Automated Revision of Legacy Real-Time Programs:
Work in Progress!

Borzoo Bonakdarpour

Sandeep S. Kulkarni

Department of Computer Science and Engineering
Michigan State University
East Lansing, MI 48824, USA

Email: {borzoo, sandeep}@cse.msu.edu

Abstract

In this paper, we focus on the problem of automatic revi-
sion of legacy real-time programs. We consider this problem
in two contexts. First, we investigate the problem of auto-
mated addition of properties expressed in Metric Temporal
Logic (MTL) formulas to existing real-time programs mod-
eled in Alur and Dill timed automata. Then, we consider
transformation problems, where we design synthesis meth-
ods to add fault-tolerance to existing fault-intolerant real-
time programs. While both problems have been addressed
in the literature for untimed programs in theory and prac-
tice, there is much to be done for real-time programs. To
this end, we concentrate on filling the gap between theory
and practice of automated methods for synthesizing real-
time programs by characterizing the class of real-time pro-
grams and properties, where program synthesis is practi-
cally feasible.

Keywords: Timed automata, Real-time, Bounded live-
ness, Program synthesis, Program transformation,
Fault-tolerance, Formal methods.

1. Introduction

Automated program synthesis is the problem of design-
ing an algorithmic method to find a program that satisfies
a required set of behaviors. Depending upon the choice of
formulation of the problem and expressiveness of specifi-
cations and programs, the class of complexity of synthesis
methods varies from polynomial-time to undecidability.

In this paper, we describe our ongoing research on auto-
mated synthesis methods for revising legacy real-time pro-
grams. In this research, we characterize the class of real-
time programs and properties, where automated synthe-
sis can be achieved efficiently and the ones that involve

1 This work was partially sponsored by NSF CAREER CCR-0092724,
DARPA Grant OSURS01-C-1901, ONR Grant N00014-01-1-0744,
NSF grant EIA-0130724, and a grant from Michigan State Univer-
sity.

exponential complexities. Moreover, we study the prob-
lem of revising existing real-time programs in two con-
texts: (1) adding properties typically used in specifying real-
time requirements to existing real-time programs, and (2)
adding fault-tolerance to existing fault-intolerant real-time
programs. Since we use the timed automata formalism [1],
many real-time scheduling problems can be reduced to our
problems as well.

In the context of untimed programs, similar problems
have been addressed in the literature. In [2], the authors con-
sider the problem of automated revision of legacy UNITY
[3] programs. The problem of synthesizing untimed fault-
tolerant programs has been studied from different perspec-
tives. In [4-6], the authors propose synthesis algorithms
for adding fault-tolerance and multitolerance to existing
programs in the high (respectively, low) atomicity model,
where processes can (respectively, cannot) read and write
all the program variables in one atomic step.

Synthesis of real-time programs has mostly been formu-

lated in the context of timed control synthesis from game
theoretical perspective [7—12]. There are two drawbacks in
the proposed methods that make the synthesis methods ei-
ther unrealistic or unfeasible: (1) the complexity of such
methods are too high to be used in practice (at least EXP-
TIME-complete), and/or (2) either the given program or the
specification must be deterministic.
Organization of the paper. In Section 2, we present
the preliminary concepts. In Section 3, we present our cur-
rent results and ongoing research on adding properties to
legacy real-time programs. Then, in Section 4, we present
our current results and ongoing research on designing syn-
thesis methods to add fault-tolerance to legacy real-time
programs. In Section 5, we describe our plan to use our the-
oretical results in practice. Finally, we make the concluding
remarks in Section 6.

2. Background

In this section, we give intuitive definitions of the ter-
minology that we use in this paper. A legacy real-time pro-



gram is specified in terms of its state space and set of transi-
tions. We use the notion of timed automata [1] to represent
real-time programs. A timed automaton is a traditional fi-
nite state automaton equipped with clock variables and tim-
ing constraints.

We model real-time properties by Metric Temporal Logic
(MTL) formulas. Linear Temporal Logic (LTL) specifies the
qualitative part of a program. MTL introduces real time to
LTL by constraining temporal operators, so that one can
specify the quantitative part as well. For instance, the con-
strained eventually operator {|; ) is interpreted as “eventu-
ally within 1 to 3 time units both inclusive”. A specification
is a conjunction of a set of MTL properties. A computation
is an infinite sequence of states. Note that, an MTL property
defines a set of computations. We say that a real time pro-
gram P satisfies specification (or property) X iff all com-
putations of P are in X. Otherwise, we say that P violates
by

3. Adding Properties to Legacy Real-Time
Programs

In this section, we describe the problem of revising
legacy real-time programs through adding new properties.
Furthermore, we present our current results and ongoing re-
search in this regard.

