
A Theory of Fault Recovery for Component-Based Models

Borzoo Bonakdarpour

School of Computer Science

University of Waterloo, Canada

borzoo@cs.uwaterloo.ca

Marius Bozga

VERIMAG, France

marius.bozga@imag.fr

Gregor Gössler

INRIA Grenoble – Rhône-Alpes, France

gregor.goessler@inria.fr

Abstract—This paper introduces a theory of fault recovery for
component-based models. In our framework, a model is specified
in terms of a set of atomic components that are incrementally
composed and synchronized by a set of glue operators. We define
what it means for such models to provide a recovery mechanism,
so that the model converges to its normal behavior in the presence
of faults. We identify corrector (atomic or composite) components
whose presence in a model is essential to guarantee recovery
after the occurrence of faults. We also formalize component-
based models that effectively separate recovery from functional
concerns.

Keywords-Fault-tolerance; recovery; component-based; separa-
tion of concerns; modularity; BIP

I. INTRODUCTION

Fault-tolerance has always been one of the active subjects

of research in design and implementation of dependable com-

puting systems. Intuitively, tolerating faults involves providing

a system with the means to handle unexpected defects, so

that the system meets its specification even in the presence

of faults. In this context, the notion of specification may vary

depending upon the guarantees that the system must deliver

in the presence of faults. Such guarantees can be broadly

characterized by safety and liveness properties. For instance,

dependable mission-critical systems often employ monitoring

or control techniques to ensure safety properties in the presence

of faults, and, provide a recovery mechanism to meet liveness

properties, if the system reaches an unexpected state.

The concept of fault-tolerance as described above addresses

the overall behavior of the system and is independent of

the structure the system. In order to associate fault-tolerance

properties with the structure of a system and study their

interdependence, one has to focus on a specific methodology.

Component-based approach is a successful divide-and-conquer

technique for designing and implementing large systems as

well as for reasoning about their correctness. Ideally, in this

approach, a system is designed incrementally by composing

smaller components, each responsible for delivering a certain

set of tasks to separate different concerns. Thus, component-

based design and analysis of fault-tolerant systems is highly

desirable in order to achieve systematic modularization of

such systems. For instance, fault tolerance is becoming one

of the key issues for efficient multi-core programming [1].

The likelihood of fault occurrences is in fact proportional with

the number of cores available in the underlying platform. Tra-

ditional fault-detection and recovery mechanisms e.g., based

on restore points and rollback, scale poorly and may even

become unusable for many cores. That is, significant amount

of core time and power are spent on fault recovery instead of

performing useful computation. Such scenarios clarify the need

for systematic and modularized approaches for fault recovery

in large scale systems.

We believe that we currently lack a formal approach that

rigorously relates a component-based methodology with fault-

tolerance concerns. With this motivation, in this paper, we

propose a novel formal framework for component-based design

and analysis of non-masking models [2] where fault recovery

and, hence, liveness is guaranteed in the presence of faults.

We use the semantics of the BIP (Behavior, Interaction,

Priority) framework [3], [4] to specify components and their

composition. In BIP, the behavior of an atomic component

is specified by a labeled transition system. A model (i.e., a

composite component) is represented as the composition of a

set of atomic components by using two types of operators:

interactions describing synchronization constraints between

components, and priorities to specify scheduling constraints.

The elegance of BIP is in its expressiveness and ability to

model a wide range of computing systems using its sequential

operational semantics. Moreover, given a BIP model, the tool

chain can automatically generate a stand-alone, distributed,

real-time, multi-threaded, or synchronous C++ implementation

that is correct-by-construction (i.e., by preserving observa-

tional semantics of the original model) [5]–[9]. Thus, our

results in this paper can be applied in model-based design and

analysis of component-based fault recovery for a wide range

of settings such as in distributed systems.

Our contributions are as follows:

• We formally define non-masking fault-tolerance for

atomic and composite components based on their obser-

vational behavior. This is different from the approach in

[2], where fault-tolerance is defined based on reachability

of predicates.

• We define corrector components that establish a desirable

observational behavior and show that the necessary con-

dition for a composite component to be non-masking is

to contain atomic or composite correctors.

