
Automated Revision of Distributed and Real-Time

Programs

By

Borzoo Bonakdarpour

A Dissertation

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Department of Computer Science and Engineering

2008

Abstract

Automated Revision of Distributed and Real-Time Programs

By

Borzoo Bonakdarpour

This dissertation concentrates on the problem of automated revision of distributed and

real-time programs that are correct-by-construction. In particular, our research addresses

the following question: “if an existing program fails to satisfy a property, is it feasible to

automatically revise the program inside its current state space and set of transitions, so

that the revised program satisfies the failed property while it continues to satisfy its current

properties?” The main focus of this dissertation is to identify instances where automated

revision of distributed and real-time programs can be achieved efficiently (in polynomial-

time) and where it is difficult (hard in some class of complexity). We study this problem

in two broad contexts: (1) revision in closed systems where programs do not interact with

the environment, and (2) revision in open systems where programs are subject to a set

of uncontrollable faults imposed by the environment. We refer to the former problem as

“addition of a property to the input program” and the latter as “addition of fault-tolerance

to the input program”.

We expect the concept of program revision to play a crucial role in the context of

distributed and real-time programs, where non-determinism, race conditions, and time-

predictability make it significantly difficult to assert program correctness. Since developing

automated formal analysis methods that can handle any arbitrary property involves highly

complex decision procedures, we focus on properties that are typically used in specifying

distributed and real-time systems. For instance, we consider Unity properties and its vari-

ations, that are widely used in specifying requirements of distributed and hard real-time

systems. We classify our results into three types: (1) polynomial-time sound and complete

algorithms, (2) hardness results, and (3) sound efficient heuristics. We note that we also

present some results in the context of untimed centralized programs due to the following two

reasons: (1) such results provide a valuable insight into the impact of augmenting programs

with the notion of time and distribution, and (2) a hardness result in the context of un-

timed centralized programs identifies a lower bound on the complexity of the corresponding

problem in the context of real-time and distributed programs.

Throughout this dissertation, we focus on three types of programs: (1) untimed cen-

tralized, (2) untimed distributed, and (3) centralized real-time. The reason for omitting

distributed real-time programs is due to the fact that the structure of such programs are

very complex and, hence, their formal analysis involves highly complex decision procedures.

Thus, it is more beneficial to study the effect of the notions of distribution and time on

programs separately in order to identify the stumbling blocks.

Regarding addition of properties to programs in closed systems, we focus on Unity

safety and progress properties. Our interest in Unity properties is due to the fact that

they have been found highly expressive in specifying a large class of programs.

Regarding addition of fault-tolerance to existing fault-intolerant programs, we consider

three levels of fault-tolerance, namely failsafe, nonmasking, and masking, based on sat-

isfaction of safety and liveness properties in the presence of faults. In order to capture

time-related behaviors of programs in the presence of faults, in this dissertation, we extend

the levels of fault-tolerance. In particular, for failsafe and masking fault-tolerance, we con-

sider two additional levels, namely soft and hard, based on satisfaction of timing constraints

in the presence of faults. Moreover, for nonmasking and masking fault-tolerance, we require

that recovery to the normal behavior of programs should be achieved in a bounded amount

of time. In addition, we introduce the notion of bounded-time phased recovery and present

synthesis methods for generating programs that require such recovery mechanism.

In order to deploy our theoretical results in practice, we address some of the imple-

mentation difficulties, such as the time complexity of decision procedures and also high

space complexity known as the state explosion problem. To this end, we present symbolic

(BDD-based) heuristics for revising programs in both closed and open systems with re-

spect to safety and progress properties. Our experimental results on synthesis of a variety

of distributed programs show a significant performance improvement by several orders of

magnitude in terms of time and space. We also introduce distributed and parallel techniques

to improve the performance of our revision methods even further. Finally, we introduce our

tool Sycraft which is capable of adding fault-tolerance to moderate-sized fault-intolerant

distributed programs. In summary, this dissertation concludes that automated revision

of moderate-sized programs (reachable states of size 1050 and beyond) is feasible in both

theory and practice.

c© Copyright by
Borzoo Bonakdarpour

2007

To my beautiful wife, Maryam, and my parents Afagh and Hossein Bonakdarpour,

for their unconditional love, encouragement, and support.

v

Acknowledgments1

First of all I thank my advisor, Dr. Sandeep Kulkarni, for offering me technical, financial,

and moral support during the four years of my Ph.D. program. He introduced me to the

area of automate program synthesis and transformation. Much of the results reported in

this thesis is inspired by my discussions with him about our ideas on developing a general

framework for specifying and revising distributed and real-time programs. He helped me

understand what research is and how to face and solve a new problem.

My dissertation guidance committee comprised of Dr. Sandeep Kulkarni, Dr. Betty

Cheng, Dr. Laura Dillon, and Dr. Jonathan Hall. I am grateful that I had access to

valuable guidance from all four of them. I express my thanks to Dr. Dillon and Dr. Cheng

for their critical reading and interesting questions during my defense. I express my thanks

to Dr. Hall for his valuable questions and comments on practical applications of my work.

Also, I would like to truly thank the Department of computer Science and Engineering at

Michigan State University for offering me financial support through teaching assistantships

for several semesters.

I am so grateful to Dr. Luca de Alfaro for hosting me as a visiting researcher at

University of California at Santa Cruz in summer 2006. Luca is a leading researcher in the

area of game theory and model checking and I learned a great deal from him during my

visit.

It has been a great pleasure to work closely with Ali Ebnenasir and Fuad Abujarad.

They co-authored multiple papers with me on revising UNITY programs and on distributed

revision algorithms. It is impossible to mention their innumerable contributions towards

my work.

My special thanks go to my colleagues at SENS laboratory Mahesh Arumugam, Sascha

Konrad, and Amir Khakpour for their comments and proof reading of my papers. Finally,

I would like to use this opportunity to thank all my friends on Michigan State University

campus; because of them my stay here has been very enjoyable and memorable.

1This work was partially sponsored by NSF CAREER CCR-0092724, DARPA Grant OSURS01-C-1901,
ONR Grant N00014-01-1-0744, NSF grant EIA-0130724, and a grant from Michigan State University.

vi

Table of Contents

LIST OF TABLES xi

LIST OF FIGURES xii

I Background 1

1 Introduction 2
1.1 Challenges in Automated Program Synthesis 3
1.2 Thesis . 5
1.3 Contributions . 6
1.4 Outline of the Dissertation . 10

2 Preliminary Concepts 12
2.1 Programs . 12
2.1.1 Timed Guarded Commands . 17
2.1.2 Example (Real-Time Traffic Controller) . 17
2.1.3 Example (Distributed Byzantine Agreement) 19
2.2 Specifications . 20
2.2.1 Example . 20
2.3 Region Graphs . 22

II Revising Programs in Closed Systems 24

3 The Revision Problem in Closed Systems 26
3.1 Basic Concepts . 26
3.2 Problem Statement . 29

4 Revising Untimed Centralized Programs 32
4.1 Adding a Single Progress and Multiple Safety Properties 32
4.1.1 Example: Readers-Writers Program . 35
4.2 Adding Multiple Progress Properties . 39
4.3 Adding a Single Leads-to Property with Maximum Non-determinism 42

5 Revising Distributed Programs 44
5.1 Adding UNITY Safety Properties to Distributed Programs 45
5.2 Adding UNITY Progress Properties to Distributed Programs 52
5.3 A Symbolic Heuristic for Adding Leads-To Properties 57

6 Revising Real-Time Programs 61
6.1 Adding a Single Bounded-Time Leads-to Property 62

vii

6.1.1 Example: Real-Time Resource Allocation . 66
6.2 Revising Real-Time UNITY Programs with Maximum Non-determinism 68
6.3 Adding Interval-Bounded Leads-to Properties 71

III Revising Programs in Open Systems 73

7 The Revision Problem in Open Systems 75
7.1 Basic Concepts . 75
7.1.1 The Type of Specifications in Part III . 77
7.1.2 Example . 78
7.2 Fault Model and Fault-Tolerance . 79
7.2.1 Fault Model . 79
7.2.2 Levels of Fault-Tolerance . 80
7.2.3 Example . 83
7.3 Problem Statement . 84

8 Synthesizing Real-Time Fault-Tolerant Programs 87
8.1 Case Study: Altitude Switch . 88
8.2 Adding Nonmasking Fault-Tolerance . 92
8.2.1 Adding Bounded-Time Recovery in the Presence of Faults 93
8.2.2 Adding Nonmasking Fault-Tolerance Using Bounded-Time Recovery 97
8.3 Adding Soft and Hard-Failsafe Fault-Tolerance 104
8.3.1 Adding Soft-Failsafe Fault-Tolerance . 104
8.3.2 Adding Hard-Failsafe Fault-Tolerance with One Bounded Response Property 107
8.4 Adding Soft and Hard-Masking Fault-Tolerance 114
8.4.1 Adding Soft-Masking Fault-Tolerance . 114
8.4.2 Adding Hard-Masking Fault-Tolerance . 117

9 Synthesizing Bounded-Time Phased Recovery 122
9.1 Bounded-Time Phased Recovery . 123
9.2 Complexity of Synthesizing Bounded-Time 2-Phase Recovery 124
9.3 A Sufficient Condition for a Polynomial-Time Solution 127
9.3.1 Example (cont’d) . 132

10 Disassembling Real-Time Fault-Tolerant Programs 135
10.1 Basic Concepts and Assumptions . 137
10.2 Detectors and Their Role in Hard-Masking Programs 139
10.2.1 Detectors . 140
10.2.2 Containment of Detectors in Real-Time Programs 140
10.2.3 Example (cont’d) . 143
10.2.4 The Necessity of Existence of Detectors in Hard-Masking Programs 144
10.3 δ-Correctors and Their Role in Hard-Masking Programs 148
10.3.1 Weak and Strong δ-Correctors . 148
10.3.2 Containment of δ-Correctors in Real-Time Programs 149
10.3.3 Example (cont’d) . 150
10.3.4 The Necessity of Existence of Strong δ-Correctors in Hard-Masking Programs 151
10.3.5 The Necessity of Existence of Weak δ-Correctors in Hard-Masking Programs 156

viii

11 Symbolic Synthesis of Distributed Fault-Tolerant Programs 158
11.1 The Symbolic Synthesis Algorithm . 160
11.2 Case Study 1: Byzantine Agreement . 169
11.3 Case Study 2: Exploiting Human Knowledge to Assist Synthesis Algorithms . . 175
11.4 Case Study 3: Byzantine Agreement with Fail-Stop Faults 177
11.5 Case Study 4: Token Ring . 180
11.5.1 The Effect of Multi-Step Recovery . 184
11.6 Case Study 5: Infuse . 185

12 The Tool SYCRAFT 191
12.1 SYCRAFT Input Program Language and Grammar 192
12.1.1 Program, Constant, and Variable Declaration 193
12.1.2 Process Declaration and Structure . 195
12.1.3 Invariant, Safety Specification, and Prohibited Transitions Declaration 202
12.1.4 Operator Precedence . 203
12.2 Internal Functionality . 203
12.3 Output Format . 205
12.4 Example 1: Never 7 . 205
12.5 Example 2: Token Ring . 208
12.6 Example 3: Byzantine Agreement . 210

IV Distributed and Parallel Revision Techniques 215

13 Distributed Synthesis of Centralized Fault-Tolerant Programs 217
13.1 Parallel Construction of State Space . 219
13.2 Distributed Addition of Failsafe Fault-Tolerance 220
13.3 Distributed Addition of Masking Fault-Tolerance 227

14 Parallelizing Symbolic Deadlock Resolution 233
14.1 The Deadlock Resolution Problem . 233
14.2 Parallel Symbolic Resolution of Deadlock States 236
14.2.1 Parallel Addition of Safe Recovery . 236
14.2.2 Parallel State Elimination . 240

V Literature Survey and Conclusion 243

15 Related Work 244
15.1 Program Synthesis in Closed Systems . 245
15.1.1 Comprehensive Synthesis . 246
15.1.2 Program Repair and Correction . 247
15.2 Program Synthesis in Open Systems . 248
15.2.1 Automated Synthesis of Fault-Tolerance . 248
15.2.2 Controller Synthesis . 251
15.2.3 Game Theory . 253
15.3 Synthesis Tools . 254
15.4 Component-Based Analysis of Fault-Tolerant Programs 256

ix

16 Conclusion and Future Work 259
16.1 Contributions . 260
16.2 Open Problems and Future Research Directions 262
16.2.1 Open Problems Related to Complexity of Synthesis 263
16.2.2 Open Problems on Improving the Performance of Existing Algorithms 264
16.2.3 Extending the Boundaries of SYCRAFT . 267
16.3 Other Research Directions . 269
16.3.1 Synthesizing Fault-Tolerant Hybrid Systems 269
16.3.2 Incorporating Machine Learning and Data Mining techniques 270
16.3.3 Revising Fault-Tolerant Distributed Systems in Epistemic Logic 270

APPENDICES 288

A Summary of Notation 289

x

List of Tables

5.1 Assignment of values to variables in proof of Theorem 5.1.1. 47
5.2 Assignment of values to variables in proof of Theorem 5.2.1. 53
5.3 Experimental results of the symbolic heuristic. 60

7.1 Levels of fault-tolerance. 81

xi

List of Figures

5.1 Mapping SAT to addition of Unity safety properties. 49
5.2 The structure of the revised distributed program (safety property). 51
5.3 Mapping SAT to addition of a progress property. 54
5.4 The structure of the revised distributed program (progress property). 57

6.1 Region graph of the real-time resource allocation program. 67

8.1 Timed guarded commands of AS. 89
8.2 Region graph of AS. 91
8.3 Fault timed actions in AS. 91
8.4 Region graph with respect to fault-span of AS. 92
8.5 Adjusted shortest path. 94
8.6 Region graph of nonmasking AS. 103
8.7 Recovery timed guarded commands of nonmasking AS. 103
8.8 Region graph of hard-failsafe AS. 113
8.9 Revised timed guarded commands of hard-failsafe AS. 114
8.10 Region graph of soft-masking AS. 116
8.11 Recovery and revised timed guarded commands of soft-masking AS. 117
8.12 Mapping 3-SAT to addition of hard-masking fault-tolerance. 118
8.13 Partial structure of the hard-masking program. 120

9.1 Mapping 2-path problem to fault-tolerance synthesis. 126

11.1 Experimental results for the Byzantine agreement problem. 171
11.2 Experimental results for modified Byzantine agreement problem. 176
11.3 Experimental results for Byzantine agreement subject to fail-stop faults. . . 178
11.4 Experimental results for token ring mutual exclusion program. 182
11.5 Experimental results for token ring with single-step recovery. 185
11.6 Experimental results for the Infuse protocol in sensor networks. 187

12.1 A sample run snapshot of Sycraft. 204
12.2 Never7 program state-transition graph. 206
12.3 Never7 program as input to Sycraft. 207
12.4 Fault-tolerant Never7 state-transition graph. 208
12.5 Sycraft output: fault-tolerant Never7. 208
12.6 Token ring program as input to Sycraft. 209
12.7 Sycraft output: fault-tolerant token ring. 211
12.8 The Byzantine agreement problem as input to Sycraft. 212
12.9 Sycraft output: fault-tolerant Byzantine agreement. 214

14.1 Inconsistencies raised by concurrency. 241

xii

Part I

Background

1

Chapter 1

Introduction

Asserting correctness in a program is the most important aspect and application of formal

methods. Two approaches to achieve correctness automatically in system design are:

• correct-by-verification, and

• correct-by-construction.

Automated verification (and in particular model checking) is arguably one of the most

successful contributions of formal methods in hardware and software development in the

past three decades. However, if verification of a program against a mathematical model (e.g.,

a set of properties) identifies an error in the system, one needs to fix the error manually.

Such manual revision inevitably requires another step of verification in order to ensure that

the error is indeed resolved and that, no new errors are introduced to the program at hand.

Thus, accomplishing correctness through verification involves a cycle of design, verification,

and subsequently manual revision, if the verification step does not succeed.

Another common scenario is where requirements of a program evolve during the pro-

gram life cycle. Evolution of requirements is largely due to two major factors: change of

environment and the incomplete specification phenomenon. As a matter of fact, the latter

has become a customary stumbling issue in virtually any design and development team. In

this scenario, in order to maintain an existing program according to changes in specification,

one needs to modify the program so that it satisfies additional properties of interest, while

satisfying existing properties. Again, redesigning a program manually to address the above

issues may be a tedious task, as it simply may not be successful and potentially introduces

2

additional human errors to the existing program. This iterative procedure of verification

and manual revision of programs often requires a vast amount of resources. In other words,

achieving correctness by verification is an after-the-fact task, which may potentially be

costly.

The above scenarios clearly motivate the need for automating the revision phase. An

automated method should revise a program so that the output program preserves existing

properties of the input program in addition to satisfying new properties. Using such revision,

there is no need to re-verify the correctness of the revised program. In other words, the re-

sulting program is correct-by-construction. Taking the paradigm of correct-by-construction

to extreme leads us to automated synthesis, where a program is constructed from a set of

properties from scratch. Alternatively, in program revision, an automated method trans-

forms an input program into an output program that meets additional properties.

In the rest of this chapter, first in Section 1.1, we describe the challenges and demands in

the broad context of program synthesis and in particular program revision. Then, we state

the thesis that we defend in this dissertation in Section 1.2. We present the contributions

of the dissertation in Section 1.3. Finally, we describe the outline of the dissertation in

Section 1.4.

1.1 Challenges in Automated Program Synthesis

The seminal work on program verification and synthesis was published at about the same

time [EC82, MW84, VW86, CES86]. However, while there have been impressive advances

in theory of model checking and its deployment in practice, less attention has been paid to

program synthesis in the formal methods community. We believe that there are two reasons

for the existing gap between the state-of-the-art theory and practice of automated program

synthesis as compared to verification:

1. In verification, we often verify one property at a time, whereas in synthesis, we start

with a set of temporal assertions. More precisely, in verification, complex structure of

one property does not affect verification of other easy-to-handle properties. However,

in synthesis, this is obviously not the case [KPV06].

2. The complexity of decision procedures in synthesis algorithms are generally higher

than those in verification algorithms. One may argue that this reason is not com-

3

pelling, as the complexity of synthesis algorithms are measured in the size of formulae

to be synthesized and the complexity of verification algorithms are measured in the

size of the given model. In addition, one may argue that the worst case complex-

ity in both verification and synthesis is rarely raised. However, we note that there

exist cases, where synthesizing a property is undecidable, whereas its verification is

decidable [AH93]. In such cases, the complexity of decision procedure of a synthesis

algorithm has a significant impact on feasibility of synthesis.

Two broad approaches for dealing with automated synthesis are the following:

1. In comprehensive synthesis, the designer develops a new program from scratch that

implements a set of properties. Several approaches exist in the context of comprehen-

sive synthesis [EC82, MW84, AE01, LW90, LL92, RLL03, Roh04, WHT03, Tho02,

MNP06, AFH96] most of which require a complete specification and are based on

developing a satisfiability proof of a formula. Comprehensive synthesis also allows

less emphasis on reuse in the face of constantly changing program specifications.

2. In program revision (also called local redesign or program repair) [BEKar, BK06a,

JGB05, EKB05], the designer revises an existing program by removing the behaviors

that violate a property of interest without adding any new behaviors. In other words,

program revision is an automated method that transforms an input program into an

output program that meets additional properties.

Comprehensive synthesis has mostly been studied in two contexts: (1) synthesis from

specification, and (2) synthesis via solving games. In the former, the synthesis problem

reduces to the satisfiability problem of the corresponding specification language. Such

methods only address synthesis of closed systems, where the system does not interact with

the environment. In the latter, the synthesis problem reduces to the realizability problem

[ALW89] of the corresponding specification language. The realizability problem considers

open systems, where the system interacts with the environment. In reactive systems, the

synthesis problem is viewed as identifying a winning strategy in a game between the system

and the environment. Such methods transform the specification into a parity automaton

[EJ91] over unfolded programs represented as infinite trees and checks whether such an

automaton is nonempty, i.e., it accepts some infinite tree [PR89a].

4

One drawback of specification-based synthesis methods, where we start synthesizing

with a set of properties, is that any change in the specification requires us to redo synthesis

from scratch. The difficulty with tree automata-theoretic methods is that they require

determinization of Büchi automata. Such determinization in turn exhibits the following

two obstacles: (1) it has been shown to be resistant to efficient implementation [ATW05,

THB95], and (2) it results with a very complicated state space [Jur00], which is not suited

for optimized implementation such as symbolic techniques.

While synthesis from specification is undoubtedly useful in cases where no program

exists to start from, it suffers from lack of reuse and resistance to efficient implementation.

Alternatively, program revision may remedy both shortcomings of comprehensive synthesis.

In this dissertation, we focus on automated revision of distributed and real-time programs.

1.2 Thesis

Comprehensive approaches mentioned in Section 1.1 play an important role in the broad

area of program synthesis. However, in the face of increasingly dynamic systems with

evolving requirements, program revision is highly desirable due to the following reasons:

1. It has the potential to reuse certain computations of an existing program without

actually exacerbating the complexity of the state space explosion problem (unlike

automata-theoretic approaches).

2. It can be applied in cases where a complete specification of a program is not available.

3. It can also be applied in cases where the existing program satisfies properties whose

automated synthesis is undecidable or lies in highly complex classes of complexity.

One example of a property whose synthesis is undecidable is the so-called real-time

punctuality property [AFH96]; a property with precise eventuality ♦=δQ.