Problem statement. Given are a real-time program P and
an MTL property II. Our goal is to transform P into a new
real-time program P’ such that P’ satisfies the given prop-
erty IT and it continues to satisfy its old specification, which
is not necessarily given. 0

Since the notion of the given property in the problem
statement can be any formula expressed in MTL, we have
to deal with a highly expressive set of properties, which
in turn (if not undecidable) requires highly complex algo-
rithms. Hence, we focus on properties typically used in
specifying real-time systems rather than solving the prob-
lem for any arbitrary property. More specifically, as the
starting point, we focus on the well-known time-bounded
response property. A time-bounded response property is of
the form IT = O(p — O<sq), where p and ¢ are two sets
of states, and ¢ is a positive real number, i.e., it is always
the case that a p-state is followed by a ¢-state within J time
units. One can instantiate the problem statement in the ob-
vious way, i.e., our goal is to add a time-bounded response
property II to an existing real-time program P.

3.1. Current Results

Our current results fall in two categories: (1) transforma-
tion algorithms, and (2) hardness results. In the first cate-
gory, we identify the classes of MTL properties where pro-
gram transformation can be achieved efficiently.
Transformation algorithms. As the first step, we have de-
veloped a sound and complete algorithm that adds a time-
bounded response property to a real-time program P. Our

algorithm first transforms a real-time program into a de-
tailed region graph R(P) [1]. Region graphs abstract the
notion of time from timed automata while maintaining the
set of computations. Vertices of R(P) are called regions
and transitions are called edges. After generating R(P), we
prune the regions of the region graph from where the given
time-bounded response property II is violated. Towards this
end, we first transform R(P) into an ordinary weighted di-
rected graph G proposed in [13]. In this graph, the longest
distance between two vertices is equal to maximum time
delay between the corresponding regions. We prune the re-
gions from where the given time-bounded response prop-
erty is violated using standard shortest and longest path al-
gorithms. More specifically, we find a subgraph of G, say
G’, such that we are assured that the length of the longest
path from each p-state to a g-state in G’ is at most §. To
this end, we include the shortest path from each p-state to
a ¢-state, provided the length of such a path is at most 6.
Then, we transform the resulting digraph G’ back to a re-
gion graph R(P’) and finally to a real-time program P’.
Note that, region graphs are time-abstract bisimulations [1].
Theorem 3.1. The above algorithm for adding a time-
bounded response property to a real-time program is sound
and complete [14]. ]
Theorem 3.2. The problem of adding a bounded response
property to a real-time program is PSPACE-complete [14].
O
The novelty of the above algorithm is it is sound and com-
plete. In other words, not only the algorithm synthesizes a
real-time program that is correct by construction, i.e., it sat-
isfies the constraints of the program statement, but also we
are guaranteed that if a solution to the problem statement
for a given instance exists, our algorithm finds a solution
as well. The completeness of our algorithm is important in
sense that if the algorithm fails to find a solution, we are as-
sured that the given real-time program is not fixable [2].
Note, however, that although our algorithm is complete,
since it may prune some states and transitions unnecessar-
ily, the synthesized program does not have maximum non-
deterministic. Maximum nondeterminism is desirable in the
sense that it increases the chance of success for further revi-
sion of programs, e.g., adding other time-bounded response
properties.
Hardness results. We now describe our hardness results
based on different types of bounded response properties:

e Adding time-bounded response properties with maxi-
mum non-determinism: We model non-determinism in
terms the number of outgoing transitions from states of
a program. We have shown that the problem of addi-
tion of a bounded response property while maintaining
maximum set of program transitions is NP-complete in
the size the program’s region graph [14].



e Adding interval bounded response properties: An in-
terval bounded response property is of the form II =
O(p — O<s,,6,]9) i.€., a p-state should follow by a
g-state not later than 5 time units and at least after
01 time units. We have shown that the problem of ad-
dition of such a property to an existing real-time pro-
gram is also NP-complete in the size of program’s re-
gion graph [14].

e Adding unbounded response properties: An un-
bounded response property (also called leads-to)
is of the form IT = O(p — {g). We have shown
that the problem of addition of an unbounded re-
sponse property to a given real-time program is
PSPACE-complete [15].