• We introduce the notion of pure correctors that only

exhibit recovery behavior and do not participate in func-

tional tasks of a composite component. We show that

models containing pure correctors can effectively separate

functional from recovery concerns and, hence, can be



t

r
p

q

p r

q

s

B0

p0

q0

r0

B1

p1

q1

r1

Figure 1. A BIP atomic component (left); a BIP composite component
constructed from two copies of the atomic component.

compositionally verified.

As argued above, since a BIP model can be automatically

transformed into (for example) a distributed implementation, a

non-masking model with correctors or pure correctors can also

be viewed as a system with a distributed fault recovery mecha-

nism. We emphasize that the presented method in this paper is

not limited to BIP and can be applied to any framework with

two characteristics: (1) a component’s behavior is specified

in terms of an automaton or Petri net, and (2) components

interact by synchronizing on labeled transitions using multi-

party rendezvous or broadcast primitives. Thus, our method is

applicable to most process algebras and synchronous languages

as well.

II. BASIC SEMANTIC MODELS OF BIP

Atomic Components We define atomic components as

transition systems with a set of ports labeling individual

transitions. These ports are used for communication between

components.

Definition 1 An atomic component B is a labeled transition

system represented by a tuple (Q,P,→, q0) where

• Q is a set of states,

• P is a set of communication ports,

• → ⊆ Q × P ∪ {τ} ×Q is a set of transitions including

observable transitions labeled by ports, and unobservable

τ transitions, and

• q0 ∈ Q is the initial state.

For any pair of states q, q′ ∈ Q and a port p ∈ P ∪{τ}, we

write q
p
→ q′ iff (q, p, q′) ∈ →. When the label is irrelevant,

we simply write q → q′. Similarly, q
p
→ means that there

exists q′ ∈ Q, such that q
p
→ q′. In this case, we say that p is

enabled in state q. Figure 1 (left) shows an atomic component

B, where Q = {s, t}, q0 = s, P = {p, q, r}, and → =
{(s, p, t), (t, q, s), (t, r, t)}.

A trace of a component B = (Q,P,→, q0) is a finite or

infinite sequence of ports π = p0p1p2 · · · , such that for ∀i ≥ 0:

1) pi ∈ P ∪ {τ},

2) there exists state sequence q0q1 · · · , such that:

• q0 = q0 (i.e., q0 is the initial state), and

• q0
p0
→ q1

p1
→ q2 · · ·

For a trace π = p1 · · · pn, by q
π

−−→ q′, we denote

∃q1 · · · qn−1 : q
p1
−−→ q1

p2
−−→ · · ·

pn−1

−−−→ qn−1

pn
−−→ q′.

Interaction For a given system built from a set of m atomic

components {Bi = (Qi, Pi,→i, q
0
i )}

m
i=1, we assume that their

respective sets of ports are pairwise disjoint, i.e., for any two

i 6= j from {1..m}, we have Pi ∩ Pj = ∅. We can therefore

define the set P =
⋃m

i=1
Pi of all ports in the system. An

interaction is a set a ⊆ P of ports. When we write a =
{pi}i∈I , we suppose that for i ∈ I , pi ∈ Pi, where I ⊆
{1..m}.

Definition 2 A composite component (or simply model) is

defined by a composition operator parametrized by a set of

interactions γ ⊆ 2P . B
def
= γ(B1 . . . Bm), is a transition sys-

tem (Q, γ,→, q0), where Q = Q1×...×Qm, q0 = (q01 . . . q
0
m),

and → is the least set of transitions satisfying the rule

a = {pi}i∈I ∈ γ ∀i ∈ I. qi
pi
→i q

′
i ∀i 6∈ I. qi = q′i

(q1, . . . , qm)
a
→ (q′1, . . . , q

′
m)

In a composite component, τ -transitions do not synchronize

but execute in an interleaving fashion.

The inference rule in Definition 2 says that a composite

component B = γ(B1, . . . , Bm) can execute an interaction

a ∈ γ, iff for each port pi ∈ a, the corresponding atomic

component Bi can execute a transition labeled with pi; the

states of components that do not participate in the interaction

stay unchanged.

In general, one can view a model γ(B1,B2), where B1 and

B2 are two sets of atomic components, as one component

whose set of transitions is γ. Thus, γ(B1,B2) denotes the

composite component glued by γ, and, γ denotes the set of

interactions of this composite component.1

Figure 1 (right) illustrates a composite component

γ(B0, B1), where both B0 and B1 are identical

to the component in Figure 1 (left) and γ =
{{p0, p1}, {r0, r1}, {q0}, {q1}}.

