
Logic and Computation
CS245

Dr. Borzoo Bonakdarpour

University of Waterloo

(Fall 2012)

Computability and Decidability

Logic and Computation – p. 1/29

Agenda

Programs as Formulas

Cantor’s Diagonalization

Decidability

Logic and Computation – p. 2/29

Programs as
Formulas

Addition

∀x.PLUS(0, x, x)

∀x, y, z.PLUS(x, y, z)⇒ PLUS(s(x), y, s(z))

where s is the successor function in the set of
natural numbers.

Logic and Computation – p. 3/29

Programs as
Formulas

Strings

∀x.APPEND([], x, x)

∀x, y, z, h.APPEND(x, y, z)⇒ APPEND(h|x, y, h|z)

where ‘|’ denotes concatenation of two strings.

Logic and Computation – p. 4/29

Programs as
Formulas

For a program P with the APPEND axioms show
that P |= APPEND([a, b], [c], [a, b, c]).

Hint: Proof by resolution.

Logic and Computation – p. 5/29

Programs as
Formulas

Reverse

∀x.REVERSE([], x, x)

∀x, y, z, w.REVERSE(y, x|z, w)⇒
REVERSE(x|y, z, w)

Logic and Computation – p. 6/29

Programs as
Formulas

Storage

∀x, y, z.LOOKUP(x, y, cell(x, y, z))

∀x, y, x′, y′, z.LOOKUP(x, y, z)⇒
LOOKUP(x, y, cell(x′, y′, z))

Logic and Computation – p. 7/29

Decidability

A set is decidable iff there exists a formula ϕ(x)
such that:

⊢ ϕ(t) for t ∈ S

6⊢ ϕ(t) for t 6∈ S

Question: Is the set of terms of FOL decidable?
I.e., can we describe FOL by itself?

To answer this question, we should first learn
whether a given set is countable. Because if we
want to describe an uncountable set by a
countable set, we will fail!

Logic and Computation – p. 8/29

Countable Sets

Recall that a set S is countable if there is a
one-to-one correspondance between S and the
N of natural numbers.

How do we prove that a set is uncountable?

Logic and Computation – p. 9/29

Cantor’s Diagonal
Argument

Considers an infinite sequence S = (s1, s2, . . .),
where each element si is an infinite sequence of
1s or 0s. Each sequence si is countable (why?):

s1 = (0, 0, 0, 0, 0, 0, 0, . . .)
s2 = (1, 1, 1, 1, 1, 1, 1, . . .)
s3 = (0, 1, 0, 1, 0, 1, 0, . . .)
s4 = (1, 0, 1, 0, 1, 0, 1, . . .)
s5 = (1, 1, 0, 1, 0, 1, 1, . . .)
s6 = (0, 0, 1, 1, 0, 1, 1, . . .)
s7 = (1, 0, 0, 0, 1, 0, 0, . . .)
. . .

Logic and Computation – p. 10/29

Diagonalization

It is possible to build a sequence s in such a way
that if sn,n = 1, then sn = 0, otherwise sn = 1.

s1 = (0, 0, 0, 0, 0, 0, 0, . . .)
s2 = (1,1, 1, 1, 1, 1, 1, . . .)
s3 = (0, 1,0, 1, 0, 1, 0, . . .)
s4 = (1, 0, 1,0, 1, 0, 1, . . .)
s5 = (1, 1, 0, 1,0, 1, 1, . . .)
s6 = (0, 0, 1, 1, 0,1, 1, . . .)
s7 = (1, 0, 0, 0, 1, 0,0, . . .)
. . .
s = (1, 0, 1, 1, 1, 0, 1, . . .)

Logic and Computation – p. 11/29

Diagonalization

By definition, s is not contained in the countable
sequence S.

Let T be a set consisting of all infinite sequences
of 0s and 1s. By definition, T must contain S and
s.

Since s is not in S, T cannot coincide with S.

Therefore, T is uncountable because it cannot be
placed in one-to-one correspondence with N.

Logic and Computation – p. 12/29

R is Uncountable
We build a one-to-one correspondance between
T and a subset of R.

Let function f(t) = 0.t, where t is a string in T .
For example, f(0111 . . .) = 0.0111

Observe that f(1000 . . .) = 0.1000 · · · = 1/2, and
f(0111 . . .) = 0.0111 · · · =
1/4 + 1/8 + 1/16 + · · · = 1/2.

Hence, f is not a bijection.

Logic and Computation – p. 13/29

R is Uncountable
To produce a bijection from T to the interval (0, 1):

From (0, 1), remove the numbers having two binary
expansions and form
a = (1/2, 1/4, 3/4, 1/8, 3/8, 5/8, 7/8, · · ·).

From T , remove the strings appearing after the binary
point in the binary expansions of 0, 1, and the numbers
in sequence a and form b = (000 · · · , 111 · · · , 1000 · · · ,

0111 · · · , 01000 · · · , 00111 · · · , · · ·).

g(t) from T to (0, 1) is defined by: If t is the nth string in
sequence b, let g(t) be the nth number in sequence a;
otherwise, let g(t) = 0.t.

Logic and Computation – p. 14/29

R is Uncountable
To build a bijection from T to R, we use tan(x), a
bijection from (−π/2, π/2) to R.

The linear function h(x) = π.x− π/2 provides a
bijection from (0, 1) to (−π/2, π/2).

The composite function tan(h(x)) provides a
bijection from (0, 1) to R.

Function tan(h(g(t))) is a bijection from T to R.

Logic and Computation – p. 15/29

Diagonalization

Using diagonalization, one can also show that
(for example):

|Q| = |N| = |Z|

|N| < |2N|

The set of all functions from N to N is
uncountable.

