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Sets
A set is a collection of objects called members or
elements.

We write
α ∈ S

to mean that α is a member of S (α 6∈ S is the
opposite).

We write
α1, . . . , αn ∈ S

to mean that α1 ∈ S, . . . , and αn ∈ S.
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Sets
Two sets are equal (i.e., S = T ) iff they have the
same members:

for every x, x ∈ S iff x ∈ T .

S is said to be a subset of T (i.e., S ⊆ T ) iff for
every x, x ∈ S implies x ∈ T .

Every set is a subset of itself.

S = T iff S ⊆ T and T ⊆ S.
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Sets
S is a proper subset of T (i.e., S ⊂ T ), iff S ⊆ T and
S 6= T .

Sets are not ordered (e.g., {α, β} = {β, α}).

Repetition in sets is not important (e.g.,
{α, α, β} = {α, β}).

The empty set ∅ has no members. Hence, ∅ ⊆ S

for all S (why?).
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Sets
What are the concrete set that represent:

{x | x < 100 and x is prime}

{x | x = 0 or x = 1 or x = 2}
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Sets
We define

S = {x | x 6∈ S} (complement)

S ∪ T = {x | x ∈ S or x ∈ T} (union)

S ∩ T = {x | x ∈ S and x ∈ T} (intersection)

S − T = {x | x ∈ S and x 6∈ T} (difference)
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Sets
We define

⋃

i∈I

Si = {x | x ∈ Si for some i ∈ I}

⋂

i∈I

Si = {x | x ∈ Si for all i ∈ I}
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Relations
The ordered pair of objects α and β is written as
〈α, β〉.

Then 〈α, β〉 = 〈α1, β1〉 iff α = α1 and β = β1.

Similarly, one can define and ordered n-tuple
〈α1, . . . , an〉.

One can also define a set of ordered pairs (e.g.,
{〈m,n〉 | m,n are natural numbers and m < n}).
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Relations
The Cartesian product of sets S1, . . . , Sn is defined
by
S1×· · ·×Sn = {〈x1, . . . , xn〉 | x1 ∈ S1, . . . , xn ∈ Sn}

Let Sn = S × · · · × S
︸ ︷︷ ︸

n

An n-ary relation R on set S is a subset of Sn.

A special binary relation is the equality relation:
{〈x, y〉 | x, y ∈ S and x = y}

or
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Relations
For a binary relation R, we often write xRy to
denote 〈x, y〉 ∈ R.

R is reflexive on S, iff for any x ∈ S, xRx.

R is symmetric on S, iff for any x, y ∈ S, whenever
xRy, then yRx.

R is transitive on S, iff for any x, y, z ∈ S, whenever
xRy and yRz, then xRz.

R is an equivalence relation iff R is reflexive,
symmetric, and transitive. Logic and Computation – p. 11/22



Relations
Suppose R is an equivalence relation on S. For
any x ∈ S the set

x = {y ∈ S | xRy}
is called the R-equivalence class of x.

R-equivalence classes make a partition of S.
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Functions
A function (mapping) f is a set of ordered pairs such
that if 〈x, y〉 ∈ f and 〈x, z〉 ∈ f , then y = z.

The domain dom(f) of f is the set
{x | 〈x, y〉 ∈ f for some y}

The range ran(f) of f is the set
{y | 〈x, y〉 ∈ f for some x}
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Functions
f(x) denotes the unique element in y ∈ ran(f),
where x ∈ dom(f) and 〈x, y〉 ∈ f .

If f is a function with dom(f) = S and
ran(f) ⊆ T , we say that f is a function from S to
T and denote it by

f : S −→ T

Similarly, one can define n-ary functions.
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Functions
The restriction of R to S1 is the n-ary relation
R ∩ Sn

1
.

Suppose f : S −→ T is a function and S1 ⊆ S.
The restriction of f to S1 is the function

f | S1 : S1 −→ T
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Functions
A function f : S −→ T is onto if ran(f) = T

A function is one-to-one if f(x) = f(y) implies
x = y.
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Set Cardinality

Two sets S and T are equipotent (i.e., S ∼ T ) iff
there is a one-to-one mapping from S onto T .

∼ is an equivalence relations (why?)

A cardinal of a set S is denoted by |S| where:
|S| = |T | iff S ∼ T .

A set S is to be countably infinite, iff |S| = |N |. A set
S is said to be countable, iff |S| ≤ |N | (i.e., S is
finite or countably infinite).
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Set Cardinality

Theorem 1. A subset of a countable set is
countable.

Theorem 2. The union of any finite number of
countable sets is countable.

Theorem 3. The union of any countably many
countable sets is countable.
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Set Cardinality

Theorem 4. The Cartesian product of any finite
number of countable sets id countable.

Theorem 5. The set of all finite sequences with
the members of a countable set as components
is countable.
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Induction and Proofs
Definition 1. (natural numbers)

[1 ] 0 ∈ N .

[2 ] For any n, if n ∈ N , then n′ ∈ N , where n′ is
the successor of n.

[3 ] n ∈ N only if n has been generated by [1]
and [2].
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Induction and Proofs
Definition 1. N is the smallest set S such that

[1 ] 0 ∈ S.

[2 ] For any n, if n ∈ S, then n′ ∈ S
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Induction and Proofs

Theorem. Suppose R is a unary relation. If

[1 ] R(0).

[2 ] For any n ∈ N , if R(n), then R(n′).

then R(n) for any n ∈ N .
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