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We concentrate on automatic revision of untimed and real-time programs with respect to
UNITY properties. The main focus of this paper is to identify instances where addition of

UNITY properties can be achieved efficiently (in polynomial-time) and where the problem of
adding UNITY properties is difficult (NP-complete). Regarding efficient revision, we present a
sound and complete algorithm that adds a single leads-to property (respectively, bounded-time

leads-to property) and a conjunction of unless, stable, and invariant properties (respectively,
bounded-time unless and stable) to an existing untimed (respectively, real-time) UNITY program
in polynomial-time in the state space (respectively, region graph) of the given program. Regard-
ing hardness results, we show that (1) while one leads-to (respectively, ensures) property can

be added in polynomial-time, the problem of adding two such properties (or any combination of
leads-to and ensures) is NP-complete, (2) if maximum non-determinism is desired then the prob-
lem of adding even a single leads-to property is NP-complete, and (3) the problem of providing
maximum non-determinism while adding a single bounded-time leads-to property to a real-time

program is NP-complete (in the size of the program’s region graph) even if the original program
satisfies the corresponding unbounded leads-to property.

Categories and Subject Descriptors: F.3.1 [Logics and Meanings of Programs]: Specify-
ing; Verifying and Reasoning about Programs; F.2.3 [Analysis of Algorithms and Problem

Complexity]: Tradeoffs between Complexity Measures; D.1.2 [Programming Techniques]:

Automatic Programming—Program modification; synthesis; transformation; D.4.7 [Operating

Systems]: Organization and Design—Real-time and embedded systems

General Terms: Algorithms, Theory, Verification

Additional Key Words and Phrases: UNITY, Formal Methods

1. INTRODUCTION

In this paper, we focus on automated revision of untimed and real-time existing
programs where all variables can be read and written in one atomic step with respect
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to UNITY properties [Chandy and Misra 1988; Carruth 1994]. To motivate the
application of this work, consider the following scenario: a designer checks whether

a program satisfies a property using a model checker. The model checker provides

a counterexample demonstrating that the program does not satisfy the property.

The property in the scenario can be a known property that a designer is dealing
with, or, it may be a newly identified property due to an incomplete specification or
modifications in the specification. In this scenario, the designer needs to manipulate
the given model so that it satisfies the property (while ensuring that the remaining
properties continue to be satisfied).

There exist two automated ways in which one can deal with the above scenario:
(1) local redesign, where the designer removes the program behaviors that violate
the property of interest without adding any new behaviors, or (2) comprehensive

redesign, where the designer develops a new program from scratch (possibly with
new behaviors) that implements the new property while preserving existing prop-
erties. Several approaches exist [Emerson and Clarke 1982; Manna and Wolper
1984; Attie and Emerson 2001; Ramadge and Wonham 1989; Lin and Wonham
1990; Lafortune and Lin 1992; Rudie et al. 2003; Rohloff 2004; Wallmeier et al.
2003; Thomas 2002; Maler et al. 2006; Alur et al. 1996] for comprehensive redesign
most of which require a complete specification and have less emphasis on reuse

in the face of change in program specifications. While these approaches play an
important role in comprehensive redesign of program models from formal specifi-
cations, we believe that in the face of increasingly dynamic systems with evolving
requirements, local redesign is highly desirable. This is due to the fact that local
redesign (1) has the potential to reuse certain computations of an existing program
without actually exacerbating the complexity of the state space explosion problem
(unlike approaches based on automata-theoretic product calculation), and (2) can
be applied in cases where complete system specification is unavailable.

We expect that an algorithm for local redesign would be especially useful if
it were simultaneously sound and complete. A sound algorithm ensures that a
redesigned program meets a property of interest (in addition to preserving existing
specification), i.e., the redesigned program is correct-by-construction. A complete
algorithm provides an insight for designers to decide whether a program can be
redesigned locally or it should be redesigned from scratch to satisfy the property
while preserving its exiting properties. Such automated assistance to a designer
is highly desirable since it significantly decreases the design time by warning the
designers about spending time on fixing a program that is not fixable.

Another application of local redesign is in synthesizing recovery paths in fault-
tolerant systems. When a program is subject to a set of faults, it may reach a state
that is not legitimate. Thus, safe recovery in a finite number of steps is needed
to ensure that the program reaches a legitimate state. One way to achieve such
recovery is to first augment the program with all possible recovery transitions and
then revise the program with respect to a safety property to ensure that recovery is
safe and a progress property to ensure that a legitimate state is eventually reached.

With this motivation, we present an incremental method for adding both untimed
and real-time UNITY properties to programs. We focus on UNITY since it provides
(i) a simple and general computational model for a variety of computing systems,
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and (ii) a proof system for refining programs [Chandy and Misra 1988; Carruth
1994]. We expect to benefit from simplicity and generality of UNITY in automatic
design of programs.
Contributions. The basic UNITY properties from [Chandy and Misra 1988] are
safety properties unless, stable and, invariant where something bad will never hap-

pen, and progress properties ensures and leads-to where something good will eventu-

ally happen. In the context of real-time, Carruth extends these properties such that
the occurrence of the good and bad things are considered in a bounded amount of
time [Carruth 1994]. We note that since self-stabilization [Dijkstra 1974] properties
can be expressed as a conjunction of stable and leads-to properties, the results in
this paper can be trivially used to achieve automated addition of self-stabilization
properties to existing programs as well. The main results of this paper are as
follows:

—We formally define the problem of adding UNITY properties to programs.

—We introduce a polynomial-time sound and complete algorithm for simultaneous
addition of a single leads-to property and a conjunction of safety properties to
untimed programs. As a result, since ensures can be expressed in terms of a leads-

to and unless properties, our algorithm is able to add a single ensures property
and a conjunction of safety properties as well.

—We present a counterintuitive result where we show that addition of two or more
progress (i.e., ensures and leads-to) properties to an untimed program is NP-
complete. Based on this result, we find that adding one progress property is
significantly easier than addition of multiple such properties.

—We show that the problem of adding a single leads-to property to an untimed
program while preserving maximum non-determinism is NP-complete.

—We propose a sound and complete polynomial-time algorithm in the size of the
input program’s region graph (a time-abstract bisimulation representation of real-
time programs) for simultaneous addition of a single bounded-time leads-to prop-
erty along with a conjunction of safety properties. Similar to the untimed case,
our algorithm is able to add a single bounded-time ensures property and a con-
junction of safety properties as well.

—We show another counterintuitive result that the problem of providing maximum
non-determinism while adding a single bounded-time leads-to property to a real-
time program is NP-complete (in the size of the input program’s region graph)
even if the original program satisfies the corresponding unbounded leads-to prop-
erty.

Organization of the paper. The rest of the paper is organized as follows. We
present our polynomial-time sound and complete algorithm and NP-completeness
results on automated addition of untimed UNITY properties in Sections 2 and 3,
respectively. We present our sound and complete algorithm for adding real-time
UNITY properties and NP-completeness result in Sections 4 and 5, respectively.
Then, in Section 6, we compare the results of this paper with the related work.
Finally, we make concluding remarks in Section 7.
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2. REVISING UNTIMED UNITY PROGRAMS: POLYNOMIAL-TIME ALGORITHM

In this section, we focus on automated revision of untimed UNITY programs. First,
we present the preliminary concepts.

Untimed program. A program p is of the form 〈Sp, Ip, δp〉 where Sp is a finite
set of states, Ip ⊆ Sp is the set of initial states of p, and δp ⊆ Sp × Sp is the set of
transitions of p. A state predicate of p is any subset of Sp. A infinite sequence of
states σ = 〈s0, s1 · · · 〉 is a computation of p iff (if and only if) the following three
conditions are satisfied: (1) s0 ∈ Ip, (2) ∀j > 0 : (sj−1, sj) ∈ δp holds, and (3) if
σ reaches a terminating state sf where there does not exist s such that s 6= sf

and (sf , s) ∈ δp then we extend σ to an infinite computation by stuttering at sf

using transition (sf , sf ). If a computation σ reaches a terminating state sd such
that there is no outgoing transition (or a self-loop) from sd, then sd is a deadlock

state and σ is a deadlocked computation. A sequence of states 〈s0, s1 · · · sn〉 is a
computation prefix of p iff ∀j | 0 < j ≤ n : (sj−1, sj)∈δp .
Untimed UNITY properties [Chandy and Misra 1988]. Let P and Q be
two arbitrary state predicates.

—(Unless) An infinite sequence of states σ = 〈s0, s1, ...〉 satisfies P unless Q iff
∀i ≥ 0 : (si ∈ (P ∩ ¬Q)) ⇒ (si+1 ∈ (P ∪ Q)). Intuitively, if P holds in any
state of σ then either (1) Q never holds in σ and P is continuously true, or (2)
Q eventually becomes true and P holds at least until Q becomes true.

—(Stable) An infinite sequence of states σ = 〈s0, s1 · · · 〉 satisfies stable(P ) iff σ
satisfies (P unless false). Intuitively, P is stable iff once it becomes true it
remains true forever.

—(Invariant) An infinite sequence of states σ = 〈s0, s1 · · · 〉 satisfies invariant(P )
iff s0 ∈ P and σ satisfies stable(P ). An invariant property always holds.

