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Abstract—Runtime monitoring aims at analyzing the well-
being of a system at run time in order to detect errors and
steer the system towards a healthy behavior. Such monitoring is
a complementary technique to other approaches for ensuring
correctness, such as formal verification and testing. In time-
triggered runtime monitoring, a monitor runs as a separate
process in parallel with an application program under scrutiny
and samples the program’s state periodically to evaluate a
set of properties. Applying this technique in a computing
system results in obtaining bounded and predictable overhead.
Gaining such characteristics for overhead is highly desirable
for designing and engineering time-critical applications, such
as safety-critical embedded systems. However, a time-triggered
monitor requires certain synchronization features at operating
system level and may suffer from various concurrency and
synchronization dependencies and overheads as well as possi-
ble unreliability of synchronization primitives in a real-time
setting.

In this paper, we propose a new method, where the program
under inspection is instrumented, so that it self-samples its
state in a periodic fashion without requiring assistance from
an external monitor or internal timer. We call this technique
time-triggered self-monitoring. First, we formulate an opti-
mization problem for minimizing the number of points in
a program, where self-sampling instrumentation instructions
must be inserted. We show that this problem is NP-complete.
Consequently, we propose a SAT-based solution and a heuristic
to cope with the exponential complexity. Our experimental
results show that a time-triggered self-monitored program
performs significantly better than the same program monitored
by an external time-triggered monitor.

Keywords-Runtime verification; monitoring; time-triggered;
instrumentation; predictability; self-monitoring; real-time; em-
bedded systems

I. INTRODUCTION

In computing systems, correctness refers to the assertion
that a system satisfies its specification. Verification is a tech-
nique for checking such an assertion. Runtime verification
[1]–[6] refers to a lightweight technique, where a monitor
checks at run time whether or not the execution of a system
under inspection satisfies a given correctness property. Run-
time verification complements exhaustive verification meth-
ods, such as model checking and theorem proving, as well
as incomplete solutions, such as testing and debugging. This
is because exhaustive verification often requires developing

a rigorous abstract model of the system and suffers from
the state-explosion problem. Testing and debugging, on the
other hand, provide us with under-approximated confidence
about the correctness of a system, as these methods only
check for the presence of defects under specific scenarios.

Most monitoring approaches in runtime verification are
event-triggered. In these approaches, the occurrence of new
events (e.g., change of value of a variable) triggers the
monitor. This constant invocation of the monitor leads to
unpredictable overhead and potentially bursts of monitoring
intervention at run time. These defects can cause serious is-
sues especially in real-time embedded safety/mission-critical
systems. To tackle these drawbacks, in [7], [8], the authors
propose time-triggered runtime verification and execution
monitoring, where a time-triggered monitor runs in parallel
with the program and samples the program state periodically
to evaluate a set of properties. Employing such a monitor
results in observing bounded and predictable overhead at
runtime, which are critical design parameters for a designer
of embedded time-sensitive systems.

Although time-triggered monitoring results in obtaining
a monitor with predictable overhead and probe effects, it
introduces certain complexities as well. For example, the
monitor needs to run as a separate process or thread. The
first drawback of such a structure is the high cost of context
switching and synchronization. Moreover, synchronization
data structures require the underlying operating system to
provide kernel-level system call primitives and inter-process
communication features. In fact, some of the widely used
embedded environments (e.g., TinyOS) lack such multi-
tasking features. Moreover, if the program under scrutiny
is blocked (e.g., for I/O), the monitor continues trying to
sample the program periodically. This will waste system
resources. Furthermore, a monitor process coupled with a
program creates a tight dependency between them at run
time. For instance, if the monitor crashes while evaluating
properties, it may never resume the program’s normal op-
eration. Finally, since the monitor cannot directly read the
state of the program, it will keep taking samples from the
program even if no new events have occurred between two
samples.



To address the aforementioned problems, in this paper, we
introduce a new concept called time-triggered runtime self-
monitoring. Our idea is to instrument the program under
scrutiny with instructions in such a way that it self-samples
(i.e., records the program’s state) itself periodically without
maintaining an internal timer. In other words, the time-
triggered monitor is weaved into the program. The main
challenges in instrumenting the program for enabling self-
monitoring are the following:

1) (Correctness) How should the program be instru-
mented such that the time interval between two succes-
sive self-sampling points does not exceed the desired
sampling period? We assume that the sampling period
is provided by the system designer based on the struc-
ture of the program under inspection and properties of
interest (e.g., determined by the automated methods
in [7]–[10]).