4. It retains the current structure of the program to be revised and add the newly

identified requirements to the program in an incremental fashion. Such incremental

synthesis is especially useful when the original program is designed manually, e.g., for

ensuring better efficiency.

Although program revision presents potential useful applications, the question of its

feasibility remains open in the literature. With this motivation, we focus on complexity

5

analysis and consequently practicality of program revision. In fact, in this dissertation, we

propose and defend the following thesis:

Automated revision of moderate-sized distributed and

real-time programs is feasible.

The contributions made in this dissertation validate this thesis. Briefly, based on the

structure of the input program and the property of interest, we classify our contributions

into cases where (1) polynomial-time sound and complete revision algorithm exists, (2) the

time complexity of revision is exponential, and (3) efficient revision via developing heuristics

is possible at the cost of losing completeness.

1.3 Contributions

In this dissertation, we study the problem of automated revision of distributed and real-

time programs. We require that such revision must result in a program that continues

to satisfy all universally quantified properties of the original program. Since developing

formal analysis methods that can handle any arbitrary property requires dealing with highly

complex decision procedures, we focus on properties and requirements that are typically

used in specifying real-time and distributed systems. For instance, we consider untimed

and real-time Unity [CM88] properties and their variations. As mentioned earlier, in order

to address the feasibility of automated program revision, we classify our results into the

following three types:

• Polynomial-time sound and complete revision algorithms. A revision

algorithm would be especially useful, if it were sound and complete. A sound algorithm

ensures that the revised program meets the new specification (in addition to preserving

all properties of the original program). This requirement essentially implies that the

revised program is correct-by-construction. Moreover, a complete algorithm provides

designers with insight to decide whether a program can be revised as it is, or if it needs

to be redesigned from scratch. This is because when a complete revision algorithm

concludes that a given program cannot be revised, it means that all behaviors of the

input program contradict the new specification. Such automated assistance is highly

6

desirable for a designer, as it significantly decreases the design time by warning the

designer about spending time on fixing a program that is not fixable [BK06a, EKB05].

• Identifying complexity hierarchy. The knowledge of complexity bounds is

especially important in building tools for automated program revision. For instance,

an NP-completeness result demonstrates that corresponding tools must utilize efficient

heuristics to expedite the revision algorithm at the cost of completeness. Moreover,

hardness proofs often identify where the exponential complexity lies in the problem.

Thus, thorough analysis of proofs is also crucial in devising efficient heuristics.

• Efficient revision heuristics. The complexity of automated synthesis can be

characterized in two parts. The first part has to deal with questions such as which

transitions/states should be added to the input program, and which transitions/states

should be removed from the input program. The second part has to deal with questions

such as how quickly such addition and removal can be achieved. In particular, when

a revision problem involves exponential complexity, we need to devise heuristics that

can solve the problem in polynomial-time at the cost of completeness. Such heuristics

are often the core of tools for automated formal analysis.

We also present some results in the context of untimed centralized programs for two

reasons:

1. such results provide a valuable insight into the impact of augmenting programs with

the notion of time and distribution, and

2. a hardness result for revising untimed centralized programs with respect to a particular

property identifies a lower bound on the complexity of the corresponding problem in

the context of distributed and real-time programs.

Our revision approach is graph-theoretic in the sense that we first transform a program

into a directed state-transition graph. In case of real-time programs, the graph is weighted.

Then, using the standard algorithms in graph theory, we manipulate the graph such that

the program associated with the resultant graph meets the desired properties.

We study the revision problem from four different perspectives described next.

1. Adding properties to existing distributed, untimed, and real-time programs

7

This part of our research addresses automated revision of programs in closed systems

[BEKar, BK08b, BK06a, EKB05]. In other words, we consider cases where the given

program does not interact with the environment. In particular, we study the com-

plexity of adding different types of Unity properties to existing untimed centralized,

distributed, and real-time programs. Unity properties are highly expressive for spec-

ifying distributed and real-time programs [CM88]. We show that the complexity of

adding Unity properties significantly varies in the context of untimed centralized,

distributed, and real-time programs. We also show that small changes in constraints

of a property (e.g., specifying a lower bound in a bounded-time leads-to property)

may considerably change the complexity hierarchy of revision. Moreover, we show

that imposing small constraints on the semantics of the revised program (e.g., adding

a property while preserving maximum non-determinism) can also significantly change

the complexity hierarchy of revision.

2. Adding fault-tolerance to existing fault-intolerant real-time programs

This part of our research addresses revision of programs in reactive systems where the

program interacts with the environment [BK06b, BKA08, BK08a]. We model such in-

teractions by a set of faults, which cause either unexpected state perturbations or time

delays. In order to characterize fault-tolerance requirements of programs, we consider

three levels of fault-tolerance. These levels are nonmasking (respectively, stabilizing),

failsafe, and masking, based on satisfaction of safety and liveness properties in the

presence of faults [AG93, Kul99]. Furthermore, in order to capture the time-related

behaviors of programs in the presence of faults, we propose two additional levels,

namely, soft and hard fault-tolerance, based on satisfaction of timing constraints in

the presence of faults. Intuitively, in the absence of faults, both soft and hard fault-

tolerant programs are required to satisfy their timing constraints. However, in the

presence of faults, a soft fault-tolerant program is not required to satisfy its timing

constraints while a hard fault-tolerant program is required to do so. Moreover, for non-

masking and masking fault-tolerance, we require that recovery to the normal behavior

of a program should be achieved within a bounded amount of time. Equipped with

the notion of levels of fault-tolerance, we study the effect of restrictions of each level

on the complexity of addition of fault-tolerance to existing fault-intolerant real-time

8

programs.

3. Developing techniques and tools for adding fault-tolerance to fault-intolerant programs

in practice

As mentioned earlier, the complexity of automated synthesis of fault-tolerant programs

can be characterized in two parts. The first part has to deal with questions such as

which transitions/states should be added, and which transitions/states should be

removed to prevent violation of specification in the presence of faults. The second

part has to deal with questions such as how quickly such states and transitions can be

identified. In the above two parts of our contributions, we focus on the first question

to identify the complexity of various revision problems. Observe that the solution

to the first question is independent of issues such as representation of programs,

faults, specifications, etc. Hence, we utilize explicit-state (enumerative) techniques to

develop algorithms. Explicit-state techniques are especially valuable in this context,

as we can analyze how different heuristics affect a given program. This analysis

enables us to identify bottlenecks and stumbling blocks of heuristics. Explicit-state

techniques, however, are undesirable for the second part, as they suffer from the state

explosion problem and prevent one from synthesizing programs where the state space

is large. In order to develop efficient techniques, we also focus on the second part

of the problem to improve the time and space complexity of synthesis. Towards this

end, we focus on algorithms for adding fault-tolerance to untimed distributed fault-

intolerant programs where programs, faults, specifications, etc., are modeled using

Boolean formulae represented by Bryant’s Ordered Binary Decision Diagrams [Bry86].

Our experimental results on a wide range of examples in fault-tolerant distributed

computing shows significant performance improvement by several orders of magnitude

over enumerative methods for moderate-sized state spaces (1050 and beyond) [BK07b].

The tool Sycraft [BK08c] implements our BDD-based heuristics. In Sycraft, a

distributed fault-intolerant program is specified in terms of a set of processes and

an invariant. Each process is specified as its set of transitions, a set of variables

that the process can read, and a set of variables that the process can write. Given

a distributed fault-intolerant program, Sycraft generates a masking fault-tolerant

distributed program.

9

4. Developing distributed and parallel revision techniques

Time and space complexity has always been a major challenge in deployment of au-

tomated formal methods. Thus, exploiting multiple machines to expand available

memory and multiple processors to increase computing power seems to be a sensible

breakthrough. In fact, with recent advances in deployment of distributed systems for

parallel processing and in particular multi-core processors, an increasing interest in

parallel and distributed techniques has emerged in automated formal methods. Thus,

as yet another means to improve the performance of automated revision, we explore

the potential of using distributed and parallel techniques in automated program revi-

sion [BK07a, BAK08].

1.4 Outline of the Dissertation

This dissertation consists of five parts. Each part addresses a different aspect of automated

program revision.

• Part I informally describes the revision problem and our contributions (Chapter 1)

and then to formally presents the preliminary concepts (Chapter 2).

• Part II of the dissertation addresses revision of programs in closed systems. In this

part, first, in Chapter 3, we formally define the revision problem in the context of

closed systems. Then, in Chapters 4, 5, and 6, we present our contributions on

automated revision of untimed centralized, distributed, and real-time programs in

closed systems, respectively.

• In Part III, we focus on open systems. Specifically, Chapter 7 is dedicated to for-

mally define the revision problem in the context of open systems. In Chapter 8, we

present our results on automated synthesis of real-time fault-tolerant programs. We

introduce the notion of bounded-time phased recovery and present complexity of it

synthesis in Chapter 9. Chapter 10, presents our results on analyzing the structure

and decomposition of fault-tolerant real-time programs. In Chapter 11, we shift our

focus to distributed fault-tolerant programs. Specifically, we present our BBD-based

heuristics for adding fault-tolerance to distributed programs. Finally, we present our

tool Sycraft in Chapter 12.

10

• Part IV presents our distributed and parallel revision techniques. In Chapter 13,

we introduce our distributed synthesis algorithms (distributed processor, distributed

memory) for adding failsafe and masking fault-tolerance to untimed centralized pro-

grams. Then, in Chapter 14, we introduce our multi-core BDD-based algorithm for

deadlock resolution.

• Finally, in Part V, we conclude. We present the related work in the literature of

automated program synthesis in Chapter 15. Finally, in Chapter 16, we discuss open

problems, present a detailed road map for future work, and make concluding remarks.

11

Chapter 2

Preliminary Concepts

In this chapter, we formally define the fundamental elements of our formal framework,

namely, programs, specifications, and region graphs. Intuitively, in our framework, pro-

grams are specified in terms of their state space and their transitions. The notion of real-

time programs is inspired by Alur and Henzinger [AH97]. Formalization of the issue of

distribution is due to Kulkarni and Arora [KA00]. The definition of specification is adapted

from Alpern and Schneider [AS85] and Henzinger [Hen92]. Finally, the notion of region

graph is due to Alur and Dill [AD94]. Throughout this chapter, we incorporate two ex-

amples (real-time traffic controller and distributed Byzantine agreement) to illustrate the

basic concepts.

2.1 Programs

In this section, we formally present the notion of programs. Intuitively, we define a program

in terms of a set of processes. Each process is in turn specified by a state-transition system

and is constrained by some read/write restriction over its set of discrete variables and timing

constraints over its set of clock variables. Read/write restrictions are intended to model the

issue of distribution and the timing constraints are meant to formalize real-time features

of programs. Thus, our definition of programs covers the large class of distributed and

real-time programs.

Let V = {v0, v2 · · · vn}, n ≥ 0, be a finite set of discrete variables and X =

{x0, x2 · · ·xm}, m ≥ 0, be a finite set of clock variables. Each discrete variable vi, 0 ≤ i ≤ n,

is associated with a finite domain Dvi
of values. Each clock variable xj , 0 ≤ j ≤ m, ranges

12

over nonnegative real numbers (denoted R≥0). A location is a function that maps the dis-

crete variables in V to a value from their respective domain. A clock constraint over X is a

Boolean combination of formulae of the form x � c or x− y � c, where x, y ∈ X, c ∈ Z≥0,

and � is either < or ≤. We denote the set of all clock constraints over X by Φ(X).

A clock valuation is a function ν : X → R≥0 that assigns a real value to each clock

variable. For τ ∈ R≥0, we write ν + τ to denote ν(x) + τ for every clock variable x in X.

Also, for λ ⊆ X, ν[λ := 0] denotes the clock valuation that assigns 0 to each x ∈ λ and

agrees with ν over the rest of the clock variables in X. We now define the notion of state,

in which we specify the value of both discrete and clock variables.

Definition 2.1.1 (state) A state (denoted σ) is a pair (s, ν), where s is a location and

ν is a clock valuation for X.

Let u be a (discrete or clock) variable and σ be a state. We denote the value of u in

state σ by u(σ). The set of all possible states is called the state space (denoted S) obtained

from the associated variables and their corresponding domains.

Definition 2.1.2 (transition) A transition is an ordered pair (σ0, σ1), where σ0 and σ1

are two states. Transitions are classified into two types:

• Immediate transitions: (s0, ν)→ (s1, ν[λ := 0]), where s0 and s1 are two locations,

ν is a clock valuation, and λ is a set of clock variables, where λ ⊆ X.

• Delay transitions: (s, ν)→ (s, ν+ δ), where s is a location, ν is a clock valuation, and

δ ∈ R≥0 is a time duration. We denote a delay transition of duration δ at state σ by

(σ, δ).

Definition 2.1.3 (state predicate) Let S be the state space obtained from variables in

V and X. A state predicate is a subset S of S, such that if ϕ is a constraint involving clock

variables in X, where S ⇒ ϕ, then ϕ ∈ Φ(X), i.e., in the corresponding Boolean expression

of S, clock variables are only compared to nonnegative integers (and not real numbers).

Definition 2.1.4 (transition predicate) Let S be the state space obtained from vari-

ables in V and X. A transition predicate is a subset of S×S. Again, we require that in the

corresponding Boolean expression that describes the set of source states, clock constraints

are in Φ(X).

13

Notation. Let T be a transition predicate. We let T s and T d denote the set of immediate

and delay transitions in T , respectively, where T = T s ∪ T d.

Definition 2.1.5 (process) A process p is specified by the tuple 〈Vp, Xp, Tp, Rp,Wp〉

where Vp is a set of discrete variables, Xp is a set of clock variables, Tp is a transition

predicate in the state space of p (denoted Sp), Rp is a set of variables that p can read, and

Wp is a set of variables that p can write such that Wp ⊆ Rp ⊆ Vp (i.e., we assume that p

cannot blindly write a variable).

We now formalize the issue of distribution in processes using restrictions on reading and

writing discrete variables.

Write restrictions. Let p = 〈Vp, Xp, Tp, Rp,Wp〉 be a process. Clearly, Tp must be

disjoint from the following transition predicate due to inability of p to change the value of

variables that p cannot write:

NW p = {(σ0, σ1) | ∃v ∈ (Vp −Wp) : v(σ0) 6= v(σ1)}.

Read restrictions. Let p = 〈Vp, Xp, Tp, Rp,Wp〉 be a process, v be a variable in Vp,

and (σ0, σ1) ∈ Tp where σ0 6= σ1. If v is not in Rp, then Tp must include a corresponding

transition from all states σ′0 where σ′0 and σ0 differ only in the value of v. Let (σ′0, σ
′
1) be

one such transition. Now, it must be the case that σ1 and σ′1 are identical except for the

value of v, and, the value of v must be the same in σ′0 and σ′1. For instance, let Vp = {a, b}

and Rp = {a}. Since p cannot read b, the transition (a = 0, b = 0) → (a = 1, b = 0) and

the transition (a = 0, b = 1)→ (a = 1, b = 1) have the same effect as far as p is concerned.

Thus, each transition (σ0, σ1) in Tp is associated with the following group predicate:

Groupp(σ0, σ1) = {(σ′0, σ
′
1) |

(∀v ∈ (Vp −Rp) : (v(σ0) = v(σ1) ∧ v(σ′0) = v(σ′1))) ∧

(∀v ∈ Rp : (v(σ0) = v(σ′0) ∧ v(σ1) = v(σ′1)))}.

Definition 2.1.6 (program) A program P is specified by the tuple 〈ΠP , IP〉, where ΠP

is a set of processes and IP is a nonempty set of initial states. Without loss of generality,

we assume that the state space of all processes in P are identical (i.e., ∀p, q ∈ ΠP :: (Vp =

Vq) ∧ (Xp = Xq)). Thus, the set of variables (denoted VP) and state space of program

P (denoted SP) is identical to the set of variables and state space of the processes of P,

respectively. In this sense, the set IP of initial states of P is a subset of SP .

14

Notation. Let P be a program. The set TP denotes the collection of transition predicates

of all processes of P, i.e., TP =
⋃

p∈P Tp.

Definition 2.1.7 (computation) A computation of a program P = 〈ΠP , IP〉 is a finite

or infinite timed state sequence of the form:

σ = (σ0, τ0)→ (σ1, τ1)→ · · ·

for which the following conditions are satisfied:

1. ∀i ∈ Z≥0 : σi ∈ SP ,

2. ∀j ∈ Z≥0 : (σj , σj+1) ∈ TP ,

3. if σ reaches a terminating state σf where there does not exist σ such that σ 6= σf

and (σf , σ) ∈ T s
P then we extend σ to an infinite computation by stuttering at σf and

letting global time (i.e., the sequence τ0τ1 · · ·) advance indefinitely, and

4. the sequence τ0τ1 · · · (called the global time), where τi ∈ R≥0 for all i ∈ Z≥0, satisfies

the following constraints:

• (monotonicity) for all i ∈ Z≥0, τi ≤ τi+1,

• (divergence) for all t ∈ R≥0, there exists j ∈ Z≥0 such that τj ≥ t, and

• (consistency) for all i ∈ Z≥0, (1) if (σi, σi+1) is a delay transition, say (σi, δ), in

T d
P , then τi+1 − τi = δ, and (2) if (σi, σi+1) is an immediate transition in T s

P ,

then τi = τi+1.

We distinguish between a terminating computation and a deadlocked finite computation.

Precisely, when a computation σ terminates in state σf , we include the delay transitions

(σf , δ) in T d
P for all δ ∈ R≥0, i.e., σ can be extended to an infinite computation by advancing

time arbitrarily. On the other hand, if there exists a state σd, such that there is no outgoing

(delay or immediate) transition from σd, then σd is a deadlock state.

Notation. Let σi denote the pair (σi, τi) in computation σ. Also, let α be a finite

computation of length n and β be a finite or infinite computation. The concatenation of

α and β (denoted αβ) is a computation iff states αn−1 and β0 meet the constraints

of Definition 2.1.7. Otherwise, the result of concatenation is null. If Γ and Ψ are two

15

sets containing finite and finite/infinte computations respectively, then ΓΨ = {αβ | (α ∈

Γ) ∧ (β ∈ Ψ) }.

We now define special types of programs based on satisfaction of read/write restrictions

and timing constraints. Intuitively, a centralized program is one that is constrained by no

read/write restrictions, i.e., all processes can read and write all program variables in one

atomic step. An untimed program is one that has no clock variables, and, hence, no timing

constraints. We now precisely define these types of programs.

Definition 2.1.8 (centralized program) We say that a program P = 〈ΠP , IP〉 is a

centralized program if and only if ΠP = {p} and Wp = Rp = Vp.

Definition 2.1.9 (untimed program) We say that a program P is an untimed program

if and only if XP = {}.

All other definitions presented in this chapter (e.g., state, transition, computation, etc)

can be trivially simplified for special types of programs. For instance, in case of untimed

programs, in Definition 2.1.7, states are determined by discrete variables only and the notion

of global time can be eliminated. In other words, a computation of an untimed program is

of the form σ = σ0 → σ1 · · · .

In this dissertation, we only consider the following types of programs:

• (timed) centralized,

• untimed decentralized, and

• untimed centralized,

Throughout the dissertation, for the sake of easier and more intuitive terminology, we

refer to the first two above types of programs as real-time and distributed, respectively. In

other words, we only consider distributed programs that have no timing constraints and

real-time programs that have no read/write restrictions. The main reason that we do not

consider other possible types of programs is due to the complexity bottlenecks that already

exist in dealing with the above types of programs. In other words, we believe that more

complicated combinations (e.g., distributed real-time programs) can be dealt with, if we

have a proper insight into the primitive types.

16

2.1.1 Timed Guarded Commands

To concisely present the transition predicate (and as a result, computations) of a program,

we use timed guarded commands1. A timed guarded command (also called timed action) is

of the form:

L :: g
λ
−−→ st ;

where L is a label, g is a state predicate, st is a statement that describes how the program

state is updated, and λ is a set of clock variables that are reset by execution of L. Thus, L

denotes the following transition predicate:

{(s0, ν)→ (s1, ν[λ := 0]) | (s0, ν) ∈ g, and

s1 is obtained by changing s0 as prescribed by st}.

A guarded wait command (also called delay action) is of the form:

L :: g −→ wait;

where g identifies the set of states from where delay transitions with arbitrary durations

are allowed to be taken as long as g continuously remains true. We note that if a program

has several timed guarded commands, the choice of execution of timed guarded commands

is non-deterministic, i.e., a guarded command whose guard is true is non-deterministically

chosen for execution at each time instance.

Obviously, in untimed programs, the guard of their timed actions (or simply action) do

not specify any timing constraints and do not reset any clock variables. Moreover, untimed

programs have no delay actions. Thus, all actions in untimed programs are simply of the

form L :: g −→ st . In the next two subsections, we present two examples to illustrate the

concepts of real-time and distributed programs using guarded commands.

2.1.2 Example (Real-Time Traffic Controller)

Consider a one-lane turn-based bridge where cars can travel in only one direction at any

time [BK08a]. The bridge is controlled by two traffic signals and each signal changes phase

from green to yellow and then to red, based on a set of timing constraints. Moreover, if one

signal is red, it will turn green some time after the other signal turns red. A real-time traffic

1The notion of untimed guarded commands was first introduced by Dijkstra [Dij90].

17

controller program (T C) for the bridge has two discrete variables to represent the status of

the signals, i.e., VT C = {sig0, sig1}, where sig0 and sig1 range over {G,Y,R} . Thus, at any

time, the values of sig0 and sig1 show in which direction cars are traveling. Moreover, for

each signal, T C has three timers to change signal phase, i.e., XT C = {xi, yi, zi | i = 0, 1}.