—(Ensures) An infinite sequence of states σ = 〈s0, s1 · · · 〉 satisfies P ensures Q
iff (σ satisfies P unless Q) and (∀i ≥ 0 : (si ∈ P ) ⇒ (∃j ≥ i : sj ∈ Q)). In
other words, if P becomes true in si, there exists a state sj where Q eventually
becomes true in sj and P remains true everywhere between si and sj .

—(Leads-to 7→) An infinite sequence of states σ = 〈s0, s1 · · · 〉 satisfies P 7→ Q iff
(∀i ≥ 0 : (si ∈ P ) ⇒ (∃j ≥ i : sj ∈ Q)). In other words, if P holds in si then
there exists a state sj where Q eventually holds and i ≤ j.

We define a specification SPEC as a conjunction of the above UNITY properties
(i.e., SPEC ≡ L1 ∧L2 · · · Ln). A sequence of states σ = 〈s0, s1 · · · 〉 satisfies SPEC

iff (∀i | 1 ≤ i ≤ n : σ satisfies Li). We say that program p satisfies a UNITY
specification, SPEC , iff all computations of p satisfy SPEC .

The properties unless, stable, and invariant are called safety properties and the
properties ensures and leads-to are called progress (or liveness) properties. The
safety UNITY properties can be modeled in terms of a set of bad transitions that
should never occur in a program computation. For example, stable(P ) requires
that transitions of the form (s0, s1), where s0 ∈ P and s1 /∈ P should never occur
in any program computation. Hence, for simplicity, in this paper, when dealing
with safety UNITY properties, we assume that they are represented as a set of
transitions B ⊆ Sp × Sp that should not occur in any computation.
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Differences with standard UNITY. In our formal framework, unlike standard
UNITY in which interleaved fairness is assumed, we assume that all program com-
putations are unfair. This assumption is necessary in dealing with polynomial-time
addition of UNITY progress properties to programs. We also note that the defini-
tion of ensures property is slightly different from that in [Chandy and Misra 1988].
Precisely, in Chandy and Misra’s definition, (P ensures Q) implies that (1) P leads-

to Q, (2) P unless Q, and (3) there is at least one action that always establishes
Q whenever it is executed in a state where P is true and Q is false. Since, we do
not model actions explicitly in our work, we have removed the third requirement.
Finally, as described earlier, in this paper, in the context of untimed programs, our
focus is only on programs whose finite set of discrete variables is of finite domain.

2.1 Problem Statement

Given a program p = 〈Sp, Ip, δp〉 and a UNITY specification SPECn, our goal is to
revise p so that the revised program (denoted p′ = 〈Sp′ , Ip′ , δp′〉) satisfies SPECn

while preserving its existing UNITY specification SPEC e. We consider the case
where specification SPEC e may be unknown. Thus, during the revision, we only
want to reuse the correctness of p with respect to SPEC e so that the correctness
of p′ with respect to SPEC e is derived from ‘p satisfies SPEC e’.

Now, we identify constraints on Sp′ , Ip′ and δp′ . Observe that if Sp′ contains
states that are not in Sp, there is no guarantee that the correctness of p with respect
to SPEC e can be reused to ensure p′ satisfies SPEC e. Also, since Sp denotes the
set of all states (not just reachable states) of p, removing states from Sp is not
advantageous. Likewise, Ip′ should not have any states that were not there in Ip.
Moreover, since Ip denotes the set of all initial states of p, we should preserve them
during the revision. Finally, we require that δp′ should be a subset of δp. Note
that not all transitions of δp may be preserved in p′. Hence, we must ensure that p′

does not deadlock. Based on the definition of UNITY specifications, if (i) δp′ ⊆ δp,
(ii) p′ does not deadlock, and (iii) p satisfies SPEC e, then p′ also satisfies SPEC e.
Thus, the problem statement is defined as follows:

Problem Statement 2.1 Given a program p = 〈Sp, Ip, δp〉 and a UNITY specifi-
cation SPECn, identify p′ = 〈Sp′ , Ip′ , δp′〉 such that:

(C1) Sp′ = Sp

(C2) Ip′ = Ip

(C3) δp′ ⊆ δp

(C4) p′ satisfies SPECn.

Note that the requirement of deadlock freedom is not explicitly specified in the
above problem statement, as it follows from ‘p′ satisfies SPECn’. Throughout the
paper, we use ‘revision of p’ with respect to a property L and ‘addition of L’ to p
interchangeably.

2.2 Adding a Single Leads-to and Multiple Safety Properties

In this section, we present a simple solution for Problem Statement 2.1 where the
new specification SPECn is a conjunction of a single leads-to property and multiple
safety properties. We note that the goal of our algorithm is simply to illustrate
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the feasibility of a polynomial-time solution. Hence, although our algorithm in this
section can be modified to reduce the complexity further, we have chosen to present
a simple (and not so efficient) solution (see Algorithm 1).

Let p = 〈Sp, Ip, δp〉 be a program and specification SPECn ≡ B ∧ L, where B
represents the conjunction of a set of safety properties and L ≡ (R 7→ T ) for state
predicates R and T . In order to guarantee that the revised program p′ satisfies
B (i.e., p′ never executes a transition in the set of bad transitions B), we simply
remove all transitions in B from p (Step 1).

In order to add the leads-to property L ≡ (R 7→ T ) to p, we need to guarantee
that any computation of p′ that reaches a state in R will eventually reach a state in
T . Towards this end, we rank all states s in Sp based on the length of the shortest
computation prefix of p from s to a state in T (Step 2). In such a ranking, if no
state of T is reachable from s then the rank of s will be infinity. Also, the rank
of states in T is zero. There exist two obstacles in guaranteeing the reachability
of T from R: (1) deadlock states reachable from R, and (2) cycles reachable from
R in which computations of p′ may be trapped forever. In addition to possible
existing deadlock states in p, our algorithm may also introduce deadlock states by
(i) removing safety-violating transitions (Step 1), and (ii) making infinity-ranked
states in R unreachable in Step 4.

Regarding deadlock states, our approach is to make them unreachable (Steps
5-12). Such removal of transitions may introduce new deadlock states that are
removed in the while loop. If the removal of deadlock states culminates in making
an initial state deadlocked then (R 7→ T ) cannot be added to p. Otherwise, we
again rank all states (Step 13) as we might have removed some deadlock states in
T , and consequently, created new infinity-ranked states. We repeat the above steps
until no reachable state in R has the rank infinity. At this point (end of the repeat-
until loop), there is a path from each state in R to a state in T . However, there

Algorithm 1 Add UNITY
Input: untime program 〈Sp, Ip, δp〉, leads-to property R 7→ T , and safety specification B.
Output: revised program 〈Sp′ , Ip′ , δ

p′ 〉.

1: δp1
:= δp − {(s0, s1) | (s0, s1) ∈ B};

2: ∀s ∈ Sp : Rank(s) = the length of the shortest computation prefix of δp1
that starts from s

and ends in a state in T ; ⊲ Rank(s) = ∞ means T is not reachable from s.
3: repeat

4: δp1
:= δp1

− {(s0, s1) | (s1 ∈ R) ∧ Rank(s1) = ∞};
5: while (∃s0 ∈ Sp : (∀s1 ∈ Sp : (s0, s1) 6∈δp1

)) do

6: if (s0 /∈Ip) then

7: δp1
:= δp1

− {(s, s0) | (s, s0) ∈ δp1
};

8: else

9: declare that the addition is not possible;
10: exit();
11: end if

12: end while

13: ∀s ∈ Sp : Rank(s) = the length of the shortest computation prefix of δp1
that starts from

s and ends in a state in T ;
14: until (∀s | (s ∈ R) ∧ (s is reachable from Ip using δp1

) : Rank(s) 6= ∞)
15: return δp1

− {(s0, s1) | (Rank(s0) > 0) ∧ (Rank(s0) 6= ∞) ∧ (Rank(s0) ≤ Rank(s1))};

ACM Journal Name, Vol. V, No. N, Month 20YY.



Complexity Results in Revising UNITY Programs · 7

may exist a computation prefix 〈s0, s1, · · · , sn〉 such that (1) s0 ∈ R, (2) sn ∈ T ,
(3) for all i ∈ {1..n − 1} : si /∈ T , and (4) ∃j ∈ {2..n − 1} where sj is on a cycle.

To deal with such cycles, we retain transitions from high-ranked states to low-
ranked states (Step 15). In particular, if Rank(s0) ≤ Rank(s1) then it means there
exists a computation prefix of shorter or equal length from s0 to T as compared to
the computation prefix from s1 to T . Thus, removing (s0, s1) will not make s0 dead-
locked. Notice that in Step 15, transitions of the form (s0, s1), where Rank(s0) = ∞
and Rank(s1) = ∞, are not removed. Also, we ensure that no transitions that orig-
inate from T is removed. Hence, computations in which neither predicates R and
T are reached will not be affected.
Remark. We note that since ensures can be expressed as a conjunction of an
unless property and a leads-to property, our algorithm is able to add an ensures

property as well.

Theorem 2.2 The Add UNITY algorithm is sound and complete.

