
A Theory of Fault Recovery for
Component-based Models?

Borzoo Bonakdarpour1, Marius Bozga2, and Gregor Gössler3

1 School of Computer Science, University of Waterloo
Email: borzoo@cs.uwaterloo.ca

2 VERIMAG/CNRS, Gieres, France
Email: marius.bozga@imag.fr

3 INRIA-Grenoble, Montbonnot, France
Email: gregor.goessler@inria.fr

Abstract. This paper introduces a theory of fault recovery for component-
based models. We specify a model in terms of a set of atomic components
incrementally composed and synchronized by a set of glue operators. We
define what it means for such models to provide a recovery mechanism, so
that the model converges to its normal behavior in the presence of faults
(e.g., in self-stabilizing systems). We present a sufficient condition for in-
crementally composing components to obtain models that provide fault
recovery. We identify corrector components whose presence in a model is
essential to guarantee recovery after the occurrence of faults. We also for-
malize component-based models that effectively separate recovery from
functional concerns. We also show that any model that provides fault
recovery can be transformed into an equivalent model, where functional
and recovery tasks are modularized in different components.

Keywords: Fault-tolerance; Transformation; Separation of concerns; BIP

1 Introduction

Fault-tolerance has always been an active line of research in design and imple-
mentation of dependable systems. Intuitively, tolerating faults involves providing
a system with the means to handle unexpected defects, so that the system meets
its specification even in the presence of faults. In this context, the notion of spec-
ification may vary depending upon the guarantees that the system must deliver
in the presence of faults. Such guarantees can be broadly characterized by safety
and liveness properties. For instance, dependable mission-critical systems often
employ monitoring or control techniques to ensure safety properties in the pres-
ence of faults, and, provide a recovery mechanism to meet liveness properties,
if the system reaches an unexpected state. Self-stabilization is a special type of

? This is an extended version of the paper appeared in the 14th International Confer-
ence on Safety, Security, and Stabilization of Distributed Systems (SSS’12).



fault-tolerance (largely concerned with liveness only), where a system always
reaches a correct state no matter what state it is initialized with.

The concept of fault-tolerance as described above addresses the overall be-
havior of the system and is independent of the structure the system. In order to
associate fault-tolerance properties with the structure of a system and study their
interdependence, one has to focus on a specific methodology. The component-
based approach is a popular divide-and-conquer technique for designing and
implementing large systems as well as for reasoning about their correctness. Ide-
ally, in this approach, a system is designed incrementally by composing smaller
components, each responsible for delivering a certain set of tasks to separate
different concerns. Thus, component-based design and analysis of fault-tolerant
systems is highly desirable in order to achieve systematic modularization of such
systems. For instance, fault tolerance is becoming one of the key issues for effi-
cient multi-core programming [10]. The likelihood of fault occurrences is in fact
proportional with the number of cores available in the underlying platform. Tra-
ditional fault detection and recovery mechanisms e.g., based on restore points
and rollback, scale poorly and may even become unusable for many cores. That
is, significant amount of core time and power are spent on fault recovery instead
of performing useful computation. Such scenarios clarify the need for systematic
and modularized approaches for fault recovery in large scale systems.

We believe that we currently lack a formal approach that rigorously relates a
component-based methodology with fault-tolerance/self-stabilization concerns.
With this motivation, in this paper, we propose a novel formal framework for
component-based design and analysis of non-masking models [2], where recov-
ery and, hence, liveness is guaranteed in the presence of faults. We use the
semantics of the BIP (Behavior, Interaction, Priority) framework [14] to specify
components and their composition. In BIP, the behavior of an atomic compo-
nent is specified by a labelled transition system. A model (i.e., a composite
component) is represented as the composition of a set of atomic components
by using two types of operators: interactions describing synchronization con-
straints between components, and priorities to specify scheduling constraints.
Given a BIP model, the tool chain can automatically generate a stand-alone, dis-
tributed, real-time, multi-threaded, or synchronous C++ implementation that is
correct-by-construction (i.e., by preserving functional semantics of the original
model) [1, 4, 5, 8]. Thus, our results in this paper can be applied in model-based
design an analysis of component-based fault recovery for a wide range of settings
such as in distributed systems.

Contributions Our contributions in this paper are the following:

– We formally define non-masking fault-tolerance for atomic and composite
components based on their observational behavior. This is different from
the approach in [2], where fault-tolerance is defined based on reachability of
predicates.

– We present a sufficient condition for incrementally constructing non-masking
composite components by starting from a set of non-masking atomic com-
ponents.

2



– Inspired by the work in [3], we define corrector components that establish a
desirable observational behavior and show that the necessary condition for a
composite component to be non-masking is to contain atomic or composite
correctors. We also introduce the notion of pure correctors that only exhibit
recovery behavior and do not participate in functional tasks of a composite
component. We show that models containing pure correctors can effectively
separate functional from recovery concerns and, hence, can be composition-
ally verified.

– Leveraging the separation of concerns supported by pure components, we
provide an automated transformation of a component-based model into an
equivalent model consisting of pure components whose behaviors are or-
thogonal: when a normal execution phase is interrupted by the occurrence
of faults, control is transferred from the impacted functional components to
corrector components in charge of fault handling and recovery, and handed
back to the functional components once normal behavior is reestablished.

We note that self-stabilization is equal to non-masking fault-tolerance when
faults can perturb execution of a system to any arbitrary state. Thus, all results
in this paper can be applied in the context of self-stabilizing systems as well.

Organization In Section 2, we present the preliminary concepts. Section 3 is
dedicated to describe our fault model and the notion of fault recovery. Incre-
mental composition of non-masking components is discussed in Section 4, while
Section 5 introduces our theory of component-based recovery. Then, in Section
6, we describe separation of recovery and functional concerns. Related work is
discussed in Section 7. Finally, we make concluding remarks and discuss future
work in Section 8. All proofs appear in the appendix.

2 Basic Semantic Models of BIP

Atomic Components We define an atomic component as a transition system
with a set of ports labeling individual transitions. These ports are used for
communication between different components.

Definition 1. An atomic component B is a labelled transition system repre-
sented by a tuple (Q,P,→, q0) where

– Q is a set of states,
– P is a set of communication ports,
– →⊆ Q × (P ∪ {τ}) × Q is a set of transitions including (1) observable

transitions labelled by ports, and unobservable τ transitions, and
– q0 ∈ Q is the initial state.