Recall that since T C is a real-time program, it is centralized (i.e., it only has one process).

The program T C works as follows. When a signal turns green, it may turn yellow

within 10 time units, but not sooner than 1 time unit. Subsequently, the signal may turn

red between 1 and 2 time units after it turns yellow. Finally, when the signal is red, it

may turn green within 1 time unit after the other signal becomes red. Both signals operate

identically. Thus, the transition predicate of the real-time traffic controller program can be

modeled by the following time guarded commands. For i ∈ {0, 1}:

T C1i :: (sig i = G) ∧ (1 ≤ xi ≤ 10)
{yi}
−−−−→ (sig i := Y);

[]

T C2i :: (sig i = Y) ∧ (1 ≤ yi ≤ 2)
{zi}
−−−−→ (sig i := R);

[]

T C3i :: (sig i = R) ∧ (zj ≤ 1)
{xi}
−−−−→ (sig i := G);

[]

T C4i :: ((sig i = G) ∧ (xi ≤ 10)) ∨

((sig i = Y) ∧ (yi ≤ 2)) ∨

((sig i = R) ∧ (zj ≤ 1)) −−−−→ wait;

where j = (i + 1) mod 2. Notice that the guard of T C3i depends on z timer of signal j.

For simplicity, we assume that once a traffic light turns green, all cars from the opposite

direction have already left the bridge.

One possible set of initial states for T C is as follows:

IT C = {σ | (∀k ∈ {0, 1} : xk(σ) = yk(σ) = 0) ∧

(∃i ∈ {0, 1} : ((sig i(σ) = G) ∧ (zi(σ) > 1) ∧ (sig(i+1) mod 2(σ) = R)))}.

In other words, IT C is the set of states where one signal is green, the other one is red and

is not allowed to immediately turn green, and all x and y timers are reset.

18

2.1.3 Example (Distributed Byzantine Agreement)

The Byzantine agreement problem was first introduced by Lamport, Shostok, and Pease

[LSP82]. The canonical version of the program (denoted BA) consists of a general, say

g, and three (or more) non-general processes: j, k, and l. Since the general process only

provides a decision, it is modeled implicitly by two variables. Thus, ΠBA = {j, k, l}. Each

non-general process of BA and the general maintains a decision variable d; for the general,

the decision can be either 0 or 1, and for the non-general processes, the decision can be

0, 1, or ⊥, where the value ⊥ denotes that the corresponding process has not yet received

the decision from the general. Each non-general process also maintains a Boolean variable

f that denotes whether or not that process has finalized its decision. For each process, a

Boolean variable b shows whether or not the process is Byzantine. Thus, the state space of

each process is obtained by discrete variables in

VBA = {d.g, d.j, d.k, d.l} ∪ (decision variables)

{f.j, f.k, f.l} ∪ (finalized?)

{b.g, b.j, b.k, b.l}. (Byzantine?)

The sets of variables that a non-general processes, say j, is allowed to read and write

are Rj = {b.j, d.j, f.j, d.k, d.l, d.g} and Wj = {d.j, f.j}, respectively. The read/write re-

strictions of processes k and l can be symmetrically instantiated in the same fashion.

The fault-intolerant version of BA works as follows. Each non-general process copies

the decision from the general and then finalizes (outputs) that decision, provided it is non-

Byzantine. Thus, the transition predicate of a non-general process, say j, is specified by

the following two actions:

BA1j :: (d.j = ⊥) ∧ (f.j = false) ∧ (b.j = false) −→ d.j := d.g;

[]

BA2j :: (d.j 6= ⊥) ∧ (f.j = false) ∧ (b.j = false) −→ f.j := true;

The actions of processes k and l can be symmetrically instantiated in the same fashion.

The set of initial states of BA is as follows:

IBA = {σ | ∀p ∈ {j, k, l} : ((d.p(σ) = ⊥) ∧ (f.p(σ) = false) ∧ (b.p(σ) = false)}.

In other words, all non-general processes are non-Byzantine, undecided, and, therefore, their

decisions are not finalized. Recall that since BA is distributed, it is untimed.

19

2.2 Specifications

In this section, we formally present the concept of specifications and define what it means

for a program to refine a specification.

Definition 2.2.1 (specification) A specification (or property), denoted SPEC , is a set

of infinite computations of the form (σ0, τ0) → (σ1, τ1) → · · · where σi is a state, i ∈ Z≥0,

and the sequence τ0τ1 · · · meets monotonicity, divergence, and time consistency.

Assumption 2.2.2 Since we use specifications to reason about the correctness of a pro-

gram, we assume that the state space of a specification is identical to the state space of the

program under consideration.

Definition 2.2.3 (refines) Let P = 〈ΠP , IP〉 be a program and SPEC be a specification.

We write P |= SPEC and say that P refines SPEC iff every computation of P that starts

from a state in IP is in SPEC .

Following Alpern and Schneider [AS85] and Henzinger [Hen92], the specifications con-

sidered in this dissertation are an intersection of a safety specification and a liveness spec-

ification defined next. Intuitively, the safety specification of SPEC specifies that nothing

bad should happen in a computation. Safety specifications are often modeled by set of bad

prefixes. The liveness specification specifies that something good must eventually happen.

Definition 2.2.4 (safety specification) A safety specification of SPEC is a set of

computations that meets the following condition: for each infinite computation σ that is

not in that set, there exists prefix α of σ, such that for all infinite computations of the form

αβ, β is not in that set as well.

Definition 2.2.5 (liveness specifications) A liveness specification of SPEC is a set

of computations that meets the following condition: for each computation prefix α, there

exists an infinite computation β such that αβ ∈ SPEC .

2.2.1 Example

Real-time Traffic Controller

In the context of our real-time traffic controller, a bad thing that can happen is the case

20

where both signals are not red at the same time. Obviously, such a case may be catastrophic

on the bridge. Following Definition 2.2.4, the safety specification of T C can be characterized

by the set of bad transitions (i.e., bad prefixes of length 2) where both signals are not red

in their target states:

SPEC btT C
= {(σ0, σ1) | (sig0(σ1) 6= R) ∧ (sig1(σ1) 6= R)}.

Distributed Byzantine Agreement

In the context of the Byzantine agreement problem, the safety specification of BA requires

validity, agreement, and non-enforcement :

• Validity requires that if the general is non-Byzantine, then the final decision of a

non-Byzantine process must be the same as that of the general.

• Agreement requires that the final decision of any two non-Byzantine processes must

be equal.

• Persistency requires that once a non-Byzantine process finalizes (outputs) its decision,

it cannot change it.

Thus, the following transition predicate characterizes the safety specification of BA:

SPEC btBA
= {(σ0, σ1) |

(validity) (∃p :: ¬b.g(σ1) ∧ ¬b.p(σ1) ∧ (d.p(σ1) 6= ⊥) ∧ f.p(σ1) ∧

(d.p(σ1) 6= d.g(σ1))) ∨

(agreement) (∃p, q :: ¬b.p(σ1) ∧ ¬b.q(σ1) ∧ f.p(σ1) ∧ f.q(σ1) ∧

(d.p(σ1) 6= ⊥) ∧ (d.q(σ1) 6= ⊥) ∧ (d.p(σ1) 6= d.q(σ1))) ∨

(Persistency) (∃p :: ¬b.p(σ0) ∧ ¬b.p(σ1) ∧ f.p(σ0) ∧

((d.p(σ0) 6= d.p(σ1)) ∨ (f.p(σ0) 6= f.p(σ1))))},

where p and q range over non-general processes. In this context, an example of a liveness

specification can be “all non-general non-Byzantine processes eventually reach a decision”.

21

2.3 Region Graphs

Real-time programs can be analyzed with the help of an equivalence relation of finite index

on the set of states [AD94]. Given a real-time program P, for each clock variable x ∈ X,

let cx be the largest constant in the clock constraints of TP that involve x, where cx = 0 if

x does not occur in any clock constraint of P. We say that two clock valuations ν, µ are

clock equivalent if:

1. for all x ∈ X, either ⌊ν(x)⌋ = ⌊µ(x)⌋ or both ν(x), µ(x) > cx,

2. the ordering of the fractional parts of the clock variables in the set {x ∈ X | ν(x) < cx}

is the same in µ and ν, and

3. for all x ∈ X, where ν(x) < cx, the clock value ν(x) is an integer if and only if µ(x)

is an integer.

A clock region ρ is a clock equivalence class. Two states (s0, ν0) and (s1, ν1) are region

equivalent, written (s0, ν0) ≡ (s1, ν1), if (1) s0 = s1, and (2) ν0 and ν1 are clock equivalent.

A region r = (s, ρ) is an equivalence class with respect to ≡, where s is a location and ρ is

a clock region. We say that a clock region β is a time-successor of a clock region α iff for

each ν ∈ α, there exists τ ∈ R≥0, such that ν + τ ∈ β, and ν + τ ′ ∈ α∪ β for all τ ′ < τ . We

call a region (s, ρ) a boundary region, if for each ν ∈ ρ and for any τ ∈ R≥0, ν and ν + τ

are not equivalent. A region is open, if it is not a boundary region. A region (s, ρ) is called

an end region, if ν(x) > cx for all ν ∈ ρ and for all clock variables x ∈ X.

Using the region equivalence relation, we construct the region graph of a program P =

〈ΠP , IP〉 (denoted R(P) = 〈Πr
P , I

r
P〉) as follows. Vertices of R(P) (denoted Sr

P) are regions

obtained from state space of P. Edges of R(P) (denoted T r
P) are of the form (s0, ρ0) →

(s1, ρ1) iff for some clock valuations ν0 ∈ ρ0 and ν1 ∈ ρ1, (s0, ν0) → (s1, ν1) is a transition

in TP . Obviously, the transition predicate of each process p in ΠP has a respective set T r
p

of edges. Thus, T r
P =

⋃
p∈ΠP

T r
p . A region predicate U r with respect to a state predicate U

is defined by U r = {(s, ρ) | ∃(s, ν) : ((s, ν) ∈ U ∧ ν ∈ ρ)}. Likewise, the region predicate

with respect to initial states IP of a program P is called initial regions (denoted Ir
P).

Similar to the notion of deadlock states, for a program P = 〈ΠP , IP〉, we say that a

region (s0, ρ0) of R(P) is a deadlock region iff for all regions (s1, ρ1) ∈ S
r
P , there does not

exist an edge of the form (s0, ρ0)→ (s1, ρ1) in T r
P .

22

We note that a region graph is a time-abstract bisimulation of the corresponding real-

time program [AD94]. In our revision algorithms in Chapters 6, 8, and 9, we transform

a real-time program P = 〈ΠP , IP〉 into its corresponding region graph R(P) by invoking

the procedure ConstructRegionGraph as a black box. We also let this procedure take state

predicates and transition predicates in P and return the corresponding region predicates

and sets of edges in R(P). Likewise, we transform a region graph R(P) back into a real-

time program by invoking the procedure ConstructRealTimeProgram. We note that the

above recipe for constructing region graphs involves an exponential blow-up in the number

of clocks and also in the magnitude of clock variables. Thus, when we analyze complexity

of algorithms in the size of region graphs, the reader should automatically consider this

construction complexity as well.

23

Part II

Revising Programs in Closed

Systems

24

In this part of the dissertation, we present our results on automated revision of programs

in closed systems. In a closed system, programs do not interact with the environment in

any ways. More specifically, in closed systems the state of a program is not affected by

environment or uncontrollable fault transitions. Thus, we intuitively interpret the revision

problem as follows:

Given a program P and a (new) specification SPEC n, where P does not refine

SPEC n, the problem is whether or not it is possible to automatically revise P

inside the state space of P such that the revised program refines SPEC n while

it continues to satisfy its existing specification SPEC e.

This part is organized as follows. First, we present the type of safety and liveness

properties that we consider in this part and we formally state the problem of revising

programs in closed systems in Chapter 3. Following the problem statement, in Chapters 4, 5,

and 6, we present our results on the complexity of revising untimed centralized, distributed,

and real-time programs, respectively.

25

Chapter 3

The Revision Problem in Closed

Systems

In this chapter, we formalize the problem of revising programs in closed systems. This

chapter is organized as follows. Section 3.1 is dedicated to present the type of specifications

that we consider in revising programs in closed systems. Then, in Section 3.2, we formally

state the revision problem.

3.1 Basic Concepts

In the context of revising programs in closed systems, we concentrate on Unity properties

introduced by Chandy and Misra [CM88] and real-time Unity properties introduced by

Carruth [Car94]. The reason for our specific focus on Unity properties is that they are

known to be highly expressive in specifying a large class of programs.

Definition 3.1.1 (real-time UNITY properties) Let P and Q be arbitrary state

predicates.

• (Bounded-time unless) An infinite timed state sequence σ = (σ0, τ0)→ (σ1, τ1)→ · · ·

refines ‘P unlessδ Q’ iff ∀i ≥ 0 : ((σi ∈ (P ∩ ¬Q)) ⇒ ∀j > i | (τj − τi ≤ δ) : (σj ∈

(P ∪ Q))). Intuitively, if P holds at any σi, then for all j > i such that τj − τi ≤ δ

either (1) Q does not hold in σj and P is true, or (2) Q becomes true in σj and P

holds at least until Q becomes true. After δ time units there is no requirement on P

and Q.

26

• (Bounded-time leads-to) An infinite timed state sequence σ = (σ0, τ0) → (σ1, τ1) →

· · · refines ‘P leads-toδ Q’ (denoted P 7→δ Q) iff for all i ≥ 0, if σi ∈ P , then there

exists j, j ≥ i, such that (1) σj ∈ Q, and (2) τj − τi ≤ δ. Intuitively, it is always the

case that a state in P is followed by a state in Q within δ time units.

We now present untimed Unity properties by abstracting the notion of time from Def-

inition 3.1.1. This abstraction results in transformation of bounded-time leads-to property

from a safety property into a liveness property. Precisely, Chandy and Misra classify un-

timed Unity properties in two broad categories of safety and progress properties defined

next.

Definition 3.1.2 (untimed UNITY safety properties) Let P and Q be arbitrary

state predicates.

• (Unless) An infinite sequence of states σ = σ0 → σ1 · · · refines ‘P unless Q’ iff

∀i ≥ 0 : (σi ∈ (P ∩ ¬Q)) ⇒ (σi+1 ∈ (P ∪ Q)). Intuitively, if P holds in a state of σ,

then either (1) Q never holds in σ and P is continuously true, or (2) Q becomes true

and P holds at least until Q becomes true.

• (Stable) An infinite sequence of states σ = σ0 → σ1 · · · refines ‘stable P ’ iff σ

satisfies P unless false. Intuitively, P is stable iff once it becomes true, it remains

true forever.

• (Invariant) An infinite sequence of states σ = σ0 → σ1 · · · refines ‘invariant P ’ iff

σ0 ∈ P and σ satisfies stable P . An invariant property always holds.

Definition 3.1.3 (untimed UNITY progress properties) Let P and Q be arbitrary

state predicates.

• (Leads-to) An infinite sequence of states σ = σ0 → σ1 · · · refines ‘P leads-to Q’

(denoted P 7→ Q) iff (∀i ≥ 0 : (σi ∈ P)⇒ (∃j ≥ i : σj ∈ Q)). In other words, if P

holds in a state σi, i ≥ 0, then there exists a state σj in σ, i ≤ j, such that Q holds

in σj .

• (Ensures) An infinite sequence of states σ = σ0 → σ1 · · · refines ‘P ensures Q’ iff

for all i, i ≥ 0, if P ∩ ¬Q is true in state σi, then (1) σi+1 ∈ (P ∪ Q), and (2)

27

∃j ≥ i : σj ∈ Q. In other words, if P becomes true in σi, there exists a state σj where

Q eventually becomes true and P remains true everywhere in between σi and σj .

There exist some small differences between our formal framework and that in standard

Unity. First, in our formal framework, unlike the standard Unity which assumes inter-

leaved fairness, we assume that all program computations are unfair. This assumption is

necessary in dealing with polynomial-time addition of Unity progress properties to pro-

grams. Secondly, our definition of ensures is slightly different from that in [CM88]. In

Chandy and Misra’s definition, (P ensures Q) implies (1) P leads-to Q, (2) P unless Q and

(3) there is at least one action that always establishes Q whenever it is executed in a state

where P is true and Q is false. Since, we do not model actions explicitly in our work, we

have removed the third requirement. Finally, as described in Chapter 2, our focus is on

programs with a finite set of discrete variables. Thus, in the context of untimed programs,

all programs have finite state space.

Definition 3.1.1 lacks two types or properties as compared to the definition of untimed

Unity properties. However, one can easily instantiate the definition of bounded-time stable

and bounded-time ensures properties in the obvious way. The definition of invariant is not

time-related and, therefore, remains the same.

Assumption 3.1.4 In Part II of the dissertation, we add the following constraint to Defini-

tion 2.1.7. Let P = 〈ΠP , IP〉 be a program. For all computations σ = (σ0, τ0)→ (σ1, τ1)→

· · · of P, we require that σ0 ∈ IP .

Given Definitions 3.1.1, 3.1.2, and 3.1.3, it is straightforward to precisely define the

notion of specifications. A Unity specification SPEC is the conjunction
∧n

i=1 Li where

(depending upon the context) each Li is either a real-time Unity property, or, an untimed

Unity (safety or progress) property.

In the context of refinement of a Unity specification by a program, following Definition

2.2.3, we say that a program P = 〈ΠP , IP〉 refines a Unity specification SPEC =
∧n

i=1 Li

if and only if P refines Li for all i, 1 ≤ i ≤ n. In other words, all computations of P refine

all Unity properties in SPEC .

Concise Representation of Untimed Unity Safety Properties

Observe that the untimed Unity safety properties can be characterized in terms of a set

28

of bad transitions that should never occur in a program computation. For example, stable

P requires that a transition, say (σ0, σ1), where σ0 ∈ P and σ1 /∈ P , should never occur in

any computation of a program that refines stable P . Hence, for simplicity, in Part II of the

dissertation, when dealing with safety Unity properties of a program P, we assume that

they are represented by a transition predicate B ⊆ SP ×SP whose transitions should never

occur in any computation. Examples of such “bad transition” were presented in Subsection

2.2.1.

3.2 Problem Statement

Given are a program P = 〈ΠP , IP〉 and a (new) Unity specification SPEC n. Our goal is

to devise an automated method which revises P so that the revised program (denoted P ′ =

〈ΠP ′ , IP ′〉) (1) refines SPEC n, and (2) continues refining its existing Unity specification

SPEC e, where SPEC e is unknown. Thus, during the revision, we only want to reuse the

correctness of P with respect to SPEC e so that the correctness of P ′ with respect to SPEC e

is derived from ‘P refines SPEC e’.

Intuitively, in order to ensure that the revised program P ′ continues refining the existing

specification SPEC e, we constrain the revision problem so that the set of computations of

P ′ is a subset of the set of computations of P. In this sense, since Unity properties are not

existentially quantified (unlike in Ctl [Eme90]), we are guaranteed that all computations

of P ′ satisfy the Unity properties that participate in SPEC e.

Notation. Let P be a program. Let Y be a subset of the set of clock variables of P,

i.e., Y ⊆ XP . We denote the program obtained by removing the clock variables in Y from

XP by P\Y . Obviously, no state and transition predicate of P\Y depend on the value of

variables in Y .

Now, we formally identify constraints on state space of P ′ (denoted SP ′), initial states

of P ′, IP ′ , and transition predicate of P ′ (denoted TP ′). Observe that:

• if SP ′ contains states that are not in SP , there is no guarantee that the correctness

of P with respect to SPEC e can be reused to ensure that P ′ refines SPEC e. Also,

since SP denotes the set of all states (not just reachable states) of P, removing states

from SP is not advantageous. However, since meeting new timing constraints requires

time predictability, we let revision methods incorporate a finite set Xn of new clock

29

variables in order to keep track of time only. Thus, in the revision problem, we require

that SP ′\Xn
= SP .

• Likewise, IP ′ should not have any states that were not there in IP . Moreover, since IP

denotes the set of all initial states of P, we should preserve them during the revision.

Thus, we require that IP ′\Xn
= IP .

• Finally, we require that TP ′\Xn
should be a subset of TP . Note that not all transitions

in TP may be preserved in TP ′ . Hence, we must ensure that P ′ does not deadlock.

Based on Definitions 2.2.1 and 2.2.3, if

1. TP ′\Xn
⊆ TP ,

2. P ′ does not deadlock, and

3. P refines SPEC e,

then P ′ also refines SPEC e.

Thus, the revision problem is formally defined as follows:

Problem Statement 3.2.1 Given a program P = 〈ΠP , IP〉 and a Unity specification

SPEC n, identify P ′ = 〈ΠP ′ , IP ′〉 such that:

(C1) SP ′\Xn
= SP ,

(C2) IP ′\Xn
= IP ,

(C3) TP ′\Xn
⊆ TP , and

(C4) P ′ refines SPEC n.

Note that the requirement of deadlock freedom is not explicitly specified in the above

problem statement, as it follows from ‘P ′ refines SPEC n’. Throughout Part II of the

dissertation, we use ‘revision of P with respect to a specification SPEC n (or property L)’

and ‘addition of SPEC n (respectively, L) to P’ interchangeably. In Chapters 4, 5, and 6, we

present the complexity of revision methods that solve Problem Statement 3.2.1 with respect

to untimed centralized, distributed, and real-time programs, respectively for different types

of Unity properties. In this context, we address two important criteria with respect to

revision algorithms: soundness and completeness.

30

Definition 3.2.2 (soundness) We say that a revision algorithm is sound iff its output

meets the constraints of Problem Statement 3.2.1.