Proof. Since Add UNITY does not add any new states to Sp, we have Sp′ = Sp.
Likewise, Add UNITY does not remove (respectively, introduce) any initial states;
we have Ip′ = Ip. The Add UNITY algorithm only updates δp by excluding some
transitions from δp in Steps 1, 4, 7, and 15. It follows that δp′ ⊆ δp. By construction,
if the Add UNITY algorithm generates a program p′ in Step 15 then reachability
from R to T is guaranteed in p′. Thus, p′ meets all the requirements of Problem
Statement 2.1.

We now show that the algorithm is complete. Note that any transition removed
in Add UNITY (in Steps 1, 4, and 7) must be removed in any program that meets
the requirements of Problem Statement 2.1. Hence, if failure is declared (in Step
9), there exists no solution to Problem Statement 2.1.

Theorem 2.3 The complexity of Add UNITY algorithm is polynomial-time in

Sp.

Remark. We would like to note that soundness and completeness of Add UNITY

are preserved for the case where the revised program is allowed to have a subset
of initial states of the original program. For such a case, the algorithm would fail
only if all initial states are removed.

2.3 Example: Readers-Writers Program

In this section, we illustrate the application of the Add UNITY algorithm in local
redesign of a program for the readers-writers problem [Chandy and Misra 1988].
We use Dijkstra’s guarded commands (actions) [Dijkstra 1990] as a shorthand for
representing the set of program transitions. A guarded command g → st captures
the transitions {(s0, s1) | the state predicate g is true in s0, and s1 is obtained by
atomic execution of statement st in state s0 }.

The Readers-Writers (RW) program1. Multiple writer processes wait in an

1A Promela model of the revised program is available at http://www.cs.mtu.edu/~aebnenas/

research/rdrs-wrtrs.txt. It can be easily verified by the model checker Spin [Holzmann 1997].
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infinite external queue to be picked by the program. RW contains a finite internal
queue of size 2 that is managed by a queue manager process, which selects writ-
ers from an external queue and places them in the internal queue. The selected
writer has access to a shared buffer to which other processes have access as well.
At any time only one writer is allowed to write the buffer. The reader processes
can read the shared buffer. The program has three integer variables 0 ≤ nr ≤ N ,
0 ≤ nw ≤ N , and 0 ≤ nq ≤ 2 that are initially 0, where N denotes the total num-
ber of processes. Specifically, nr represents the number of readers reading from
the buffer, nw represents the number of writers writing the buffer, and nq repre-
sents the number of writers waiting in the internal queue. The program contains
Boolean variables rdj (1 ≤ j ≤ N), and wrq that respectively represent whether
or not the reader Rj is reading the buffer, and at least a writer is waiting in the
internal queue. The variable wrq is set to true by the queue manager when there is
a process waiting to write and wrq is set to false when a process is writing the buffer.

Safety specification. The safety specification, BRW , of the program requires
that when a writer is writing in the buffer no other process is allowed to access the
buffer. However, multiple readers can read the buffer simultaneously:

BRW = {(s0, s1) | (nw(s1) > 1) ∨ ((nr(s1) 6= 0) ∧ nw(s1) 6= 0))}

The safety specification stipulates that the condition (nw ≤ 1) ∧ ((nr = 0)∨(nw =
0)) must hold in every reachable state. Another representation of the above formula
is 0 ≤ (N−(nr + N · nw)). For ease of presentation, we represent the expression
(N−(nr + N · nw)) with the variable K.

Actions of RW. The actions of the writer processes in the original program are
as follows:

W1 : (nq > 0) ∧ (K ≥ 3) −→ nw := nw + 1; nq := nq − 1; wrq := false;
W2 : (nw = 1) −→ nw := nw − 1;

When there exists a process ready for writing in the internal queue (i.e., nq > 0)
and no process is using the buffer (i.e., K ≥ 3), the program allows the writers
to write the common buffer. Thus, the writer process waits until all readers finish
their reading activities. When a writer process accesses the buffer, it increments
the value of nw, sets the value of wrq to false, and decrements the value of nq (see
action W1). This way, the queue manager lets other waiting writers in. When the
writer finishes its writing activity in the buffer, it exits by decrementing the value
of nw (see action W2).

The following parameterized actions represent the transitions of the readers as
the structures of the readers are symmetric:

Rj1 : ¬wrq ∧ ¬rdj ∧ (1 < K) −→ nr := nr + 1; rdj := true;
Rj2 : rdj −→ nr := nr − 1; rdj := false;

The condition K > 1 holds if no writer process is writing the buffer an at most
N − 1 readers exist. Thus, if a reader process is not already in reading status and
no writer is waiting to write the buffer (see action Rj1) then the reader can read
the buffer. (The original program gives the priority to the writers.) When a reader
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process Rj completes its reading activity, it decrements the value of nr and sets
rdj to false. Now, we present the action of the queue manager process.

QM : (nq < 2) −→ nq := nq + 1; wrq := true;

Once the queue manager selects a waiting writer, it increments the value of nq and
sets wrq to true in order to show that a writer is waiting in the internal queue. We
consider a version of the RW program where we have two readers R0 and R1 and
one writer (i.e., N = 3).
Initial states. Let 〈nr, nw, nq, rd0, rd1, wrq〉 denote the state of the RW pro-
gram. We consider the initial state 〈0, 0, 0, false, false, false〉 for the RW program.

The desired leads-to property. The initial program satisfies the safety speci-
fication BRW , however, no progress is guaranteed. For example, the writer process
may wait forever due to alternating access of R0 and R1 to the buffer. Readers
may also wait forever due to continuous presence of writers in the internal queue.
Thus, the desired leads-to property for a reader Rj , j ∈ {0, 1}, is (0 ≤ K) 7→ (rdj)
and the program should satisfy (nq > 0 7→ (nw = 1)) to ensure that writers have
progress. In this example, we present only the redesign of RW for the property
(0 ≤ K) 7→ (rd0) for the reader R0. As such, in the property R 7→ T in the input
of Add UNITY, the state predicate R is equal to 0 ≤ K and the state predicate T
equals to rd0 (see input parameters of Algorithm 1).

Adding leads-to using Add UNITY. We trace the execution of Add UNITY for
the addition of (0 ≤ K) 7→ (rd0) to the RW program.

—Step 1. Since the initial program satisfies its safety specification BRW , Step 1 of
the Add UNITY algorithm would not eliminate any transitions.

—Step 2. Rank 0 includes eight reachable states where rd0 = true. These states
are as follows: 〈1, 0, 0, true, false, false〉, 〈1, 0, 1, true, false, true〉,
〈2, 0, 0, true, true, false〉, 〈1, 0, 2, true, false, true〉, 〈2, 0, 1, true, true, true〉,
〈2, 0, 2, true, true, true〉, 〈2, 0, 1, true, true, false〉, and 〈1, 0, 1, true, false, false〉.
From the initial state 〈0, 0, 0, false, false, false〉, the reader R0 can read the buffer
and the program reaches the state 〈1, 0, 0, true, false, false〉. Thus, the rank of
the initial state is 1. Moreover, the reader R0 can read the buffer from the states
〈1, 0, 0, false, true, false〉, 〈1, 0, 1, false, true, false〉, and 〈0, 0, 1, false, false, false〉.
As a result, the program state changes to a state in Rank 0.
The states 〈0, 1, 0, false, false, false〉 and 〈0, 1, 1, false, false, false〉 have Rank 2 as
the execution of action W2 from these states changes the program state to a state
in Rank 1. Likewise, the states 〈0, 0, 1, false, false, true〉 and 〈0, 0, 2, false, false,
true〉 get Rank 3. Rank 4 includes 〈1, 0, 1, false, true, true〉,
〈0, 1, 1, false, false, true〉, 〈0, 1, 2, false, false, true〉, and 〈1, 0, 2, false, true, true〉.

—Step 4. There are no states with rank ∞.

—Steps 5-12. Since Step 4 does not remove any transitions, no deadlock states
are created and, hence, the algorithm does not enter the while loop.

—Step 13. This step results in the same ranking as in Step 2.

—Step 14. Since all reachable states, where 0 ≤ K holds, have a finite rank, the
algorithm exits the repeat-until loop.
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—Step 15. This step removes transitions that start in a low ranking state outside
Rank 0 and terminate in a higher rank. For example, the transition (s0, s1)
included in action W1, where s0 = 〈0, 0, 1, false, false, false〉 and 〈0, 1, 0, false,
false, false〉, starts in Rank 1 and ends in Rank 2. From s0, the execution of action
QM gets the program to state 〈0, 0, 2, false, false, false〉 in Rank 3. Moreover,
transitions that form a cycle between the states of the same rank (outside Rank
0) are removed. For instance, the reader R1 may read the buffer from s0 and the
program reaches the state s1 = 〈1, 0, 1, false, true, false〉. Afterwards, R1 may
take the state of the program back to s0 by executing the action R12, thereby,
creating a cycle between s0 and s1 in Rank 1.