2) (Instrumentation optimality) How can we minimize
the overhead of instrumentation at run time while
enabling time-triggered self-monitoring that respects
the correctness condition?

3) (Minimum deviation) How should the program be
instrumented such that execution of sampling instruc-
tions are as close as possible to the given sampling
period in all execution paths?

Our approach works as follows for sequential pro-
grams. We formally define the concept of time-triggered
self-monitoring in terms of the correctness and instrumen-
tation optimality constraints mentioned above. In order to
ensure correctness, we construct the program’s control-flow
graph (CFG), where the weight of a vertex is its best-case
execution time (BCET). Computing the sampling period of a
CFG based on BCET of basic blocks is quite realistic, as (1)
all hardware vendors publish the BCET of their instruction
set in terms of clock cycles, and (2) BCET is a conservative
approximation and no execution occurs faster than that.
Using vertex weights, one can design simple algorithms
that identify vertices where self-sampling instructions should
be added. These instructions simply read the state of the
program (e.g., variable values, contents of stacks, register
values, etc) and pass the state to a monitor function in the
program for evaluating properties.

To ensure optimal instrumentation, we require that the
number of instrumented vertices in the control-flow graph is
minimum. We show that the corresponding optimization de-
cision procedure is NP-complete in the size of the program’s
control-flow graph. To remedy the exponential complexity,
we follow two approaches. First, we propose a mapping
from our optimization problem to the Boolean satisfiability
problem. This mapping enables us to utilize powerful SAT-
solvers to solve our optimization problem. Secondly, we
propose a heuristic that finds nearly optimal solutions to
the problem.

We emphasize that we do not address the third constraint
introduced above (i.e., minimum deviation) in this paper.
Also, our current approach works only for sequential pro-
grams. This is because enabling self-monitoring with opti-
mal instrumentation requires analysis of the causal order of
occurrence of events in a concurrent program for identifying
optimal instrumentation points. This is outside the scope
of this paper. Our method is fully implemented in a tool
chain. The tool takes a C program as input and computes
the instrumentation locations. We have conducted a set of
experiments to compare the behavior of self-monitoring
programs with their counterparts monitored by an external
process. The experimental results show that self-monitored
programs perform significantly faster than externally mon-
itored programs. This is simply due to elimination of the
cost of synchronization and context switching for programs
monitored by an external process.

We note that instrumenting a program to add self-
checking instructions is a commonly applied exercise
by system designers and developers. Examples include
assertion instructions, exception handling, and even simple
conditional statements to check the state of the program.
The technique proposed in this paper ensures that such
instructions are executed within a certain time period at
run time, and that the number of inserted instructions is
minimum.

Organization. The rest of the paper is organized as
follows. We present the preliminary concepts on time-
triggered runtime verification and execution monitoring in
Section II. In Section III, we formally define the notion of
time-triggered self-monitoring and analyze the complexity of
identifying the minimum number of instrumentation points
for enabling self-monitoring. Section IV is dedicated to our
SAT-based solution and the heuristic as efficient solutions
to the optimization problem. The results of experiments are
analyzed in Section V. Related work is discussed in Section
VI. Finally, in Section VII, we make concluding remarks
and discuss future work.

II. BACKGROUND

Time-triggered runtime monitoring [7], [8] consist of a
monitor and an application program under inspection. The
monitor runs in parallel with the application program and
interrupts the program execution at regular time intervals to
observe the state of the program. This state could be formed
by some variable values, stack values, register values, etc.
The key advantage of this technique is obtaining bounded
and predictable overhead incurred on the program execution.
This overhead is inversely proportional to the sampling
period at which the monitor samples the state of the program.

In this section, we review two existing techniques
for time-triggered execution monitoring [8] and runtime
verification [7] in Subsections II-A and II-B, respectively.
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A: if (x < 5) {
B: x++;

goto A

}
else {

C: x -= 10;

goto A;

}

Figure 1. A simple C program.

Both methods employ the notion of control-flow graph
(CFG) in order to reason about program execution and its
timing characteristics.

Definition 1: The control-flow graph of a program P is
a weighted directed simple graph CFGP = 〈V, v0, A,w〉,
where:
• V is a set of vertices, each representing a basic block

of P . Each basic block consists of a sequence of
instructions in P .

• v0 is the initial vertex with indegree 0, which represents
the initial basic block of P .

• A is a set of arcs of the form (u, v), where u, v ∈ V .
An arc (u, v) exists in A, if and only if the execution
of basic block u can immediately lead to the execution
of basic block v.