Definition 3.2.3 (completeness) We say that a revision algorithm is complete iff it

finds a solution to Problem Statement 3.2.1 iff there exists one.

31

Chapter 4

Revising Untimed Centralized

Programs

In this chapter, we present our contributions on automated revision of untimed centralized

programs in closed systems. Although such programs are neither distributed nor real-time,

identifying the complexity of their revision is of interest in the sense that a hardness result

automatically determines a lower bound on the complexity of the corresponding problem

in the distributed and timed settings.

This chapter is organized as follows. In Section 4.1, we present a polynomial-time

sound and complete algorithm for adding a single unbounded progress Unity property

along with a conjunction of safety Unity properties to an untimed centralized program.

Then, in Section 4.2, we show that while it is possible to add a single progress property

in polynomial-time, the problem of adding two or more progress properties is significantly

more difficult, i.e., it is NP-complete. Finally, in Section 4.3, we show that addition of even

one leads-to property to an untimed centralized program while retaining maximum number

of transitions is NP-complete.

4.1 Adding a Single Progress and Multiple Safety Properties

In this section, we present a simple solution for Problem Statement 3.2.1 where the new

specification SPEC n is a conjunction of a single leads-to property and multiple safety prop-

erties. We note that the goal of our algorithm is simply to illustrate the feasibility of a

polynomial-time solution. Hence, although our algorithm in this section can be modified

32

to reduce the complexity further, we have chosen to present a simple (and not so efficient)

solution (see Algorithm 4.1).

Let P = 〈ΠP , IP〉 be a program and specification SPEC n ≡ B ∧ L, where B represents

the conjunction of a set of safety properties and L ≡ (P 7→ Q) for arbitrary state predicates

P and Q in SP . In order to guarantee that the revised program P ′ satisfies B (i.e., P ′ never

executes a transition in the set of bad transitions B), we simply remove all transitions in B

from TP (Step 1).

In order to add the leads-to property L ≡ (P 7→ Q) to P, we need to guarantee that any

computation of P ′ that reaches a state in P will eventually reach a state in Q. Towards this

end, we rank all states σ in SP based on the length of the shortest computation prefix of P

from σ to a state in Q (Step 2). In such a ranking, if no state of Q is reachable from σ then

the rank of σ will be infinity. Also, the rank of states in Q is zero. There exist two obstacles

in guaranteeing the reachability of Q from P : (1) deadlock states reachable from P , and (2)

cycles reachable from P in which computations of P ′ may be trapped forever. In addition

to possible existing deadlock states in P, our algorithm may also introduce deadlock states

by (i) removing safety-violating transitions (Step 1), and (ii) making infinity-ranked states

in P unreachable in Step 4.

Regarding deadlock states, our approach is to make them unreachable (Steps 5-12).

Such removal of transitions may introduce new deadlock states that are removed in the while

loop. If the removal of deadlock states culminates in making an initial state deadlocked then

(P 7→ Q) cannot be added to P. Otherwise, we again rank all states (Step 13) as we might

have removed some deadlock states in Q, and consequently, created new infinity-ranked

states. We repeat the above steps until no reachable state in P has the rank infinity. At

this point (end of the repeat-until loop), there is a path from each state in P to a state in

Q. However, there may exist a computation prefix 〈σ0, σ1, · · · , σn〉 such that (1) σ0 ∈ P ,

(2) σn ∈ Q, (3) for all i ∈ {1..n−1} : σi /∈ Q, and (4) ∃j ∈ {2..n−1} where σj is on a cycle.

To deal with such cycles, we retain transitions from high-ranked states to low-ranked

states (Step 15). In particular, if Rank(σ0) ≤ Rank(σ1) then it means there exists a

computation prefix of shorter or equal length from σ0 to Q as compared to the computation

prefix from σ1 to Q. Thus, removing (σ0, σ1) will not make σ0 deadlocked. Notice that

in Step 15, transitions of the form (σ0, σ1), where Rank(σ0) = ∞ and Rank(σ1) = ∞, are

not removed. Also, we ensure that no transitions that originate from Q is removed. Hence,

33

computations in which neither predicates P and Q are reached will not be affected.

Remark. We note that since ensures can be expressed as a conjunction of an unless

property and a leads-to property, our algorithm is able to add an ensures property as well.

Algorithm 4.1 Add UNITY

Input: untime program 〈ΠP , IP〉, leads-to property P 7→ Q, and safety specification B.

Output: revised program 〈ΠP ′ , IP ′〉.

1: TP1
:= TP − {(σ0, σ1) | (σ0, σ1) ∈ B};

2: ∀σ ∈ SP : Rank(σ) = the length of the shortest computation prefix of TP1
that starts

from σ and ends in a state in Q;

{Rank(σ) =∞ means Q is not reachable from σ.}

3: TP1
:= TP1

− {(σ0, σ1) | (σ1 ∈ P) ∧ Rank(σ1) =∞};

(∃σ0 ∈ SP : (∀σ1 ∈ SP : (σ0, σ1) 6∈TP1
))

(σ0 /∈ IP)

4: TP1
:= TP1

− {(σ, σ0) | (σ, σ0) ∈ TP1
};

5: declare that the addition is not possible;

6: exit();

7: ∀σ ∈ SP : Rank(σ) = the length of the shortest computation prefix of TP1
that

starts from σ and ends in a state in Q;

(∀σ | (σ ∈ P) ∧ (σ is reachable from IP using TP1
) : Rank(σ) 6=∞)

8: TP1
− {(σ0, σ1) | (Rank(σ0) > 0) ∧ (Rank(σ0) 6=∞) ∧ (Rank(σ0) ≤ Rank(σ1))};

Theorem 4.1.1 The Add UNITY algorithm is sound and complete.

Proof. Since Add UNITY does not add any new states to SP , we have SP ′ = SP . Likewise,

Add UNITY does not remove (respectively, introduce) any initial states; we have IP ′ = IP .

The Add UNITY algorithm only updates TP by excluding some transitions from TP in Steps

1, 4, 7, and 15. It follows that TP ′ ⊆ TP . By construction, if the Add UNITY algorithm

generates a program TP ′ in Step 15 then reachability from P to Q is guaranteed in P ′.

Thus, P ′ meets all the requirements of Problem Statement 3.2.1.

We now show that the algorithm is complete. Note that any transition removed in

Add UNITY (in Steps 1, 4, and 7) must be removed in any program that meets the require-

ments of Problem Statement 3.2.1. Hence, if failure is declared (in Step 9), there exists no

34

solution to Problem Statement 3.2.1.

Recall that a program P satisfies a specification SPEC iff all computations of P

are in SPEC . Hence, a subset of computations of P satisfies spec as well. In the context

of the algorithm Add UNITY, although it excludes some computations, since it ensures

that all computations are infinite (by removing deadlock regions), it continues to satisfy

its old Unity specification. Note, however, that the same result cannot be implied for

specification languages that have existential quantification features such as branching-time

temporal logics Tctl.

Theorem 4.1.2 The complexity of Add UNITY algorithm is polynomial-time in SP .

Remark. We would like to note that soundness and completeness of Add UNITY are

preserved for the case where the revised program is allowed to have a subset of initial states

of the original program. For such a case, the algorithm would fail only if all initial states

are removed.

4.1.1 Example: Readers-Writers Program

In this section, we illustrate the application of the Add UNITY algorithm in local redesign

of a program for the readers-writers problem [CM88]. As usual, we use Dijkstra’s guarded

commands (actions) as a shorthand for representing the set of program transitions.

Recall that a guarded command g → st captures the transitions {(σ0, σ1) | the state

predicate g is true in σ0, and σ1 is obtained by atomic execution of statement st in state s0 }.

The Readers-Writers Program

In the The readers-writers program (denoted RW), multiple writer processes wait in

an infinite external queue to be picked by the program. RW contains a finite internal

queue of size 2 that is managed by a queue manager process, which selects writers from

an external queue and places them in the internal queue. The selected writer has access

to a shared buffer to which other processes have access as well. At any time only one

writer is allowed to write the buffer. The reader processes can read the shared buffer.

The program has three integer variables 0 ≤ nr ≤ N , 0 ≤ nw ≤ N , and 0 ≤ nq ≤ 2 that

are initially 0, where N denotes the total number of processes. Specifically, nr represents

the number of readers reading from the buffer, nw represents the number of writers

35

writing the buffer, and nq represents the number of writers waiting in the internal queue.

The program contains Boolean variables rdj (1 ≤ j ≤ N), and wrq that respectively

represent whether or not the reader Rj is reading the buffer, and at least a writer is

waiting in the internal queue. The variable wrq is set to true by the queue manager when

there is a process waiting to write and wrq is set to false when a process is writing the buffer.

Safety Specification

The safety specification, BRW , of the program requires that when a writer is writing in the

buffer no other process is allowed to access the buffer. However, multiple readers can read

the buffer simultaneously:

BRW = {(s0, s1) | (nw(s1) > 1) ∨ ((nr(s1) 6= 0) ∧ nw(s1) 6= 0))}

The safety specification stipulates that the condition (nw ≤ 1) ∧ ((nr = 0) ∨ (nw = 0))

must hold in every reachable state. Another representation of the above formula

is 0 ≤ (N − (nr + N · nw)). For ease of presentation, we represent the expression

(N−(nr +N · nw)) with the variable K.

Actions of RW

The actions of the writer processes in the original program are as follows:

RW1 :: (nq > 0) ∧ (K ≥ 3) −→ nw := nw + 1; nq := nq − 1; wrq := false;

RW2 :: (nw = 1) −→ nw := nw − 1;

When there exists a process ready for writing in the internal queue (i.e., nq > 0) and no

process is using the buffer (i.e., K ≥ 3), the program allows the writers to write the common

buffer. Thus, the writer process waits until all readers finish their reading activities. When

a writer process accesses the buffer, it increments the value of nw, sets the value of wrq to

false, and decrements the value of nq (see action RW1). This way, the queue manager lets

other waiting writers in. When the writer finishes its writing activity in the buffer, it exits

by decrementing the value of nw (see action RW2).

The following parameterized actions represent the transitions of the readers as the struc-

tures of the readers are symmetric:

36

RW3j :: ¬wrq ∧ ¬rdj ∧ (1 < K) −→ nr := nr + 1; rdj := true;

RW4j :: rdj −→ nr := nr − 1; rdj := false;

The condition K > 1 holds if no writer process is writing the buffer an at most N − 1

readers exist. Thus, if a reader process is not already in reading status and no writer is

waiting to write the buffer (see action RW3j) then the reader can read the buffer. (The

original program gives the priority to the writers.) When a reader process j completes its

reading activity, it decrements the value of nr and sets rdj to false. Now, we present the

action of the queue manager process.

RW5 :: (nq < 2) −→ nq := nq + 1; wrq := true;

Once the queue manager selects a waiting writer, it increments the value of nq and sets

wrq to true in order to show that a writer is waiting in the internal queue. We consider a

version of the RW program where we have two readers, i.e., j ∈ {0, 1}, and one writer (i.e.,

N = 3).

Initial States

Let 〈nr, nw, nq, rd0, rd1, wrq〉 denote the state of the RW program. We consider the set

IRW = 〈0, 0, 0, false, false, false〉 for initial state the RW program.

The Desired Leads-to Property

The initial program satisfies the safety specification BRW , however, no progress is guar-

anteed. For example, the writer process may wait forever due to alternating access of

the readers to the buffer. Readers may also wait forever due to continuous presence of

writers in the internal queue. Thus, the desired leads-to property for a reader j ∈ {0, 1},

is (0 ≤ K) 7→ (rdj) and the program should satisfy (nq > 0 7→ (nw = 1)) to ensure

that writers have progress. In this example, we present only the redesign of RW for the

property (0 ≤ K) 7→ (rd0) for the reader R0. As such, in the property P 7→ Q in the input

of Add UNITY, the state predicate P is equal to 0 ≤ K and the state predicate Q equals

to rd0 (see input parameters of Algorithm 4.1).

Adding Leads-to Using Add UNITY

We trace the execution of Add UNITY for the addition of (0 ≤ K) 7→ (rd0) to the RW

program.

37

• Step 1. Since the initial program satisfies its safety specification BRW , Step 1 of the

Add UNITY algorithm would not eliminate any transitions.

• Step 2. Rank 0 includes eight reachable states where rd0 = true.

These states are as follows: 〈1, 0, 0, true, false, false〉, 〈1, 0, 1, true, false, true〉,

〈2, 0, 0, true, true, false〉, 〈1, 0, 2, true, false, true〉, 〈2, 0, 1, true, true, true〉,

〈2, 0, 2, true, true, true〉, 〈2, 0, 1, true, true, false〉, and 〈1, 0, 1, true, false, false〉.

From the initial state 〈0, 0, 0, false, false, false〉, the reader j = 0 can read the buffer

and the program reaches the state 〈1, 0, 0, true, false, false〉. Thus, the rank of the

initial state is 1. Moreover, the reader R0 can read the buffer from the states

〈1, 0, 0, false, true, false〉, 〈1, 0, 1, false, true, false〉, and 〈0, 0, 1, false, false, false〉. As

a result, the program state changes to a state in Rank 0.

The states 〈0, 1, 0, false, false, false〉 and 〈0, 1, 1, false, false, false〉 have Rank 2 as the

execution of action RW2 from these states changes the program state to a state

in Rank 1. Likewise, the states 〈0, 0, 1, false, false, true〉 and 〈0, 0, 2, false, false,

true〉 get Rank 3. Rank 4 includes 〈1, 0, 1, false, true, true〉, 〈0, 1, 1, false, false, true〉,

〈0, 1, 2, false, false, true〉, and 〈1, 0, 2, false, true, true〉.

• Step 4. There are no states with rank ∞.

• Steps 5-12. Since Step 4 does not remove any transitions, no deadlock states are

created and, hence, the algorithm does not enter the while loop.

• Step 13. This step results in the same ranking as in Step 2.

• Step 14. Since all reachable states, where 0 ≤ K holds, have a finite rank, the

algorithm exits the repeat-until loop.

• Step 15. This step removes transitions that start in a low ranking state outside

Rank 0 and terminate in a higher rank. For example, the transition (s0, s1) included

in action W1, where s0 = 〈0, 0, 1, false, false, false〉 and 〈0, 1, 0, false, false, false〉,

starts in Rank 1 and ends in Rank 2. From s0, the execution of action QM gets

the program to state 〈0, 0, 2, false, false, false〉 in Rank 3. Moreover, transitions that

form a cycle between the states of the same rank (outside Rank 0) are removed. For

instance, the reader j = 1 may read the buffer from s0 and the program reaches the

38

state s1 = 〈1, 0, 1, false, true, false〉. Afterwards, reader j = 1 may take the state

of the program back to s0 by executing the action RW41, thereby, creating a cycle

between s0 and s1 in Rank 1.

The Revised Program

After applying the Add UNITY algorithm on the RW program for properties (0 ≤ K) 7→

(rd0), (0 ≤ K) 7→ (rd1) and subsequently (nq > 0) 7→ (nw = 1) the final revised program

is as follows:

RW ′1 :: (wrq) ∧ (K = 3) −→ nw := nw + 1; nq := nq − 1; wrq := false;

RW ′2 : (¬wrq) ∧ (K = 0) −→ nw := nw − 1;

Intuitively, a waiting writer is allowed to write if no other processes have accessed the buffer

(i.e., (wrq)∧(K = 3)). The value ofK is zero only if a writer has accessed the buffer, thereby,

enabling the writer to release the buffer. The following parameterized action represents the

transitions of the reader processes (j = 0, 1). A reader process is allowed to read the buffer

if no writer is waiting in the internal queue and at most one reader is reading the buffer

(i.e., K > 1). The guard of the second action has been strengthened in that a reader is

allowed to release the buffer if a writer is waiting for access.

RW ′3j :: (¬wrq) ∧ ¬rdj ∧ (1 < K) −→ nr := nr + 1; rdj := true;

RW ′4j :: rdj ∧ (wrq) ∧ (K < 3) −→ nr := nr − 1; rdj := false;

The behavior of the queue manager process is also modified in that a writer is put in the

internal buffer if (1) no writer is currently in the internal buffer, (2) no writer is writing the

buffer, and (3) exactly two readers are reading the buffer (i.e., K = 1).

RW ′5 : (nq = 0) ∧ (K = 1) ∧ (nw = 0) −→ nq := nq + 1; wrq := true;

We refer the reader to [EKB05] for another example on revising a mutual exclusion

algorithm which originally exhibits starvation.

4.2 Adding Multiple Progress Properties

In this subsection, we focus on addition of a combination of progress properties (i.e., leads-to

and/or ensures). In this context, we note that the algorithm Add UNITY can be applied in a

39

stepwise fashion to add multiple progress properties. However, while such stepwise addition

is sound, it is not complete. This is due to the fact that during the addition of the first (for

instance, leads-to) property, the transitions removed in the last step (Line 15 in Algorithm

4.1) may cause failure in adding subsequent progress properties.

We consider a special case of the problem of adding multiple progress properties where

two eventually properties are added to a given program. The property ‘eventually Q’ is

logically equivalent with ‘true 7→ Q’ (respectively, true ensures Q), i.e., starting from an

arbitrary state, the program reaches a state in Q. This property in Linear Temporal Logic

(Ltl) is denoted by �♦Q (called always eventually Q). Thus, for an infinite computation,

this implies that Q must be reached infinitely often. Since this special case is NP-complete

(see Theorem 4.2.1 below), the hardness of adding a combination of two leads-to and

ensures properties follows trivially.

Instance. A program P = 〈ΠP , IP〉 and SPEC n ≡ L1 ∧ L2, where L1 ≡ �♦P and

L2 ≡ �♦Q, and P and Q are two arbitrary state predicates.

The decision problem (2EV). Given the above instance, does there exist a program

P ′ = 〈ΠP ′ , IP ′〉 such that P ′ satisfies the constraints of Problem Statement 3.2.1?

To show the complexity of the above decision problem, we reduce the problem of

determining whether or not a directed graph has a simple cycle that includes two specific

vertices, described next, to the problem of adding two eventually properties.

Cycle Detection in Directed Graphs (CDDG). Given a directed graph G = 〈V,A〉,

where V is a set of vertices and A is a set of arcs, and two vertices, say u and v in V , does

there exist a (simple) cycle in G that includes both u and v? The CDDG problem is known

to be NP-complete [BJG02].

Theorem 4.2.1 The problem of adding two eventually properties to an untimed program

is NP-complete.

Proof. Since showing membership to NP is straightforward, we only need to show that

the problem is NP-hard. Towards this end, we present a polynomial-time mapping from an

40

instance of CDDG to a corresponding instance of the 2EV problem. Let G = 〈V,A〉 be a

directed graph. We construct P = 〈ΠP , IP〉 and identify SPEC n ≡ L1 ∧ L2 as follows:

• S={sx | x ∈ V },

• T={(sx, sy) | (x, y) ∈ A},

• I={su, sv},

• L1 ≡ �♦{su}, and L2 ≡ �♦{sv}.

Now, we show that the instance of the CDDG problem has a solution if and only if the

answer to the corresponding instance of the 2EV problem is affirmative:

• (⇒) If the cycle detection problem has a solution then the program obtained by

taking only the transitions corresponding to the arcs in that cycle satisfies Problem

Statement 3.2.1.

• (⇐) Let P ′ = 〈ΠP ′ , IP ′〉 be the program obtained after adding two eventually prop-

erties. Following the constraints (C2) of Problem statement 3.2.1, IP ′ = {su, sv}.

Now, consider a computation of P ′ that (without loss of generality) starts from su.

Since P ′ satisfies �♦{su}, state su must be revisited in this computation. Consider

the smallest prefix where su is repeated. For this prefix, we show the following:

1. State sv must occur in this prefix. If not, a computation of P ′ that is obtained

by repeating the above computation prefix does not satisfy �♦{sv}.

2. No other state can be repeated in this computation prefix. If a state, say sx, ap-

pears twice in the above computation prefix then there would be a cycle between

the two occurrences of sx. This implies that, there is a computation of P ′ that

starts in su, reaches sx and then repeats this cycle. Clearly, this computation

does not satisfy �♦{su}.

Now, consider the cycle obtained by taking the edges corresponding to the transitions

of the above computation prefix. Based on the first point above, this cycle contains

both u and v. And, from the second point, it is a simple cycle, i.e., no vertex is

repeated in it.

41

Corollary 4.2.2 The problem of adding two or more progress properties to untimed Unity

programs is NP-complete.

4.3 Adding a Single Leads-to Property with Maximum Non-

determinism

Given a program P = 〈ΠP , IP〉 and a Unity specification SPEC n, we say that the revised

program P ′ has maximum non-determinism iff P ′ = 〈ΠP ′ , IP ′〉 meets the constraints of

Problem Statement 3.2.1 and the cardinality of TP ′ is maximum. Maintaining maximum

non-determinism is desirable in the sense that it increases the potential for future successful

addition of other properties.

Instance. A program P = 〈ΠP , IP〉, SPEC n ≡ (P 7→ Q), and positive integer k, where

k ≤ |TP |.

The decision problem (MND). Given the above instance, does there exist a program

P ′ = 〈ΠP ′ , IP ′〉 such that P ′ meets the constraints of Problem Statement 4.1 and |TP ′ | ≥ k?

We now show that the problem of adding a single leads-to property while maintaining

maximum non-determinism is NP-complete. To this end, we reduce the feedback arc set

problem in directed graphs to the above decision problem.