For any pair of states q, q′ ∈ Q and a port p ∈ P ∪ {τ}, we write q
p→ q′, iff

(q, p, q′) ∈→. When the label is irrelevant, we simply write q → q′. Similarly,

q
p→ means that there exists q′ ∈ Q, such that q

p→ q′. In this case, we say

3



t

r
p

q

p r

q

s

(a)

B0

p0

q0

r0
B1

p1

q1

r1

(b)

Fig. 1. A BIP atomic and composite component.

that p is enabled in state q. Figure 1(a) shows an atomic component B, where
Q = {s, t}, q0 = s, P = {p, q, r}, and →= {(s, p, t), (t, q, s), (t, r, t)}.

A trace of a component B = (Q,P,→, q0) is a finite or infinite sequence of
ports π = p0p1p2 · · · , such that for all i ≥ 0:

1. pi ∈ P ∪ {τ},
2. there exists state sequence q0q1 · · · , such that:

– q0 = q0 (i.e., q0 is the initial state), and

– q0
p0→ q1

p1→ q2 · · ·

For a trace π = p1 · · · pn, by q
π−−→ q′, we denote ∃q1 · · · qn−1 : q

p1−−→ q1
p2−−→

· · · pn−1−−−→ qn−1
pn−−→ q′. The same concept applies for unobservable transitions

(e.g., q
τ∗π−−−→ q′ is a trace that includes a prefix of τ -transitions and then suffix

π).
Interaction For a given system built from a set of m atomic components {Bi =
(Qi, Pi,→i, q

0
i )}mi=1, we assume that their respective sets of ports are pairwise

disjoint, i.e., for any two i 6= j from {1..m}, we have Pi ∩ Pj = ∅. We can
therefore define the set P =

⋃m
i=1 Pi of all ports in the system. An interaction

is a set a ⊆ P of ports. When we write a = {pi}i∈I , we suppose that for i ∈ I,
pi ∈ Pi, where I ⊆ {1..m}.

Definition 2. A composite component (or simply model) is defined by a compo-

sition operator parameterized by a set of interactions γ ⊆ 2P . B
def
= γ(B1 . . . Bm),

is a transition system (Q, γ,→, q0), where Q =
⊗m

i=1Qi, q
0 = (q01 . . . q

0
m), and

→ is the least set of transitions satisfying the rule

a = {pi}i∈I ∈ γ ∀i ∈ I : qi
pi→i q

′
i ∀i 6∈ I. qi = q′i

(q1, . . . , qm)
a→ (q′1, . . . , q

′
m)

In a composite component, τ -transitions do not synchronize but execute in an
interleaving fashion.

The inference rule in Definition 2 says that a composite component
B = γ(B1, . . . , Bm) can execute an interaction a ∈ γ, iff for each port pi ∈ a,

4



the corresponding atomic component Bi can execute a transition labelled with
pi; the states of components that do not participate in the interaction stay un-
changed.

In general, one can view a model γ(B1,B2), where B1 and B2 are two sets
of atomic components, as one component whose set of transitions is γ. Thus,
γ(B1,B2) denotes the composite component glued by γ, and, γ denotes the set
of interactions of this composite component. In practice, atomic components are
extended with variables. Transitions and interactions are associated with guards
on variables. Also, interactions can transfer data.

Figure 1(b) illustrates a composite component γ(B0, B1), where both B0 and
B1 are identical to the component in Figure 1(a) and
γ = {{p0, p1}, {r0, r1}, {q0}, {q1}}.

Similar to traces of an atomic component, a trace of a composite component
B = γ(B1, . . . , Bn) is a finite or infinite sequence of interactions a0a1a2 · · · , such
that for all i ≥ 0 (1) ai is an interaction of γ, and (2) there exists states q0q1 · · ·
of B, such that q0 = q0 and q0

a0→ q1
a1→ q2 · · · .

3 Fault Model and Fault Recovery

3.1 Fault Model

Let B = (Q,P,→, q0) be an atomic component. We classify the observable tran-
sitions in → into the following three pairwise disjoint sets:

– A set→n of observable normal transitions that embodies the normal execu-
tion of the component.

– A set →f of observable fault transitions that expresses the faulty behavior
of the component.

– A set→r of observable recovery transitions that restore the normal behavior
of the component or help other components to restore their normal behavior
through participating in cross-component interactions.

Finally, →τ (i.e., τ -transitions of B) is the set of unobservable fault transitions
and expresses the local faulty behavior of B. Intuitively, a component normally
executes transitions in →n. However, faults in →f,τ may perturb the state of B
to a state that may or may not be reachable by other transitions and in partic-
ular, →n.

Notation. Let B = (Q,P,→, q0) be an atomic component. By →x, we denote
the union of transitions of the types in x, where x ∈ 2{n,f,τ,r}. By Bx, we mean
the component (Q,P,→x, q

0) induced by transitions in x only.

Definition 3. We say that B = (Q,P,→, q0) is a faulty component if →f,τ is
nonempty.

5



n r f

n N R F
f F F F
r R R F

Table 1. Interaction types based on the participating transitions

Now, let B = γ(B1, . . . , Bm) be a composite component. Observe that in

an interaction a = {pi}i∈I in γ, for any two j 6= k in {1..m}, transitions
pk→k

and
pj→j may belong to any of the above classes of transitions of their respective

components. Thus, we define the type of interactions of a composite component
as follows (see Table 1):

– Following Definition 2, an unobservable fault does not participate in an in-
teraction; i.e., the corresponding component only takes a silent move from
one state to another without synchronizing with other components.

– If an interaction consists of transitions of the same type, then the interaction
type is equivalent to the type of participating transitions.

– Otherwise, the type of the interaction is determined by the greatest type of
the participating transitions in the total order n < r < f .

Thus, we partition interactions of B = γ(B1, . . . , Bn) into γN , γR, and γF .

3.2 Fault Recovery

Arora and Gouda [2] formally define the levels of fault-tolerance based on com-
binations of meeting safety and liveness in the presence of faults. In this paper,
our focus is on non-masking fault-tolerance. Non-masking systems are only con-
cerned with ensuring liveness in the presence of faults by guaranteeing deadlock-
and livelock-freedom through providing a finite-step recovery mechanism; i.e.,
the system always eventually reaches a good state even in the presence of faults.
However, in such a system, when faults occur, safety may be temporarily violated
during recovery, but not after the system reaches a good state.

Non-masking Atomic Components We characterize fault recovery of an
atomic component by ω-regular expressions based on the behavior of transition
types identified in Subsection 3.1. For example, the ω-regular expression f∗rnω

is the set of infinite traces of an atomic component where a finite number of
observable fault transitions is followed by one recovery transition and an infinite
sequence of normal transitions.

Definition 4. We say that B = (Q,P,→, q0) is a non-masking atomic compo-
nent iff its set of traces satisfies the ω-regular expression [n∗((f + τ)r∗)∗n]ω.

6



f, τ, rn f, τ

n

Fig. 2. Non-masking atomic component; the gray state models unstable period.

