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Programs as
Formulas

Addition

∀x.PLUS(0, x, x)

∀x, y, z.PLUS(x, y, z)⇒ PLUS(s(x), y, s(z))

where s is the successor function in the set of
natural numbers.
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Programs as
Formulas

Strings

∀x.APPEND([], x, x)

∀x, y, z, h.APPEND(x, y, z)⇒ APPEND(h|x, y, h|z)

where ‘|’ denotes concatenation of two strings.
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Programs as
Formulas

For a program P with the APPEND axioms show
that P |= APPEND([a, b], [c], [a, b, c]).

Hint: Proof by resolution.
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Programs as
Formulas

Reverse

∀x.REVERSE([], x, x)

∀x, y, z, w.REVERSE(y, x|z, w)⇒
REVERSE(x|y, z, w)
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Programs as
Formulas

Storage

∀x, y, z.LOOKUP(x, y, cell(x, y, z))

∀x, y, x′, y′, z.LOOKUP(x, y, z)⇒
LOOKUP(x, y, cell(x′, y′, z))
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Decidability

A set is decidable iff there exists a formula ϕ(x)
such that:

⊢ ϕ(t) for t ∈ S

6⊢ ϕ(t) for t 6∈ S

Question: Is the set of terms of FOL decidable?
I.e., can we describe FOL by itself?

To answer this question, we should first learn
whether a given set is countable. Because if we
want to describe an uncountable set by a
countable set, we will fail!
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Countable Sets

Recall that a set S is countable if there is a
one-to-one correspondance between S and the
N of natural numbers.

How do we prove that a set is uncountable?
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Cantor’s Diagonal
Argument

Considers an infinite sequence S = (s1, s2, . . . ),
where each element si is an infinite sequence of
1s or 0s. Each sequence si is countable (why?):

s1 = (0, 0, 0, 0, 0, 0, 0, . . . )
s2 = (1, 1, 1, 1, 1, 1, 1, . . . )
s3 = (0, 1, 0, 1, 0, 1, 0, . . . )
s4 = (1, 0, 1, 0, 1, 0, 1, . . . )
s5 = (1, 1, 0, 1, 0, 1, 1, . . . )
s6 = (0, 0, 1, 1, 0, 1, 1, . . . )
s7 = (1, 0, 0, 0, 1, 0, 0, . . . )
. . .
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Diagonalization

It is possible to build a sequence s in such a way
that if sn,n = 1, then sn = 0, otherwise sn = 1.

s1 = (0, 0, 0, 0, 0, 0, 0, . . . )
s2 = (1,1, 1, 1, 1, 1, 1, . . . )
s3 = (0, 1,0, 1, 0, 1, 0, . . . )
s4 = (1, 0, 1,0, 1, 0, 1, . . . )
s5 = (1, 1, 0, 1,0, 1, 1, . . . )
s6 = (0, 0, 1, 1, 0,1, 1, . . . )
s7 = (1, 0, 0, 0, 1, 0,0, . . . )
. . .
s = (1, 0, 1, 1, 1, 0, 1, . . . )
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Diagonalization

By definition, s is not contained in the countable
sequence S.

Let T be a set consisting of all infinite sequences
of 0s and 1s. By definition, T must contain S and
s.

Since s is not in S, T cannot coincide with S.

Therefore, T is uncountable because it cannot be
placed in one-to-one correspondence with N.
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R is Uncountable
We build a one-to-one correspondance between
T and a subset of R.

Let function f(t) = 0.t, where t is a string in T .
For example, f(0111 . . . ) = 0.0111 . . . .

Observe that f(1000 . . . ) = 0.1000 · · · = 1/2, and
f(0111 . . . ) = 0.0111 · · · =
1/4 + 1/8 + 1/16 + · · · = 1/2.

Hence, f is not a bijection.
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R is Uncountable
To produce a bijection from T to the interval (0, 1):

From (0, 1), remove the numbers having two binary
expansions and form
a = (1/2, 1/4, 3/4, 1/8, 3/8, 5/8, 7/8, · · · ).

From T , remove the strings appearing after the binary
point in the binary expansions of 0, 1, and the numbers
in sequence a and form b = (000 · · · , 111 · · · , 1000 · · · ,

0111 · · · , 01000 · · · , 00111 · · · , · · · ).

g(t) from T to (0, 1) is defined by: If t is the nth string in
sequence b, let g(t) be the nth number in sequence a;
otherwise, let g(t) = 0.t.
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R is Uncountable
To build a bijection from T to R, we use tan(x), a
bijection from (−π/2, π/2) to R.

The linear function h(x) = π.x− π/2 provides a
bijection from (0, 1) to (−π/2, π/2).