Feedback Arc Set Problem (FAS). Let G = 〈V,A〉 be a digraph and j be a positive

integer, where j ≤ |A|. The feedback arc set problem determines whether there exists a

subset A′ ⊆ A, such that |A′| ≤ j and A′ contains at least one arc from every directed cycle

in G. The FAS problem is known to be NP-complete [Kar72].

Theorem 4.3.1 The problem of adding a single leads-to property while preserving maxi-

mum non-determinism is NP-complete.

Proof. Since showing membership to NP is straightforward, we only show that the problem

is NP-hard. Given an instance of the FAS problem, we present a polynomial-time mapping

from FAS instance to a corresponding instance of the MND problem. Let G = 〈V,A〉 be a

42

directed graph and j be a positive integer. We construct program p = 〈ΠP , IP〉 and identify

integer k and specification SPEC n ≡ P 7→ Q as follows:

• S={sv | v ∈ V } ∪ {p1, p2 · · · p|A|+1} ∪ {q},

• I={p1, p2 · · · p|A|+1},

• TP = {(su, sv) | (u, v) ∈ A} ∪ {(pi, sv) | (1 ≤ i ≤ |A| + 1) ∧ (v ∈ V)} ∪

{(sv, q) | v ∈ V } ∪ {(q, q)},

• P = {p1, p2 · · · p|A|+1}, and

• Q = {q}, and k = |TP | − j.

We now show that the instance of FAS has a solution if and only if the answer to the

corresponding instance of MND is affirmative:

• (⇒) Let the answer to FAS be the set A′ of arcs where |A′| ≤ j. Clearly, given

our mapping, constraints (C1) and (C2) of the Problem Statement 3.2.1 are met by

construction. Now, if we obtain TP ′ by removing the transitions that correspond to

A′ from TP , the resultant program P ′ will have no cycles in SP − (P ∪ Q). Moreover,

since there exists a transition from each state in P to all states in SP − (P ∪ Q) and

also there exists a transition from each state in SP − P to q, any computation that

starts from a state in P eventually reaches Q. Observe that the number of transitions

removed from TP is |A′|. Hence, |TP ′ | = |TP | − |A
′| ≥ |TP | − j = k.

• (⇐) Let the answer to MND be the program P ′ = 〈ΠP ′ , IP ′〉 where |TP ′ | ≥ k.

We show that the set A′ = {(x, y) | (sx, sv) ∈ TP − TP ′} is the answer to FAS.

Since (|A| + 1).|V | arcs leave states in P , and, the number of transitions that are

removed from TP (i.e., |TP − TP ′ |) is less than |A|, any state sv, where v ∈ V , is

reachable from all states in P . Moreover, since |TP ′ | ≥ k = |TP | − j, it follows that

|A′| = |TP − TP ′ | ≤ j. Now, if there exists a cycle in P, all its transitions must be in

the set {(sx, sy) | x, y ∈ V }. Obviously, this cycle is reachable from states in P even

though no state in that cycle is in Q. However, this contradicts the assumption that

P ′ satisfies P 7→ Q. Hence, the set of arcs that correspond to transitions in TP − TP ′

(i.e., |A′|) contains at least one arc from each cycle in G.

43

Chapter 5

Revising Distributed Programs

In this chapter, we shift our focus to distributed programs where processes can read and

write only a subset of program variables. We expect the concept of program revision to play

a more crucial role in the context of distributed programs, since non-determinism and race

conditions make it significantly difficult to assert program correctness. We find somewhat

unexpected results about the complexity of adding Unity properties to distributed pro-

grams. In particular, we find that the problem of adding only one Unity safety property

or one progress property to a distributed program is NP-complete in the size of the input

program’s state space.

The knowledge of these complexity bounds is especially important in building tools for

incremental synthesis. In particular, the NP-completeness results demonstrate that tools

for revising distributed programs must utilize efficient heuristics to expedite the revision

algorithm at the cost of completeness. Moreover, NP-completeness proofs often identify

where the exponential complexity lies in the problem. Thus, thorough analysis of proofs is

also crucial in devising efficient heuristics.

With this motivation, in this paper, we also propose an efficient symbolic heuristic

that adds a leads-to property to a distributed program. We integrate this heuristic with

our tool Sycraft (see Chapter 12) that is designed for adding fault-tolerance to existing

distributed programs. Meeting leads-to properties are of special interest in fault-tolerant

computing where recovery within a finite number of steps is essential. To this end, one

can first augment the program with all possible recovery transitions that it can use. This

augmented program clearly does not guarantee that it would recover to a set of legitimate

44

states, although there is a potential to reach the legitimate states from states reached in

the presence of faults. In particular, it may continue to execute on a cycle that is entirely

outside the legitimate states. Thus, we apply our heuristic for adding a leads-to property to

modify the augmented program so that from any state reachable in the presence of faults,

the program is guaranteed recovery to its legitimate states within a finite number of steps.

A by-product of the heuristic for adding leads-to properties is a cycle resolution algorithm.

Our experimental results show that this algorithm can also be integrated with state-of-the-

art model checkers for assisting in developing programs that are correct-by-construction.

This chapter is organized as follows. In Section 5.1, we present our NP-completeness

result on revision of distributed programs with respect to Unity safety properties. In

Section 5.2, we show that the problem of adding one progress property to a distributed

program is NP-complete. We present our symbolic heuristic for adding a leads-to property

to a distributed program and experimental results in Section 5.3.

5.1 Adding UNITY Safety Properties to Distributed Pro-

grams

As mentioned in Section 4.1, Unity safety properties can be characterized by a transition

predicate, say B, whose transitions should occur in no computation of a program. In Section

4.1, we also showed that in a centralized setting where processes have no restrictions on

reading and writing variables, a program P = 〈ΠP , IP〉 can be easily revised with respect

to B by simply (1) removing the transitions in B from TP , and (2) making newly created

deadlock states unreachable.

To the contrary, the above approach is not adequate for a distributed setting, as

it is sound (i.e., it constructs a correct program), but not complete (i.e., it may fail

to find a solution while there exists one). This is due to the issue of read restrictions

in distributed programs, which associates each transition of a process with a group

predicate. This notion of grouping makes the revision complex, as a revision algorithm

has to examine many combinations to determine which group of transitions must be

removed and, hence, what deadlock states need to be handled. Indeed, we show that

the issue of read restrictions changes the class of complexity of the revision problem entirely.

45

Instance. A distributed program P = 〈ΠP , IP〉 and a Unity safety specification SPEC n.

Decision problem. Does there exist a program P ′ = 〈ΠP ′ , IP ′〉 such that P ′ meets the

constraints of Problem Statement 3.2.1 for the above instance?

We now show that the above decision problem is NP-complete by a reduction from the

well-known satisfiability problem. The SAT problem is as follows:

Let x1, x2 · · ·xN be propositional variables. Given a Boolean formula y =

yN+1 ∧ yN+2 · · · yM+N , where each clause yj , N + 1 ≤ j ≤ M + N , is a

disjunction of three or more literals, does there exist an assignment of truth

values to x1, x2 · · ·xN such that y is satisfiable?

We note that the unconventional subscripting of clauses in the above definition of the SAT

problem is deliberately chosen to make our proofs simpler.

Theorem 5.1.1 The problem of adding a Unity safety property to a distributed program

is NP-complete.

Proof. Since showing membership to NP is straightforward, we only need to show that

the problem is NP-hard. Towards this end, we present a polynomial-time mapping from

an instance of the SAT problem to a corresponding instance of our revision problem.

Intuitively, the mapped instance P = 〈ΠP , IP〉 consists of four processes. Each process is

obviously specified by its variables and reachable states using a certain set of transitions.

Moreover, each process is subject to certain read/write restrictions. These restrictions

along with the assignment of values to variables of processes determine the grouping

structure of the instance. The mapped instance also specifies the set of initial states and

the safety specification. The structure of the mapped instance is such that the answer to

the SAT problem is affirmative if and only if there exists a solution to the revision problem

with respect to P. We construct the instance P = 〈ΠP , IP〉 as follows.

Variables. The set of variables of program P and, hence, its processes is

V = {v0, v1, v2, v3, v4}. The domain of these variables are respectively as follows: {−1, 0, 1},

{−1, 0, 1}, {0, 1}, {0, 1}, {−N · · · − 2,−1, 1, 2 · · ·M + N} ∪ {ji | (1 ≤ i ≤ N) ∧ (N + 1 ≤

46

j ≤M+N)}. We note that ji in the last set is not an exponent, but a denotational symbol.

Reachable states. The set of reachable states in our mapping is as follows:

• For each propositional variable xi, 1 ≤ i ≤ N , in the instance of the SAT problem, we

introduce the following states (see Figure 5.1): ai, bi, b
′
i, ci, c

′
i, di, and d′i. We require

that states a1 and aN+1 are identical.

• For each clause yj , N + 1 ≤ j ≤M +N , we introduce state rj .

• For each clause yj , N + 1 ≤ j ≤ M +N , and variable xi in clause yj , 1 ≤ i ≤ N , we

introduce the following states: rji, sji, s
′
ji, tji, and t′ji.

Value assignments. Assignment of values to each variable at reachable states

is shown in Figure 5.1 (denoted by < v0, v1, v2, v3, v4 >). We emphasize that assign-

ment of values in our mapping is the most crucial factor in forming group predicates. For

reader’s convenience, Table 5.1 illustrates the assignment of values to variables more clearly.

(a)

State / Variable name v0 v1 v2 v3 v4

ai -1 1 0 1 i

bi 0 0 0 0 −i

b′i 0 0 0 0 i

ci 1 0 1 1 −i

c′i 0 1 1 1 i

di 0 1 1 1 −i

d′
i 1 0 1 1 i

(b)

State / Variable name v0 v1 v2 v3 v4

rj 0 0 1 0 j

rji 0 0 0 0 ji

sji 0 1 1 1 ji

s′ji 1 0 1 1 ji

tji 1 -1 0 1 ji

t′ji -1 -1 0 1 ji

Table 5.1: Assignment of values to variables in proof of Theorem 5.1.1.

Processes. Program P consists of four processes. Formally, ΠP = {p1, p2, p3, p4}.

Transition predicate and read/write restrictions of processes in ΠP are as follows:

• Read/write restrictions. The read/write restrictions of processes p1, p2, p3, and

p4 are as follows:

– Rp1
= {v0, v2, v3} and Wp1

= {v0, v2, v3}.

– Rp2
= {v1, v2, v3} and Wp2

= {v1, v2, v3}.

47

– Rp3
= {v0, v1, v2, v3, v4} and Wp3

= {v0, v1, v2, v4}.

– Rp4
= {v0, v1, v2, v3, v4} and Wp4

= {v0, v1, v3, v4}.

• Transition predicates. For each propositional variable xi, 1 ≤ i ≤ N , we include

the following transitions in processes p1, p2, p3, and p4 (see Figure 5.1):

– Tp1
= {(b′i, d

′
i), (bi, ci) | 1 ≤ i ≤ N}.

– Tp2
= {(b′i, c

′
i), (bi, di) | 1 ≤ i ≤ N}.

– Tp3
= {(c′i, ai+1), (ci, ai+1), (d

′
i, ai+1), (di, ai+1) | 1 ≤ i ≤ N}.

– Tp4
= {(ai, bi), (ai, b

′
i) | 1 ≤ i ≤ N}.

Moreover, corresponding to each clause yj , N + 1 ≤ j ≤ M + N , and variable xi,

1 ≤ i ≤ N , in clause yj , we include transition (rj , rji) in Tp3
and the following:

– If xi is a literal in clause yj , then we include transition (rji, sji) in Tp2
, (sji, tji)

in Tp3
, and (tji, bi) in Tp4

.

– If ¬xi is a literal in clause yj , then we include transition (rji, s
′
ji) in Tp1

, (s′ji, t
′
ji)

in Tp3
, and (t′ji, b

′
i) in Tp4

.

Note that only for the sake of illustration, Figure 5.1 shows all possible transitions.

However, in order to construct P, based on the existence of xi or ¬xi in yj , we only

include a subset of the transitions.

Initial states. The set IP of initial states represents clauses of the instance of the SAT

problem, i.e., IP = {rj | N + 1 ≤ j ≤M +N}.

Safety property. Let P be a state predicate that contains all reachable states in Figure

5.1 except ci and c′i (i.e., ci, c
′
i ∈ ¬P). Thus, the properties stable P and invariant P can

be characterized by the transition predicate B = {(bi, ci), (b
′
i, c

′
i) | 1 ≤ i ≤ N}. Similarly,

let P and Q be two state predicates that contain all reachable states in Figure 5.1 except

ci and c′i. Thus, the safety property P unless Q can be characterized by B as well. In our

mapping, we let B represent the safety specification for which P has to be revised.

48

rj = <0, 0, 1, 0, j

s ji = <1, 0, 1, 1, j
i

sji = <0, 1, 1, 1, j
i

tji = <1, -1, 0, 1, j
i t ji = <-1, -1, 0, 1, j

i

b i = <0, 0, 0, 0, i bi = <0, 0, 0, 0, i>

di = <0, 1, 1, 1, i>d i = <1, 0, 1, 1, i

ai+1 = <-1, 1, 0, 1, i+1>

ai = <-1, 1, 0, 1, i

ci = <1, 0, 1, 1, i
c i = <0, 1, 1, 1, i

rji = <0, 0, 0, 0, j
i

Process p1

Process p2

Process p3

Process p4

<v0, v1, v2, v3, v4>

Legend

Group 1

Group 2

Bad
transition

Transitions

where literal xi
is in clause yj

Transitions

where literal xi
is in clause yj

State

Figure 5.1: Mapping SAT to addition of Unity safety properties.

Before we present our reduction from the SAT problem using the above mapping, we

make the following observations regarding the grouping of transitions in different processes:

1. Due to inability of process p1 to read variable v4, for all i, 1 ≤ i ≤ N , transitions

(rji, s
′
ji), (b

′
i, d

′
i), and (bi, ci) are grouped in p1.

2. Due to inability of process p2 to read variable v4, for all i, 1 ≤ i ≤ N , transitions

(rji, sji), (bi, di), and (b′i, c
′
i) are grouped in p2.

3. Transitions grouped with the rest of the transitions in Figure 5.1 are unreachable and,

hence, are irrelevant.

Now, we show that the answer to the SAT problem is affirmative if and only if there

exists a solution to the revision problem. Thus, we distinguish two cases:

• (⇒) First, we show that if the given instance of the SAT formula is satisfiable, then

there exists a solution that meets the requirements of the revision decision problem.

Since the SAT formula is satisfiable, there exists an assignment of truth values to all

variables xi, 1 ≤ i ≤ N , such that each yj , N + 1 ≤ j ≤ M + N , is true. Now, we

identify a program P ′, that is obtained by adding the safety property represented by

B to program P as follows.

– The state space of P ′ consists of all the states of P, i.e., SP = SP ′ .

– The initial states of P ′ consists of all the initial states of P, i.e., IP = IP ′ .

49

– For each variable xi, 1 ≤ i ≤ N , if xi is true, then we include the following

transitions: (ai, bi) in Tp4
, (bi, di) in Tp2

, and (di, ai+1) in Tp3
.

– For each variable xi, 1 ≤ i ≤ N , if xi is false, then we include the following

transitions:(ai, b
′
i) in Tp4

, (b′i, d
′
i) in Tp1

, and (d′i, ai+1) in Tp3
.

– For each clause yj , N + 1 ≤ j ≤ M + N , that contains literal xi, if xi is true,

we include the following transitions: (rj , rji) and (sji, tji) in Tp3
, (rji, sji) in Tp2

,

and (tji, bi) in Tp4
.

– For each clause yj , N + 1 ≤ j ≤ M +N , that contains literal ¬xi, if xi is false,

we include the following transitions: (rj , rji) and (s′ji, t
′
ji) in Tp3

, (rji, s
′
ji) in Tp1

,

and (t′ji, b
′
i) in Tp4

.

As an illustration, we show the partial structure of P ′, for the formula (x1∨¬x2∨x3)∧

(x1∨x2∨¬x4), where x1 = true, x2 = false, x3 = false, and x4 = false, in Figure 5.2.

Notice that states whose all outgoing and incoming transitions are eliminated are not

illustrated. Now, we show that P ′ meets the requirements of the Problem Statement

3.2.1:

1. The first three constraints of the decision problem are trivially satisfied by con-

struction.

2. We now show that constraint C4 holds. First, it is easy to observe that by

construction, there exist no reachable deadlock states in the revised program.

Hence, if P refines Unity specification SPEC e, then P ′ refines SPEC e as well.

Moreover, if a computation of P ′ reaches a state bi for some i, from an initial

state rj (i.e., xi is true in clause yj), then that computation cannot violate safety

since bad transition (bi, ci) is removed. This is due to the fact that (bi, ci) is

grouped with transition (rji, s
′
ji) and this transition is not included in TP ′ , as

literal xi is true in yj . Likewise, if a computation of P ′ reaches a state b′i for

some i, from initial state rj (i.e., xi is false in clause yj), then that computation

cannot violate safety since transition (b′i, c
′
i) is removed. This is due to the fact

that (b′i, c
′
i) is grouped with transition (rji, sji) and this transition is not included

in TP ′ , as xi is false. Thus, P ′ refines SPEC n.

50

a1

r5

a2a3a4

s51s'52

t51t'52

b1d1

b'2d'2b'3d'3b'4d'4

r51r52

r6

s61s'64

t61t'64

r61r64

Process p1

Process p2

Process p3

Process p4

Legend

State

Figure 5.2: The structure of the revised program for Boolean formula (x1 ∨¬x2 ∨ x3)∧ (x1 ∨
x2 ∨ ¬x4), where x1 = true, x2 = false, x3 = false, and x4 = false.

• (⇐) Next, we show that if there exists a solution to the revision problem for the

instance identified by our mapping from the SAT problem, then the given SAT formula

is satisfiable. Let P ′ be the program that is obtained by adding the safety property

SPEC n to program P. Now, in order to obtain a solution for SAT, we proceed as

follows. If there exists a computation of P ′ where state bi is reachable, then we assign

xi the truth value true. Otherwise, we assign the truth value false.

We now show that the above truth assignment satisfies all clauses. Let yj be a clause

for some j, N + 1 ≤ j ≤ M + N , and let rj be the corresponding initial state in

IP ′ . Since rj is an initial state and P ′ cannot deadlock, the transition (rj , rji) must

be present in TP ′ , for some i, 1 ≤ i ≤ N . By the same argument, there must exist

some transition that originates from rji. This transition terminates in either sji or

s′ji. Observe that TP ′ cannot have both transitions, as grouping of transitions will

include both (bi, ci) and (b′i, c
′
i) which in turn causes violation of safety by P ′. Now,

if the transition from rji terminates in sji, then clause yj contains literal xi and xi is

assigned the truth value true. Hence, yj evaluates to true. Likewise, if the transition

from rji terminates in s′ji, then clause yj contains literal ¬xi and xi is assigned the

truth value false. Hence, yj evaluates to true. Therefore, the assignment of values

considered above is a satisfying truth assignment for the given SAT formula.

51

5.2 Adding UNITY Progress Properties to Distributed Pro-

grams

In a centralized setting, where programs have no restriction on reading and writing

variables, a program, say P = 〈ΠP , IP〉, can be easily revised with respect to a progress

property by simply (1) breaking non-progress cycles that prevent a program to eventually

reach a desirable state predicate, and (2) removing deadlock states (see Section 4.1).

To the contrary, in a distributed setting, due to the issue of grouping, it matters which

transition (and as a result its corresponding group) is removed to break a non-progress cycle.

Instance. A distributed program P = 〈ΠP , IP〉 and a Unity progress property SPEC n.

Decision problem. Does there exist a program P ′ = 〈ΠP ′ , IP ′〉 such that P ′ meets the

constraints of Problem Statement 3.2.1 for the above instance?

Theorem 5.2.1 The problem of adding a Unity progress property to a distributed program

is NP-complete.

Proof. Since showing membership to NP is straightforward, we only show that the prob-

lem is NP-hard by a reduction from the SAT problem. First, we present a polynomial-time

mapping.

Variables. The set of variables of program P and, hence, its processes is

V = {v0, v1, v2, v3, v4}. The domain of these variables are respectively as follows:

{0, 1}, {0, 1}, {−N · · · − 2,−1, 1, 2 · · ·M +N}∪ {ji | (1 ≤ i ≤ N)∧ (N + 1 ≤ j ≤M +N)},

{−1, 0, 1}, and {−1, 0, 1}.

Reachable states. The set of reachable states in our mapping is as follows:

• For each propositional variable xi, 1 ≤ i ≤ N , we introduce the following states (see

Figure 5.3): ai, a
′
i, bi, b

′
i, ci, c

′
i, di, d

′
i, Qi, and Q′

i.

• For each clause yj , N + 1 ≤ j ≤M +N , we introduce state rj .

52

• For each clause yj , N + 1 ≤ j ≤M +N , and variable xi, 1 ≤ i ≤ N , in clause yj , we

introduce states rji, sji, and s′ji.

Value assignments. Assignment of values to each variable at reachable states is shown in

Figure 5.3 (denoted by < v0, v1, v2, v3, v4 >). For reader’s convenience, Table 5.2 illustrates

the assignment of values to variables more clearly.

(a)

State / Variable name v0 v1 v2 v3 v4

ai 1 0 −i -1 -1

a′
i 1 0 i -1 1

bi 0 0 −i 0 0

b′i 0 0 i 0 0

ci 1 1 −i 0 1

c′i 1 1 i 1 0

di 0 1 i 1 -1

d′
i 0 1 −i 1 1

Qi 1 1 −i 1 0

Q′
i 1 1 i 0 1

(b)

State / Variable name v0 v1 v2 v3 v4

rj 0 1 j 1 1

rji 0 0 ji 0 0

sji 1 1 ji 0 1

s′ji 1 1 ji 1 0

Table 5.2: Assignment of values to variables in proof of Theorem 5.2.1.