Similar to traces of an atomic component, a trace of a

composite component B = γ(B1, . . . , Bn) is a finite or infinite

sequence of interactions a0a1a2 · · · , such that for all i ≥ 0 (1)

ai is an interaction of γ, and (2) there exists states q0q1 · · · of

B, such that q0 = q0 and q0
a0→ q1

a1→ q2 · · · .

III. FAULT MODEL AND FAULT RECOVERY

In this section, we describe our fault model and the con-

cept of fault recovery in the context of the component-based

framework described in Section II.

A. Fault Model

Let B = (Q,P,→, q0) be an atomic component. We

classify the observable transitions in → into the following three

pairwise disjoint sets:

• A set →n of observable normal transitions that embodies

the normal execution of the component.

• A set →f of observable fault transitions that expresses

the faulty behavior of the component.

1In practice, atomic components are extended with variables. Transitions
and interactions are associated with guards on variables. Also, interactions
can transfer data using an update function on variables bound to ports.

2



n r f

n N R F
f F F F
r R R F

Table I
INTERACTION TYPES BASED ON THE PARTICIPATING TRANSITIONS

• A set →r of observable recovery transitions that restore

the normal behavior of the component or help other

components to restore their normal behavior through

participating in cross-component interactions.

Finally, →τ (i.e., τ -transitions of B) are unobservable fault

transitions that expresses the local faulty behavior of the

component.

Notation. Let B = (Q,P,→, q0) be an atomic component.

By →x, we denote the union of transitions of the types in

x, where x ∈ 2{n,f,τ,r}. By Bx, we mean the component

(Q,P,→x, q
0).

Intuitively, a component normally executes transitions in

→n. However, faults in →f,τ may perturb the state of B to

a state that may or may not be reachable by other transitions

and in particular, →n. We emphasize that the occurrence of a

transition in →f,τ is not a bad thing (such as a failure or error)

by itself, i.e., it is merely a state perturbation. We also note

that such representation is possible notwithstanding the type of

faults (be they stuck-at, crash, fail-stop, timing, performance,

Byzantine, message loss, etc.), the nature of the faults (be

they permanent, transient, or intermittent), or the ability of the

program to observe the effects of the faults (be they detectable

or undetectable).

Definition 3 We say that B = (Q,P,→, q0) is a faulty

component if →f,τ is nonempty.

Now, let B = γ(B1, . . . , Bm) be a composite component.

Observe that in an interaction a = {pi}i∈I in γ, for any

two j 6= k in {1..m}, transitions
pk→k and

pj

→j may belong

to any of the above classes of transitions of their respective

components. Thus, we define the type of interactions of a

composite component as follows (see Table I):

• Following Definition 2, an unobservable fault does not

participate in an interaction; i.e., the corresponding com-

ponent only takes a silent move from one state to another

without synchronizing with other components.

• Otherwise, the type of the interaction is determined by the

greatest type of the participating transitions in the total

order n < r < f .

For example, the type of an interaction consisting only normal

transitions is also normal, and, the type of an interaction

consisting transitions of types f and r is faulty. In other

words, occurrence of a fault transition in an atomic com-

ponent Bi, implies occurrence of a fault in the composite

component that contains Bi. Thus, we partition interactions

of B = γ(B1, . . . , Bn) into γN , γR, and γF .

f, τ, rn f, τ

n

Figure 2. Non-masking atomic component; the gray state models an unstable
period.

We emphasize that such representation is possible notwith-

standing the type of the faults (be they stuck-at, crash, fail-stop,

timing, performance, Byzantine, message loss, etc.), the nature

of the faults (be they permanent, transient, or intermittent), or

the ability of the program to observe the effects of the faults

(be they detectable or undetectable). In fact, representation

of faults in transition systems has been explored extensively.

For instance, message loss, performance, and crash faults have

been modeled in [2], [10], undetectable, Byzantine, and fail-

stop faults in [11], and timing faults in [12], [13]. We refer

the reader to [14] for a survey on using transition systems to

model faults.