• w is a function w : A→ N, which defines a weight for
each arc in A. The weight of an arc is the best-case
execution time (BCET) of the source basic block.

For example, Figure 1 shows a simple C program with
three basic blocks labeled A, B, and C. Figure 2(i) shows
the control-flow graph of the program.

A. Time-triggered Execution Monitoring

In execution monitoring, the objective is to take periodic
samples in such a way that the monitor can re-construct
execution paths. To this end, the monitor has to execute at the
speed of the minimum best-case execution time of branching
statements. For example, in Figure 2(i) the monitor needs to
execute at the speed of shortest best-case execution time
of A + B or A + C; otherwise, the re-construction of
the execution path will not be possible. Figure 2(ii) shows
the timing diagram for the example. It demonstrates that,
assuming all basic blocks take an execution time of 1 time
unit, after two time units, it will be impossible to decide
whether the program took the path A → B → A or
A→ C → A. Thereby, the sampling period for the program
needs to be SP = 2.

To increase the sampling period and, hence, decrease
the monitor intervention in execution of the program, we
introduce markers to the program. A marker is a simple

(i)

B

C

A

(ii)

Reaching A
at SP = 2

B A

A
A

C

Figure 2. Example of path re-construction by applying the minimum
sampling period for the program in Figure 1.

variable that can be manipulated in a basic block to dis-
tinguish different paths and, hence, obtaining in a larger
sampling period. In our example, we introduce marker
m1 and instrument vertex C (see Figure 3(i)). Vertex C
manipulates the value of marker m1 by incrementing it.
Thus, the monitor can re-store the basic block id (vertex A,
B, or C), the current value of m1, and a time stamp. The
timing diagram in Figure 3(ii) shows that introducing the
marker increases the sampling period to SP = 4, because
only after four time units the program will have two or more
paths with the same number of increments of m1 and the
same basic block ids.

B. Time-triggered Runtime Verification

Let P be a program and Π be a logical property (e.g.,
in LTL), where P is expected to satisfy Π. Let VΠ denote
the set of variables that participate in Π. In our time-
triggered runtime verification technique, the monitor reads
the value of variables in VΠ in a periodic fashion in order to
evaluate property Π. The main challenge in this mechanism
is accurate re-construction of the state of P between two

(i)

inc(m1)

B

C

A

A

B A
B A

C A′

C A′
A′B′

C ′

with m1 = 1
Reaching A

at SP = 4

A′′

(ii)

Figure 3. Example of a single instrumentation to extend SP for the
program in Figure 1.
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samples; i.e., if the value of a variable in VΠ changes
more than once between two samples, then the monitor
may fail to detect violation of Π. For instance, in the
program of Figure 1, if we are to verify the safety property
Π ≡ �(−5 ≤ x ≤ 5) (read as ‘it is always the case that
the value of x is between −5 and 5’), then the monitor
requires a fresh value of variable x without overlooking any
changes. Thus, the sampling period for the program needs
to be SP = 2. Notice that although there are similarities,
execution monitoring and runtime verification focus on
different issues: the former concentrates on execution paths
and the latter on state variable changes.

To increase the sampling period, one can introduce history
variables to the program. For example, in Figure 1, we
introduce history variables x1 and x2 and add instrumen-
tation instructions x1 := x and x2 := x to basic blocks
B and C, respectively. Thus, if the execution of each
instrumentation instruction takes 1 time unit, then we can
increase the sampling period to SP = 5. This is due to the
fact that only after six time units the value of x1 or x2 will
be over written. Thus, sampling period SP = 5 allows the
monitor to fully re-construct the state of the program using
history variables when it takes a sample.

III. TIME-TRIGGERED SELF-MONITORING WITH
MINIMUM INSTRUMENTATION

A. Problem Description

Deploying time-triggered program execution monitoring
and runtime verification as discussed in Section II requires
a separate process or thread that continually interrupts the
program execution to take samples and evaluate a set of
properties. Although time-triggered monitors with interrup-
tions have widely been used, they suffer from two main
drawbacks:
• time-triggered interruptions introduce a large number

of context switches to the system,
• if the program under inspection is blocked (e.g., waiting

for I/O) the monitor keeps waking up to take samples
from the program, and

• incorporating external monitors requires communica-
tion between at least two processes and synchronization
data structures require the underlying operating system
to provide kernel-level system call primitives and inter-
process communication features.

Clearly, these issues introduce additional but unnecessary
overhead to the system. In addition, in the latter case, such
primitives may possibly be unreliable in real-time settings.
Moreover, some embedded environments such as TinyOS do
not provide such primitives at all.