The revised program. After applying the Add UNITY algorithm on the RW

program for properties (0 ≤ K) 7→ (rd0), (0 ≤ K) 7→ (rd1) and subsequently
(nq > 0) 7→ (nw = 1) the final revised program is as follows:

W ′
1 : (wrq) ∧ (K = 3) −→ nw := nw + 1; nq := nq − 1; wrq := false;

W ′
2 : (¬wrq) ∧ (K = 0) −→ nw := nw − 1;

Intuitively, a waiting writer is allowed to write if no other processes have accessed
the buffer (i.e., (wrq) ∧ (K = 3)). The value of K is zero only if a writer has
accessed the buffer, thereby, enabling the writer to release the buffer. The following
parameterized action represents the transitions of the reader processes (j = 0, 1).
A reader process is allowed to read the buffer if no writer is waiting in the internal
queue and at most one reader is reading the buffer (i.e., K > 1). The guard of
the second action has been strengthened in that a reader is allowed to release the
buffer if a writer is waiting for access.

R′
j1

: (¬wrq) ∧ ¬rdj ∧ (1 < K) −→ nr := nr + 1; rdj := true;
R′

j2
: rdj ∧ (wrq) ∧ (K < 3) −→ nr := nr − 1; rdj := false;

The behavior of the queue manager process is also modified in that a writer is
put in the internal buffer if (1) no writer is currently in the internal buffer, (2) no
writer is writing the buffer, and (3) exactly two readers are reading the buffer (i.e.,
K = 1).

QM ′ : (nq = 0) ∧ (K = 1) ∧ (nw = 0) −→ nq := nq + 1; wrq := true;

We refer the reader to [Ebnenasir et al. 2005] for another example on revising a
mutual exclusion algorithm which originally exhibits starvation.

3. REVISING UNTIMED UNITY PROGRAMS: HARDNESS RESULTS

In this section, we present cases where the problem of adding UNITY properties to
untimed programs is NP-complete.

3.1 Adding Multiple Progress Properties

In this subsection, we focus on addition of a combination of progress properties (i.e.,
leads-to and/or ensures). In this context, we note that the algorithm Add UNITY

can be applied in a stepwise fashion to add multiple progress properties. However,
while such stepwise addition is sound, it is not complete. This is due to the fact
that during the addition of the first (for instance, leads-to) property, the transitions
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removed in the last step (Line 15 in Algorithm 1) may cause failure in adding
subsequent progress properties.

We consider a special case of the problem of adding multiple progress properties
where two eventually properties are added to a given program. The property ‘even-
tually Q’ is logically equivalent with ‘true 7→ Q’ (respectively, true ensures Q), i.e.,
starting from an arbitrary state, the program reaches a state in Q. Thus, for an
infinite computation, this implies that Q must be reached infinitely often. Since
this special case is NP-complete (see Theorem 3.1 below), the hardness of adding
a combination of two leads-to and ensures properties follows trivially.

Instance. A program p = 〈Sp, Ip, δp〉 and SPECn ≡ L1 ∧ L2, where L1 ≡
(Eventually Q) and L2 ≡ (Eventually T ), and Q and T are state predicates.

The decision problem (2EV). Given the above instance, does there exist a
program p′ = 〈Sp′ , Ip′ , δp′〉 such that p′ satisfies the constraints of Problem State-
ment 2.1?

To show the complexity of the above decision problem, we reduce the problem of
determining whether or not a directed graph has a simple cycle that includes two
specific vertices, described next, to the problem of adding two eventually properties.

Cycle Detection in Directed Graphs (CDDG). Given a directed graph
G = 〈V,A〉, where V is a set of vertices and A is a set of arcs, and two vertices, say
u and v in V , does there exist a (simple) cycle in G that includes both u and v?
The CDDG problem is known to be NP-complete [Bang-Jensen and Gutin 2002].

Theorem 3.1 The problem of adding two eventually properties to an untimed pro-

gram is NP-complete.

Proof. Since showing membership to NP is straightforward, we only need to
show that the problem is NP-hard. Towards this end, we present a polynomial-
time mapping from an instance of CDDG to a corresponding instance of the 2EV
problem. Let G = 〈V,A〉 be a directed graph. We construct p = 〈Sp, Ip, δp〉 and
identify SPECn ≡ L1 ∧ L2 as follows:

—Sp = {sx | x ∈ V },

—δp = {(sx, sy) | (x, y) ∈ A},

—Ip = {su, sv},

—L1 ≡ Eventually{su}, and L2 ≡ Eventually{sv}.

Now, we show that the instance of the CDDG problem has a solution if and only
if the answer to the corresponding instance of the 2EV problem is affirmative:

—(⇒) If the cycle detection problem has a solution then the program obtained
by taking only the transitions corresponding to the arcs in that cycle satisfies
Problem Statement 2.1.

—(⇐) Let p′ = 〈Sp′ , Ip′ , δp′〉 be the program obtained after adding two even-
tually properties. Following the constraints (C2) of Problem statement 2.1,
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Ip′ = {su, sv}. Now, consider a computation of p′ that (without loss of general-
ity) starts from su. Since p′ satisfies eventually{su}, state su must be revisited
in this computation. Consider the smallest prefix where su is repeated. For this
prefix, we show the following:
(1) State sv must occur in this prefix. If not, a computation of p′ that is obtained

by repeating the above computation prefix does not satisfy eventually{sv}.
(2) No other state can be repeated in this computation prefix. If a state, say sx,

appears twice in the above computation prefix then there would be a cycle
between the two occurrences of sx. This implies that, there is a computation
of p′ that starts in su, reaches sx and then repeats this cycle. Clearly, this
computation does not satisfy eventually{su}.

Now, consider the cycle obtained by taking the edges corresponding to the tran-
sitions of the above computation prefix. Based on the first point above, this cycle
contains both u and v. And, from the second point, it is a simple cycle, i.e., no
vertex is repeated in it.

Corollary 3.2 The problem of adding two or more progress properties to untimed

UNITY programs is NP-complete.

3.2 Adding a Single Leads-to Property with Maximum Non-Determinism

Given a program p = 〈Sp, Ip, δp〉 and a UNITY specification SPECn, we say that
the revised program p′ has maximum non-determinism iff p′ = 〈Sp′ , Ip′ , δp′〉 meets
the constraints of Problem Statement 2.1 and the cardinality of δp′ is maximum.
Maintaining maximum non-determinism is desirable in the sense that it increases
the potential for future successful addition of other properties.

Instance. A program p = 〈Sp, Ip, δp〉, SPECn ≡ (P 7→ Q), and positive integer
k, where k ≤ |δp|.

The decision problem (MND). Given the above instance, does there exist a
program p′ = 〈Sp′ , Ip′ , δp′〉 such that p′ meets the constraints of Problem Statement
2.1 and |δp′ | ≥ k?

We now show that the problem of adding a single leads-to property while main-
taining maximum non-determinism is NP-complete. To this end, we reduce the
feedback arc set problem in directed graphs to the above decision problem.

Feedback Arc Set Problem (FAS). Let G = 〈V,A〉 be a digraph and j be a
positive integer, where j ≤ |A|. The feedback arc set problem determines whether
there exists a subset A′ ⊆ A, such that |A′| ≤ j and A′ contains at least one arc
from every directed cycle in G. The FAS problem is known to be NP-complete
[Karp 1972].

Theorem 3.3 The problem of adding a single leads-to property while preserving

maximum non-determinism is NP-complete.

Proof. Since showing membership to NP is straightforward, we only show that
the problem is NP-hard. Given an instance of the FAS problem, we present a

ACM Journal Name, Vol. V, No. N, Month 20YY.



Complexity Results in Revising UNITY Programs · 13

polynomial-time mapping from FAS instance to a corresponding instance of the
MND problem. Let G = 〈V,A〉 be a directed graph and j be a positive integer. We
construct program p = 〈Sp, Ip, δp〉 and identify integer k and specification SPECn ≡
P 7→ Q as follows:

—Sp = {sv | v ∈ V } ∪ {p1, p2 · · · p|A|+1} ∪ {q},

—Ip = {p1, p2 · · · p|A|+1},

—δp = {(su, sv) | (u, v) ∈ A} ∪ {(pi, sv) | (1 ≤ i ≤ |A| + 1) ∧ (v ∈ V )} ∪
{(sv, q) | v ∈ V } ∪ {(q, q)}, and

—P = {p1, p2 · · · p|A|+1}, Q = {q}, and k = |δp| − j.

We now show that the instance of FAS has a solution if and only if the answer to
the corresponding instance of MND is affirmative:

—(⇒) Let the answer to FAS be the set A′ of arcs where |A′| ≤ j. Clearly,
given our mapping, constraints (C1) and (C2) of the Problem Statement 2.1
are met by construction. Now, if we obtain δp′ by removing the transitions
that correspond to A′ from δp, the resultant program p′ will have no cycles in
Sp − (P ∪ Q). Moreover, since there exists a transition from each state in P to
all states in Sp − (P ∪ Q) and also there exists a transition from each state in
Sp − P to q, any computation that starts from a state in P eventually reaches
Q. Observe that the number of transitions removed from δp is |A′|. Hence,
|δp′ | = |δp| − |A′| ≥ |δp| − j = k.