We also note that since our focus is on model-based analysis

of fault recovery, in our framework the set of faults needs

to be provided. Having said that, one can model the effect

of unanticipated faults by specifying the set of faults that

start from any state of a component and can reach any state

of the component. This is in fact the core idea in self-

stabilizing systems [15], where faults can perturb the system

to any arbitrary state. Modeling self-stabilizing systems and

unanticipated faults in BIP have been studied in [9]. All results

in this paper hold regardless of the set of faults in a model.

B. Fault Recovery

Arora and Gouda [2] formally define the levels of fault-

tolerance based on combinations of meeting safety and live-

ness in the presence of faults. In this paper, our focus is on

non-masking fault-tolerance. Non-masking systems are only

concerned with ensuring liveness in the presence of faults by

guaranteeing deadlock-freedom through providing a finite-step

recovery mechanism; i.e., the system always eventually reaches

a good state even in the presence of faults. However, in such

systems, when faults occur, safety may be temporarily violated

during recovery, but not after the systems reaches a good state.

1) Non-masking Atomic Components: We characterize fault

recovery of an atomic component by ω-regular expressions

based on the behavior of transition types identified in Section

III-A. For example, the ω-regular expression f∗rnω is the set

of infinite traces of an atomic component where a finite number

of observable fault transitions is followed by a recovery

transition and an infinite sequence of normal transitions.

Definition 4 We say that B = (Q,P,→, q0) is a non-masking

atomic component iff its set of traces satisfies the following ω-

regular expression: [n∗((f + τ)r∗)∗n]ω .

The intuitive description of Definition 4 is the following

(also see Figure 2 for an automaton-based description). If no

faults occur, the program executes only normal transitions (i.e.,

3



the left state in Figure 2). If fault(s) occur, the component

reaches a state from where execution of normal transitions may

not be possible (the gray state in Figure 2). In this case, we

say that the component enters a finite unstable period. After

a finite number of steps, the component recovers and only

executes normal transitions again. Also, note that according

to Definition 4 the number of occurrences of faults in each

unstable period is finite.

Observe that a non-masking component does not deadlock

in the absence or presence of faults. Also, a non-masking

component can use any recovery transition, be it safe or unsafe,

to converge to its normal behavior. Thus, a non-masking

component may temporarily violate safety in the presence

of faults, but it eventually returns to its normal behavior,

from where satisfaction of safety is assumed. Some network

protocols are non-masking fault-tolerant. For instance, in some

protocols a packet has to eventually reach the destination, but

duplicate packets may be delivered.

2) Non-masking Composite Components: We characterize

fault recovery of a composite component based on obser-

vational behavior of interaction types identified earlier; i.e.,

γN , γF , and γR. There is, however, an important difference

between non-masking atomic and composite components. In

a composite component, if a fault occurs in an atomic com-

ponent, the fault may force a set of components to execute

transitions other than their normal transitions, while a set of

other atomic components can resume their normal operation.

Thus, unlike non-masking atomic components, non-masking

composite component may as well exhibit normal interactions

in their unstable period.

Definition 5 We say that B = γ(B0 · · ·Bm) is a non-masking

composite component iff:

1) Its set of traces satisfies the following ω-regular expres-

sion: (N∗(F +R+N)∗N)ω .

2) If a trace prefix of B ends with NR, then there exists an

atomic component Bi, 0 ≤ i ≤ m, such that projection

of the prefix on Bi results in a local prefix that ends with

nτ+.

Intuitively, in Definition 5, traces of a non-masking com-

posite component behave similarly to those of non-masking

atomic components, except that normal interactions can also

occur during the unstable period2. Moreover, in a non-masking

composite component if a recovery interaction occurs immedi-

ately after a normal interaction, then we require the existence

of an atomic component in which an unobservable fault causes

the execution of the recovery interaction.

Notice that in Definition 5, we do not require that atomic

components of a non-masking composite component should

be non-masking as well. This is because we would like

our definition to cover cases where an atomic component is

not subject to faults locally, but it participates in recovery

2If such behavior is not desirable (e.g., to assign all resources to speed-up
recovery), one can apply the priority mechanism in BIP to exclude normal
interactions while a part of the system is recovering.

interactions in the composite component that contains other

faulty atomic components.

IV. CORRECTOR COMPONENTS AND COMPONENT-BASED

RECOVERY

In this section, we present our theory of component-based

recovery in non-masking models. To this end, we first define

the notion of corrector components in Subsection IV-A Then,

in Subsection IV-B, we show that the necessary condition for

a model to be non-masking is to contain corrector components

for faulty components.