Logic and Computation – p. 16/29

Gödel Numbering

A Gödel numbering is a function that assigns to
each symbol and well-formed formula of some
formal language a unique natural number, called
its Gödel number.

There are several ways to do this:

Prime factorization

ASCII code

Logic and Computation – p. 17/29

Gödel Numbering

Moral of the story: each FOL formula ϕ is
represented by a unique natural number ⌈ϕ⌉.

So what?! Recall that |N| < |2N|? This means we
have too many sets and too few formulas!

This is the core idea of undecidability of FOL.

Logic and Computation – p. 18/29

Decision Problems
Any question about a function can be converted
to a “yes/no" problem. This is called a decision
problem.

For example:

Find a path a path from s to t in a graph G

Does there exist a path from s to t in G?

Compute function f(n)

Decide whether f(n) = m

Or ask whether ⊢ Rf(⌈n⌉, ⌈m⌉)
Logic and Computation – p. 19/29

Decision Problems
and Decidability

Consider the following validity question:
P ⊢ R(t1, . . . , tn). Three possible answers are:

There is a proof (e.g., using FOL resolution).

There is no proof (e.g., using a counter
example). This means we have a proof of
P 6⊢ R.

We cannot tell (i.e., the proof system loops).
For example ∀x.P (x)← P (s(x))

This question is equal to that of
decidability/undecidability.

Logic and Computation – p. 20/29

Decidability of FOL

Theorem. The set VALID = {⌈ϕ⌉ |⊢ ϕ} is
undecidable.

Proof sketch. This means that:

⊢ ϕ then ⊢ VALID(⌈ϕ⌉)

6⊢ ϕ then ⊢ ¬VALID(⌈ϕ⌉)

Assume that VALID(x) is a formula.

Logic and Computation – p. 21/29

Diagonalization for
FOL

(ϕ1)
⌈ϕ2⌉
x ⌈ϕ1⌉ ⌈ϕ2⌉ ⌈ϕ3⌉ . . .

ϕ1 ⊢ 6⊢ ⊢ . . .

ϕ2 6⊢ 6⊢ ⊢ . . .

ϕ3 6⊢ ⊢ ⊢ . . .

. . . .

. . . .

. . . .

ϕd 6⊢ ⊢ 6⊢ . . .

Logic and Computation – p. 22/29

Diagonalization for
FOL

Note that DIAG(t, ⌈∃x.ϕt ∧ (x = t)⌉) is decidable.

ϕd = ∃y.(DIAG(x, y) ∧ ¬VALID(y))

Diagonal argument:

⊢ ϕ(⌈ϕd⌉)

⊢ ϕd = ∃y.(DIAG(⌈ϕd⌉, y) ∧ ¬VALID(y))

⊢ ¬VALID(⌈ϕd(⌈ϕd⌉)⌉)

6⊢ ϕ(⌈ϕd⌉)

Logic and Computation – p. 23/29

Reducibility

A reduction is a transformation of one problem
into another problem.

We normally reduce problem 1 to problem 2,
because we know how to solve problem 2 and
this gives us the answer to problem 1.

Logic and Computation – p. 24/29

Reducibility

Recall graph connectivity, cyclicity, and vertex
cover problems in application of the
compactness theorem?

An important consequence of reducibility is to
show that two problems belong to the same
“class” (e.g., undecidable).

Logic and Computation – p. 25/29

Another Example

Reduction from propositional satifiability to vertex
cover:

¬p

p ¬p

p

p q

q ¬q r ¬r

q r

(p ∨ q) ∧ (¬p ∨ ¬q ∨ ¬r) ∧ (¬p ∨ q ∨ r)

¬r¬q

¬p

Logic and Computation – p. 26/29

The Halting Problem

Let HALTS(⌈P ⌉) be a program that returns true if
P halts (recall that a programm P can be
encoded as a first-order formula).

Theorem. The halting problem, is undecidable.

Logic and Computation – p. 27/29

Undecidability of
HALT

Let RESOLUTION(⌈ϕ⌉) be the problem that
implements resolution for FOL. I.e., it returns true
if ⊢ ϕ.

Then the program “if HALTS(RESOLUTION(⌈x⌉)),
then EVAL(RESOLUTION(x)), else false” is a
decision procedure for VALID.

In other words, if we could solve the halting
problem, we could have solved the FOL validity
problem.

Logic and Computation – p. 28/29

Gödel’s
Incompleteness
Theroems

Theorem 1. For any consistent, effectively
generated formal theory that proves certain basic
arithmetic truths, there is an arithmetical
statement that is true, but not provable in the
theory.

Theorem 2. For any formal effectively generated
theory T including basic arithmetical truths and
also certain truths about formal provability, if T
includes a statement of its own consistency then
T is inconsistent.

Logic and Computation – p. 29/29

	Agenda
	Programs as Formulas
	Programs as Formulas
	Programs as Formulas
	Programs as Formulas
	Programs as Formulas
	Decidability
	Countable Sets
	Cantor's Diagonal Argument
	Diagonalization
	Diagonalization
	$mathbb {R}$ is Uncountable
	$mathbb {R}$ is Uncountable
	$mathbb {R}$ is Uncountable
	Diagonalization
	G"odel Numbering
	G"odel Numbering
	Decision Problems
	Decision Problems and Decidability
	Decidability of FOL
	Diagonalization for FOL
	Diagonalization for FOL
	Reducibility
	Reducibility
	Another Example
	The Halting Problem
	Undecidability of $mathsf {HALT}$
	G"odel's Incompleteness Theroems