In order to eliminate the aforementioned overheads, we
introduce the concept of time-triggered self-monitoring. Our
idea is to remove the external time-triggered monitor and
instrument the program under inspection by augmenting the

program with instructions that self-sample the state of the
program periodically for inspection without using an internal
timer. Specifically, these instructions are intended to read the
state of the program (e.g., a set of variables, registers, path
markers, stack contents, etc) and call a function within the
program for monitoring purposes. Moreover, the program
execution time between each two successive samples must
be at most the desired sampling period, given as an input
parameter. For instance, for the program in Figure 1, where
the sampling period is SP = 2, the goal is to augment the
program with instructions that take a sample from the value
of variable x, such that the execution time between each two
successive samples is at most 2 time units.

We emphasize that we assume that the sampling period
is given as input to an instrumentation algorithm for self-
monitoring. As illustrated in the example in Section II,
the given sampling period can be the minimum sampling
period (e.g., SP = 2) or an increased sampling period using
markers (e.g., SP = 4) or history variables (e.g., SP = 5).
Thus, the process of obtaining a sampling period is irrelevant
to the algorithms that generate instrumentation schemes for
enabling self-monitoring for a program. In other words, such
algorithms only take a control-flow graph and a desired
sampling period as input and return a set of vertices of the
control-flow graph that need to be instrumented.

A naive solution to instrument a program for self-
monitoring is as follows. One can insert self-sampling
instructions at every vertex of the CFG, that take sam-
ples within the sampling period. However, in order to
minimize the impact of instrumentation, it is desirable to
insert the minimum number of self-sampling instructions in
the program. Next, we formalize an optimization problem
that captures minimum instrumentation that enables self-
monitoring in a program for a given sampling period.

B. Complexity Analysis

Let G = 〈V, v0, A,w〉 be the control-flow graph of
a program and SP be the sampling period at which the
program has to be sampled. Let Πv,v′ denote the set of all
paths between two vertices v and v′ in V and Π be the set of
all paths in G. The length of a path π (denoted Length(π))
is calculated as the sum of the weights of arcs present on π
using the function w.

Now, let V : Π→ 2V be the function that obtains the set
of vertices on a path except the source and end vertices.
Our goal is to find the minimum set of vertices V ′ ⊆ V ,
such that for any two vertices v, v′ ∈ V ′, the length of
the longest path from v to v′ that does not pass through
a vertex v′′ ∈ V ′, where v′′ 6= v, v′, is at most SP . The
initial vertex v0 is by default always present in V ′. The set
V ′ identifies the basic blocks that need to be instrumented
to augment the program with self-sampling instructions. We
now show that this minimization problem is NP-complete.
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Instance. A control-flow graph G = 〈V, v0, A,w〉,
a sampling period SP , and a positive integer k, where
k ≤ |V |.

Self-monitoring instrumentation decision problem (SMI).
Does there exist a set V ′ ⊆ V of vertices such that:
• |V ′| ≤ k
• v0 ∈ V ′
• ∀v, v′ ∈ V ′ : ∀π ∈ Πv,v′ :

6 ∃v′′ ∈ (V(π) ∩ V ′) :
Length(π) ≤ SP .

Lemma 1: SMI is in NP.
Proof: We need to show that given a solution to the

problem, one can verify its correctness in polynomial-time.
Given an instance of SMI and a set V ′ of vertices as a
certificate, we verify whether or not V ′ solves the decision
problem as follows. The first two conditions of SMI can be
verified trivially. For the third condition, for every vertex
v ∈ V ′, we construct an SP -depth first tree (SPDFT) as
follows. An SP -depth first tree of a vertex v is a spanning
tree rooted at v obtained by applying depth-first search
exploration on G, such that the length of any path of the tree
that starts from v and ends at a leaf is at most SP . Also,
all forward and cross edges are preserved when a depth first
search exploration is applied on G to obtain the SPDFT of
a vertex v.

Now, given a SPDFT rooted at vertex v ∈ V ′, we check if
there exists a path from v to one of the leaves, such that this
path does not include a vertex v′ ∈ V ′, where v′ 6= v. If so,
it means that after self-sampling in basic block v, there exists
an execution path of the program where self-sampling does
not occur within the given sampling period SP . Hence, the
answer to the verification question is negative. Otherwise,
starting from v, in all execution paths the program self-
samples within SP time units.