A. Correctors

The concept of correctors is inspired by the work in [16],

[17]. The definition of correctors in [16], [17] is based on

correction of an invariant predicate, no matter how it is

reached. Our definition of correctors in this paper is based

on observation of recovery and normal transitions/interactions

in atomic/composite components. In other words, our notion

of correctors is tailored for component-based models.

Roughly speaking, a corrector is concerned with two types

of transitions: recovery and normal. A corrector component

ensures two properties: (1) once a fault occurs, the component

recovers and eventually exhibits normal behavior, and (2)

execution of normal transitions eventually stabilizes (i.e., once

normal behavior is restored the component behaves normally

unless another fault occurs). We now formally define the notion

of corrector components.

Definition 6 Let B = (Q,P,→, q0) be an atomic component.

We say that B is a corrector for the set →n of normal

transitions, if there exists the set →r of recovery transitions,

such that →n ∩ →r= ∅ and any trace π = p0p1 · · · , where

pi ∈ P , satisfies the following two conditions:

1) (Progress) If there exists i ≥ 0, such that transition

qi
pi
−−→ qi+1 is not in →r,n, then there exists j ≥ i+ 1,

such that qj
pj

−−→ qj+1 is in →n.

2) (Weak Stability) For all i ≥ 0, if qi
pi
−−→ qi+1 is in →n,

then qi+1

pi+1

−−−→ qi+2 is either (1) in →n, or (2) not in

→r,n.

A composite corrector component is defined in the same

fashion for interactions of types R and N . A composite

component may be a corrector for a set of transitions local to

one of its atomic components. Such correctors are of interest

where a faulty component achieves recovery to its normal

behavior by the help of a set of other components.

Formally, let B = γ(B0 · · ·Bm) be a composite component

and Bi = (Qi, Pi,→i, q
0
i ), 0 ≤ i ≤ m, be an atomic

component. We say that B is a corrector for the set →in of

normal transitions of Bi if and only if by projecting any trace

π = a0a1 · · · , where aj ∈ γ for all j, on component Bi and

obtaining trace π′, there exists recovery transitions →ir , such

that →ir and →in satisfy Progress and Weak Stability.

4



B. Containment of Correctors in Non-masking Models

In this subsection, we show that the necessary condition

for a model to be non-masking is to contain a subset of

components that act a corrector for each components that

is subject to faults. Recall that in Definition 5, we allowed

components that do not interact with a faulty component to

continue their normal behavior, while interacting components

with the faulty component recover. We note that in our model,

fault propagation is possible in the sense that components that

do not interact with a faulty component may get involved in

achieving recovery as well. In order to ensure that recovery

makes progress in non-masking models, we assume that com-

posite components are weakly fair.

Assumption 1 Let B = γ(B0 · · ·Bm) be a composite com-

ponent. We assume that if an interaction α ∈ γ is continuously

enabled in a trace π = a0a1 · · · , then there exists i ≥ 0, such

that ai = α.

Assumption 1 is necessary to show containment of correc-

tors in non-masking models. The containment theorem is the

following.

Theorem 1 Let B = γ(B0 · · ·Bm) be a non-masking com-

posite component. For each faulty atomic component Bl =
(Ql, Pl,→l, q

0
l ), where 0 ≤ l ≤ m, there exists a set

C ⊆ {B0 · · ·Bm} of atomic components, such that γ(Bl, C) is

a corrector for γN (Bl, C).

V. SEPARATION OF FUNCTIONAL AND RECOVERY

CONCERNS

In this section, we study separation of functional and

recovery concerns in non-masking models. To this end, we

identify two types of components that are responsible for

performing functional or recovery tasks independently. We call

such components pure components.

Roughly speaking, a purely functional component is one that

is responsible for performing normal computational tasks of

the containing composite component. Such a component may

be subject to faults, but is not concerned with achieving fault

recovery. On the contrary, a pure corrector is a component that

only helps a system restoring the normal through achieving

recovery and it does not perform any functional tasks.

Definition 7 Let B = (Q,P,→, q0) be an atomic component.

We say that B is purely functional iff its set of traces satisfies

the ω-regular expression: ((n+ τ)∗(f + r)n)ω .