The intuitive description of Definition 4 is the following (see Figure 2). If no
faults occur, the program executes only normal transitions (i.e., the left state in
Figure 2). If fault(s) occur, the component reaches a state from where execution
of normal transitions is not possible (the gray state in Figure 2). In this case,
we say that the component enters a finite unstable period (i.e., sub-trace (f +
τ)r∗). After a finite number of steps, the component recovers and only executes
normal transitions again. Also, note that according to Definition 4 the number of
occurrences of faults in each unstable period is finite. Observe that a non-masking
component does not exhibit deadlock or livelock in the absence or presence of
faults. Also, a non-masking component can use any recovery transition, be it
safe or unsafe, to converge to its normal behavior.

Non-masking Composite Components We characterize fault recovery of a
composite component based on observational behavior of interaction types iden-
tified earlier; i.e., γN , γF , and γR. There is, however, an important difference
between non-masking atomic and composite components. In a composite com-
ponent, if a fault occurs in an atomic component, the fault may force a set of
components to execute transitions other than their normal transitions, while a
set of other atomic components can resume their normal operation. Thus, un-
like non-masking atomic components, non-masking composite component may
as well exhibit normal interactions in their unstable period.

Definition 5. We say that B = γ(B0 · · ·Bm) is a non-masking composite com-
ponent iff:

1. Its set of traces satisfies the following ω-regular expression:

(N∗(F +R+N)∗N)ω.

2. If a trace prefix of B ends with NR, then there exists an atomic component
Bi, 0 ≤ i ≤ m, such that projection of the prefix on Bi results in a local
prefix that ends with nτ+.

Intuitively, in Definition 5, traces of a non-masking composite component
behave similarly to those of non-masking atomic components, except that nor-
mal interactions can also occur during the unstable period. Moreover, in a non-
masking composite component if a recovery interaction occurs immediately after
a normal interaction, then we require the existence of an atomic component in
which an unobservable fault causes the execution of the recovery interaction.

7



A2

rec

Sender

s1

rec

s0 r1

snd

ack

ack

S

E

rem1

R

ack

ack

rcv

rcv

r0

Receiver

recovery

fault

normal

Legend

snd

Channel

f2

add2

rem1

add1

f1

add2

rem2

add1

rem2

c1c0

c2c3

A1

Fig. 3. A simple non-masking communication protocol.

Notice that in Definition 5, we do not require that atomic components of a
non-masking composite component should be non-masking as well. This is be-
cause we would like our definition to cover cases where an atomic component is
not subject to faults locally, but it participates in recovery interactions in the
composite component that contains other faulty atomic components.

3.3 Example

Figure 3 illustrates a component-based non-masking communication protocol.
The behavior of the model is as follows. The component Sender sends a packet
via port snd and receives the corresponding acknowledgement through port ack .
Likewise, Receiver receives the sent packet through port rcv and sends an ac-
knowledgement through port ack . By each transmission, component Channel
adds an item to its single-space buffer (through ports add1 and add2) and by
each delivery, the item is removed (via ports rem1 and rem2). Our channel is
lossy and faults cause loss of the sent packet (i.e., transition f1) or the acknowl-
edgement (i.e., transition f2). Both faults are unobservable faults (i.e., f1 and
f2 are τ -transitions). Recovery involves re-transmitting the packet through the
rec port in Sender. Thus, the classification of transitions is as follows:

– Sender: →n= {s0
snd−−→ s1, s1

ack−−→ s0}, →f=→τ= ∅, →r= {s1
rec−−→ s1}.

– Receiver: →n= {r0
rcv−−→ r1, r1

ack−−→ r0}, →f=→τ=→r= ∅.
– Channel:→n= {c0

add1−−−→ c1, c1
rem1−−−→ c2, c2

add2−−−→ c3, c3
rem2−−−→ c0},→f=→r=

∅, →τ= {c1 −−→ c0, c3 −−→ c0}.

In the composite component γ(Sender,Channel,Receiver), interactions
γ = {S,R,E,A1, A2} synchronize the atomic components as follows. A transmis-
sion by Sender or Receiver is synchronized with adding the item to the buffer of
Channel (i.e., interactions S and A1, respectively). Likewise, delivery of the item

8



to Sender or Receiver is synchronized with its removal by Channel (i.e., interac-
tions A2 and R, respectively). The recovery interaction E ensures re-transmission
of the message if a fault occurs. Thus, we have: γN = {S,R,A1, A2}, γR = {E},
and γF = ∅. In the absence of faults the set of traces of the composite com-
ponent satisfies expression: (SRA1A2)ω. In the presence of faults, one possible
characterization of the model is the set of traces: (SE∗RA1(E+RA1)∗A2)ω.

Notice that recovery interaction E occurs after normal interactions S or
A1 only if a fault occurs in Channel. Also, although the model is non-masking,
atomic component Sender is not non-masking, as it has traces with prefix
(snd .ack)∗.snd .rec; i.e., Sender exhibits a recovery transition although no lo-
cal fault has occurred. Another interesting observation in this example is that
although all faults occur in component Channel, this component does not con-
tain any recovery transitions. In fact, the only way for Channel to recover after
the occurrence of a fault is by getting assistance from component Sender.

4 Incremental Construction of Non-masking Models

First, note that composing a set of non-masking atomic components does not nec-
essarily result in obtaining a non-masking composite component. In this section,
we show that a composition that preserves non-masking properties of participat-
ing atomic components obtains a non-masking composite component, provided
at least one component executes normal transitions for a long enough period.
By preserving non-masking properties, we mean if one projects the set of traces
of the composite component onto individual atomic components, the projected
trace satisfies Definition 4. By ‘long enough period’, we mean that the unsta-
ble period of two components do not overlap with each other indefinitely. One
characterization of the aforementioned constraints are presented in Theorem 1.

Theorem 1. Let B1 and B2 be two non-masking atomic components and B =
γ(B1, B2) be a composite component. If

1. composition γ preserves the non-masking properties of B1 and B2, and
2. at least one component exhibits only one period of instability,

then B is non-masking as well.

We note that although the assumption of having only one unstable period in
Theorem 1 imposes a strong constraint, it is not unrealistic. This is due to the
fact that in most commonly considered systems, if the frequency of occurrence
of faults is low, all components have enough time to recover and, hence, the
entire system recovers to a global good state. This is precisely our intention for
adding the assumption. On the contrary, if the frequency of occurrence of faults
is high, then most components spend most of their time in recovery and, hence,
the entire system is not likely to reach a global good state nonetheless.

Incremental construction of non-masking models as prescribed in Theorem
1 imposes another strong restriction, i.e., preserving non-masking behavior of
atomic components. A more relaxed approach is to somehow build a non-masking

9



model, so that atomic components are not required to preserve their non-masking
properties. Such an approach would be more involved and in particular requires
reachability analysis of each component and their composition. This issue is
outside the scope of this paper.