—(⇐) Let the answer to MND be the program p′ = 〈Sp′ , Ip′ , δp′〉 where |δp′ | ≥ k.
We show that the set A′ = {(x, y) | (sx, sv) ∈ δp − δp′} is the answer to FAS.
Since (|A|+1).|V | arcs leave states in P , and, the number of transitions that are
removed from δp (i.e., |δp − δp′ |) is less than |A|, any state sv, where v ∈ V , is
reachable from all states in P . Moreover, since |δp′ | ≥ k = |δp| − j, it follows
that |A′| = |δp − δp′ | ≤ j. Now, if there exists a cycle in p, all its transitions
must be in the set {(sx, sy) | x, y ∈ V }. Obviously, this cycle is reachable from
states in P even though no state in that cycle is in Q. However, this contradicts
the assumption that p′ satisfies P 7→ Q. Hence, the set of arcs that correspond
to transitions in δp − δp′ (i.e., |A′|) contains at least one arc from each cycle in
G.

4. REVISING REAL-TIME UNITY PROGRAMS: POLYNOMIAL-TIME ALGORITHM

In this section, we focus on automated revision of real-time UNITY programs.
First, we present the preliminary concepts.

Real-time program. Let V = {v0, v2 · · · vn}, n ≥ 0, be a finite set of discrete

variables and X = {x0, x2 · · ·xm}, m ≥ 0, be a finite set of clock variables. Each
discrete variable vi, 0 ≤ i ≤ n, is associated with a finite domain Di of values.
We assume that the domain of a discrete variable is implicitly encoded with the
variable. Thus, if vi = vj for some i and j, then Di = Dj as well. Each clock
variable xj , 0 ≤ j ≤ m, ranges over nonnegative real numbers (denoted R≥0). A
location is a function that maps the discrete variables in V to a value from their
respective domain. A clock constraint over X is a Boolean combination of formulae
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of the form x � c or x − y � c, where x, y ∈ X, c ∈ Z≥0, and � is either < or ≤.
We denote the set of all clock constraints over X by Φ(X). A clock valuation is a
function ν : X → R≥0 that assigns a real value to each clock variable. For τ ∈ R≥0,
we write ν + τ to denote ν(x) + τ for every clock variable x in X. Also, for λ ⊆ X,
ν[λ := 0] denotes the clock valuation that assigns 0 to each x ∈ λ and agrees with
ν over the rest of the clock variables in X.

A state s is a pair (l, ν), where l is a location and ν is a clock valuation for X. In
this setting, a transition (s0, s1) may change either the location or clock valuation
of a state and is of the form (l0, ν0) → (l1, ν1). Thus, transitions are classified into
two types:

—Immediate transition: (l0, ν) → (l1, ν[λ := 0]), where l0 and l1 are two locations,
ν is a clock valuation, and λ is a set of clock variables, where λ ⊆ X.

—Delay transition: (l, ν) → (l, ν + δ), where l is a location, ν is a clock valuation,
and δ ∈ R≥0 is a time duration. We denote a delay transition of duration δ at
state s by (s, δ).

We define a real-time program p in the same fashion that we defined untimed
programs in Section 2 (i.e., a tuple 〈Sp, Ip, δp〉). Note, however, that since clock
variables range over real numbers, Sp is an infinite set. Let S be a state predicate
of p (i.e., a subset of Sp). We require that if ϕ is a constraint involving clock
variables in X, such that S ⇒ ϕ, then ϕ ∈ Φ(X), i.e., in the corresponding Boolean
expression of S, clock variables are only compared to nonnegative integers.

Let p = 〈Sp, Ip, δp〉 be a real-time program. Also, let δs
p and δd

p denote the

set of immediate and delay transitions of δp, respectively, where δp = δs
p ∪ δd

p . A
computation of p is an infinite sequence σ = 〈(s0, t0), (s1, t1) · · · 〉, where states si ∈
Sp and global time ti ∈ R≥0 for all i ≥ 0, iff (1) s0 ∈ Ip, (2) ∀j > 0 : (sj−1, sj)∈δp

holds, (3) if σ reaches a terminating state sf where there does not exist s such that
s 6= sf and (sf , s)∈ δs

p then we extend σ to an infinite computation by stuttering
at sf and letting global time advance, and (4) the sequence t0t1 · · · satisfies the
following constraints:

—Monotonicity : For all i ∈ Z≥0, ti ≤ ti+1,

—Divergence: For all τ ∈ R≥0, there exists j ∈ Z≥0 such that tj ≥ τ , and

—Consistency : For all i ∈ Z≥0, (1) if (si, si+1) is a delay transition (si, δ) then
ti+1 − ti = δ, and (2) if (si, si+1) is an immediate transition then ti = ti+1.

Real-time UNITY properties [Carruth 1994]. Let P and Q be two arbitrary
state predicates.

—(Bounded-Time Unless) An infinite timed state sequence 〈(s0, t0), (s1, t1) · · · 〉
satisfies P unlessτ Q iff ∀i ≥ 0 : ((si ∈ (P ∩ ¬Q)) ⇒ ∀j > i | (tj − ti ≤ τ) :
(sj ∈ (P ∪ Q))). Intuitively, if P holds at any state si, then for all j > i such
that tj − ti ≤ τ either (1) Q does not hold in sj and P is true, or (2) Q becomes
true at sj and P holds at least until Q becomes true. After τ time units there is
no requirement on P and Q.

—(Bounded-Time Leads-to) An infinite timed state sequence 〈(s0, t0), (s1, t1) · · · 〉
satisfies P 7→τ Q iff if si ∈ P , for all i ≥ 0, then there exists j, j ≥ i, such
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that (1) sj ∈ Q, and (2) tj − ti ≤ τ . Intuitively, it is always the case that a state
in P is followed by a state in Q within τ time units.

The definition of bounded-time stable and bounded-time ensures are instantiated
in the obvious way. The definition of invariant is not time-related and remains
the same. A real-time UNITY specification is a conjunction of a set of real-time
UNITY properties.
Region graph. Real-time programs can be analyzed with the help of an equiv-
alence relation of finite index on the set of states [Alur and Dill 1994]. Given a
real-time program p, for each clock variable x ∈ X, let cx be the largest constant in
the clock constraints of δp that involve x, where cx = 0 if x does not occur in any
clock constraint of p. We say that two clock valuations ν, µ are clock equivalent if:

(1) for all x ∈ X, either ⌊ν(x)⌋ = ⌊µ(x)⌋ or both ν(x), µ(x) > cx,

(2) the ordering of the fractional parts of the clock variables in the set {x ∈
X | ν(x) < cx} is the same in µ and ν, and

(3) for all x ∈ X, where ν(x) < cx, the clock value ν(x) is an integer if and only if
µ(x) is an integer.

A clock region ρ is a clock equivalence class. Two states (l0, ν0) and (l1, ν1) are
region equivalent, written (l0, ν0) ≡ (l1, ν1), if (1) l0 = l1, and (2) ν0 and ν1 are
clock equivalent. A region r = (l, ρ) is an equivalence class with respect to ≡,
where l is a location and ρ is a clock region. We say that a clock region β is a
time-successor of a clock region α iff for each ν ∈ α, there exists τ ∈ R≥0, such
that ν + τ ∈ β, and ν + τ ′ ∈ α∪ β for all τ ′ < τ . We call a region (s, ρ) a boundary

region, if for each ν ∈ ρ and for any τ ∈ R≥0, ν and ν + τ are not equivalent. A
region is open, if it is not a boundary region. A region (s, ρ) is called an end region,
if ν(x) > cx for all ν ∈ ρ and for all clock variables x ∈ X.

Using the region equivalence relation, we construct the region graph of a program
p = 〈Sp, Ip, δp〉 (denoted R(p) = 〈Sr

p , Ir
p , δr

p〉) as follows. Vertices of R(p) (denoted
Sr

p) are regions obtained from state space of p. Edges of R(p) (denoted δr
p) are of the

form (l0, ρ0) → (l1, ρ1) iff for some clock valuations ν0 ∈ ρ0 and ν1 ∈ ρ1, (l0, ν0) →
(l1, ν1) is a transitions in δp. Obviously, any set of transition of p transition has
a respective set of edges in R(p). A region predicate Ur with respect to a state
predicate U is defined by Ur = {(s, ρ) | ∃(s, ν) : ((s, ν) ∈ U ∧ ν ∈ ρ)}. We say that
a region (l0, ρ0) of region graph R(p) is a deadlock region iff for all regions (l1, ρ1)
in Sr

p , there does not exist an edge of the form (l0, ρ0) → (l1, ρ1).
We note that region graphs are time-abstract bisimulation of real-time programs

[Alur and Dill 1994] and their construction involves an exponential blow-up in the
number of clocks and also in the magnitude of clock variables. In our addition
algorithm in Subsection 4.1, we transform a real-time program p = 〈Sp, Ip, δp〉 into
its corresponding region graph R(p) = 〈Sr

p , Ir
p , δr

p〉 by invoking the procedure Con-

structRegionGraph as a black box (using the algorithm proposed in [Alur and Dill
1994]). We also let this procedure take state predicates in p (e.g., P and Q) and
return the corresponding region predicates in R(p) (e.g., P r and Qr). Likewise,
we transform a region graph R(p) back into a real-time program by invoking the
procedure ConstructRealTimeProgram.
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Revised problem statement. The essence of the problem of adding real-time
UNITY properties to real-time programs is the same as Problem Statement 2.1.
However, in adding real-time UNITY properties, we allow incorporating a finite
number of new clock variables. Let p\T denote the program obtained by removing
the clock variables in T from the set of clock variables of p. Obviously, no state
predicate or set of transitions of p\T depends on the value of variables in T .

