Logic and Computation CS245

Dr. Borzoo Bonakdarpour

University of Waterloo

(Fall 2012)
Background

Agenda

- Sets
- Relations
- Functions
- Induction and Recursion

Sets

A set is a collection of objects called members or elements.

We write

$$
\alpha \in S
$$

to mean that α is a member of S ($\alpha \notin S$ is the opposite).

We write

$$
\alpha_{1}, \ldots, \alpha_{n} \in S
$$

to mean that $\alpha_{1} \in S, \ldots$, and $\alpha_{n} \in S$.

Sets

Two sets are equal (i.e., $S=T$) iff they have the same members: for every $x, x \in S$ iff $x \in T$.
S is said to be a subset of T (i.e., $S \subseteq T$) iff for every $x, x \in S$ implies $x \in T$.

Every set is a subset of itself.
$S=T$ iff $S \subseteq T$ and $T \subseteq S$.

Sets

S is a proper subset of T (i.e., $S \subset T$), iff $S \subseteq T$ and $S \neq T$.

Sets are not ordered (e.g., $\{\alpha, \beta\}=\{\beta, \alpha\}$).
Repetition in sets is not important (e.g.,
$\{\alpha, \alpha, \beta\}=\{\alpha, \beta\})$.
The empty set \emptyset has no members. Hence, $\emptyset \subseteq S$ for all S (why?).

Sets

What are the concrete set that represent:
$\{x \mid x<100$ and x is prime $\}$

$$
\{x \mid x=0 \text { or } x=1 \text { or } x=2\}
$$

Sets

We define

$\bar{S}=\{x \mid x \notin S\}$ (complement)
$S \cup T=\{x \mid x \in S$ or $x \in T\}$ (union)
$S \cap T=\{x \mid x \in S$ and $x \in T\}$ (intersection)
$S-T=\{x \mid x \in S$ and $x \notin T\}$ (difference)

Sets

We define

$$
\begin{gathered}
\bigcup_{i \in I} S_{i}=\left\{x \mid x \in S_{i} \text { for some } i \in I\right\} \\
\bigcap_{i \in I} S_{i}=\left\{x \mid x \in S_{i} \text { for all } i \in I\right\}
\end{gathered}
$$

Relations

The ordered pair of objects α and β is written as $\langle\alpha, \beta\rangle$.

Then $\langle\alpha, \beta\rangle=\left\langle\alpha_{1}, \beta_{1}\right\rangle$ iff $\alpha=\alpha_{1}$ and $\beta=\beta_{1}$.
Similarly, one can define and ordered n-tuple $\left\langle\alpha_{1}, \ldots, a_{n}\right\rangle$.

One can also define a set of ordered pairs (e.g., $\{\langle m, n\rangle \mid m, n$ are natural numbers and $m<n\}$).

Relations

The Cartesian product of sets S_{1}, \ldots, S_{n} is defined by
$S_{1} \times \cdots \times S_{n}=\left\{\left\langle x_{1}, \ldots, x_{n}\right\rangle \mid x_{1} \in S_{1}, \ldots, x_{n} \in S_{n}\right\}$
Let $S^{n}=\underbrace{S \times \cdots \times S}_{n}$
An n-ary relation R on set S is a subset of S^{n}.
A special binary relation is the equality relation:

$$
\{\langle x, y\rangle \mid x, y \in S \text { and } x=y\}
$$

or

$$
\{\langle x, x\rangle \mid x \in S\}
$$

Relations

For a binary relation R, we often write $x R y$ to denote $\langle x, y\rangle \in R$.
R is reflexive on S, iff for any $x \in S, x R x$.
R is symmetric on S, iff for any $x, y \in S$, whenever $x R y$, then $y R x$.
R is transitive on S, iff for any $x, y, z \in S$, whenever $x R y$ and $y R z$, then $x R z$.
R is an equivalence relation iff R is reflexive, symmetric, and transitive.

Relations

Suppose R is an equivalence relation on S. For any $x \in S$ the set

$$
\bar{x}=\{y \in S \mid x R y\}
$$

is called the R-equivalence class of x.
R-equivalence classes make a partition of S.

Functions

A function (mapping) f is a set of ordered pairs such that if $\langle x, y\rangle \in f$ and $\langle x, z\rangle \in f$, then $y=z$.

The domain $\operatorname{dom}(f)$ of f is the set

$$
\{x \mid\langle x, y\rangle \in f \text { for some } y\}
$$

The range $\operatorname{ran}(f)$ of f is the set

$$
\{y \mid\langle x, y\rangle \in f \text { for some } x\}
$$

Functions

$f(x)$ denotes the unique element in $y \in \operatorname{ran}(f)$, where $x \in \operatorname{dom}(f)$ and $\langle x, y\rangle \in f$.

If f is a function with $\operatorname{dom}(f)=S$ and $\operatorname{ran}(f) \subseteq T$, we say that f is a function from S to T and denote it by

$$
f: S \longrightarrow T
$$

Similarly, one can define n-ary functions.

Functions

The restriction of R to S_{1} is the n-ary relation $R \cap S_{1}^{n}$.

Suppose $f: S \longrightarrow T$ is a function and $S_{1} \subseteq S$. The restriction of f to S_{1} is the function

$$
f \mid S_{1}: S_{1} \longrightarrow T
$$

Functions

A function $f: S \longrightarrow T$ is onto if $\operatorname{ran}(f)=T$
A function is one-to-one if $f(x)=f(y)$ implies
$x=y$.

Set Cardinality

Two sets S and T are equipotent (i.e., $S \sim T$) iff there is a one-to-one mapping from S onto T.
\sim is an equivalence relations (why?)
A cardinal of a set S is denoted by $|S|$ where:

$$
|S|=|T| \text { iff } S \sim T
$$

A set S is to be countably infinite, iff $|S|=|N|$. A set S is said to be countable, iff $|S| \leq|N|$ (i.e., S is finite or countably infinite).

Set Cardinality

Theorem 1. A subset of a countable set is countable.

Theorem 2. The union of any finite number of countable sets is countable.

Theorem 3. The union of any countably many countable sets is countable.

Set Cardinality

Theorem 4. The Cartesian product of any finite number of countable sets id countable.

Theorem 5. The set of all finite sequences with the members of a countable set as components is countable.

Induction and Proofs

Definition 1. (natural numbers)
[1] $0 \in N$.
[2] For any n, if $n \in N$, then $n^{\prime} \in N$, where n^{\prime} is the successor of n.
[3] $n \in N$ only if n has been generated by [1] and [2].

Induction and Proofs

Definition 1. N is the smallest set S such that
[1] $0 \in S$.
[2] For any n, if $n \in S$, then $n^{\prime} \in S$

Induction and Proofs

Theorem. Suppose R is a unary relation. If
[1] $R(0)$.
[2] For any $n \in N$, if $R(n)$, then $R\left(n^{\prime}\right)$.
then $R(n)$ for any $n \in N$.