Intuitively, in a purely functional component a sequence of

normal and unobservable fault transitions may occur. Then, the

component executes one fault or recovery transition (normally

in order to synchronize with a corrector) and reach normal

behavior. If no fault occurs, a purely functional component

continues executing normal transitions.

Definition 8 Let B = (Q,P,→, q0) be an atomic component.

We say that B is a pure corrector for the set →n of normal

transitions, iff

1) B is a corrector for →n.

2) (Strong Stability) For any trace π = p0p1 · · · of com-

ponent B, for all i ≥ 0, if qi
pi
−−→ qi+1 is in →n, then

qi+1

pi+1

−−−→ qi+2 is not in →n,r.

When a normal transition is executed in a pure corrector, it

does not execute any more normal transitions. This intuitively

means that this normal transition marks the completion of

recovery and the pure corrector stops working unless another

fault occurs. Thus, we require that this normal transition syn-

chronizes with some normal or recovery transition (normally

a purely functional component) in the composite component.

We now show that in the absence of faults, a pure corrector

plays no role in the behavior of a model that contains it. In

other words, in the absence of faults, the existence of a pure

corrector in a model can be overlooked.

Theorem 2 Let B = γ(B0 · · ·Bm) be a composite com-

ponent and Bi, 0 ≤ i ≤ m, be the one and only pure

corrector in B. The set of traces of γN (B0 · · ·Bm) and

γ(B0n · · ·Bi−1n
, Bi+1n

· · ·Bmn
) are equal.

A trivial but important consequence of Theorem 2 is that

pure correctors do not interfere with pure functional compo-

nents.

Corollary 1 Let B = γ(B0 · · ·Bm) be a composite compo-

nent and Bi = (Qi, Pi,→i, q
0
i ), 0 ≤ i ≤ m, be the one and

only pure corrector in B. Let π = a0a1 · · · be a trace of B.

If for all j ≥ 0, aj ∈ γN , then no interaction in π involves a

port in Pi.

The other side of the coin is that when a fault occurs in

a purely functional faulty component, it stops working until

recovery from the fault is complete.

Theorem 3 Let B = γ(B0 · · ·Bm) be a composite component

and Bi, 0 ≤ i ≤ m, be the one and only purely functional

atomic component in B. The set of traces of γR(B0 · · ·Bm)
and γ(B0r · · ·Bi−1r

, Bi+1r
· · ·Bmr

) are equal.

An immediate application of Corollary 1 and Theorem 3

is in compositional analysis of fault-tolerant systems. For

instance, in order to verify the correctness of functional

(respectively, recovery) properties of a non-masking composite

component, one can simply remove pure correctors (respec-

tively, functional components) from the model and verify the

remaining composite component with respect to functional

(respectively, recovery) properties. Such decomposition clearly

assists in reducing the size of state space in the context

of model checking. In the context of monolithic programs

represented in terms of guarded commands in the shared mem-

ory model, identifying correctors has shown to be effective

in significantly reducing the cost of model checking [18].

5



However, dealing with decomposition of monolithic models

is not as straightforward as the same task in our component-

based model in this paper.

VI. CONCLUSION

In this paper, we proposed a generic formal framework

for specifying and reasoning about fault recovery (also called

non-masking fault-tolerance) for component-based models. We

characterized component-based models based on the BIP (Be-

havior, Interaction, Priority) framework [3], [4]. However, our

method is not limited to BIP. In BIP, the behavior of an atomic

component is specified by a labeled transition system. A BIP

model (i.e., a composite component) is obtained from a set of

atomic components glued by interactions.

Unlike the approaches in [16], [17], [19]–[22] where a

monolithic model is analyzed or components are defined in

terms of properties of sets of computations, our method is

based on observational behavior of a model in the presence of

faults. Also, we use explicit components, each having its own

private state space and behavior. We defined what it means for

a component to be a corrector and showed that non-masking

models must contain corrector components. These components

correct the observational behavior of a faulty model and we

illustrated they can be constructed as stand-alone components

interacting with components that provide functional tasks. We

described the application of this result in compositional model

checking.

We plan to incorporate the results in this paper in our work

on automated derivation of distributed implementation from

BIP models [6], [7], where fault-tolerance plays an important

role. An interesting future research direction is developing

methods for incremental construction of non-masking models,

and for transforming an arbitrary non-masking model into

a well-structured model, where all atomic components are

pure non-masking components so as to achieve separation

of concerns. Further open problems include compositional

synthesis and verification of recovery paths in non-masking

models.