3.2. Ongoing Research

We are currently working on identifying the complex-
ity of adding other types of MTL properties to existing
real-time programs. In fact, we plan to identify a bound-
ary for the class of properties that can be added to legacy
real-time programs with reasonable time and space com-
plexity. In this context, an open problem is identifying
the class of complexity of simultaneous addition a set of
MTL properties, e.g., two time-bounded eventually proper-
ties (O<s, 0 N 0<6,9)-

We are also doing research to overcome the state explo-
sion problem. More specifically, we are developing trans-
foration algorithms such that they manipulate a zone graph
[16] rather than a region graph. Zone graph is a more con-
cise time-abstract representation of real-time programs used
in model checking techniques. Zone graphs collapse a set
of regions to a single zone such that it contains enough in-
formation for finding counter-examples in model checking.
However, since it may abstract a part of the necessary infor-
mation, devising synthesis algorithms on zone graphs be-
comes a challenging problem.

4. Adding Fault-Tolerance to Legacy Real-
Time Programs

Another aspect of our research on automated revision of
legacy real-time programs is adding fault-tolerance to ex-
isting fault-intolerant real-time programs with respect to a
given set of faults. In this section, we present our current re-
sults and ongoing research in this regard.

In order to analyze fault-tolerance in the context of real-
time programs, we define several levels of fault-tolerance
based on satisfaction of properties and timing constraints in
the presence of faults. More specifically, we introduce three
levels of fault-tolerance, namely, failsafe, nonmasking, and
masking based on satisfaction of safety and liveness spec-
ifications in the presence of faults, respectively. For fail-
safe and masking fault-tolerance we, furthermore, propose
two levels, namely, soft and hard fault-tolerance based on

satisfaction of timing constraints in the presence of faults.
For instance, we say that a program is hard-masking fault-
tolerant iff it satisfies its safety and liveness specifications
as well as timing constraints in both the absence and pres-
ence of faults.

Problem statement. Given are a real-time program P, its
invariant, the safety specification 3, and a set of fault tran-
sitions. Our goal is to transform P into a new real-time pro-
gram P’ such that P’ continues to satisfy its old specifica-
tion in the absence of faults and provides the required level
of fault-tolerance in the presence of faults. (]

4.1. Current Results

Thus far, we have shown that automated addition of
(1) nonmasking, (2) soft and hard-failsafe, and (3) soft-
masking fault-tolerance, where timing constraints of the
given program is limited to one bounded-response prop-
erty, can be done in polynomial-time in the size of the
input program’s region graph. More specifically, we have
developed sound and complete transformation algorithms
for adding the aforementioned levels of fault-tolerance to
real-time programs [15]. The algorithms essentially use the
transformation algorithm presented in Subsection 3.1 with
some modifications to take the fault-tolerance issues into
account.

We have also shown a hardness result for the case where
the synthesized hard-masking program is required to sat-
isfy more than one bounded-response property in the pres-
ence of faults. More specifically, we have proved that the
problem of addition of hard-masking fault-tolerance to an
existing real-time program where the resulting program is
required to satisfy more than one bounded response prop-
erty, is NP-complete in the size of the program’s region
graph [15].

4.2. Ongoing Research

Our main open question in the context of addition of
fault-tolerance to real-time programs is the complexity of
automated addition of hard-masking fault-tolerance where
the synthesized program is required to satisfy at most one
bounded response property in the presence of faults. Intu-
itively speaking, a hard-masking fault-tolerant program sat-
isfies a bounded response property in the presence of faults
and provides bounded-time recovery after faults stop occur-
ring. Note that, bounded-time recovery is in turn a bounded
response property (from the states reached by faults to the
states in the program invariant). In [2], we show that adding
two unbounded response properties to an untimed program
in the absence of faults is NP-complete. However, since
bounded-time recovery is in fact a bounded eventually prop-
erty in nature, we cannot directly apply the results presented
in [2] to our problem.



5. From Theory to Practice

In this section, we describe the practical aspects of our
research. In the theoretical part of our research, we charac-
terize the class of properties and real-time programs where
automated synthesis is feasible (in terms of time and space
complexity). In the practical part, we plan to use the de-
veloped theories (e.g., transformation algorithms) in devel-
oping tools for synthesizing real-time programs. Since the
complexity of the aforementioned algorithms is compara-
ble to that of existing model checking techniques in dense
real-time, we expect that it is feasible to use the proposed al-
gorithms in practice.