We repeat this procedure for all vertices in V ′. If all
vertices pass this verification successfully, the answer to the
verification problem is affirmative. The complexity of the
algorithms is O(V 2) and, hence, SMI is a member of the
class NP.

Lemma 2: SMI is NP-hard.
Proof: Now, we show that SMI is NP-hard. To this

end, we reduce the Minimum Vertex Cover Problem (VC) to
SMI. The minimum vertex cover problem is as follows [11].
Given a (directed or undirected) graph G = 〈V,E〉 and a
positive integer K, the problem is to find a set U ⊆ V ,
such that |U | ≤ K and each edge in E is incident to at
least one vertex in U .

Mapping. Let directed graph Gvc = 〈Vvc , Evc〉 and a
positive integer K be an instance of VC. We assume that the
graph has a vertex v0

vc with indegree zero. This assumption
does not change the complexity of VC. We can obtain an
instance of SMI as follows:

• Graph Gsmi = 〈Vsmi , v
0
smi , Asmi , w〉, where

– Vsmi = Vvc
– v0

smi = v0
vc

– Asmi = Avc

– w(a) = 1 for all a ∈ Asmi

• Sampling period SP = 2, and
• k = K.

Reduction. We now prove that a solution to VC exists if
and only if a solution to the obtained instance of SMI as
prescribed above exists:
• (⇒) Let U ⊆ V be a solution to VC for graph
Gvc = 〈Vvc , Evc〉, such that |U | ≤ K. Let V ′ identical
to U be the solution to SMI for graph Gsmi =
〈Vsmi , v

0
smi , Asmi , w〉 and sampling period SP = 2.

Thus, self-sampling instructions are added to the end
of basic blocks in U . We now show that this solution
is valid for SMI. First, we have |U | ≤ k, as k = K
and |U | ≤ K. Secondly, for any edge e = (u, v) ∈ E,
either one of the incident vertices u or v must belong
to U or both u and v belong to U . In the former
case, the number of edges on a path from either u or
v to another vertex v′ ∈ V ′ will be 2. In the latter
case, the number of edges on a path from either u
or v to another vertex in V ′ will be 1 since that
would either be v or u, respectively. Likewise, the
number of edges between any two vertices in V ′ is at
most 2 by applying the same analogy to all edges in
E. Hence, the set U is an answer to the instance of SMI.

• (⇐) Let V ′ be a solution to the instance of SMI (i.e.,
the graph Gsmi = 〈Vsmi , v

0
smi , Asmi , w〉 and sampling

period SP = 2). We show that U identical to V ′ is a
solution to VC for the graph Gvc = 〈Vvc , Evc〉. First,
notice that we have |V ′| ≤ K, as K = k and |V ′| ≤ k.
Secondly, for any two vertices v, v′ ∈ V ′, the number
of arcs on a path from v to v′ that does not include a
third vertex v′′ ∈ V ′ must be is at most 2. Otherwise U
is a not a valid solution to SMI. For the case of length
2, one of the edges will be incident to v and the other
will be incident to v′. Since v0

smi ∈ V ′, it can be seen
that all the arcs in Evc will be incident to at least one
of the vertices in U using the same analogy applied to
all vertices in U taken as pairs. Hence, U is a vertex
cover for graph Gvc .

Theorem 1: SMI is NP-complete.
Proof: The proof of the theorem trivially follows from

Lemmas 1 and 2.

IV. COPING WITH THE EXPONENTIAL COMPLEXITY

As we showed in Section III, the problem of identifying
minimum set of instrumentation for a program to enable
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self-monitoring is NP-complete. To remedy the exponential
complexity, in this section, we propose a SAT-based solution
that finds an optimal solution to our problem and a greedy
algorithm. These solutions are presented in Subsections IV-A
and IV-B, respectively.

A. A SAT-based Solution

In this subsection, we propose a transformation from the
optimization problem presented in Section III (SMI) into
the Boolean satisfiability problem (SAT); i.e., the problem
of assigning truth values to variables of a given Boolean
formula to make the formula evaluate to logical true .

Let G = 〈V, v0, A,w〉 be a control-flow graph and SP be
a desired sampling period. We construct a SAT formula as
follows. The set of Boolean variables in our SAT formula
is:

X = {xv | v ∈ V }.
Our intention is that, if xv = true , then basic block v
in G will be instrumented with self-sampling instructions.
Otherwise, basic block v remains unchanged.