5 Correctors and Component-based Recovery

5.1 Correctors

The concept of correctors is inspired by the work in [3, 7]. The definition of
correctors in [3,7] is based on correction of an invariant predicate, no matter how
it is reached. Our definition of correctors in this paper is based on observation of
recovery and normal transitions/interactions in atomic/composite components.
In other words, our notion of correctors is tailored for component-based models.

Roughly speaking, a corrector is concerned with two types of transitions:
recovery and normal. A corrector component ensures two properties: (1) once a
fault occurs, the component somehow recovers and eventually exhibits normal
behavior (i.e., recovery results in restoring the normal behavior), and (2) exe-
cution of normal transitions eventually stabilizes (i.e., once normal behavior is
restored the component behaves normally unless another fault occurs).

Definition 6. Let B = (Q,P,→, q0) be an atomic component. We say that B
is a corrector for the set →n of normal transitions, if there exists the set →r of
recovery transitions, such that →n ∩ →r= ∅ and any trace π = p0p1 · · · , where
pi ∈ P , satisfies the following two conditions:

1. (Progress) If there exists i ≥ 0, such that transition qi
pi−−→ qi+1 is not in

→r,n, then there exists j ≥ i+ 1, such that qj
pj−−→ qj+1 is in →n.

2. (Weak Stability) For all i ≥ 0, if qi
pi−−→ qi+1 is in →n, then qi+1

pi+1−−−→ qi+2

is either (1) in →n, or (2) not in →r,n.

A composite corrector component is defined in the same fashion for interactions
of types R and N . A composite component may be a corrector for a set of
transitions local to one of its atomic components. Such correctors are of interest
where a faulty component achieves recovery to its normal behavior by the help of
a set of other components. The model presented in Subsection 3.3 is an example
of such correctors.

Formally, let B = γ(B0 · · ·Bm) be a composite component and
Bi = (Qi, Pi,→i, q

0
i ), 0 ≤ i ≤ m, be an atomic component. We say that B

is a corrector for the set →in of normal transitions of Bi if and only if by pro-
jecting any trace π = a0a1 · · · , where aj ∈ γ for all j, on component Bi and
obtaining trace π′, there exists recovery transitions→ir , such that→ir and→in

satisfy Progress and Weak Stability.
In our example in Figure 3, component Channel is faulty and if fault f1 or f2

occurs the whole model (without recovery interactions) deadlocks. Component

10



Sender provides the recovery mechanism, when a fault occurs. It is straightfor-
ward to observe that the composite component γ(Channel,Sender) acts as a cor-
rector in the model for normal interactions of γN (Sender ,Channel) (γ is the set
of interactions identified in Subsection 3.3), where γR(Sender ,Channel) = {E}.
Observe that our model allows delivery of duplicate messages, which may be
considered as violation of safety. However, this is not an issue, since by defini-
tion, a non-masking model allows temporary violation of safety while recovering
in the presence of faults. Observe that when the model recovers to its normal
behavior, each packet is delivered only once.

5.2 Containment of Correctors in Non-masking Models

In this subsection, we show that the necessary condition for a model to be
non-masking is to contain a subset of components that act a corrector for each
components that is subject to faults. Recall that in Definition 5, we allowed com-
ponents that do not interact with a faulty component to continue their normal
behavior, while interacting components with the faulty component recover. We
note that in our model, fault propagation is possible in the sense that compo-
nents that do not interact with a faulty component may get involved in achieving
recovery as well. In order to ensure that recovery makes progress in non-masking
models, we assume that composite components are weakly fair.

Assumption 1 Let B = γ(B0 · · ·Bm) be a composite component. We assume
that if an interaction α ∈ γ is continuously enabled in a trace π = a0a1 · · · , then
there exists i ≥ 0, such that ai = α.

Assumption 1 is necessary to show containment of correctors in non-masking
models. The containment theorem is the following.

Theorem 2. Let B = γ(B0 · · ·Bm) be a non-masking composite component.
For each faulty atomic component Bl = (Ql, Pl,→l, q

0
l ), where 0 ≤ l ≤ m, there

exists a set C of atomic components, such that C ⊆ {B0 · · ·Bm} and γ(Bl, C) is
a corrector for γN (Bl, C).

For example, in Figure 3, one obtains the composite corrector γ(Channel,Sender).

6 Separation of Functional and Recovery Concerns

In Subsection 6.1, we formally define the concept of pure correctors and discuss
their role in a model that contains them. In Subsection 6.2, we show that any non-
masking model can be transformed into another model that is observationally
equivalent to the initial model and only contains pure components and, hence,
separates functional from recovery concerns.

11



f, τ, r

n

n, τ f, r

n

f, τ

Fig. 4. Pure functional component (left) and corrector (right).

6.1 Pure Components and their Role in Models

Roughly speaking, a purely functional component is one that is responsible for
performing normal computational tasks of the containing composite component.
Such a component may be subject to faults, but is not concerned with achieving
fault recovery. On the contrary, a pure corrector is a component that only helps
a system restoring the normal behavior through achieving recovery and it does
not perform any functional tasks.

Definition 7. Let B = (Q,P,→, q0) be an atomic component. We say that B
is purely functional iff its set of traces satisfies the ω-regular expression:

((n+ τ)∗(f + r)n)ω.

Intuitively, in a purely functional component a sequence of normal and un-
observable fault transitions may occur (see also the left automaton in Figure
4). Then, the component executes one fault or recovery transition (normally in
order to synchronize with a corrector) and reach normal behavior. Obviously,
if no fault occurs, a purely functional component continues executing normal
transitions.

Definition 8. Let B = (Q,P,→, q0) be an atomic component. We say that B
is a pure corrector for the set →n of normal transitions, iff

1. B is a corrector for →n.
2. (Strong Stability) For any trace π = p0p1 · · · of component B, for all i ≥ 0,

if qi
pi−−→ qi+1 is in →n, then qi+1

pi+1−−−→ qi+2 is not in →n,r.

Notice that in a pure corrector when a normal transition is executed, it does
not execute any more normal transitions (see also the right automaton in Fig-
ure 4). This intuitively means that this normal transition marks the completion
of recovery and the pure corrector stops working unless another fault occurs.
Thus, we require that this normal transition synchronizes with some normal or
recovery transition (normally a purely functional component) in the composite
component. The left state of the functional component models periods of nor-
mal behavior or where no fault has been detected yet; the right state models
a failure state where the pure functional component is inactive. Symmetrically,
the left state of the pure corrector models a period of normal behavior where
the corrector is inactive, and the right-hand side stands for an unstable period.