Processes. Program P consists of four processes. Formally, ΠP = {p1, p2, p3, p4}.

Transition predicate and read/write restrictions of processes in ΠP are as follows:

• Read/write restrictions. The read/write restrictions of processes p1, p2, p3, and

p4 are as follows:

– Rp1
= {v0, v1, v3} and Wp1

= {v0, v1, v3}.

– Rp2
= {v0, v1, v4} and Wp2

= {v0, v1, v4}.

– Rp3
= {v0, v1, v2, v3, v4} and Wp3

= {v0, v2, v3, v4}.

– Rp4
= {v0, v1, v2, v3, v4} and Wp4

= {v1, v2, v3, v4}.

• Transition predicates. For each propositional variable xi, 1 ≤ i ≤ N , we include

the following transitions in processes p1, p2, p3, and p4 (see Figure 5.3):

– Tp1
= {(b′i, c

′
i), (bi, Qi) | 1 ≤ i ≤ N}.

– Tp2
= {(bi, ci), (b

′
i, Q

′
i) | 1 ≤ i ≤ N}.

53

ai = <1, 0, -i, -1, -1>

Q'i = <1, 1, i, 0, 1>

ci = <1, 1, -i, 0, 1>

rji = <0, 0, j
i
, 0, 0>

sji = <1, 1, j
i
, 0, 1>

s'ji = <1, 1, j
i
, 1, 0>

a'i = <1, 0, i, -1, 1>

b'i = <0, 0, i, 0, 0>

bi = <0, 0, -i, 0, 0>

rj = <0, 1, j, 1, 1>

Qi = <1, 1, -i, 1, 0>

c'i = <1, 1, i, 1, 0>

d'i = <0, 1, -i, 1, 1>

di = <0, 1, i, 1, -1>

Process p1

Process p3

Process p4

<v0, v1, v2, v3, v4>

Legend

Group 1

Transitions

where literal xi
is in clause yj

Transitions

where literal xi
is in clause yj

State

Process p2

Group 2

Figure 5.3: Mapping SAT to addition of a progress property.

– Tp3
= {(ai, bi), (a

′
i, b

′
i), (ci, di), (c

′
i, d

′
i), (Qi, Qi), (Q

′
i, Q

′
i) | 1 ≤ i ≤ N}.

– Tp4
= {(d′i, bi), (di, b

′
i) | 1 ≤ i ≤ N}.

Moreover, corresponding to each clause yj , N + 1 ≤ j ≤ M + N , and variable xi,

1 ≤ i ≤ N , in clause yj , we include transition (rj , rji) in Tp4
and the following:

– If xi is a literal in clause yj , then we include transition (rji, sji) in Tp2
, and

(sji, ai) in Tp4
.

– If ¬xi is a literal in clause yj , then we include transition (rji, s
′
ji) in Tp1

and

(s′ji, a
′
i) in Tp4

.

Note that for the sake of illustration, Figure 5.3 shows all possible transitions. How-

ever, in order to construct P ′, based on the existence of xi or ¬xi in yj , we only

include a subset of transitions.

Initial states. The set IP of initial states represents clauses of the Boolean formula in

the instance of the SAT problem, i.e., IP = {rj | N + 1 ≤ j ≤M +N}.

Progress property. In our mapping, the desirable progress property is of the form

SPEC n ≡ (true leads-to Q), where Q = {Qi, Q
′
i | 1 ≤ i ≤ N} (see Figure 5.3). Observe

that SPEC n is a leads-to as well as an ensures property. This property in Linear Temporal

Logic (Ltl) is denoted by �♦Q (called always eventually Q).

54

Before we present our reduction from the SAT problem using the above mapping, we

make the following observations regarding the grouping of transitions in different processes:

1. Due to inability of process p1 to read variable v2, for all i, 1 ≤ i ≤ N , transitions

(rji, s
′
ji), (b′i, c

′
i), and (bi, Qi) are grouped in process p1.

2. Due to inability of process p2 to read variable v2, for all i, 1 ≤ i ≤ N , transitions

(rji, sji), (bi, ci), and (b′i, Q
′
i) are grouped in process p2.

3. Transitions grouped with the rest of the transitions in Figure 5.3 are unreachable and,

hence, are irrelevant.

We distinguish the following two cases for reducing the SAT problem to our revision

problem :

• (⇒) First, we show that if the given instance of the SAT formula is satisfiable, then

there exists a solution that meets the requirements of the revision decision problem.

Since the SAT formula is satisfiable, there exists an assignment of truth values to all

variables xi, 1 ≤ i ≤ N , such that each yj , N + 1 ≤ j ≤ M + N , is true. Now,

we identify a program P ′, that is obtained by adding the progress property �♦Q to

program P as follows.

– The state space of P ′ consists of all the states of P, i.e., SP = SP ′ .

– The initial states of P ′ consists of all the initial states of P, i.e., IP = IP ′ .

– For each variable xi, 1 ≤ i ≤ N , if xi is true, then we include the following

transitions: (ai, bi), (ci, di), and (Q′
i, Q

′
i) in Tp3

, (bi, ci) and (b′i, Q
′
i) in Tp2

, and,

(di, b
′
i) in Tp4

.

– For each variable xi, 1 ≤ i ≤ N , if xi is false, then we include the following

transitions: (a′i, b
′
i), (c′i, d

′
i), and (Qi, Qi) in Tp3

, (b′i, c
′
i) and (bi, Qi) in Tp1

, and,

(d′i, bi) in Tp4
.

– For each clause yj , N + 1 ≤ j ≤M +N , that contains literal xi, if xi is true, we

include transitions (rj , rji) and (sji, ai) in Tp4
, and, transition (rji, sji) in Tp2

.

– For each clause yj , N + 1 ≤ j ≤ M +N , that contains literal ¬xi, if xi is false,

we include transitions (rj , rji) and (s′ji, a
′
i) in Tp4

, and, transition (rji, s
′
ji) in Tp1

.

55

As an illustration, we show the partial structure of P ′, for the formula (x1 ∨ ¬x2 ∨

x3)∧ (x1∨x2∨¬x4), where x1 = true, x2 = false, x3 = false, and x4 = false in Figure

5.4. Notice that states whose all outgoing and incoming transitions are eliminated

are not illustrated. Now, we show that P ′ meets the requirements of the Problems

Statement 3.2.1:

1. The first three constraints of the decision problem are trivially satisfied by con-

struction.

2. We now show that constraint C4 holds. First, it is easy to observe that by

construction, there exist no reachable deadlock states in the revised program.

Hence, if P refines Unity specification SPEC e, then P ′ refines SPEC e as well.

Moreover, by construction, all computations of P ′ eventually reach either Qi or

Q′
i and will stutter there. This is due to the fact that if literal xi is true in clause

yj , then transition (rji, s
′
ji) is not included in TP ′ and, hence, its group-mates

(b′i, c
′
i) and (bi, Qi) are not in TP ′ as well. Consequently, a computation that

starts from rj eventually reaches Q′
i without meeting a cycle. Likewise, if literal

¬xi is false in clause yj , then transition (rji, sji) is not included in TP ′ and,

hence, its group-mates (bi, ci) and (b′i, Q
′
i) are not in TP ′ as well. Consequently, a

computation that starts from rj eventually reaches Qi without meeting a cycle.

Hence, P ′ refines SPEC n ≡ �♦Q.

• (⇐) Next, we show that if there exists a solution to the revision problem for the

instance identified by our mapping from the SAT problem, then the given SAT formula

is satisfiable. Let P ′ be the program that is obtained by adding the progress property

in SPEC n ≡ �♦Q to program P. Now, in order to obtain a solution for SAT, we

proceed as follows. If there exists a computation of P ′ where state ai is reachable,

then we assign xi the truth value true. Otherwise, we assign the truth value false.

We now show that the above truth assignment satisfies all clauses. Let yj be a clause

for some j, N + 1 ≤ j ≤ M + N , and let rj be the corresponding initial state in

IP ′ . Since rj is an initial state and P ′ cannot deadlock, the transition (rj , rji) must

be present in TP ′ , for some i, 1 ≤ i ≤ N . By the same argument, there must exist

some transition that originates from rji. This transition terminates in either sji or s′ji.

56

a1

Q'1

c1

r51

s51 s'52

a'2

b'1 b1

r5 r6

c'2

b'2 b2

Q2 Q4

r52 r64

s'64

r61
s61

d1

d'2
c'4

b'4 b4

d'4

a'4
Process p1

Process p3

Process p4

Legend

State

Process p2

Figure 5.4: The structure of the revised program for Boolean formula (x1 ∨¬x2 ∨ x3)∧ (x1 ∨
x2 ∨ ¬x4), where x1 = true, x2 = false, x3 = false, and x4 = false.

Observe that TP ′ cannot have both transitions, as grouping of transitions will include

transitions (bi, ci) and (b′i, c
′
i). If this is the case, P ′ does not refine the property �♦Q

due to the existence of cycle bi → ci → di → b′i → c′i → d′i → bi. Thus, there can be

one and only one outgoing transition from rji in TP ′ . Now, if the transition from rji

terminates in sji, then clause yj contains literal xi and xi is assigned the truth value

true. Hence, yj evaluates to true. Likewise, if the transition from rji terminates in s′ji,

then clause yj contains literal ¬xi and xi is assigned the truth value false. Hence, yj

evaluates to true. Therefore, the assignment of values considered above is a satisfying

truth assignment for the given SAT formula.

5.3 A Symbolic Heuristic for Adding Leads-To Properties

We now present a polynomial-time (in the size of the state space) symbolic (BDD1-based)

heuristic for adding leads-to properties to distributed programs. Leads-to properties have

interesting applications in automated addition of recovery for synthesizing fault-tolerant

distributed programs.

1Ordered Binary Decision Diagrams [Bry86] represent Boolean formulae as directed acyclic graphs making
testing of functional properties such as satisfiability and equivalence straightforward and extremely efficient.

57

Algorithm 5.1 Add LeadsTo

Input: A distributed program P = 〈ΠP , IP〉 and property P leads-to Q.
Output: If successful, transition predicate TP ′ of the new program.

1:

2: repeat
3: Let Rank[i] be the state predicate whose length of shortest path to Q is i, where

Rank[0] = Q and Rank[∞] = the state predicate that is reachable from P , but cannot
reach Q;

4: for all i and j do
5: C := ComputeCycles(TP , P);
6: if (i ≤ j) ∧ (i 6= 0) ∧ (i 6=∞) then
7: tmp := Group(〈C ∧ Rank[i]〉 ∧ 〈C ∧ Rank[j]〉′);
8: if removal of tmp from TP eliminates a state from Q then
9: Make 〈C ∧ tmp〉 unreachable;

10: else
11: TP := TP − tmp;
12: end if
13: end if
14: end for
15: until Rank[∞] = {}
16: TP ′ := EliminateDeadlockStates(P , Q, 〈ΠP , IP〉);
17: return TP ′ ;

The NP-hardness reduction presented in the proof of Theorem 5.2.1 precisely shows

where the complexity of the problem lies in. Indeed, Figure 5.3 shows that transition

(bi, ci) which can potentially be removed to break the non-progress cycle bi → ci → di →

b′i → c′i → d′i → bi is grouped with the critical transition (rji, sji) which ensures that

state rji and consequently initial state rj are not deadlocked. The same argument holds

for transitions (b′i, c
′
i) and (rji, s

′
ji). Thus, a heuristic that adds a leads-to property to a

distributed program needs to address this issue.

Our heuristic works as follows (cf. Algorithm 5.1). The Algorithm Add LeadsTo takes a

distributed program P = 〈ΠP , IP〉 and a property P leads-to Q as input, where P and Q are

two arbitrary state predicates in the state space of P. The algorithm (if successful) returns

transition predicate of the derived program P ′ = 〈ΠP ′ , IP ′〉 that refines P leads-to Q as

output. In order to transform P to P ′, first, the algorithm ranks states that can be reached

from P based on the length of their shortest path to Q (Line 2). Then, it attempts to break

non-progress cycles (Lines 3-13). To this end, it first computes the set of cycles that are

reachable from P (Line 4). This computation can be accomplished using any BDD-based

58

cycle detection algorithm. We apply the Emerson-Lie method [EL86]. Then, the algorithm

removes transitions from TP that participate in a cycle and whose rank of source state is

less than or equal to the rank of destination state (Lines 6-10). However, since removal of

a transition must take place with its entire group predicate, we do not remove a transition

that causes creation of deadlock states in Q. Instead, we make the corresponding cycle

unreachable (Line 8). This can be done by simply removing transitions that terminate in a

state on the cycle. Thus, if removal of a group of transitions does not create new deadlock

states in Q, the algorithm removes them (Line 10). Finally, since removal of transitions

may create deadlock states outside Q but reachable from P , we need to eliminate those

deadlock states (Line 15). Such elimination can be accomplished using the BDD-based

method proposed in [BK07b].

Given O(n2) complexity of the cycle detection algorithm [EL86], it is straightforward to

observe that the complexity of our heuristic is O(n4), where n is the size of state space of P.

In order to evaluate the performance of our heuristic, we have implemented the Algorithm

Add LeadsTo in our tool Sycraft [BK08c]. This heuristic can be used for adding recovery

in order to synthesize fault-tolerant distributed programs as follows. Let S be a set of

legitimate states (e.g., an invariant predicate) and T be the fault-span predicate (i.e., the

set of states reachable in the presence of faults). First, we add all possible transitions that

start from T − S and end in T . Then, we apply the Algorithm Add LeadsTo for property

(T − S) leads-to S.

Table 5.3 illustrates experimental results of our heuristic for adding such recovery. All

experiments are run on a PC with a 2.8GHz Intel Xeon processor and 1.2GB RAM. The

BDD representation of the Boolean formulae has been done using the Glu/CUDD package

[Som]. Our experiments target addition of recovery to two well-known problems in fault-

tolerant distributed computing, namely, the Byzantine agreement problem [LSP82] (denote

BAi) and the token ring problem [AK98a] (denoted T Ri), where i is the number of pro-

cesses. Table 5.3 shows the size of reachable states in the presence of faults, memory usage,

total time spent to add the desirable leads-to property, time spent for cycle detection (i.e.,

Line 4 in Algorithm 5.1), and time spent for breaking cycles by pruning transitions. Given

the huge size of reachable states and complexity of structure of programs in our experi-

ments, we find the experimental results quite encouraging. We note that the reason that

T R and BA behave differently as their number of processes grow is due to their different

59

Space Time(s)
reachable memory cycle pruning total

states (KB) detection transitions

BA5 104 12 0.5 2.5 3

BA10 108 18 5 18 23

BA15 1012 26 47 76 125

BA20 1016 29 522 372 894

BA25 1020 30 3722 1131 4853

T R5 102 6 0.2 0.3 0.5

T R10 105 7 13 2 15

T R15 107 10 470 10 480

T R20 109 33 2743 173 2916

T R25 1011 53 22107 2275 24382

Table 5.3: Experimental results of the symbolic heuristic.

structures, existing cycles, and number of reachable states. In particular, the state space of

T R is highly reachable and its original program has a cycle that includes all of its legitimate

states. This is not the case in BA. We also note that in case of T R, the symbolic heuristic

presented in this subsection tend to be slower than the constructive layered approach in-

troduced in [BK07b]. However, the approach in this paper is more general and has a better

potential of success than the approach in [BK07b].

60

Chapter 6

Revising Real-Time Programs

In this chapter, we focus on automated revision of real-time Unity programs. Our focus in

this chapter is mainly on addition of bounded-time leads-to properties to real-time programs.

This is due to the following two reasons:

1. the complexity of addition of other real-time Unity properties (i.e., bounded-time

unless, bounded-time stable, and bounded-time ensures) can be easily shown to be in

the same class as bounded-time leads-to, and

2. bounded-time leads-to is typically used in specifying most of the interesting properties

of real-time systems such as meeting a deadline and converging to normal behavior of

a system.

The rest of this chapter is organized as follows. In Section 6.1, we present a sound and

complete algorithm for adding a bounded-time leads-to property to a real-time program.

The complexity of this algorithm is in polynomial-time in the size of the input program’s

region graph. Then, in Section 6.2, we show that the problem of adding a bounded-time

leads-to property to a real-time program while maintaining maximum non-determinism is

NP-complete in the size of the program’s region graph even if the given program satisfies

the corresponding unbounded leads-to property. Finally, in Section 6.3, we show that the

problem of adding an interval bounded-time leads-to property to a real-time program is also

NP-complete in the size of the input program’s region graph.

61

6.1 Adding a Single Bounded-Time Leads-to Property

In this subsection, we present a sound and complete algorithm that automatically adds a

single bounded-time leads-to property to a real-time program.

Algorithm sketch. Intuitively, the algorithm works in four phases. In Phase 1, we

transform the input real-time program into a region graph and subsequently a weighted

directed graph (called MaxDelay digraph [CY91]). The property of this digraph is such

that the longest distance between any two vertices is equal to the maximum time delay

between the corresponding regions in the region graph. Then, in Phase 2, we identify a

subgraph of the MaxDelay digraph in which the desired bounded-time leads-to property is

never violated. In Phase 3, we remove deadlock regions. Finally, in Phase 4, we transform

the resultant region graph back into a real-time program.

Construction of MaxDelay digraph. We now describe how we transform a region

graph R(P) = 〈Πr
P , I

r
P〉 into a MaxDelay digraph G = 〈V ,A〉. Vertices of G consist of the

regions in R(P).

Notation: We denote the weight of an arc (v0, v1) ∈ A by Weight(v0, v1). Let γ : Sr
P ↔ V

denote a bijection that maps each region r ∈ Sr
P to its corresponding vertex in G and vice

versa, i.e., γ(r) is a vertex of G that represents region r of R(P) and γ−1(v) is the region

of R(P) that corresponds to vertex v in V . Let Γ : 2S
r
P ↔ 2V be a bijection that maps a

region predicate in R(P) to the corresponding set of vertices of G and let Γ−1 be its inverse.

Finally, for a boundary region r with respect to clock variable x, we denote the value of x

by r.x (equal to some nonnegative integer).

Arcs of G consist of the following:

• Arcs of weight 0 from v0 to v1, if γ−1(v0)→ γ−1(v1) represents an immediate transition

in R(P).

• Arcs of weight c′−c from v0 to v1, where c, c′ ∈ Z≥0 and c′ > c, if γ−1(v0) and γ−1(v1)

are both boundary regions with respect to clock variable x, such that γ−1(v0).x = c,

γ−1(v1).x = c′, and there is a path in R(P) from γ−1(v0) to γ−1(v1) which does not

reset x.

62

Algorithm 6.1 Add rtUNITY

Input: real-time program 〈ΠP , IP〉 and bounded leads-to property P 7→τ Q.
Output: revised program 〈ΠP ′ , IP ′〉.

1: Let ct := τ where t is a new clock variable; {Phase 1}
2: ∀((l0, ν)→ (l1, ν[λ := 0])) ∈ δp | (l0 6∈ P ∧ l1 ∈ P) : λ := λ ∪ {t};
3: 〈Πr

P , I
r
P〉, P

r, Qr := ConstructRegionGraph(〈ΠP , IP〉, P,Q);
4: IsQRemoved := false;
5: 〈V ,A〉 := ConstructMaxDelayGraph(R(P));
6: 〈V ′, A′〉 := ConstructSubgraph(〈V ,A〉, P r, Qr, τ); {Phase 2}
7: T r

P ′ := {(r1, r2) ∈ T
r
P | (γ(r1), γ(r2)) ∈ A

′ ∨
∃r0 : Weight(γ(r0), γ(r1)) = 1− ǫ};

(∃r0 ∈ S
r
P : (∀r1 ∈ S

r
P : (r0, r1) /∈ T

r
P ′)) {Phase 3} (r0 ∈ Q

r)
8: IsQRemoved := true;
9: Qr := Qr − {r0};

10: T r
P := T r

P − {(r, r0) | (r, r0) ∈ T
r
P};

11: break;
(r0 /∈ I

r
P)

12: T r
P ′ := T r

P ′ − {(r, r0) | (r, r0) ∈ T
r
P ′};

13: declare that addition is not possible;
14: exit();

(IsQRemoved = false);
15: ConstructRealTimeProgram(〈Πr

P ′ , Ir
P ′〉); {Phase 4}

• Arcs of weight c′ − c − ǫ from v0 to v1, where c, c′ ∈ Z≥0, c
′ > c, and 0 < ǫ ≪ 1,

if (1) γ−1(v0) is a boundary region with respect to clock variable x, (2) γ−1(v1) is

an open region whose time-successor γ−1(v2) is a boundary region with respect to

clock variable x, (3) γ−1(v0)→ γ−1(v1) represents a delay transition in R(P), and (4)

γ−1(v0).x = c and γ−1(v2).x = c′.

• Self-loop arcs of weight ∞ at vertex v, if γ−1(v) is an end region.

In order to compute the maximum time delay between region predicates P r and Qr, it

suffices to find the longest distance between Γ(P r) and Γ(Qr) in G. In our addition algo-

rithm, the procedure ConstructMaxDelayGraph transform a region graph R(P) = 〈Πr
P , I

r
P〉

into a MaxDelay digraph G = 〈V ,A〉 as a black box.