We now identify the constraints of the SAT formula. Let v
be a vertex in V with outdegree greater than 0. We construct
the SP -depth first tree as described in the proof of Lemma
1 (i.e., a spanning tree rooted at v obtained by applying
depth first search exploration on graph G while preserving
all forward and cross edges, such that the length of any path
from v to its leaves is at most SP ). Let Ch : V → 2V denote
a function that computes the set of child vertices of a vertex.
The Boolean formula representing vertex v is of the form:

Fv = (xv ⇒
∧

u∈Ch(v)

GSP−1
u ) (1)

Intuitively, Fv captures the constraint that if basic block v is
instrumented, then in all execution branches, a basic block
within SP − 1 steps needs to be instrumented as well. The
latter proposition is specified by the conjunction of GSP−1

u

formulas. For example, consider the 3-depth tree rooted at
vertex v1 in Figure 4. For this tree, by applying Constraint
1, we have Fv1 = (xv1 ⇒ G2

v2 ∧ G2
v3).

Formula G is recursively defined as follows:

Giu = (xu ∨
∧

w∈Ch(u)

Gi−1
w ) (2)

i.e., either basic block u is instrumented or in all execution
branches starting from u, a basic block within i − 1 steps
is instrumented. The termination condition of this formula
is G0

w = xw. For example, by applying Constraint 2, we
have G2

v2 = xv2 ∨ [(xv4 ∨ (xv7 ∧ xv8)) ∧ (xv5 ∨ xv9)] and
G2
v3 = xv3 ∨ xv6 .
We add identical constraints for each vertex in the control-

flow graph. Thus, our complete SAT formula is the follow-
ing:

v9

v2 v3

v1

v4 v5 v6

v7 v8

Figure 4. Example of a 3-depth first tree.

F =
∧
v∈V
Fv (3)

Finally, our objective to minimize the number of instru-
mentations for self-sampling is the following (assuming that
logical true has integer value 1 and logical false has integer
value 0):

minimize
∑
v∈V

xv (4)

i.e., by finding the minimum number of Boolean variables
(respectively, vertices) whose truthfulness (respectively,
instrumentation) makes the SAT formula true (respectively,
enables self-monitoring in the control-flow graph). We note
that although Constraint 4 is not a normal SAT constraint,
one can implement such a constraint in modern solvers
for satisfiability modulo theory (SMT) efficiently using a
simple binary search algorithm.

Special Case. A special case occurs when the the required
sampling period is greater than the length of the longest
execution path of the program. In such a case, both SAT −
based and Greedy algorithms instrument only the root and
the leaves of the program’s CFG. This results in a possibility
that there could exist an execution path with length greater
than the required sampling period if the CFG has any cycles
or loops. The main reason for such a case to occur is due to
the fact that the loop bound is not taken into consideration
in the building of the CFG of the program. This special case
is solved by instrumenting at least one vertex that lies on
the execution path that constitutes the loop. This is done for
all the loops that exist in the program.

B. A Greedy Algorithm

In addition to our SAT-based solution, we also propose a
simple greedy algorithm for instrumenting a given control-
flow graph G = 〈V, v0, A,w〉 with sampling period SP . The
algorithm works as follows:

1) Initially, we let U = {v0} and W = {v0}.

6



SAT-based Greedy
Case Sampling Size of Solution Algorithm
Study Period CFG No. of % of No. of % of

(ns) (Vertices) Vertices Vertices Vertices Vertices

CNT 1000 28 5 17.85 7 25

InsertSort 1000 11 4 36.36 4 36.36

MATMULT 1000 29 7 24.13 9 31.03

FIBCALL 25 9 7 77.77 7 77.77

QURT 100 30 8 26.67 20 66.67

ADPCM 1000 158 29 18.35 70 44.3

Table I
COMPARING THE NUMBER AND PERCENTAGE OF VERTICES CHOSEN FOR INSTRUMENTATION FOR SAT-BASED AND GREEDY TECHNIQUES.

2) We construct SP -depth first trees (SPDFT) rooted at
vertices in U and set U = ∅.

3) Let T be the set of all vertices and R be the leaves of
the tree constructed in Step 2.

4) We instrument the vertices in R and we let
U = U ∪ R and W = W ∪ T .

5) We repeat Steps 2 and 3 until W = V .
The only case where this algorithm may not instrument

correctly is when a control-flow graph has cycles. To deal
with cycles, one can find back-arcs and instrument vertices
on cycles. The special case discussed in Subsection IV-A
also applies for the heuristic presented in this subsection.

V. EXPERIMENTAL RESULTS

In this section, we present the results of our experiments
to evaluate the effectiveness and efficiency of time-triggered
self-monitoring. In Subsection V-A, we describe our exper-
imental settings. Then, in Subsection V-B, we analyze the
results of experiments.