The composite function tan(h(x)) provides a
bijection from (0, 1) to R.

Function tan(h(g(t))) is a bijection from T to R.
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Diagonalization

Using diagonalization, one can also show that
(for example):

|Q| = |N| = |Z|

|N| < |2N|

The set of all functions from N to N is
uncountable.
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Gödel Numbering

A Gödel numbering is a function that assigns to
each symbol and well-formed formula of some
formal language a unique natural number, called
its Gödel number.

There are several ways to do this:

Prime factorization

ASCII code
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Gödel Numbering

Moral of the story: each FOL formula ϕ is
represented by a unique natural number ⌈ϕ⌉.

So what?! Recall that |N| < |2N|? This means we
have too many sets and too few formulas!

This is the core idea of undecidability of FOL.
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Decision Problems
Any question about a function can be converted
to a “yes/no" problem. This is called a decision
problem.

For example:

Find a path a path from s to t in a graph G

Does there exist a path from s to t in G?

Compute function f(n)

Decide whether f(n) = m

Or ask whether ⊢ Rf(⌈n⌉, ⌈m⌉)
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Decision Problems
and Decidability

Consider the following validity question:
P ⊢ R(t1, . . . , tn). Three possible answers are:

There is a proof (e.g., using FOL resolution).

There is no proof (e.g., using a counter
example). This means we have a proof of
P 6⊢ R.

We cannot tell (i.e., the proof system loops).
For example ∀x.P (x)← P (s(x))

This question is equal to that of
decidability/undecidability.
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Decidability of FOL

Theorem. The set VALID = {⌈ϕ⌉ |⊢ ϕ} is
undecidable.

Proof sketch. This means that:

⊢ ϕ then ⊢ VALID(⌈ϕ⌉)

6⊢ ϕ then ⊢ ¬VALID(⌈ϕ⌉)

Assume that VALID(x) is a formula.
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Diagonalization for
FOL

(ϕ1)
⌈ϕ2⌉
x ⌈ϕ1⌉ ⌈ϕ2⌉ ⌈ϕ3⌉ . . .

ϕ1 ⊢ 6⊢ ⊢ . . .

ϕ2 6⊢ 6⊢ ⊢ . . .

ϕ3 6⊢ ⊢ ⊢ . . .

. . . .

. . . .

. . . .

ϕd 6⊢ ⊢ 6⊢ . . .
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Diagonalization for
FOL

Note that DIAG(t, ⌈∃x.ϕt ∧ (x = t)⌉) is decidable.

ϕd = ∃y.(DIAG(x, y) ∧ ¬VALID(y))

Diagonal argument:

⊢ ϕ(⌈ϕd⌉)

⊢ ϕd = ∃y.(DIAG(⌈ϕd⌉, y) ∧ ¬VALID(y))

⊢ ¬VALID(⌈ϕd(⌈ϕd⌉)⌉)

6⊢ ϕ(⌈ϕd⌉)
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Reducibility

A reduction is a transformation of one problem
into another problem.

We normally reduce problem 1 to problem 2,
because we know how to solve problem 2 and
this gives us the answer to problem 1.
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Reducibility

Recall graph connectivity, cyclicity, and vertex
cover problems in application of the
compactness theorem?

An important consequence of reducibility is to
show that two problems belong to the same
“class” (e.g., undecidable).
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Another Example

Reduction from propositional satifiability to vertex
cover:

¬p

p ¬p

p

p q

q ¬q r ¬r

q r

(p ∨ q) ∧ (¬p ∨ ¬q ∨ ¬r) ∧ (¬p ∨ q ∨ r)

¬r¬q

¬p
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The Halting Problem

Let HALTS(⌈P ⌉) be a program that returns true if
P halts (recall that a programm P can be
encoded as a first-order formula).

Theorem. The halting problem, is undecidable.
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Undecidability of
HALT

Let RESOLUTION(⌈ϕ⌉) be the problem that
implements resolution for FOL. I.e., it returns true
if ⊢ ϕ.

Then the program “if HALTS(RESOLUTION(⌈x⌉)),
then EVAL(RESOLUTION(x)), else false” is a
decision procedure for VALID.

In other words, if we could solve the halting
problem, we could have solved the FOL validity
problem.
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Gödel’s
Incompleteness
Theroems

Theorem 1. For any consistent, effectively
generated formal theory that proves certain basic
arithmetic truths, there is an arithmetical
statement that is true, but not provable in the
theory.

Theorem 2. For any formal effectively generated
theory T including basic arithmetical truths and
also certain truths about formal provability, if T
includes a statement of its own consistency then
T is inconsistent.
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