Another application of the transformation algorithm pre-
sented in Subsection 3.1 is in model checking. Let us con-
sider the case where a model checker generates a counterex-
ample to show that a program does not satisfy a bounded
response property. Now, in order to fix the problem, we run
our algorithm such that it adds the desired bounded response
property to the program. As mentioned in Subsection 3.1,
since our algorithm is complete, if it fails to synthesize a
program, it means that the program is not fixable with re-
spect to the desired bounded response property and, hence,
a more comprehensive approach must be applied (e.g., syn-
thesis from specification).

In the context of adding fault-tolerance to existing fault-
intolerant real-time programs, we plan to extend our tool
FTSyn? (which is currently capable of synthesizing fault-
tolerant untimed programs), so that it synthesizes fault-
tolerant real-time programs as well. FTSyn has been suc-
cessfully used to synthesize the classic examples of fault-
tolerant computing such as Byzantine agreement, triple
modular redundancy, Dijkstra’s self-stabilizing token ring
algorithm, and etc.

6. Conclusion

In this paper, we focused on our research on synthesis
methods for revising legacy real-time programs in both the-
ory and practice. We proposed two ways to revise legacy
real-time programs: (1) revision through adding new prop-
erties, and (2) revision through adding fault-tolerance. Our
aim in this research is to characterize the class of properties
and programs where automated synthesis can be achieved
efficiently. We presented our current results and ongoing re-
search for both adding properties and fault-tolerance to real-
time programs.

References

[1] R. Alur and D. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183-235, 1994.

2 For more information, visit http://www.cse.msu.edu/
“ebnenasi/research/tools/ftsyn.htm.

[2] A. Ebnenasir, S. S. Kulkarni, and B. Bonakdarpour. Revis-
ing UNITY programs: Possibilities and limitations. In In-
ternational Conference on Principles of Distributed Systems
(OPODIS), pages 275-290, 2005.

[3] K. M. Chandy and J. Misra. Parallel program design: a
foundation. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1988.

[4] S. S. Kulkarni and A. Arora. Automating the addition of
fault-tolerance. In Formal Techniques in Real-Time and
Fault-Tolerant Systems (FTRTFT), volume 1926 of Lecture
Notes in Computer Science, pages 82-93, Pune, India, 2000.
Springer.

[5] S.S.Kulkarni, A. Arora, and A. Chippada. Polynomial time
synthesis of Byzantine agreement. In Symposium on Reli-
able Distributed Systems (SRDS), pages 130-140, 2001.

[6] S. S. Kulkarni and A. Ebnenasir. Automated synthesis of
multitolerance. In International Conference on Dependable
Systems and Networks (DSN), pages 209-219, 2004.

[7]1 O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of dis-
crete controllers for timed systems. In 12th Annual Sympo-
sium on Theoretical Aspects of Computer Science (STACS),
pages 229-242, 1995.

[8] E. Asarin and O. Maler. As soon as possible: Time optimal
control for timed automata. In Hybrid Systems: Computation
and Control (HSCC), pages 19-30, 1999.

[9] D.D’Souza and P. Madhusudan. Timed control synthesis for
external specifications. In 19th Annual Symposium on The-
oretical Aspects of Computer Science (STACS), pages 571—
582, 2002.

[10] P. Bouyer, D. D’Souza, P. Madhusudan, and A. Petit. Timed
control with partial observability. In Computer Aided Verifi-
cation (CAV), pages 180-192, 2003.

[11] M. Faella, S. LaTorre, and A. Murano. Dense real-time
games. In Logic in Computer Science (LICS), pages 167—
176, 2002.

[12] L. de Alfaro, M. Faella, T. A. Henzinger, R. Majumdar, and
M. Stoelinga. The element of surprise in timed games. In In-
ternational Conference on Concurrency Theory (CONCUR),
2003.

[13] C. Courcoubetis and M. Yannakakis. Minimum and max-
imum delay problems in real-time systems. In Computer-
Aided Verificaion (CAV), pages 399-409, 1991.

[14] B. Bonakdarpour and S. S. Kulkarni. Automated incremen-
tal synthesis of timed automata. In International Workshop
on Formal Methods for Industrial Critical Systems (FMICS),
pages 261-276, 2006.

[15] B. Bonakdarpour and S. S. Kulkarni. Incremental synthesis
of fault-tolerant real-time programs. In International Sym-
posium on Stabilization, Safety, and Security of Distributed
Systems (SSS), pages 122-136, 2006.

[16] R. Alur, C. Courcoubetis, N. Halbwachs, D. L. Dill, and
H. Wong-Toi. Minimization of timed transition systems.
In International Conference on Concurrency Theory (CON-
CUR), pages 340-354, 1992.