A. Experimental Settings

Our tool chain consists of the following. Given a C
program, we first convert it to a program in assembly
language. Then, we generate the control-flow graph from
the assembler code. Next, we either transform the control-
flow graph into a SAT formula using the method described
in Subsection IV-A or feed the control-flow graph into our
heuristic in Subsection IV-B. We utilize the SMT-solver
Yices [12] to solve our SAT formulae. In either case, we
obtain the set of vertices of the control-flow graph that need
to be instrumented for self-sampling. The instrumentation
instructions include storing the value of the most frequently
used variable to an array to emulate a property verification
task.

In order to compare our self-monitoring technique with
external time-triggered monitoring, we deploy a time-
triggered external monitor as follows. We use shared mem-
ory for the program and the monitor to exchange data

between them. This data is basically the value of variables
that change the truthfulness of a property in the program
under inspection. The program is instrumented, so that it
writes the value of the most frequently used variable to
the shared memory whenever the variable is modified. The
monitor periodically reads the shared memory and stores the
values in an array, performing the same monitoring task as
for the self-monitored program.

Our case studies are drawn from the Mälardalen [13]
benchmark suite. All experiments in this section are con-
ducted on a Dual-core ARM Cortex-A9 MPCore with Sym-
metric Multiprocessing (SMP) at 1 GHz each and 1 GB low-
power DDR2 RAM under Ubuntu Linux with the default
scheduling policy. Each case study is run in a loop of 1000
iterations for measurements and we ran each experiment 50
times to ensure that the collected data is sound and exhibits
reliable confidence intervals.

B. Results and Analysis

1) Performance of the SAT-based and Greedy Techniques:
First, we analyze the performance of our SAT-based (i.e.,
optimal) and greedy solutions in terms of their capability in
handling input control-flow graphs. Table I shows the chosen
sampling periods and the size of the input control-flow graph
in terms of the number of vertices. We note that the sampling
periods are chosen based on two criteria, namely, the internal
structure of the case studies and the requirement that the
programs should be sampled at least once. It can be observed
that on average the size of the solution set obtained by using
the greedy algorithm is nearly double the size of the solution
set obtained by using the SAT-based method.

The time spent in obtaining the solution sets using the
SAT-based approach and the greedy algorithm (not shown
in Table I) are comparable in most cases. The only exception
was ADPCM with sampling period 1000ns. We ran the SAT-
based method on ADPCM with sampling period 1000ns and
it took nearly 4 hours to obtain a solution. This special
case highlights the fact that in some cases, obtaining a
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Figure 5. Results on reduction of context switching (in log scale).

near-optimal solution is more feasible than the optimal
solution. For the cases where the data (number of vertices
instrumented) for different sampling periods are equal, the
corresponding row is omitted in Table I. Obtaining equal
data for different sampling periods is due to the fact that the
sampling period is greater than the execution time of the
program. In this case, only the root, leaves, and at least
one vertex for each loop that lies on the execution path
that constitutes the loop, of the program’s CFG would be
instrumented. Thus, increasing the sampling period results
in obtaining the same size of vertices for instrumentation.

2) Analysis of Self-monitoring Overhead: We now ana-
lyze the impact of instrumentation on performance in terms
of the number of context switches and execution time of
programs under inspection. Figure 5 compares the number
of context switches in execution of our case studies using
external monitor and self-monitored programs instrumented
by the SAT-based approach and the greedy algorithm. Note
that the bar chart in Figure 5 is in logarithmic scale.
As can be seen the number of context switches incurred
using external monitoring is higher than self-monitoring
in orders of magnitude. This result simply shows that
self-monitoring is highly preferred in a real-time setting,
where non-determinism is not desirable. Also, the number
of context switches incurred in the original unmonitored
program an self-monitored programs instrumented by SAT-
based and greedy approaches are very close. In other words,
self-monitoring can significantly assist in preserving the
predictability of the program under inspection. Note that in
Figure 5 the error bar shows reliable confidence interval of
95%.

Figure 6 compares the total execution time of our case
studies (in microseconds) for the original unmonitored pro-
gram and three different monitoring techniques: (1) using
an external monitor, (2) self-monitoring program instru-
mented by the SAT-based approach (SMSAT), and (3) self-
monitoring program instrumented by our greedy algorithm.