Problem Statement 4.1 Given a program p = 〈Sp, Ip, δp〉, a finite set T of
new clock variables, and a real-time UNITY specification SPECn, identify p′ =
〈Sp′ , Ip′ , δp′〉 such that:

(C1) Sp′\T = Sp

(C2) Ip′\T = Ip

(C3) δp′\T ⊆ δp

(C4) p′ satisfies SPECn.

4.1 Adding a Single Bounded-Time Leads-to Property

In this subsection, we present a sound and complete algorithm that automatically
adds a single bounded-time leads-to property to a real-time program. Observe that
other real-time UNITY properties can be modeled as a set of transitions. Hence,
their addition can be achieved in the same fashion that we did in Subsection 2.2
for untimed programs. Thus, we only focus on addition of bounded-time leads-to

properties.

Algorithm sketch. Intuitively, the algorithm works in four phases. In Phase
1, we transform the input real-time program into a region graph and subsequently
a weighted directed graph (called MaxDelay digraph [Courcoubetis and Yannakakis
1991]). The property of this digraph is such that the longest distance between any
two vertices is equal to the maximum time delay between the corresponding regions
in the region graph. Then, in Phase 2, we identify a subgraph of the MaxDelay di-
graph in which the desired bounded-time leads-to property is never violated. In
Phase 3, we remove deadlock regions. Finally, in Phase 4, we transform the resul-
tant region graph back into a real-time program.

Construction of MaxDelay digraph. We now describe how we transform a
region graph R(p) = 〈Sr

p , Ir
p , δr

p〉 into a MaxDelay digraph G = 〈V,A〉. Vertices of
G consist of the regions in R(p).
Notation: We denote the weight of an arc (v0, v1) ∈ A by Weight(v0, v1). Let
f : Sr

p ↔ V denote a bijection that maps each region r ∈ Sr
p to its corresponding

vertex in G and vice versa, i.e., f(r) is a vertex of G that represents region r of
R(p) and f−1(v) is the region of R(p) that corresponds to vertex v in V . Let F :
2Sr

p ↔ 2V be a bijection that maps a region predicate in R(p) to the corresponding
set of vertices of G and let F−1 be its inverse. Finally, for a boundary region r
with respect to clock variable x, we denote the value of x by r.x (equal to some
nonnegative integer).
Arcs of G consist of the following:

—Arcs of weight 0 from v0 to v1, if f−1(v0) → f−1(v1) represents an immediate
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Algorithm 2 Add rtUNITY
Input: real-time program 〈Sp, Ip, δp〉 and bounded leads-to property P 7→τ Q.
Output: revised program 〈Sp′ , Ip′ , δ

p′ 〉.

1: Let ct := τ where t is a new clock variable; ⊲ Phase 1

2: ∀((l0, ν) → (l1, ν[λ := 0])) ∈ δp | (l0 6∈ P ∧ l1 ∈ P ) : λ := λ ∪ {t};
3: 〈Sr

p , Ir
p , δr

p〉, P
r, Qr := ConstructRegionGraph(〈Sp, Ip, δp〉, P, Q);

4: repeat

5: IsQRemoved := false;
6: 〈V, A〉 := ConstructMaxDelayGraph(R(p));
7: 〈V ′, A′〉 := ConstructSubgraph(〈V, A〉, P r, Qr, τ); ⊲ Phase 2

8: δr
p′ := {(r1, r2) ∈ δr

p | ∧ (f(r1), f(r2)) ∈ A′ ∨

∃r0 : Weight(f(r0), f(r1)) = 1 − ǫ};

9: while (∃r0 ∈ Sr
p : (∀r1 ∈ Sr

p : (r0, r1) /∈ δr
p′ )) do ⊲ Phase 3

10: if (r0 ∈ Qr) then

11: IsQRemoved := true;
12: Qr := Qr − {r0};
13: δr

p := δr
p − {(r, r0) | (r, r0) ∈ δr

p};

14: break;
15: end if

16: if (r0 /∈ Ir
p) then

17: δr
p′ := δr

p′ − {(r, r0) | (r, r0) ∈ δr
p′};

18: else

19: declare that addition is not possible;
20: exit();

21: end if

22: end while

23: until (IsQRemoved = false);

24: return ConstructRealTimeProgram(〈Sp, Ip, δr
p′ 〉); ⊲ Phase 4

transition in R(p).

—Arcs of weight c′ − c from v0 to v1, where c, c′ ∈ Z≥0 and c′ > c, if f−1(v0)
and f−1(v1) are both boundary regions with respect to clock variable x, such
that f−1(v0).x = c, f−1(v1).x = c′, and there is a path in R(p) from f−1(v0) to
f−1(v1) which does not reset x.

—Arcs of weight c′−c− ǫ from v0 to v1, where c, c′ ∈ Z≥0, c′ > c, and 0 < ǫ ≪ 1, if
(1) f−1(v0) is a boundary region with respect to clock variable x, (2) f−1(v1) is
an open region whose time-successor f−1(v2) is a boundary region with respect
to clock variable x, (3) f−1(v0) → f−1(v1) represents a delay transition in R(p),
and (4) f−1(v0).x = c and f−1(v2).x = c′.

—Self-loop arcs of weight ∞ at vertex v, if f−1(v) is an end region.

In order to compute the maximum time delay between region predicates P r and
Qr, it suffices to find the longest distance between F (P r) and F (Qr) in G. In
our addition algorithm, the procedure ConstructMaxDelayGraph transform a region
graph R(p) = 〈Sr

p , Ir
p , δr

p〉 into a MaxDelay digraph G = 〈V,A〉 as a black box.

The addition algorithm. We now describe the algorithm Add rtUNITY in
details (see Algorithm 2):

—(Phase 1 ) First, in order to keep track of time elapsed since P has become true
in a computation, we add an extra clock variable t to p and reset it on immediate
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Procedure 3 ConstructSubgraph
Input: MaxDelay digraph 〈V, A〉, set of vertices Vp and Vq , and an integer τ .
Output: a subgraph 〈V ′, A′〉.

1: V ′ := V ;
2: A′ := {};

3: for each vertex v in Vp do

4: if the length of the shortest path Π from v to Vq is at most τ then

5: A′ := A′ ∪ {a | a is on Π};
6: end if

7: end for

8: A′ := A′ ∪ {(u, v) ∈ A | (∀w ∈ V ′ : (w, u) /∈ A′) ∨ (u ∈ Vq)};
9: return 〈V ′, A′〉;

transitions whose source state is not in P and target state is in P (Lines 1-
2). Next, we construct the region graph R(p) = 〈Sr

p , Ir
p , δr

p〉 (Line 3). We now
reduce our problem to the problem of bounding the length of the longest path
in ordinary weighted digraphs. Towards this end, we first generate the MaxDelay

digraph 〈V,A〉 (Line 6).

—(Phase 2 ) Next, we invoke the procedure ConstructSubgraph (Line 7) which
takes a MaxDelay digraph 〈V,A〉, an integer τ , and two sets of vertices Vp and
Vq as input and generates a subgraph of 〈V,A〉, namely 〈V ′, A′〉, whose length
of longest path from every vertex in Vp to Vq is bounded by τ (see Procedure
3). We begin with an empty set of arcs (Line 2). Next, we include arcs that
participate in the shortest path from each vertex in Vp to a vertex in Vq provided
the length of the path is at most τ (Lines 3-7). Then, we add the rest of the
arcs to 〈V ′, A′〉 (Line 8) except the ones that originate from a shortest path from
Vp to Vq identified in Lines 3-7. After invoking ConstructSubgraph, we transform
〈V ′, A′〉 back into a region graph R(p′) = 〈Sr

p′ , Ir
p′ , δr

p′〉 (Line 8 in Algorithm 2).

—(Phase 3 ) We now remove deadlock regions (created due to pruning of arcs in
Phase 2) from R(p′) (Lines 9-22). However, we need to consider a special case
where a region r0 in Qr becomes a deadlock region (Lines 10-15). In this case,
it is possible that all the regions along a path that starts from some region, say
r, in P r and end in r0 become deadlock regions. Hence, our algorithm needs to
identify a new path from r to a region in Qr other than r0. Thus, in such a case,
we remove r0 from Qr (Lines 12-13) and rerun the algorithm from scratch. If an
initial region becomes a deadlock region, we declare failure (Lines 18-20).

—(Phase 4 ) Finally, we construct and return a real-time program out of the region
graph R(p′) with revised set of edges δr

p′ (Lines 24).

Level of non-determinism. In order to increase the level of non-determinism,
we may include additional paths whose length is at most τ . However, every time we
add a path, we need to test whether or not this path creates new paths of length
greater than τ . To this end, we can use one of the algorithms in the literature
of graph theory (e.g., [Eppstein 1999]) to find and add the k shortest paths in an
ordinary weighted digraph.

Theorem 4.2 The algorithm Add rtUNITY is sound and complete.
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Proof. In order to prove soundness, we show that the outcome of the algorithm
meets the constraints of Problem Statement 4.1. Since we do not add new states
or transitions, constraints C1-C3 are trivially satisfied. Moreover, by construction,
the algorithm only includes states in P from where all computations can reach
a state in Q within τ time units. Finally, since the algorithm removes deadlock
regions, it does not introduce new time-convergent behaviors to the input program.
Therefore, the output of the algorithm satisfies constraint C4 as well.