12



We now show that in the absence of faults, a pure corrector plays no role in
the behavior of a model that contains it. In other words, in the absence of faults,
the existence of a pure corrector in a model can be overlooked.

Theorem 3. Let B = γ(B0 · · ·Bm) be a composite component and Bi, 0 ≤ i ≤
m, be the one and only pure corrector in B. The set of traces of γN (B0 · · ·Bm)
and γ(B0n · · ·Bi−1n , Bi+1n · · ·Bmn

) are equal.

A trivial but important consequence of Theorem 3 is that pure correctors do
not interfere with pure functional components.

Corollary 1. Let B = γ(B0 · · ·Bm) be a composite component and
Bi = (Qi, Pi,→i, q

0
i ), 0 ≤ i ≤ m, be the one and only pure corrector in B.

Let π = a0a1 · · · be a trace of B. If for all j ≥ 0, aj ∈ γN , then no interaction
in π involves a port in Pi.

The other side of the coin is that when a fault occurs in a purely functional
faulty component, it stops working until recovery from the fault is complete.

Theorem 4. Let B = γ(B0 · · ·Bm) be a composite component and Bi, 0 ≤ i ≤
m, be the one and only purely functional atomic component in B. The set of
traces of γR(B0 · · ·Bm) and γ(B0r · · ·Bi−1r , Bi+1r · · ·Bmr

) are equal.

An immediate application of Corollary 1 and Theorem 4 is in compositional
analysis of fault-tolerant systems. For instance, in order to verify the correct-
ness of functional (respectively, recovery) properties of a non-masking compos-
ite component, one can simply remove pure correctors (respectively, functional
components) from the model and verify the remaining composite component
with respect to functional (respectively, recovery) properties. Such decomposi-
tion clearly assists in reducing the size of state space in the context of model
checking. In the context of monolithic programs represented in terms of guarded
commands in the shared memory model, identifying correctors has shown to be
effective in significantly reducing the cost of model checking [6]. However, as
mentioned in Section 7, dealing with decomposition of monolithic models is not
as straightforward as the same task in our component-based model in this paper.

6.2 Transforming a Non-masking Model to one that Only Contains
Pure Components

The goal of this section is to show that any non-masking model can be trans-
formed into another model that behaves equivalently, but ensures separation of
concerns by only containing pure components. To this end, we provide an algo-
rithm that automatically transforms a non-masking componentB = γ(B1, ..., Bn)
into a non-masking component B′ = γ′

(
f(B1), ...f(Bn), c(B1), ..., c(Bn)

)
, such

that all f(Bi) (resp. c(Bi)) are purely functional (resp. pure corrector) com-
ponents, and the behaviors of B and B′ are related by a form of bisimulation.
defined next.

13



QT

r1

ack

S

E

rem1

R

ack

ack

rcv

rcv

r0

Receiver

snd

Channel

f2

add2

rem1

add1

f1

add2

rem2

add1

rem2

s1s0

snd

ack

ack

f(Sender)

rec

rec

c(Sender)

qN s1,f

rec

ack

ack

c1

c2c3

c0

rec

rec

A2

A3 A1

recovery

fault

normal

Legend

Fig. 5. Transformation applied to the communication protocol in Figure 3.

Definition 9 ('). Let Bi = (Qi, γi,→i, q
0
i ) with γi ⊆ 2Pi , i = 1, 2. We define

' ⊆ Q1 ×Q2 as the largest relation such that

1. if q1 ' q2 and q1
α1−−→1 q

′
1, then ∃q′2 ∈ Q2 ∃α2 ∈ γ2 : q2

α2−−→2 q
′
2 ∧ q′1 '

q′2 ∧ α1 ∩ P2 = α2 ∩ P1; and

2. if q1 ' q2 and q2
α2−−→2 q

′
2, then ∃q′1 ∈ Q1 ∃α1 ∈ γ1 : q1

α1−−→1 q
′
1 ∧ q′1 '

q′2 ∧ α1 ∩ P2 = α2 ∩ P1.

B1 and B2 are equivalent, written B1 ' B2, if q01 ' q02.

Intuitively, the transformation T r decomposes the behavior of each atomic
component Bi into its normal sub-behavior and its unstable sub-behavior. A pure
functional component f(Bi) is then obtained by replacing the unstable behavior
by a single state qT that is reached by the first fault or recovery transition
after a normal execution phase, and left again by the first normal transition
after the unstable phase, as in Figure 4 (left). Similarly, a pure corrector c(Bi) is
obtained by replacing the normal behavior of Bi with a single state qN, such that
the obtained behavior refines Figure 4 (right). Both f(Bi) and c(Bi) interact on
the transitions from and to qT and qN in such a way that the control is handed
from f(Bi) to c(Bi) at the beginning of an unstable phase, and back to f(Bi)
again at the first normal transition.

Theorem 5. If B is an atomic component, then γB
(
f(B), c(B)

)
' B. If B is

a composite component, then T r(B) ' B.

An immediate implication of Theorem 5 is that the output of our transfor-
mation results in a non-masking model.

14



Corollary 2. If B is non-masking, then T r(B) is non-masking as well.

Example 1. Applied to the communication protocol of Figure 3, we obtain the
transformed protocol shown in Figure 5. In f(Sender), qT represents the unsta-
ble part of the behavior during which c(Sender) has control. Conversely, during
normal behavior c(Sender) is in state qN and inactive until the recovery in-
teraction {rec, rec, add1} is enabled. Maximal progress ensures that interaction
{ack, rem2} is disabled whenever interaction {ack, ack, rem2} is enabled.

In Figure 5, f(Sender) is a purely functional component and c(Sender) is
a pure corrector. Since the original protocol is non-masking, the transformed
protocol is non-masking by construction.

7 Related Work

Component-based analysis of fault-tolerant untimed models was first studied by
Arora and Kulkarni [3]. They show that a fault-tolerant program that satisfies
safety and liveness properties in the presence of faults can be decomposed into a
fault-intolerant program and a set of components called detectors and correctors.
Detectors ensure satisfaction of safety and correctors guarantee satisfaction of
liveness properties in the presence of faults. In their work, a program is repre-
sented as a set of guarded commands in the shared memory model. Moreover,
a detector (resp. corrector) component is defined based on state predicate de-
tection (resp. correction) properties that a set of computations meets. In other
words, unlike the results in this paper, the notion of a component in [3] does not
resemble normal software modules, each having their own state space, behavior,
and interface. The work in [3] is extended to the context of real-time systems
by Bonakdarpour, Kulkarni, and Arora [7] and is enriched by introducing non-
interference rules for compositional model checking in [6]. Based on this line
of work, in [15], the authors propose a method for constructing fault-tolerant
systems by starting from an intolerant version. However, their technique does
not take into account the explicit structure of components in the way this paper
does. Ebnenasir and Cheng [11] study design issues in systems that exhibit error
recovery in the presence of faults from a software engineering point of view. In
particular, they propose a corrector design pattern.