REFERENCES

[1] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and
M. Snir, “Toward exascale resilience,” Journal of High Perfor-
mance Computing Applications, vol. 23, pp. 374–388, 2009.

[2] A. Arora and M. G. Gouda, “Closure and convergence: A
foundation of fault-tolerant computing,” IEEE Transactions on
Software Engineering, vol. 19, no. 11, pp. 1015–1027, 1993.

[3] G. Gössler and J. Sifakis, “Composition for component-based
modeling,” Sci. Comput. Program., vol. 55, no. 1-3, pp. 161–
183, 2005.

[4] A. Basu, M. Bozga, and J. Sifakis, “Modeling heterogeneous
real-time components in BIP,” in Software Engineering and
Formal Methods (SEFM), 2006, pp. 3–12.

[5] T. Abdellatif, J. Combaz, and J. Sifakis, “Model-based imple-
mentation of real-time applications,” in EMSOFT, 2010, pp.
229–238.

[6] B. Bonakdarpour, M. Bozga, M. Jaber, J. Quilbeuf, and
J. Sifakis, “From high-level component-based models to dis-
tributed implementations,” in EMSOFT, 2010, pp. 209–218.

[7] ——, “Automated conflict-free distributed implementation of
component-based models,” in IEEE Symposium on Industrial
Embedded Systems (SIES), 2010, pp. 108–117.

[8] M. Bozga, V. Sfyrla, and J. Sifakis, “Modeling synchronous
systems in BIP,” in EMSOFT, 2009, pp. 77–86.

[9] A. Basu, B. Bonakdarpour, M. Bozga, and J. Sifakis, “Sys-
tematic correct construction of self-stabilizing systems: A case
study,” in International Symposium on Stabilization, Safety, and
Security of Distributed Systems (SSS), 2010, pp. 4–18.

[10] A. Arora and M. Gouda, “Distributed reset,” IEEE Transactions
on Computers, vol. 43, pp. 316–331, 1994.

[11] B. Bonakdarpour, S. S. Kulkarni, and F. Abujarad, “Symbolic
synthesis of masking fault-tolerant programs,” Distributed Com-
puting, to appear.

[12] B. Bonakdarpour and S. S. Kulkarni, “Incremental synthesis of
fault-tolerant real-time programs,” in International Symposium
on Stabilization, Safety, and Security of Distributed Systems
(SSS), ser. LNCS 4280, 2006, pp. 122–136.

[13] ——, “Masking faults while providing bounded-time phased re-
covery,” in International Symposium on Formal Methods (FM),
2008, pp. 374–389.

[14] J. Chen and A. S. Kulkarni, “Effectiveness of transition systems
to model faults,” in Logical Aspects of Fault-Tolerance (LAFT),
2011, to appear.

[15] E. W. Dijkstra, “Self-stabilizing systems in spite of distributed
control,” Communications of the ACM, vol. 17, no. 11, 1974.

[16] A. Arora and S. S. Kulkarni, “Detectors and correctors: A theory
of fault-tolerance components,” in International Conference on
Distributed Computing Systems (ICDCS), 1998, pp. 436–443.

[17] B. Bonakdarpour, S. S. Kulkarni, and A. Arora, “Disassembling
real-time fault-tolerant programs,” in EMSOFT, 2008, pp. 169–
178.

[18] B. Bonakdarpour and S. S. Kulkarni, “Compositional verifica-
tion of real-time fault-tolerant programs,” in EMSOFT, 2009,
pp. 29–38.

[19] L. Lamport, “The temporal logic of actions,” ACM Transactions
on Programming Languages and Systems (TOPLAS), vol. 16,
pp. 872–923, 1994.

[20] Z. Liu and M. Joseph, “Specification and verification of fault-
tolerance, timing, and scheduling,” ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), vol. 21, no. 1,
pp. 46–89, 1999.

[21] ——, “Specification and verification of recovery in asyn-
chronous communicating systems,” in Formal techniques in
real-time and fault-tolerant systems (FTRTFT), 1993, pp. 137–
163.

[22] ——, “Transformation of programs for fault-tolerance,” Formal
Aspects of Computing, vol. 4, no. 5, pp. 442–469, 1992.

6