In order to prove the completeness, we show that if an initial state becomes
a deadlock state, this state is deadlocked in all real-time programs that satisfy
the constraints of Problem Statement 4.1. Observe that the only states that our
algorithm may make unreachable are states in P from where there does not exist
a computation that reaches a state in Q within τ . Clearly, such states cannot be
present in any program that satisfies the constraints of Problem Statement 4.1.
Moreover, if a state, say s1, in P becomes unreachable by removing all its incoming
transitions, it is possible that some other state, say s0, becomes a deadlock state.
Likewise, such a state cannot be present in any program that satisfies the constraints
of Problem Statement 4.1. If s0 is an initial state then our algorithm declares failure.
Notice that in this case, there exists no solution to the Problem Statement 4.1.

Theorem 4.3 The complexity of Add rtUNITY algorithm is polynomial-time in

the size of the input program’s region graph.

4.2 Example: Real-Time Resource Allocation

We now demonstrate how the algorithm Add rtUNITY works using an example on a
real-time resource allocation program. The program RA consists of two processes,
RA1 and RA2. Each process needs two steps to complete and each step needs 1 time
unit to complete. In the first step, the process submits a request for a resource. In
the second step, the process performs an I/O operation using the acquired resource.
Also, only one step is being executed at a time. The timed guarded commands (also
called timed actions) of RA are as follows:

RQ j : req .j ∧ (x = 1)
{x}
−−→ io.j, req .j := true, false;

IO j : io.j ∧ (x = 1)
{x}
−−→ req .j, io.j := true, false;

WT : 0 ≤ x ≤ 1 −−→ wait;

where j ∈ {1, 2}. As can be seen, timed guarded command are associated with a
(possibly empty) set of clock variables that get reset by executing the timed guarded
command (e.g., the clock variable x). The last action (WT ) is a delay action where
the program is allowed to advance time by an arbitrary time duration as long as
the guard continuously remains true.

Clearly, in RA, each process may keep acquiring a resource and performing I/O
operation by an unbounded time duration. However, we would like to ensure that
RA1 performs its I/O operation within 2 time units after acquiring the resource. To
this end, we add the bounded-time leads-to property L ≡ (io.1 7→2 req .1). Based
on what the algorithm Add rtUNITY prescribes, we first need to add a new clock
variable t and reset it whenever io.1 becomes true. Moreover, we let ct = 2 when
generating the region graph (see Figure 1). Next, we add the shortest path (the
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Fig. 1. Region graph of the real-time resource allocation program.

bold edges in Figure 1) from each region where io.1 becomes true to a region where
req .1 holds. Subsequently, we can add additional k shortest paths (the zigzag edges
in Figure 1) that preserve L. It is easy to see that the algorithm Add rtUNITY

prunes dotted edges in Figure 1. Also, the regions shown in dotted circles are made
unreachable by Add rtUNITY due to removal of the dotted edges. Thus, the timed
guarded commands of the revised program are as follows:

RQ1 : req .1 ∧ (x = 1)
{x,t}
−−−→ io.1, req .1 := true, false;

IO1 : io.1 ∧ (x = 1)
{x}
−−−→ req .1, io.1 := true, false;

RQ2 : req .2 ∧ (x = 1) ∧ (io.1 ⇒ t ≤ 1)
{x}
−−−→ io.2, req .2 := true, false;

IO2 : io.2 ∧ (x = 1) ∧ (io.1 ⇒ t ≤ 1)
{x}
−−−→ req .2, io.2 := true, false;

WT : 0 ≤ x ≤ 1 −−−→ wait;

Notice that if we only add the shortest paths from regions where io.1 becomes
true, i.e., we do not add additional shortest paths, then in the resulting program, the
second conjunct in timed actions RQ2 and IO2 would be replaced with io.1 = false.
In this case, we would force the program to always execute the second step of RA1

(i.e., timed action IO1) immediately after the first step (i.e., timed action RQ1).
We refer the reader to [Bonakdarpour and Kulkarni 2006a] for another example on

revising a controller for a railroad crossing gate which originally exhibits unbounded
wait.

5. REVISING REAL-TIME UNITY PROGRAMS: HARDNESS RESULT

In this section, we show that the problem of adding a bounded-time leads-to prop-
erty to a real-time program while maintaining maximum non-determinism is NP-
complete in the size of the program’s region graph even if the given program satisfies
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the corresponding unbounded leads-to property.

Instance. Region graph R(p) = 〈Sr
p , Ir

p , δr
p〉 of a real-time program p, a bounded-

time leads-to property L ≡ (P 7→τ Q), and a positive integer k, where p satisfies
P 7→ Q and |δr

p| ≥ k.

The decision problem (MNBL). Given the above instance, does there exist
a region graph R(p′) = 〈Sr

p′ , Ir
p′ , δr

p′〉, such that |δr
p′ | ≥ k and R(p′) meets the

constraints of Problem Statement 4.1?
We prove that MNBL is NP-complete by a reduction from the vertex splitting

problem [Paik et al. 1994; 1998] in weighted directed acyclic graphs (DAG) de-
scribed next.

The DAG Vertex Splitting Problem (DVSP). Let G = 〈V,A〉 be a weighted
DAG and vsc , vtg be unique source and target vertices in V where the indegree of
vsc and the outdegree of vtg are zero. Let G/Y denote the DAG when each vertex
v ∈ Y is split into vertices vin and vout such that all arcs (v, u) ∈ A, where u ∈ V ,
are replaced by arcs of the form (vout , u) and all arcs (w, v) ∈ A, where w ∈ V , are
replaced by arcs of the form (w, vin). In other words, the outgoing arcs of v now
leave vertex vout while the incoming arcs of v now enter vin , and, there is no arc
between vin and vout . The DAG vertex splitting problem is to find a vertex set Y ,
where Y ⊆ V and a positive integer i, where |Y | ≤ i, such that the length of the
longest path of G/Y from vsc to vtg is bounded by a pre-specified value d. DVSP
is known to be NP-complete [Paik et al. 1994; 1998], for the case where d ≥ 2 and
the weight of all arcs is 1.

Theorem 5.1 The problem of adding a bounded-time leads-to property to a real-

time program is NP-complete in the size of the program’s region graph even if the

program satisfies the corresponding unbounded leads-to property.

Proof. Since membership to NP is trivial, we show that the problem is NP-hard.
Mapping. Let G = 〈V,A〉 be any instance of DVSP whose longest path is to
be bounded by d. We construct now a real-time program MP (and as a result the
region graph R(MP) = 〈Sr

MP , Ir
MP , δr

MP 〉) in the form of timed guarded commands
as follows. Let the set of discrete and clock variables of MP be the singletons {l}
and {x}, respectively. For each vertex v ∈ V − {vtg} and for the target vertex vtg ,
we introduce the following timed guarded commands:

MPv.1 : (l = vin) ∧ (x = 0) ∧ (l 6= vin
tg ) −−→ l := vout ;

MPv.2 : (l = vin) ∧ (x = 0) ∧ (l 6= vin
tg ) −−→ l := vout

tg ;
MPvtg.n.1

: (l = vin
tg ) ∧ (x = 0) −−→ l := tmptg.n;

MPvtg.n.2
: (l = tmptg.n) ∧ (x = |A| + 1 − d)

{x}
−−→ l := vout

tg ;
MPvtg

: (l = vout
tg ) ∨

((l = tmptg.n) ∧ (0 ≤ x ≤ |A| + 1 − d)) −−→ wait;

for all 1 ≤ n ≤ 2|V |. For the source vertex vsc , we let vin
sc = vout

tg . Also, for each
arc (u, v) in A, we introduce the following timed guarded commands to MP :
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MP (u,v).j.1 : (l = uout) ∧ (x = 0) −−→ l := tmp(u,v).j ;

MP (u,v).j.2 : (l = tmp(u,v).j) ∧ (x = 1)
{x}
−−→ l := vin ;

MP (u,v) : (l := tmp(u,v).j) ∧ (0 ≤ x ≤ 1) −−→ wait;

for all j, where 1 ≤ j ≤ 2|V |. Intuitively, for each arc (u, v) ∈ A, the discrete
variable l in program MP is assigned one of the following values: vin , vout , uin ,
uout , or tmp(u,v).1 · · · tmp(u,v).2|V |. Clearly, the value of l along with the clock
regions identify Sr

MP . The set of initial regions of R(MP) is the singleton Ir
MP =

{(l = vin
sc , x = 0)}. The set δr

MP of edges is identified by the above set of timed
guarded commands. Finally, we let P = {s | l(s) = vin

sc}, Q = {s | l(s) = vout
tg },

k = |δr
MP | − i, and τ = |A| + 1. Observe that all computations of MP start from

where P holds and eventually reach Q, as G is acyclic. Hence, MP satisfies P 7→ Q.
We note that since vsc and vtg are unique vertices in G, Q is reachable from all
states in MP and, hence, MP satisfies true 7→ Q as well.
Reduction. We need to show that a vertex v ∈ Y in G must be split iff the
corresponding timed guarded command (l = vin) ∧ (x = 0) ∧ (l 6= vin

tg ) → l := vout

must be removed from MP :