The addition algorithm. We now describe the algorithm Add rtUNITY in details (see

Algorithm 6.1):

• (Phase 1) First, in order to keep track of time elapsed since P has become true

63

Procedure 6.2 ConstructSubgraph

Input: MaxDelay digraph 〈V ,A〉, set of vertices Vp and Vq , and an integer τ .
Output: a subgraph 〈V ′, A′〉.

1: V ′ := V ;
2: A′ := {}; each vertex v in Vp the length of the shortest path Π from v to Vq is at most
τ

3: A′ := A′ ∪ {a | a is on Π};
4: A′ := A′ ∪ {(u, v) ∈ A | (∀w ∈ V ′ : (w, u) /∈ A′) ∨ (u ∈ Vq)};
5: 〈V ′, A′〉;

in a computation, we add an extra clock variable t to XP and reset it on immediate

transitions whose source state is not in P and target state is in P (Lines 1-2). Next, we

construct the region graph R(P) = 〈Πr
P , I

r
P〉 (Line 3). We now reduce our problem to

the problem of bounding the length of the longest path in ordinary weighted digraphs.

Towards this end, we first generate the MaxDelay digraph 〈V ,A〉 (Line 6).

• (Phase 2) Next, we invoke the procedure ConstructSubgraph (Line 7) which takes a

MaxDelay digraph 〈V ,A〉, an integer τ , and two sets of vertices Vp and Vq as input

and generates a subgraph of 〈V ,A〉, namely 〈V ′, A′〉, whose length of longest path

from every vertex in Vp to Vq is bounded by τ (see Procedure 6.2). We begin with an

empty set of arcs (Line 2). Next, we include arcs that participate in the shortest path

from each vertex in Vp to a vertex in Vq provided the length of the path is at most τ

(Lines 3-7). Then, we add the rest of the arcs to 〈V ′, A′〉 (Line 8) except the ones that

originate from a shortest path from Vp to Vq identified in Lines 3-7. After invoking

ConstructSubgraph, we transform 〈V ′, A′〉 back into a region graph R(P ′) = 〈Πr
P ′ , Ir

P ′〉

(Line 8 in Algorithm 6.1).

• (Phase 3) We now remove deadlock regions (created due to pruning of arcs in Phase

2) from R(P ′) (Lines 9-22). However, we need to consider a special case where a

region r0 in Qr becomes a deadlock region (Lines 10-15). In this case, it is possible

that all the regions along a path that starts from some region, say r, in P r and end in

r0 become deadlock regions. Hence, our algorithm needs to identify a new path from

r to a region in Qr other than r0. Thus, in such a case, we remove r0 from Qr (Lines

12-13) and rerun the algorithm from scratch. If an initial region becomes a deadlock

region, we declare failure (Lines 18-20).

64

• (Phase 4) Finally, we construct and return a real-time program out of the region

graph R(P ′) with revised set of edges T r
P ′ (Lines 24).

Level of non-determinism. In order to increase the level of non-determinism, we may

include additional paths whose length is at most τ . However, every time we add a path, we

need to test whether or not this path creates new paths of length greater than τ . To this

end, we can use one of the algorithms in the literature of graph theory (e.g., [Epp99]) to

find and add the k shortest paths in an ordinary weighted digraph.

Theorem 6.1.1 The algorithm Add rtUNITY is sound and complete.

Proof. In order to prove soundness, we show that the outcome of the algorithm meets

the constraints of Problem Statement 3.2.1. Since we do not add new states or transitions,

constraints C1-C3 are trivially satisfied. Moreover, by construction, the algorithm only

includes states in P from where all computations can reach a state in Q within τ time

units. Finally, since the algorithm removes deadlock regions, it does not introduce new

time-convergent behaviors to the input program. Therefore, the output of the algorithm

satisfies constraint C4 as well.

In order to prove the completeness, we show that if an initial state becomes a dead-

lock state, this state is deadlocked in all real-time programs that satisfy the constraints

of Problem Statement 3.2.1. Observe that the only states that our algorithm may make

unreachable are states in P from where there does not exist a computation that reaches a

state in Q within τ . Clearly, such states cannot be present in any program that satisfies

the constraints of Problem Statement 3.2.1. Moreover, if a state, say s1, in P becomes

unreachable by removing all its incoming transitions, it is possible that some other state,

say s0, becomes a deadlock state. Likewise, such a state cannot be present in any program

that satisfies the constraints of Problem Statement 3.2.1. If s0 is an initial state then our

algorithm declares failure. Notice that in this case, there exists no solution to the Problem

Statement 3.2.1.

Theorem 6.1.2 The complexity of Add rtUNITY algorithm is polynomial-time in the size

of the input program’s region graph.

Proof. Observe that the algorithm Add rtUNITY first generates the region graph of the

input program. Then, it performs a sequence of polynomial-time procedures (e.g., reach-

65

ability analysis and finding shortest paths) in the size of the region graph. Hence, the

complexity of our algorithm is in polynomial-time in the size of the input program’s region

graph.

6.1.1 Example: Real-Time Resource Allocation

We now demonstrate how the algorithm Add rtUNITY works using an example on a real-

time resource allocation program. The program RA consists of two processes j, where

j ∈ {1, 2}. Each process needs two steps to complete and each step needs 1 time unit to

complete. In the first step, the process submits a request for a resource. In the second step,

the process performs an I/O operation using the acquired resource. Also, only one step is

being executed at a time. The timed actions of RA are as follows:

RA1j :: req .j ∧ (x = 1)
{x}
−−→ io.j, req .j := true, false;

RA2j :: io.j ∧ (x = 1)
{x}
−−→ req .j, io.j := true, false;

RA3 :: 0 ≤ x ≤ 1 −−→ wait;

where j ∈ {1, 2}. Clearly, inRA, each process may keep acquiring a resource and performing

I/O operation by an unbounded time duration. However, we would like to ensure that

process j = 1 performs its I/O operation within 2 time units after acquiring the resource.

To this end, we add the bounded-time leads-to property L ≡ (io.1 7→2 req .1). Based on

what the algorithm Add rtUNITY prescribes, we first need to add a new clock variable t and

reset it whenever io.1 becomes true. Moreover, we let ct = 2 when generating the region

graph (see Figure 6.1). Next, we add the shortest path (the bold edges in Figure 6.1) from

each region where io.1 becomes true to a region where req .1 holds. Subsequently, we can

add additional k shortest paths (the zigzag edges in Figure 6.1) that preserve L. It is easy

to see that the algorithm Add rtUNITY prunes dotted edges in Figure 6.1. Also, the regions

shown in dotted circles are made unreachable by Add rtUNITY due to removal of the dotted

edges. Thus, the timed guarded commands of the revised program are as follows:

RA11 :: req .1 ∧ (x = 1)
{x,t}
−−−→ io.1, req .1 := true, false;

RA21 :: io.1 ∧ (x = 1)
{x}
−−−→ req .1, io.1 := true, false;

RA12 :: req .2 ∧ (x = 1) ∧ (io.1⇒ t ≤ 1)
{x}
−−−→ io.2, req .2 := true, false;

RA22 :: io.2 ∧ (x = 1) ∧ (io.1⇒ t ≤ 1)
{x}
−−−→ req .2, io.2 := true, false;

66

req.1

0 < x, t < 1

req.2

req.1

x, t = 0

req.2

req.1

x, t = 1

req.2

io.1

x, t = 0

req.2

req.1

x, t = 0, 1

io.2

req.1

0 < x < 1

1 < t < 2

io.2

req.1

x, t = 1, 2

io.2

io.1

0 < x, t < 1

req.2

io.1

x, t = 0

io.2

io.1

x = 0, t >

req.2

io.1

x = 1, t > 2

req.2

io.1

x = 0, t > 2

io.2

req.1

0 < x < 1

t > 2

req.2

req.1

x = 0, t > 2

req.2

req.1

x = 1, t > 2

req.2

io.1

0 < x < 1

t > 2

io.2

req.1

x = 0, t > 2

io.2

req.1

0 < x < 1

t > 2

io.2

req.1

x = 1, t > 2

io.2

io.1

x, t = 0, 2

io.2

req.1

x, t = 0, 2

req.2

req.1

x, t = 0, 1

io.2

req.1

0 < x < 1

1 < t < 2

io.2

req.1

x, t = 1, 2

io.2

req.1

x, t = 0, 2

io.2

req.1

x, t = 0, 1

req.2

req.1

0 < x < 1

1 < t < 2

req.2

req.1

x, t = 1, 2

req.2

Regions where

io.1 becomes true

Edges removed

during addition

Regions made

unreachable

Legend

Initial region

Edges participating

in a shortest path

io.1

x, t = 0, 1

req.2

io.1

x, t = 1

io.2

io.1

0 < x < 1

1 < t < 2

req.2

io.1

x, t = 1, 2

req.2

Edges in additional

shortest paths

io.1

x, t = 1

req.2

io.1

x, t = 0,1

io.2

io.1

0 < x < 1

1 < t < 2

io.2

io.1

x, t = 1, 2

io.2

io.1

x, t = 0, 2

req.2

io.1

x = 1, t > 2

io.2

io.1

0 < x < 1

t > 2

req.2

io.1

0 < x, t < 1

io.2

F
igu

re
6.1:

R
egion

grap
h

of
th

e
real-tim

e
resou

rce
allo

cation
p
rogram

.

67

RA3 : 0 ≤ x ≤ 1 −−−→ wait;

Notice that if we only add the shortest paths from regions where io.1 becomes true, i.e.,

we do not add additional shortest paths, then in the resulting program, the second conjunct

in timed actions RA12 and RA22 would be replaced with io.1 = false. In this case, we

would force the program to always execute the second step of process j = 1 (i.e., timed

action RA21) immediately after the first step (i.e., timed action RA11).

We refer the reader to [BK06a] for another example on revising a controller for a railroad

crossing gate which originally exhibits unbounded wait.

6.2 Revising Real-Time UNITY Programs with Maximum

Non-determinism

In this section, we show that the problem of adding a bounded-time leads-to property to

a real-time program while maintaining maximum non-determinism is NP-complete in the

size of the program’s region graph even if the given program satisfies the corresponding

unbounded leads-to property.

Instance. Region graph R(P) = 〈Πr
P , I

r
P〉 of a real-time program P, a bounded-time

leads-to property L ≡ (P 7→τ Q), and a positive integer k, where P satisfies P 7→ Q and

|T r
| ≥ k.

The decision problem (MNBL). Given the above instance, does there exist a region

graph R(P ′) = 〈Πr
P ′ , Ir

P ′〉, such that |T r
P ′ | ≥ k and R(P ′) meets the constraints of Problem

Statement 3.2.1?

We now prove that MNBL is NP-complete by a reduction from the vertex splitting

problem [PRS94, PRS98] in weighted directed acyclic graphs (DAG). This problem is

described next.

The DAG Vertex Splitting Problem (DVSP). Let G = 〈V,A〉 be a weighted DAG

and vsc, vtg be unique source and target vertices in V where the indegree of vsc and the

outdegree of vtg are zero. Let G/Y denote the DAG when each vertex v ∈ Y is split into

68

vertices vin and vout such that all arcs (v, u) ∈ A, where u ∈ V , are replaced by arcs of

the form (vout , u) and all arcs (w, v) ∈ A, where w ∈ V , are replaced by arcs of the form

(w, vin). In other words, the outgoing arcs of v now leave vertex vout while the incoming

arcs of v now enter vin , and, there is no arc between vin and vout . The DAG vertex splitting

problem is to find a vertex set Y , where Y ⊆ V and a positive integer i, where |Y | ≤ i, such

that the length of the longest path of G/Y from vsc to vtg is bounded by a pre-specified

value d. DVSP is known to be NP-complete [PRS94, PRS98], for the case where d ≥ 2 and

the weight of all arcs is 1.

Theorem 6.2.1 The problem of adding a bounded-time leads-to property to a real-time

program is NP-complete in the size of the program’s region graph even if the program satisfies

the corresponding unbounded leads-to property.

Proof. Since membership to NP is trivial, we show that the problem is NP-hard.

Mapping. Let G = 〈V,A〉 be any instance of DVSP whose longest path is to be

bounded by d. We construct now a real-time program MP (and as a result the region

graph R(MP) = 〈Πr
MP , I

r
MP〉) in the form of timed guarded commands as follows. Let the

set of discrete and clock variables of MP be the singletons {l} and {x}, respectively. For

each vertex v ∈ V − {vtg} and for the target vertex vtg , we introduce the following timed

guarded commands:

MPv.1 :: (l = vin) ∧ (x = 0) ∧ (l 6= vin
tg) −−→ l := vout ;

MPv.2 :: (l = vin) ∧ (x = 0) ∧ (l 6= vin
tg) −−→ l := vout

tg ;

MPvtg.n.1 :: (l = vin
tg) ∧ (x = 0) −−→ l := tmptg.n;

MPvtg.n.2 :: (l = tmptg.n) ∧ (x = |A|+ 1− d)
{x}
−−→ l := vout

tg ;

MPvtg
:: (l = vout

tg) ∨

((l = tmptg.n) ∧ (0 ≤ x ≤ |A|+ 1− d)) −−→ wait;

for all 1 ≤ n ≤ 2|V |. For the source vertex vsc, we let vin
sc = vout

tg . Also, for each arc (u, v)

in A, we introduce the following timed guarded commands toMP:

MP(u,v).j.1 :: (l = uout) ∧ (x = 0) −−→ l := tmp(u,v).j ;

MP(u,v).j.2 :: (l = tmp(u,v).j) ∧ (x = 1)
{x}
−−→ l := vin ;

MP(u,v) :: (l := tmp(u,v).j) ∧ (0 ≤ x ≤ 1) −−→ wait;

69

for all j, where 1 ≤ j ≤ 2|V |. Intuitively, for each arc (u, v) ∈ A, the discrete vari-

able l in program MP is assigned one of the following values: vin , vout , uin , uout , or

tmp(u,v).1 · · · tmp(u,v).2|V |. Clearly, the value of l along with the clock regions identify Sr
MP .

The set of initial regions of R(MP) is the singleton Ir
MP = {(l = vin

sc , x = 0)}. The set

T r
MP of edges is identified by the above set of timed guarded commands. Finally, we let

P = {s | l(s) = vin
sc}, Q = {s | l(s) = vout

tg }, k = |T r
MP | − i, and τ = |A| + 1. Observe that

all computations ofMP start from where P holds and eventually reach Q, as G is acyclic.

Hence,MP satisfies P 7→ Q. We note that since vsc and vtg are unique vertices in G, Q is

reachable from all states inMP and, hence,MP satisfies true 7→ Q as well.

Reduction. We need to show that a vertex v ∈ Y in G must be split iff the corresponding

timed guarded command (l = vin) ∧ (x = 0) ∧ (l 6= vin
tg)→ l := vout must be removed from

MP:

• (⇒) Let the answer to DVSP be the set Y , where |Y | ≤ i, i.e., after splitting all

vertices v ∈ Y , the length of the longest path in G is at most d. We obtain the

region graph R(MP ′) = 〈Πr
MP ′ , Ir

MP′〉 as follows. First, we let Sr
MP ′ = Sr

MP and

Ir
MP ′ = Ir

MP . In order to obtain T r
MP ′ , we remove the edges that correspond to timed

actionMPv.1 from T r
MP , for all v ∈ Y . Since vtg is the unique target vertex in G, Q

remains to be the set {s | l(s) = vout
tg } inMP ′. Thus, any computation ofMP ′ that

begins from a state in P will reach Q. Now, we show that the maximum time delay

to reach Q is τ . Observe that there are two ways to reach Q: (1) from the state where

l = vin
tg (using timed actions MPvtg.n.1 and MPvtg.n.2 for some n, 1 ≤ n ≤ 2|V |), and

(2) from a state where l 6= vin
tg (using the immediate transition in timed actionMPv.2

for some v ∈ V). In the former case, the delay in reaching the state where l = vin
tg

is less than d and since the time delay of timed actions MPvtg.n.1 and MPvtg.n.2 is

|A|+1−d, the total time delay to reach Q is at most |A|+1 = τ . In the latter case, by

construction, the delay to reach Q is at most τ . Moreover, recall that k = |T r
MP | − i.

Therefore, MP ′ meets the constraints of Problem Statement 3.2.1 with respect to L

and |T r
MP ′ | ≥ |T r

MP | − i = k.

• (⇐) Let the answer to MNBL be R(MP ′) = 〈Πr
MP ′ , Ir

MP′〉, where |T r
MP′ | ≥ k

and the maximum delay to reach Q from P is at most τ . Note that Ir
MP′ must be

{(l = vin
s , x = 0)}. Observe that in order to obtain R(MP ′), removing one or more

70

timed guarded commands MP(u,v).j.1, MP(u,v).j.2, MPvtg.n.1 , or MPvtg.n.2 does not

contribute in bounding the maximum delay. This is due to the fact that the number

of edges removed from T r
MP is at most |T r

MP | − k, and k = |T r
MP | − i, where i ≤ |V |,

and there are 2|V | of such guarded commands and, hence, their removal would not

change the maximum delay. Thus, we can assume that the edges removed are of the

form (l = vin)∧(x = 0)∧(l 6= vin
tg)→ l := vout . Observe that in order to reach Q from

P , a computation either takes a timed guarded commandMPv.2 for some v ∈ V , or it

reaches Q via the state where l = vin
tg . Clearly, in the later case, the delay to reach the

state where l = vin
tg is at most τ−(|A|+1−d) = d. In the former case, the corresponding

path in G does not exist and, hence, its length does not matter. Thus, the timed

actions removed to obtain T r
MP ′ identify the set Y of vertices that should be split in

G, i.e, Y = {v ∈ V −{vtg} | ((l = vin , x = 0)→ (l = vout , x = 0)) ∈ (T r
MP−T

r
MP′)}.

6.3 Adding Interval-Bounded Leads-to Properties

In this section, we consider automatic addition of interval bounded-time leads-to prop-

erties to real-time programs. An interval bounded-time leads-to property is of the form

LI ≡ (P 7→≤[δ1,δ2] Q), where δ1 > 0. This property expresses computations where if P

becomes true then Q must becomes true within δ2 time units but not earlier than δ1

time units. As a naive solution, let us apply the algorithm Add rtUNITY to add LI to a

real-time program. Since the required response time has a lower bound, the subroutine

ConstructSubgraph has to first enumerate and ignore all the paths that start from P and

reach Q such that their length is less than δ1. Obviously, this enumeration cannot be

accomplished in polynomial-time in the size of the region graph. In fact, we show that the

problem of adding an interval bounded-time leads-to property to a real-time program is

NP-complete by a simple reduction from the longest path problem [GJ79].

Instance. Region graph R(P) = 〈Πr
P , I

r
P〉 of a real-time program P and an interval

bounded-time leads-to property SPEC n ≡ (P 7→≤[δ1,δ2] Q).

The decision problem (IBRA). Given the above instance, does there exist a region

graph R(P ′) = 〈Πr
P ′ , Ir

P ′〉 such that R(P ′) meets the constraints of the Problem Statement

71

3.2.1?

The longest path problem. Given are a directed weighted graph G = 〈V ,A〉, a

source vertex vs, a target vertex vt, and an integer k. The problem is to determine whether

or not there exists a simple path in G, i.e., a sequence of distinct vertices v1, v2, . . . , vm,

such that v1 = vs, vm = vt, and
∑m−1

i=1 Weight(vi, vi+1) ≥ k, where (vi, vi+1) ∈ A for all i,

1 ≤ i ≤ m− 1.

Theorem 6.3.1 The problem of adding an interval bounded-time leads-to property to a

real-time program is NP-complete in the size of the the program’s region graph.

Proof. First, we map an instance of the longest path problem to an instance of the IBRA

problem as follows. Let the set of discrete and clock variables of P be the singletons {l}

and {x}, respectively. For each edge (u, v) ∈ A, we include the following timed guarded

commands in P:

P1(u,v) :: (l = u) ∧ (x = Weight(u, v))
{x}
−−→ l := v;

P2(u,v) :: (l = u) ∧ (x ≤Weight(u, v)) −−→ wait;

We also include the following delay action to ensure that all communications are infinite:

P3 :: (l = vt) −→ wait;

Moreover, we let P = {s | l(s) = vs}, Q = {s | l(s) = vt}, δ2 =∞, and δ1 = k, where k is the

bound on the length of the longest path in the instance of the longest path problem. Clearly,

the value of l along with the clock regions identify Sr
PP. We also let IP = {vs}. Now, we

show that G has a path of length of at least k from vs to vt iff there exists R(P ′) = 〈Πr
P ′ , Ir

P ′〉

such that it meets the constraints of the Problem Statement 3.2.1. It is easy to see that if

there exists a path in G from vs to vt whose length is greater than or equal to k then we

can construct R(P ′) using the corresponding computation in P plus the delay action P3.

Moreover, if the answer to IBRA is affirmative then there exists a computation in R(P ′)

which starts from P and reaches Q after δ1 time units. Hence, the answer to the longest

path problem is affirmative as well.

72

Part III

Revising Programs in Open

Systems

73

In Part II of this dissertation, we assumed that the program to be revised does not

interact with the environment in any ways. In Parts III and IV of the dissertation, we

consider open systems where programs do interact with the environment. To this end,

we model such interactions via augmenting program computations with transitions that

are uncontrollable by the program and cause unanticipated time delays, state corruptions,

or clock resets. We refer to these uncontrollable transitions as faults. Thus, the notion

of program revision in the context of open systems informally translates to synthesizing

fault-tolerant programs as follows:

Given are a fault-intolerant program P, a set F of faults, and a specification

SPEC , where P refines SPEC in the absence of F , but P does not refine

SPEC in the presence of F . The problem is whether or not it is possible to

automatically revise P inside the state space of P such that the revised program

is fault-tolerant in the sense that P refines SPEC in the absence and presence

of F .