In [12], the authors propose a formal component model that incorporates
the notion of a safety interface. This work is fundamentally different from our
work in that we focus on recovery which implies guaranteeing liveness in the
presence of faults. Lui and Joseph [18–20] introduce a uniform framework for
specifying, refining, and transforming programs that provide fault-tolerance and
schedulability using the Temporal Logic of Actions [16]. Our work is different
from [20] in that we focus on the structure and analysis of component-based
programs that provide fault recovery. In particular, our transformation is funda-
mentally different in that we propose a method to separate fault recovery from
functional properties. A survey of similar methods on monolithic systems is pre-
sented in [13]. Leal and Arora [17] describe a compositional approach to ensure

15



stabilization. The approach relies on an acyclic dependency relation between
components, which is a more high-level (less fine-grained) approach compared
to ours. Finally, the approach proposed by Brukman and Dolev [9] is also more
high-level than ours, where they introduce a generic proof scheme for recovery-
oriented programming.

8 Conclusion

In this paper, we proposed a generic formal framework for specifying and reason-
ing about fault recovery (also called non-masking fault-tolerance) for component-
based models. We characterized component-based models based on the BIP (Be-
havior, Interaction, Priority) framework [14]. However, our method is not limited
to BIP. Unlike the approaches in [3,7,16,18–20] where a monolithic model is an-
alyzed or components are defined in terms of properties of sets of computations,
our method is based on observational behavior of a model in the presence of
faults. Also, we use explicit components, each having its own private state space
and behavior. We presented a sufficient condition for incrementally constructing
non-masking models. We defined what it means for a component to be a correc-
tor and showed that non-masking models must contain corrector components.
These components correct the observational behavior of a faulty model and we
illustrated they can be constructed as stand-alone components interacting with
components that provide functional tasks. We described the application of this
result in compositional model checking. Moreover, we illustrated that any non-
masking model can be transformed into an equivalent model, where functional
and recovery tasks are modularized in different components.

We plan to incorporate the results in this paper in our work on automated
derivation of distributed implementation from BIP models [5], where fault-
tolerance plays an important role. An interesting future research direction is
developing methods that transform an arbitrary non-masking model into a well-
structured model, where all atomic components are non-masking. Another open
problem is to develop an algorithm that transforms an arbitrary non-masking
model into one where recovery is achieved locally in each atomic component (i.e.,
each atomic component is its own corrector).

9 Acknowledgement

This work is partially sponsored by Canada NSERC Discovery Grant 418396-
2012.

References

1. T. Abdellatif, J. Combaz, and J. Sifakis. Model-based implementation of real-time
applications. In ACM International Conference on Embedded Software (EMSOFT),
pages 229–238, 2010.

16



2. A. Arora and M. G. Gouda. Closure and convergence: A foundation of fault-
tolerant computing. IEEE Transactions on Software Engineering, 19(11):1015–
1027, 1993.

3. A. Arora and S. S. Kulkarni. Detectors and correctors: A theory of fault-tolerance
components. In International Conference on Distributed Computing Systems
(ICDCS), pages 436–443, 1998.

4. A. Basu, B. Bonakdarpour, M. Bozga, and J. Sifakis. Systematic correct con-
struction of self-stabilizing systems: A case study. In International Symposium on
Stabilization, Safety, and Security of Distributed Systems (SSS), pages 4–18, 2010.

5. B. Bonakdarpour, M. Bozga, M. Jaber, J. Quilbeuf, and J. Sifakis. A framework
for automated distributed implementation of component-based models. Springer
Journal on Distributed Computing (DC), 2012. To appear.

6. B. Bonakdarpour and S. S. Kulkarni. Compositional verification of real-time fault-
tolerant programs. In ACM International Conference on Embedded Software (EM-
SOFT), pages 29–38, 2009.

7. B. Bonakdarpour, S. S. Kulkarni, and A. Arora. Disassembling real-time fault-
tolerant programs. In ACM International Conference on Embedded Software (EM-
SOFT), pages 169–178, 2008.

8. M. Bozga, V. Sfyrla, and J. Sifakis. Modeling synchronous systems in BIP. In
ACM International Conference on Embedded Software (EMSOFT), pages 77–86,
2009.

9. O. Brukman and S. Dolev. Recovery oriented programming: runtime monitoring
of safety and liveness. Springer Journal in Software Tools for Technology Transfer
(STTT), 13(4):377–395, 2011.

10. F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir. Toward exas-
cale resilience. Journal of High Performance Computing Applications, 23:374–388,
November 2009.

11. A. Ebnenasir and B. H. C Cheng. Architecting Dependable Systems IV, chapter
A Pattern-Based Approach for Modeling and Analyzing Error Recovery, pages
115–141. Springer Berlin / Heidelberg, 2007.

12. J. Elmqvist, S. Nadjm-tehrani, and M. Minea. Safety interfaces for component-
based systems. In Computer Safety, Reliability, and Security (SAFECOMP), pages
246–260, 2005.

13. F. C. Gärtner. Transformational approaches to the specification and verification of
fault-tolerant systems: Formal background and classification. Journal of Universal
Computer Science, 5(10):668–692, 1999.

14. G. Gössler and J. Sifakis. Composition for component-based modeling. Sci. Com-
put. Program., 55(1-3):161–183, 2005.

15. R. D. Jeffords, C. L. Heitmeyer, M. Archer, and E. I. Leonard. Model-based
construction and verification of critical systems using composition and partial re-
finement. Formal Methods in System Design (FMSD), 37(2-3):265–294, 2010.

16. L. Lamport. The temporal logic of actions. ACM Transactions on Programming
Languages and Systems (TOPLAS), 16:872–923, May 1994.

17. W. Leal and A. Arora. Scalable self-stabilization via composition. In Distributed
Computing Systems (ICDCS), pages 12–21, 2004.

18. Z. Liu and M. Joseph. Transformation of programs for fault-tolerance. Formal
Aspects of Computing, 4(5):442–469, 1992.

19. Z. Liu and M. Joseph. Specification and verification of recovery in asynchronous
communicating systems. In Formal techniques in real-time and fault-tolerant sys-
tems (FTRTFT), pages 137–163, 1993.

17



20. Z. Liu and M. Joseph. Specification and verification of fault-tolerance, timing,
and scheduling. ACM Transactions on Programming Languages and Systems
(TOPLAS), 21(1):46–89, 1999.