—(⇒) Let the answer to DVSP be the set Y , where |Y | ≤ i, i.e., after splitting all
vertices v ∈ Y , the length of the longest path in G is at most d. We obtain the
region graph R(MP ′) = 〈Sr

MP ′ , Ir
MP ′ , δr

MP ′〉 as follows. First, we let Sr
MP ′ = Sr

MP

and Ir
MP ′ = Ir

MP . In order to obtain δr
MP ′ , we remove the edges that correspond

to timed action MPv.1 from δr
MP , for all v ∈ Y . Since vtg is the unique target

vertex in G, Q remains to be the set {s | l(s) = vout
tg } in MP ′. Thus, any

computation of MP ′ that begins from a state in P will reach Q. Now, we show
that the maximum time delay to reach Q is τ . Observe that there are two ways
to reach Q: (1) from the state where l = vin

tg (using timed actions MPvtg.n.1
and

MPvtg.n.2
for some n, 1 ≤ n ≤ 2|V |), and (2) from a state where l 6= vin

tg (using
the immediate transition in timed action MPv.2 for some v ∈ V ). In the former
case, the delay in reaching the state where l = vin

tg is less than d and since the
time delay of timed actions MPvtg.n.1

and MPvtg.n.2
is |A|+ 1− d, the total time

delay to reach Q is at most |A| + 1 = τ . In the latter case, by construction, the
delay to reach Q is at most τ . Moreover, recall that k = |δr

MP | − i. Therefore,
MP ′ meets the constraints of Problem Statement 4.1 with respect to L and
|δr

MP ′ | ≥ |δr
MP | − i = k.

—(⇐) Let the answer to MNBL be R(MP ′) = 〈Sr
MP ′ , Ir

MP ′ , δr
MP ′〉, where |δr

MP ′ | ≥ k
and the maximum delay to reach Q from P is at most τ . Note that Ir

MP ′ must
be {(l = vin

s , x = 0)}. Observe that in order to obtain R(MP ′), removing one or
more timed guarded commands MP (u,v).j.1, MP (u,v).j.2, MPvtg.n.1

, or MPvtg.n.2

does not contribute in bounding the maximum delay. This is due to the fact that
the number of edges removed from δr

MP is at most |δr
MP | − k, and k = |δr

MP | − i,
where i ≤ |V |, and there are 2|V | of such guarded commands and, hence, their
removal would not change the maximum delay. Thus, we can assume that the
edges removed are of the form (l = vin) ∧ (x = 0) ∧ (l 6= vin

tg ) → l := vout .
Observe that in order to reach Q from P , a computation either takes a timed
guarded command MPv.2 for some v ∈ V , or it reaches Q via the state where
l = vin

tg . Clearly, in the later case, the delay to reach the state where l = vin
tg is
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at most τ − (|A| + 1 − d) = d. In the former case, the corresponding path in G
does not exist and, hence, its length does not matter. Thus, the timed actions
removed to obtain δr

MP ′ identify the set Y of vertices that should be split in G, i.e,
Y = {v ∈ V −{vtg} | ((l = vin , x = 0) → (l = vout , x = 0)) ∈ (δr

MP − δr
MP ′)}.

6. RELATED WORK

In this section, we illustrate how the contributions of this paper differ from existing
approaches for program synthesis and transformation. Existing synthesis methods
in the literature mostly focus on deriving the synchronization skeleton of a program
from its specification (expressed in terms of temporal logic expressions or finite-
state automata) [Emerson and Clarke 1982; Manna and Wolper 1984; Pnueli and
Rosner 1989a; 1989b; Attie et al. 2004; Attie 1999; Attie and Emerson 2001], where
the synchronization skeleton of a program is an abstract structure of the code of
the program implementing inter-process synchronization. Although such synthesis
methods may have differences with respect to the input specification language and
the program model that they synthesize, the general approach is based on the
satisfiability proof of the specification. This makes it difficult to provide reuse in
the synthesis of programs, i.e., any changes in the specification require the synthesis
to be restarted from scratch. By contrast, since the input to our algorithms is the
set of transitions of a program, our approach has the potential to reuse those
transitions in incremental synthesis of a revised version of the input program. In
this context but from a game theoretical perspective, Jobstmann, Griesmayer, and
Bloem [Jobstmann et al. 2005] independently show that the problem of repairing a
program with respect to two Büchi conditions in NP-complete.

The algorithms for automatic addition of fault-tolerance [Kulkarni et al. 2007;
Kulkarni et al. 2001; Kulkarni and Ebnenasir 2002; 2003; 2004; Bonakdarpour and
Kulkarni 2006b] add fault-tolerance concerns to existing programs in the presence
of faults, and guarantee not to add new behaviors to that program in the absence
of faults. The problem of adding fault-tolerance is orthogonal to the problem of
adding UNITY properties in that one could use the algorithms of [Kulkarni et al.
2007; Kulkarni et al. 2001; Kulkarni and Ebnenasir 2003; 2004; Bonakdarpour and
Kulkarni 2006b] to add fault-tolerance concerns to a UNITY program synthesized
by the algorithm presented in this paper.

Algorithms for comprehensive redesign of timed automata [Alur and Dill 1994]
from real-time temporal logic Mitl formulae was first introduced in [Alur et al.
1996]. More recently, in [Maler et al. 2006], the authors present much simpler
algorithms for constructing timed automata from Mitl formulae than the ones in
[Alur et al. 1996].

Synthesis of real-time systems has mostly been studied in the context of controller
synthesis and game theory [Asarin et al. 1998; Asarin and Maler 1999; D’Souza and
Madhusudan 2002; Bouyer et al. 2003; de Alfaro et al. 2003; Faella et al. 2002]. In
these papers, the common assumption is that the existing program (called a plant

in controller synthesis and a game in game theory) and/or the given specification
are deterministic. In these papers, since the authors consider highly expressive
specifications, the complexity of the proposed methods is very high. For example,
synthesis problems presented in [Faella et al. 2002; Asarin et al. 1998; Asarin and
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Maler 1999; de Alfaro et al. 2003] are Exptime-complete. Moreover, deciding the
existence of a solution (called a controller) in [D’Souza and Madhusudan 2002;
Bouyer et al. 2003] is 2Exptime-complete. Both complexity classes are in the
size of the given plant or game. By contrast, the complexity of our algorithms is
significantly less.

7. CONCLUSION AND FUTURE WORK

We focused on the problem of revising UNITY [Chandy and Misra 1988] programs
where one adds a conjunction of UNITY properties (unless, stable, invariant, en-

sures and leads-to) to an existing program while preserving the existing UNITY
properties. Intuitively, in our approach for such revision, only behaviors that vi-
olate a UNITY property are removed. This ensures that even unknown existing
UNITY properties continue to be satisfied. In this context, a sound and complete
revision method is highly valuable since it allows the designer to determine whether
the given program is fixable and if it is fixable, it provides a new program that sat-
isfies the desired UNITY property. In particular, we focused on the complexity of
revising programs with respect to UNITY properties. We identified cases where
polynomial-time solution is possible and cases where the problem is NP-complete.

Regarding polynomial-time addition of UNITY properties, we showed that any
conjunction of unless, stable, and invariant properties along with a single leads-to

(respectively, ensures) property can be added in polynomial-time. We also showed
that for real-time UNITY programs, it is possible to add a single bounded-time

leads-to property along with (a conjunction of) any number of safety properties.
We also found a surprising result that while the problem of adding a single leads-

to is simple, the problem becomes hard even with small changes. In particular, we
showed that the problem of adding two leads-to properties (respectively, any com-
bination of leads-to and ensures) is NP-complete. Moreover, if we desire maximum
non-determinism, i.e., we want to maximize the number of program transitions of
the synthesized program, then the problem of adding even a single leads-to prop-
erty is NP-complete. These two NP-completeness results hold for both untimed
and timed addition of UNITY programs. Therefore, to study the possible differ-
ences between revising untimed UNITY programs and timed UNITY programs, we
focused on the case where the initial timed program satisfies true 7→ Q. Then, it
trivially satisfies the untimed property P 7→ Q. Thus, providing maximum non-
determinism for adding untimed property P 7→ Q is trivial. However, even for this
case, the problem of providing maximum non-determinism for adding a bounded-
time leads-to property is NP-complete.

To extend the results of this paper, we plan to integrate our algorithms with
existing model checkers to provide automated assistance for developers. As a result,
if the model checking of a model with respect to a UNITY property fails then our
algorithm automatically (i) determines whether or not the model is fixable, and (ii)
fixes the model if it is fixable. In this regard, we also intend to identify constraints
on the initial program and added properties so that addition of multiple leads-to

properties can be achieved in polynomial-time.
We also plan to incorporate symbolic techniques in our algorithms and inte-

grate them with our tool Sycraft [Bonakdarpour and Kulkarni 2008] for adding
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UNITY properties. In particular, in [Bonakdarpour and Kulkarni 2007], we have
shown that symbolic techniques can be used to effectively synthesize moderate-
sized distributed programs (reachable states of size 1050). We, therefore, expect
that these approaches would also assist significantly in managing state space dur-
ing the addition of UNITY properties.
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