert System
	Generalization of Axioms (why $�orall *$)
	Generalization of Axioms (why $�orall *$)
	Example 1
	Example 2
	Example 3
	Example 4
	Soundness of FOL Hilbert System
	Soundness of FOL Hilbert System
	Soundness of FOL Hilbert System
	Consistency
	Maximal Consistency
	Completeness of FOL
	FOL with Equality
	FOL with Equality
	Definability
	Definability
	Compactness in FOL
	Graphs
	Graphs in FOL
	Graphs in FOL
	Example
	Graph Connectivity in FOL
	Graph Connectivity in FOL
	Graph Connectivity in FOL
	Cyclic Graphs in FOL
	Cyclic Graphs in FOL
	Cyclic Graphs in FOL
	L"owenheim-Skolem's Theorems
	L"owenheim-Skolem's Theorems