18



A Proofs of Theorems 1-4

Theorem 1. Let B1 and B2 be two non-masking atomic components and
B = γ(B1, B2) be a composite component. If

1. composition γ preserves the non-masking properties of B1 and B2, and
2. at least one component exhibits only one period of instability,

then B is non-masking as well.

Proof. Let Π = a0a1a2 · · · be a trace of B. Let π1 = p10p
1
1p

1
2 · · · and π2 =

p20p
2
1p

2
2 · · · be projections of trace Π on components B1 and B2. Since B1 and B2

are non-masking, π1 and π2 satisfy the ω-regular expression [n∗((f+τ)+r∗)∗n]ω.
(cf. Definition 4). If π1 and π2 are both of the form nω, Π is of the form Nω.
For the case where both components enter an unstable period, since both π1

and π2 have prefixes of the form n∗, then Π has a prefix N∗ as well. Moreover,
since both π1 and π2 have suffixes of the form nω, then Π has a suffix Nω.
Now, if there exists i ≥ 0 such that p1i or p2i correspond to a fault transition,
then interaction ai is a fault interaction. Furthermore, if there exists i ≥ 0 such
that p1i corresponds to a recovery transitions and p2i corresponds to a normal or
recovery transition (or vice versa), then interaction ai is a recovery interaction.
Hence, B exhibits a sub-trace of the form (F +N +R)∗. Finally, occurrence of
an unobservable fault in one component may result in observing an immediate
recovery transition (and, hence, an interaction), which in turn validates the
second constraint of Definition 5.

Theorem 2. Let B = γ(B0 · · ·Bm) be a non-masking composite component.
For each faulty atomic component Bl = (Ql, Pl,→l, q

0
l ), where 0 ≤ l ≤ m, there

exists a set C of atomic components, such that C ⊆ {B0 · · ·Bm} and γ(Bl, C) is
a corrector for γN (Bl, C).

Proof. First, if no fault occurs, traces of B consists of only normal interactions.
Consequently, all components execute their normal transitions. Such a trace
satisfies Progress and Weak Stability. Now, without loss of generality, we assume
that there exists one and only one faulty component Bl. Our instantiations to
show the existence of a corrector as defined in Definition 6 are as follows. Let
C = {B0 · · ·Bm}. Observe that γ(Bl, C) = B and, hence, γN (Bl, C) = γN . In
order to show that B is a corrector for γN , we show that γR and γN satisfy
Progress and Weak Stability. Let π = a0a1 · · · be a trace of B:

– (Progress) Consider the case where there exists ai in π, such that qi
ai−−→ qi+1

is in γF . Since B is non-masking it enters its unstable period and has to
start recovering at some point in π. Moreover, since B is non-masking it
eventually a normal interaction will be enabled and by Assumption 1, there

19



exists j ≥ i + 1 in π, such that only a normal interaction can be executed.
This means that there are no recovery interactions enabled in B. Hence,
Progress holds.

– (Weak Stability) Suppose that there exists ai in π, such that qi
ai−−→ qi+1

is in γN . To prove Weak Stability, we distinguish the following three cases
based on the possible behaviors of a non-masking composite component:

1. If qi+1
ai+1−−−→ qi+2 is in γN , then the first condition of Weak Stability on

preserving execution of witness interaction holds.

2. If qi+1
ai+1−−−→ qi+2 is in γF , then this transition is neither a normal nor

a recovery interaction. Thus, the second condition of Weak Stability is
met.

Theorem 3. Let B = γ(B0 · · ·Bm) be a composite component and Bi,
0 ≤ i ≤ m, be the one and only pure corrector in B. The set of traces of
γN (B0 · · ·Bm) and γ(B0n · · ·Bi−1n , Bi+1n · · ·Bmn) are equal.

Proof. We distinguish two cases:

– (⇒) Let π = a0a1 · · · be a trace of γN (B0 · · ·Bm). Observe that all interac-
tions in π are normal. Thus, following Table 1, for all i ≥ 0, the transitions
that participate in ai are all normal transitions as well. It follows that none of
the participating transitions belong to Bi. Otherwise, the interaction would
not be in γN , as transitions of Bi that are of type R and F result in interac-
tions not in γN , and, transitions of type n in Bi can only synchronize with
transitions of type r of other components (cf. Figure 4). Moreover, trace π is
reproducible by γ(B0n · · ·Bi−1n , Bi+1n · · ·Bmn

), as component Bi plays no
role in the sequence of interactions produced by γN (B0 · · ·Bm). Hence, π is
a trace of γ(B0n · · ·Bi−1n , Bi+1n · · ·Bmn

) as well.
– (⇐) Now, let π = a0a1 · · · be a trace of γ(B0n · · ·Bi−1n , Bi+1n · · ·Bmn

).
Since all components only participate in interactions in γ with their normal
transitions, the resulting interactions are in γN . This interaction cannot in-
clude the pure corrector Bi, as it would result in an interaction not in γN ,
which would be a contradiction. Similar to the previous case, the trace is
re-producible by γN (B0 · · ·Bm), as the identical transitions, states, and in-
teractions of γ(B0n · · ·Bi−1n , Bi+1n · · ·Bmn

) are present in γN (B0 · · ·Bm).
Hence, π is a trace of γN (B0 · · ·Bm) as well.

Theorem 4. Let B = γ(B0 · · ·Bm) be a composite component and Bi,
0 ≤ i ≤ m, be the one and only purely functional atomic component in B.
The set of traces of γR(B0 · · ·Bm) and γ(B0r · · ·Bi−1r , Bi+1r · · ·Bmr

) are equal.

20



Proof. The proof is identical to the proof of Theorem 3, by replacing n-transitions
with r-transitions and by replacing N -interactions with R-interactions.

B Proof of Existence of Transformation

Definition 10. Given an atomic component (Q,P,→, q0) and q ∈ Q, let •q =

{a | ∃q′ : q′
a−−→ q} be the set of actions entering q. For a set Q′ ⊆ Q, let

•Q′ = {a | ∃q ∈ Q \Q′,∃q′ ∈ Q′ : q
a−−→ q′} be the set of actions entering Q′.

Given an atomic component B = (Q,P,→, q0), a functional component f(B)
and a corrector component c(B) are obtained as follows.

1. Compute the set of normal states QN(B) and the set of transient states
QT(B) as the least sets such that

QN(B) = {q0n} ∪ {qn | •q ∩N 6= ∅}

∪ {q′n | ∃qn ∈ QN(B) : qn
τ−−→ q′n}

QT(B) = {qf | •q ∩ (F ∪R) 6= ∅}

∪ {q′f | ∃qf ∈ QT(B) : qf
τ−−→ q′f}

Each state q is renamed into qn (resp. qf) if it is an element of QN(B) (resp.
QT(B)). This allows to split a state q that can be reached by both normal and
unstable behavior into states qn and qf that are unique to each sub-behavior.
The set QN(B) is the set of states reached by normal transitions and closed
under unobservable faults τ . The set QT(B) is the set of states reached by
fault or recovery transitions and closed under unobservable faults.