Note that the bar chart in Figure 6 is also in logarithmic
scale. As can be seen in Figure 6, the total execution time
of programs monitored by an external process is signif-
icantly higher than the execution of their self-monitored
counterparts. More specifically, self-monitored programs in-
strumented using the SAT-based method are on average 2
times faster than externally monitored programs. And, self-
monitored programs instrumented using the greedy approach
are on average 1.6 times faster than externally monitored
versions. It can also be observed that self-monitored pro-
grams instrumented using the SAT-based method run on an
average 2 times slower than their unmonitored counterparts.
Also, note that in Figure 6 the error bar shows reliable
confidence interval of 95%.

VI. RELATED WORK

In classic runtime verification [2], a system is composed
with an external observer, called the monitor. This monitor is
normally an automaton synthesized from a set of properties
under which the system is scrutinized. To the best of our
knowledge, in the literature of runtime verification, monitors
are event-triggered [14] in the sense that every change in the
state of the system invokes the monitor for analysis.

From the logical and language points of view, runtime
verification has mostly been studied in the context of Linear
Temporal Logic (LTL) [3], [6], [15]–[18] and in particular
safety properties [19], [20]. Other languages and frameworks
have also been developed for facilitating specification of
temporal properties [21]–[23]. Runtime verification of ω-
languages was considered in [24]. In [25], the authors
address runtime verification of safety-progress [26], [27]
properties.

In [7]–[9], the authors introduce a time-triggered execu-
tion monitoring and runtime verification techniques. They
propose a framework that allows quantitative reasoning
about issues involved in time-triggered techniques. They also
discuss how to optimally instrument a program by a set
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of markers and history variables, such that different exe-
cution paths reachable from the same state or state changes
are distinguishable. Several polynomial-time heuristics are
proposed in [10] to tackle the exponential complexity of
the approach in [7]. In the same context, in [28], [29],
the authors propose the language Copilot for developing
hard real-time monitors. The aim of this language is to
develop programs where the monitor (1) does not change
the functionality and schedule of the program, and (2) adds
minimal overhead to the program.

Finally, in [30], the authors propose a method to control
the overhead of software monitoring using control theory
for discrete event systems. In this work, overhead control is
achieved by temporarily disabling involvement of monitor,
thus avoiding the overhead to pass a user-defined threshold.
Another relevant work to this line of research is [31], where
the authors propose sampling using state estimation. In
particular, they use hidden Markov models to estimate future
reachable states for deciding whether or not the monitor
must sample the program under inspection.

VII. CONCLUSION

In this paper, we proposed a new technique for run-
time monitoring called time-triggered self-monitoring. This
technique aims at reducing the overheads incurred at
time-triggered monitoring using an external monitor process.
In time-triggered external monitoring, the monitor runs in
parallel with the program and samples the program state
periodically to evaluate a set of properties. Incorporating
such an external process increases the overhead due to
inter-process communication and context switching costs.
Moreover, self-monitoring remedies the tight dependency
between the program and monitor at run time, making it
more resilient to faults and unreliability of kernel-level syn-
chronization system calls in real-time settings. Furthermore,
self-monitoring can be deployed in embedded environments,
where multi-tasking features are not necessarily assumed

(e.g., in TinyOS). Moreover, since time-triggered monitoring
provides us with bounded and predictable overhead, it is
suitable for time-sensitive platforms, where violation of
timing constraints may lead to catastrophic consequences.

Our self-monitoring technique instruments a program un-
der scrutiny with instructions in such a way that the program
self-samples itself periodically. Moreover, self-sampling in-
strumentation ensures that (1) the time interval between
two successive self-sampling points does not exceed the
desired sampling period, and (2) minimum number of self-
sampling points is introduced to the program. We showed
that solving this minimization problem is NP-complete in the
size of the program’s control-flow graph. We subsequently
proposed a SAT-based method that finds optimal solutions
and a polynomial-time greedy algorithm that finds near-
optimal solutions. Our experiments show that self-monitored
programs perform significantly faster than their counterparts
monitored by an external monitor. Moreover, the binary code
size and the number of context switches occurred in self-
monitored programs are substantially less than externally
monitored programs.

For future work, we are considering several research
directions. An important direction is self-monitoring in the
context of concurrent programs. Our current method cannot
handle concurrent programs, as identifying self-sampling
points in the program require causal relation analysis of
the program’s threads and processes. Another direction
is to strengthen our optimization problem such that self-
sampling instructions use their time budget optimally (see
the minimum deviation criterion in Section I); i.e., the
instructions execute as close as possible to the intended
sampling points. Developing more sophisticated heuristics
to tackle the exponential complexity of our optimization
problem is also an interesting research problem.
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