2. Let f(B) and c(B) be the normal and transient part of the behavior:

f(B) = (QN(B) ∪ {qT}, PN, →N, q
0
n)

c(B) = (QT(B) ∪ {qN}, PT, →T, q
N)

21



where

→N = {(qn, a, q′n) | qn, q′n ∈ QN(B) ∧ q a−−→ q′}
∪ {(qn, a, qT) | qn ∈ QN(B) ∧ ∃q′f ∈ QT(B) :

q
a−−→ q′}

∪ {(qT, a, q′n) | q′n ∈ QN(B) ∧ ∃qf ∈ QT(B) :

q
a−−→ q′}

→T = {(qf , a, q′f) | qf , q′f ∈ QT(B) ∧ q a−−→ q′}
∪ {(qf , a, qN) | qf ∈ QT(B) ∧ ∃q′n ∈ QN(B) :

q
a−−→ q′}

∪ {(qN, a, q′f) | q′f ∈ QT(B) ∧ ∃qn ∈ QN(B) :

q
a−−→ q′}

PN = {a | ∃q, q′ ∈ QN(B) ∪ {qT} : q
a−−→N q

′}

PT = {a | ∃q, q′ ∈ QT(B) ∪ {qN} : q
a−−→T q

′}

To obtain a pure functional component f(B), the unstable behavior is col-
lapsed into a single state qT; to obtain a pure corrector c(B), the normal
behavior is collapsed into a single state qN.
For the sake of simplicity we assume that (A1) if q1

a1−−→ q′1 and q2
a2−−→ q′2

with q1, q2 ∈ QN(B) and q′1, q
′
2 ∈ QT(B) (or vice versa), then a1 = a2 =⇒

q′1 = q′2. That is, entering transitions have a unique interaction for each
target state. This property can be checked and ensured on B by renaming
actions.
We define all new actions a to be of the same type as a.

3. We define the set of interactions of the composite component formed by f(B)
and c(B) as

γB =
{
{n} | n ∈ N

}
∪
{
{a} | a ∈ F ∪R

}
∪
{
{a, a} | a ∈ •QN(B) ∪ •QT(B)

}
That is, actions entering the sets of states QN(B) and QT(B) synchronize
with their overlined counterpart entering qN and qT, respectively; all other ac-
tions interleave. The transformed component is the composite γB

(
f(B), c(B)

)
.

Given a component B = γ(B1, ..., Bn) composed of atomic components Bi =
(Qi, Pi,→i, q

0
i ), i = 1, ..., n, the composite

T r(B) = γ′
(
f(B1), c(B1), ..., f(Bn), c(Bn)

)
is obtained from the functional and corrector components by adapting the inter-
action model such that transitions between normal and transient states of both
components synchronize: γ′ = γ ∪

{
α ∪ cmpl(α) | α ∈ γ

}
where

cmpl(α) =
{
a | ∃i : a ∈ α ∩

(
•QT(Bi) ∪ •QN(Bi)

)}

22



Lemma 1. For each atomic component B, f(B) is a purely functional compo-
nent. If B satisfies (Progress), then c(B) is a pure corrector.

Proof. Sketch: by construction, the behavior of f(B) is included in the behavior
shown in Figure 4 (left), with the left state of Figure 4 (left) simulating QN(B),
and the right state simulating qT.

Likewise, if B satisfies (Progress), then so does c(B), and the behavior of
c(B) is included in the behavior shown in Figure 4 (right), with the left state of
Figure 4 (right) simulating qN, and the right state simulating both QT(B) and
τ -transitions issued from qN.

Theorem 5. If B is an atomic component, then γB
(
f(B), c(B)

)
' B. If B is

a composite component, then T r(B) ' B.

Proof. Let→1 and→2 denote the transition relations of B and γB
(
f(B), c(B)

)
,

respectively. For f(B) and c(B) we use the same notations as in Subsection 6.2.
We use the inductive invariant inv characterizing the set of states QN×(QN(B)×
{qN})∪QT(B)× ({qT}×QT(B)) on γB

(
f(B), c(B)

)
. Suppose that q1 ' q2. We

have to check two directions.

1. Suppose that q1
a−−→1 q

′
1. We distinguish four cases.

(a) If q1, q
′
1 ∈ QN(B) then (q1, q

N)
a−−→2 (q′1, q

N) and a ∩ P1 = a ∩ P2 = a.
(b) If q1, q

′
1 ∈ QT(B) then (qT, q1)

a−−→2 (qT, q′1) and a ∩ P1 = a ∩ P2 = a.

(c) If q1 ∈ QN(B) and q′1 ∈ QT(B) then (q1, q
N)

a|a−−→2 (qT, q′) and a ∩ P2 =

(a|a) ∩ P1 = a. By q1
a−−→ q′1 and (A1) we know that q′ = q′1.

(d) If q1 = qT and q′1 ∈ QN(B) then (qT, q1)
a|a−−→2 (q′, qN) and a ∩ P2 =

(a|a) ∩ P1 = a. By q1
a−−→ q′1 and (A1) we know that q′ = q′1.

2. Suppose that q2
a−−→2 q

′
2. We distinguish four cases again.

(a) If q2 = (q1, q
N) and q′2 = (q′1, q

N) with q′1 ∈ QN(B) and a ∈ N ∪{τ} then

by definition, q1
a−−→1 q

′
1 and a ∩ P1 = a ∩ P2 = a.

(b) If q2 = (qT, q1) and q′2 = (qT, q′1) with q′1 ∈ QT(B) and a ∈ F ∪ R ∪ {τ}
then q1

a−−→1 q
′
1 and a ∩ P1 = a ∩ P2 = a.

(c) If q2 = (q1, q
N) and q′2 = (qT, q′1) with a = b|b and b ∈ •QT(B) then

q1
b−−→1 q

′
1 and b ∩ P2 = (b|b) ∩ P1 = b.

(d) If q2 = (qT, q1) and q′2 = (q′1, q
N) with a = b|b and b ∈ •QN(B) then

q1
b−−→1 q

′
1 and b ∩ P2 = (b|b) ∩ P1 = b.

By definition, q01 ∈ QN(B) and q02 ∈ QN(B)×{qN}. The claim γB
(
f(B), c(B)

)
'

B follows from the fact that ' is a greatest fixpoint.
The preservation of non-masking follows from the fact that for any pair of

transitions related by bisimulation, both actions have by construction the same
type N , F , or R.

23