Throughout the dissertation, we refer to this problem as synthesizing fault-tolerant programs

or addition of fault-tolerance and we consider various levels of fault-tolerance in order to

study the problem.

This part is organized as follows. First, in Chapter 7, we present the type of safety and

liveness properties that we consider in this part. We present our fault model and the notion

of levels of fault-tolerance as well. We also formally state the problem of revising programs

in open systems in Chapter 7. Following the problem statement, we present our results on

the complexity of revising programs in open systems in Chapters 8-12. More specifically,

in Chapter 8, we present our results on the complexity of transforming fault-intolerant

real-time programs to fault-tolerant real-time programs. Chapter 9 is dedicated to the

concept of synthesizing bounded-time phased recovery in fault-tolerant real-time programs.

Chapter 10 studies a decomposition method for facilitating verification of (automatically

synthesized or manually designed) fault-tolerant real-time programs. In Chapter 11, we

present symbolic (BDD-based) heuristics for adding fault-tolerance to distributed programs.

Finally, in Chapter 12, we present our tool Sycraft, which can transform a fault-intolerant

distributed program to a fault-tolerant program.

74

Chapter 7

The Revision Problem in Open

Systems

In this chapter, we formalize the problem of revising programs in open systems. This chapter

is organized as follows. Section 7.1 is dedicated to present the type of specifications that

we consider in revising programs in open systems. Then, in Section 7.2, we introduce our

fault model and the notion of levels of fault-tolerance. Finally, in Section 7.3, we formally

state the revision problem.

7.1 Basic Concepts

Since programs in open systems are subject to faults, they may reach states that are un-

reachable by program transitions alone. Thus, the notion of closure needs to be defined.

Intuitively, by closure of a state predicate S in a transition predicate T , we mean that (1)

if an immediate transition in T originates in S, then it must terminate in S as well, and (2)

if a delay transition of T originates in S, then it must remain in S continuously.

Definition 7.1.1 (closure) A state predicate S is closed in transition predicate T iff

(∀(σ0, σ1) ∈ T
s : ((σ0 ∈ S) ⇒ (σ1 ∈ S))) ∧

(∀(σ, δ) ∈ T d : ((σ ∈ S) ⇒ ∀ǫ ∈ R≥0 | (ǫ ≤ δ) : σ + ǫ ∈ S)).

Following Definitions 7.1.1 and 2.1.6, by closure of a program P in a state predicate S,

we mean the closure of its transition predicate TP in S. The concept of closure applies to

processes in the obvious way.

75

In Chapter 2, we defined what we mean by a program refining a specification. In

the context of open systems, it is crucial to augment the notion of closure in refinement.

To this end, we introduce the concept of satisfaction which is stronger than refinement.

Moreover, in order to reason about the correctness of programs in the absence of faults,

we incorporate invariance properties of programs. Intuitively, an invariant predicate is one

from where the execution of a program is closed and the program refines its specification.

More specifically, we use invariant predicates to specify (1) closure properties, and (2) initial

states of programs. Thus, given a program P = 〈ΠP , IP〉, in Parts III and IV, the state

predicate IP denotes an invariant predicate and we rename this predicate by InvP . Below,

we formally define the notions of specification satisfaction and invariant.

Definition 7.1.2 (satisfies) Let P = 〈ΠP , InvP〉 be a program and SPEC be a specifi-

cation for P. We write P |=InvP
SPEC and say that P satisfies SPEC from InvP iff (1)

InvP is closed in TP , and (2) P refines SPEC .

Definition 7.1.3 (invariant) Let P = 〈ΠP , InvP〉 be a program and SPEC be a spec-

ification for P. If P |=InvP
SPEC , we say that InvP is an invariant predicate of P for

SPEC .

Whenever the specification is clear from the context, we will omit it; thus, “InvP is an

invariant of P” abbreviates “InvP is an invariant of P for SPEC ”. Note that Definition

7.1.2 introduces the notion of satisfaction with respect to infinite computations. In case of

finite computations, we characterize them by determining whether they can be extended to

an infinite computation in the specification using the following definition.

Definition 7.1.4 (maintains) Let P = 〈ΠP , InvP〉 be a program and SPEC be a

specification for P. We say that P maintains SPEC from InvP iff (1) InvP is closed in

TP , and (2) for all computation prefixes α of P that start from a state in InvP , there exists

a computation suffix β such that αβ ∈ SPEC . We say that P violates SPEC iff it is not

the case that P maintains SPEC .

We note that if P = 〈ΠP , InvP〉 satisfies SPEC from InvP , then P maintains SPEC

from InvP as well, but the reverse direction does not always hold. We introduced the notion

of maintains for computations that a (fault-intolerant) program cannot produce, but the

76

computation can be extended to one that is in SPEC by adding recovery. We now present

the type of specifications we consider in Part III of the dissertation.

7.1.1 The Type of Specifications in Part III

In order to express time-related behaviors of real-time programs (e.g., deadlines and recovery

time), we focus on a standard property typically used in real-time computing known as the

bounded-time response property (or simply bounded response).

Definition 7.1.5 (bounded response property) Let P and Q be two state predicates

and δ be a nonnegative integer. A bounded response property, denoted P 7→≤δ Q, is the set

of all computations (σ0, τ0)→ (σ1, τ1)→ · · · in which, for all i ∈ Z≥0, if σi ∈ P , then there

exists j, j ≥ i, such that (1) σj ∈ Q, and (2) τj − τi ≤ δ. In other words, it is always the

case that a state in P is followed by a state in Q within δ time units. We call P the event

predicate, Q the response (or recovery) predicate, and δ the response (or recovery) time.

Similar to Part II, the specifications considered in Part III are an intersection of a safety

specification and a liveness specification [AS85, Hen92]. In particular, we concentrate on

a special case where the specification is the intersection of (1) timing independent safety

characterized by a set of bad instantaneous transitions (denoted SPEC bt), (2) timing de-

pendent safety characterized by a set of bounded response properties (denoted SPEC br),

and (3) liveness (see Definition 2.2.5). Recall that we assume that the set of variables and

their respective domains of a program and its specification are identical.

Definition 7.1.6 (safety specifications)

1. (timing independent safety) Let SPEC bt be a finite set of instantaneous bad transitions

of the form (s0, ν)→ (s1, ν[λ := 0]), where s0 and s1 are two locations and λ is set of

clock variables. We denote the specification whose computations have no transition

in SPEC bt by SPEC bt.

2. (timing constraints) We denote SPEC br by the conjunction
∧m

i=0(Pi 7→≤δi
Qi), where

for all i, 0 ≤ i ≤ m, Pi and Qi are two state predicates, and δi ∈ Z≥0.

Thus, given a specification SPEC , one can implicitly identify SPEC bt and SPEC br as

defined above. Throughout the paper, SPEC br is meant to prescribe how a program should

77

meet its timing constraints such as providing bounded-time recovery to its normal behavior

after the occurrence of faults. We formally define the notion of recovery in Section 7.2.

As far as liveness specification, we require that our revision methods preserve liveness

properties of the input program. Thus, liveness properties need not be specified explicitly.

7.1.2 Example

Real-time traffic controller. We presented the timing independent safety specification

of the real-time traffic controller program in Subsection 2.2.1. One invariant predicate for

T C is the following:

InvT C = ∀i ∈ {0, 1} :

[(sig i = G) ⇒ ((sigj = R) ∧ (xi ≤ 10) ∧ (zi > 1))] ∧

[(sig i = Y) ⇒ ((sigj = R) ∧ (yi ≤ 2) ∧ (zi > 1))] ∧

[((sig i = R) ∧ (sigj = R))

⇒ ((zi ≤ 1) ⊕ (zj ≤ 1))],

where j = (i + 1) mod 2 and ⊕ denotes the exclusive-or operator. It is straightforward

to see that T C satisfies SPEC btT C
(defined in Subsection 2.2.1) from IT C . We present the

timing constraints of T C in Section 7.2.

Distributed Byzantine agreement. We presented the safety specification of the

Byzantine agreement program BA in Subsection 2.2.1. One possible invariant predicate of

BA consists of the following sets of states:

1. First, we consider the set of states where the general is non-Byzantine. In this case:

• one of the non-general processes may be Byzantine,

• if a non-general process, say j, is non-Byzantine, it is necessary that d.j be

initialized to either ⊥ or d.g, and

• a non-Byzantine process cannot finalize its decision if its decision equals ⊥.

2. We also consider the set of states where the general is Byzantine. In this case, g can

change its decision arbitrarily. It follows that other processes are non-Byzantine and

d.j, d.k and d.l are initialized to the same value that is different from ⊥.

Thus, the invariant predicate is as follows:

78

InvBA = ¬b.g ∧ (¬b.j ∨ ¬b.k) ∧ (¬b.k ∨ ¬b.l) ∧ (¬b.l ∨ ¬b.j) ∧

(∀p ∈ {j, k, l} : ¬b.p ⇒ (d.p = ⊥ ∨ d.p = d.g)) ∧

(∀p ∈ {j, k, l} : (¬b.p ∧ f.p) ⇒ (d.p 6= ⊥)) ∨

(b.g ∧ ¬b.j ∧ ¬b.k ∧ ¬b.l ∧ (d.j = d.k = d.l ∧ d.j 6= ⊥))

An alert reader can easily verify that BA satisfies SPEC btBA
from InvBA.

Notice that in case of both the traffic controller and Byzantine agreement programs,

the invariant predicate is a superset of the initial states introduced in Subsections 2.1.2 and

2.1.3. This should clarify the double role of invariant predicates for specifying both closure

properties and (initial) states starting from where the program satisfies its specification.

7.2 Fault Model and Fault-Tolerance

In this section, we generalize formal definitions of faults and fault-tolerance due to Arora

and Gouda [AG93], and Kulkarni [Kul99].

7.2.1 Fault Model

The faults that a program is subject to are systematically represented by a transition

predicate. Precisely, a class of faults F for program P = 〈ΠP , InvP〉 is a transition predicate

in the state space of program P, i.e., F ⊆ SP × SP . Thus, similar to program transitions,

faults are classified by immediate faults and delay faults. We use P[]F to denote the program

P in the presence of faults F . Hence, transitions of program P in the presence of F is

obtained by taking the union of the transitions in TP and the transitions in F .

We emphasize that such representation is possible notwithstanding the type of the faults

(be they stuck-at, crash, fail-stop, timing, performance, Byzantine, message loss, etc.), the

nature of the faults (be they permanent, transient, or intermittent), or the ability of the

program to observe the effects of the faults (be they detectable or undetectable).

Just as we introduced the notion of invariant for reasoning about the correctness of

programs in the absence of faults, we introduce the notion of fault-span to reason about

program correctness in the presence of faults.

Definition 7.2.1 (fault-span) Let P = 〈ΠP , InvP〉 be a program and F be a set of

faults. We say that a state predicate SP is an F -span (read as fault-span) of P from InvP

79

iff the following conditions are satisfied:

1. InvP ⊆ SP , and

2. SP is closed in TP ∪ F .

Observe that for all computations of P that start from states where InvP is true, SP

is a boundary in the state space of P up to which (but not beyond which) the state of P

may be perturbed or delayed by the occurrence of the transitions in F . Subsequently, as we

defined the computations of P, one can define computations of program P in the presence

of faults F by simply substituting TP with TP ∪ F in Definition 2.1.7.

7.2.2 Levels of Fault-Tolerance

Obviously, in the absence of faults, a program should satisfy its specification. In the presence

of faults, however, it may not satisfy the entire specification and, hence, it may satisfy some

(possibly) weaker tolerance specification. These specifications are based on satisfaction of

a combination of timing independent safety, liveness, timing constraints, and a desirable

bounded-time recovery mechanism. Intuitively, we consider three levels of fault-tolerance,

namely, nonmasking, failsafe, and masking based on satisfaction of timing independent

safety (i.e., SPEC bt in Definition 7.1.6) and liveness (i.e., recovery to the program invariant)

properties in the presence of faults. For failsafe and masking fault-tolerance, we propose

two additional levels, namely, soft and hard, based on satisfaction of timing constraints (i.e.,

SPEC br in Definition 7.1.6) in the presence of faults.

In order to motivate the idea of soft and hard fault-tolerance, let us consider the railroad

crossing problem. Suppose that a train is approaching a railroad crossing. The timing-

independent safety specification requires that :

“if the train is crossing, the gate must be closed.”

Obviously, this requirement is not time-related. In addition to this requirement, a timing

constraint requires that:

“once the gate is closed, it should reopen within 5 minutes.”

In this example, it may be catastrophic if the gate is open while the train is crossing due to

occurrence of faults. To the contrary, if the gate remains closed for more than 5 minutes due

80

Timing-independent Bounded recovery Timing constraints

safety (SPEC bt) to invariant (SPEC br)

Soft-Failsafe X

Hard-Failsafe X X

Nonmasking X

Soft-Masking X X

Hard-Masking X X X

Table 7.1: Levels of fault-tolerance.

to occurrence of faults, the outcome is undesirable, but not disastrous. Thus, depending

upon the outcome of violation of a safety specification, the desired level of fault-tolerance

varies. In the railroad crossing problem, we require that the system must tolerate faults

that cause the gate to remain open while the train is crossing. We call such a system

soft fault-tolerant. Intuitively, a soft fault-tolerant program is not required to satisfy its

timing constraints in the presence of faults, but it has to meet its timing-independent

safety properties in both absence and presence of faults.

Now, consider a system that controls internal pressure of a boiler. Suppose that in this

system, the safety specification requires that:

“once a pressure gauge reads 30 pounds per square inch, the controller must

issue a command to open a valve within 20 seconds.”

In such a system, if occurrence of faults causes the controller not to respond within the

required time, the outcome may be disastrous. Thus, our boiler controller must satisfy its

timing constraints even in the presence of faults. In other words, the boiler controller must

be hard fault-tolerant. Intuitively, a hard fault-tolerant program must satisfy its timing con-

straints even in the presence of faults. In fact, in hard fault-tolerant programs, the demand

for hard real-time processing merges with catastrophic consequences of systems, whereas in

soft fault-tolerance the catastrophic consequences are not related to the program’s timing

constraints. Table 7.1 illustrates an informal description of the levels of fault-tolerance in the

context of real-time programs based on satisfaction of SPEC bt, SPEC br, and bounded-time

recovery.

We now formally define the levels of fault-tolerance. The strongest level of fault-tolerance

81

is called hard-masking. A hard-masking program satisfies its entire specification in both

absence and presence faults, i.e., it masks the occurrence of faults.

Definition 7.2.2 (hard-masking fault-tolerance) Let P = 〈ΠP , InvP〉 be a program,

F be a set of faults, and SPEC be a specification. We say that P is hard-masking F -tolerant

to SPEC from InvP with recovery time δ, δ ∈ Z≥0, iff

1. P |=InvP
SPEC bt,

2. P |=InvP
SPEC br,

3. there exists a state predicate S such that S is an F -span of P from InvP and

(a) P[]F maintains SPEC bt from S,

(b) P[]F maintains SPEC br from S, and

(c) every computation of P[]F that starts from a state in S, reaches a state in InvP

within δ time units.

We now define other levels of fault-tolerance by weakening Definition 7.2.2 based on

satisfaction of SPEC bt, SPEC br, or bounded-time recovery in the presence of faults.

Definition 7.2.3 (weaker levels of fault-tolerance)

• (Nonmasking) We say that P is nonmasking F -tolerant to SPEC from InvP with

recovery time δ, δ ∈ Z≥0, iff it meets conditions 1, 2, and 3-c of Definition 7.2.2.

• (Soft-Failsafe) We say that P is soft-failsafe F -tolerant to SPEC from InvP iff it

meets conditions 1, 2, and 3-a of Definition 7.2.2.

• (Hard-Failsafe) We say that P is hard-failsafe F -tolerant to SPEC from InvP iff

it meets conditions 1, 2, 3-a, and 3-b of Definition 7.2.2.

• (Soft-Masking) We say that P is soft-masking F -tolerant to SPEC from InvP with

recovery time δ, δ ∈ Z≥0, iff it meets conditions 1, 2, 3-a, and 3-c of Definition

7.2.2.

Notation. Given a program P = 〈ΠP , InvP〉 and a set F of faults, whenever the specification

SPEC and the invariant InvP are clear from the context, we omit them; thus, “F -tolerant”

abbreviates “F -tolerant to SPEC from InvP”.

82

7.2.3 Example

Real-time traffic controller. Our real-time traffic controller program T C is subject to

clock reset faults due to circuit malfunctions. In particular, we consider faults that reset

either z0 or z1 at any state in the invariant predicate InvT C (cf. Subsection 7.1.2), without

changing the location of T C:

F0 :: InvT C
{z0}
−−−−→ skip;

F1 :: InvT C
{z1}
−−−−→ skip;

It is straightforward to see that in the presence of F0 and F1, T C may violate SPEC btT C
.

For instance, consider the case where F1 occurs when T C is in a state of InvT C where

(sig0 = sig1 = R) ∧ (z0 ≤ 1) ∧ (z1 > 1). In the resulting state, we have (sig0 = sig1 =

R) ∧ (z0 ≤ 1) ∧ (z1 = 0). From this state, immediate execution of timed actions T C30

and then T C31 results in a state where (sig0 = sig1 = G), which is clearly a violation of

the safety specification. In Chapter 9, we present a revision algorithm for synthesizing a

fault-tolerant version of T C which ensures satisfaction of safety and provides bounded-time

phased recovery to InvT C in the presence the above faults. The phased recovery condition

can be modeled by timing constraints in the safety specification as follows. We require T C

to, first, ensure that nothing catastrophic happens and then recover to its normal behavior.

Thus, the fault-tolerant version of T C has to, first, reach a state where both signals are red

and subsequently recover to InvT C where exactly one signal turns green. Thus,

SPEC brT C
≡ (¬InvT C 7→≤3 QT C) ∧ (¬InvT C 7→≤7 InvT C),

where QT C = ∀i ∈ {0, 1} : ((sig i = R) ∧ (zi > 1)). The response times in SPEC brT C
are

simply two arbitrary numbers for illustration.

Distributed Byzantine agreement. In the context of the Byzantine agreement

problem, the fault transitions that affect a process, say j, of BA are as follows: (We include

similar actions for k, l, and g)

F0 :: ¬b.g ∧ ¬b.j ∧ ¬b.k ∧ ¬b.l −→ b.j := true;

F1 :: b.j −→ d.j, f.j := 0|1, false|true;

83

where d.j := 0|1 means that d.j could be assigned either 0 or 1. In case of the general

process, the second action does not change the value of any f -variable. It is easy to observe

that BA may violate both validity and agreement (see Subsection 2.2.1) in the presence of

F0 and F1. The program may also reach deadlock states. In Chapter 11, we present an

algorithm for synthesizing fault-tolerant distributed programs and demonstrate its applica-

tion in order to synthesize a fault-tolerant version of BA which ensures satisfaction of safety

and liveness in the presence the above faults.

7.3 Problem Statement

Given are a fault-intolerant program P = 〈ΠP , InvP〉, a set F of faults, and a specification

SPEC such that P |=InvP
SPEC . Our goal is to revise P in order to synthesize a program

P ′ = 〈ΠP ′ , InvP ′〉 such that P ′ is F -tolerant to SPEC from InvP ′ . We require that our

revision methods obtain P ′ from P by adding fault-tolerance to P without introducing new

behaviors in the absence of faults. To this end, we first define the notion of projection.

Informally, projection of a transitions predicate T on a state predicate S consists of imme-

diate transitions of T s that start in S and end in S, and delay transitions of T d that start

and remain in S continuously.

Definition 7.3.1 (projection) Projection of a set T of transitions on a state predicate

S (denoted T |S) is the following set of transitions:

T |S = {(σ0, σ1) ∈ T
s | σ0, σ1 ∈ S} ∪

{(σ, δ) ∈ T d | σ ∈ S;∧ (∀ǫ ∈ R≥0 | (ǫ ≤ δ) : σ + ǫ ∈ S)}.

Likewise, the projection of a set of edges T r
P on region predicate Sr (denoted T r

P |U
r) is

the set of edges {(r0, r1) ∈ T
r
P | r0, r1 ∈ U

r}.

Similar to the revision problem for closed systems, since meeting timing constraints in

the presence of faults requires time predictability, we let our synthesis methods incorporate

a finite set Xn of new clock variables. We denote the program obtained by removing the

clock variables in Y from XP by P\Y . Obviously, no state and transition predicate of P\Y

depend on the value of variables in Y .

Observe that in the absence of faults:

84

1. If InvP ′ contains states that are not in InvP , then P ′ may include computations that

start outside InvP ′ . Since we require that P ′ |=InvP′ SPEC , it implies that P ′ is using

a new way to satisfy SPEC . Therefore, we require that (InvP ′\Xn
) ⊆ InvP .

2. Regarding the transitions of P and P ′, we focus on transitions that occur inside

the invariant InvP ′ . If TP ′ |InvP ′ contains a transition that is not in TP |InvP ′ , then

P ′ can use this transition in order to satisfy SPEC . Therefore, we require that

(TP ′\Xn
|InvP ′\Xn

) ⊆ (TP |InvP ′\Xn
).

Thus, the revision problem in the context of open systems is as follows.

Problem Statement 7.3.2 Given a program P = 〈ΠP , InvP〉, specification SPEC , and

a set F of faults such that P |=InvP
SPEC , identify P ′ = 〈ΠP ′ , InvP ′〉 such that:

(C1) SP ′\Xn
= SP , where Xn is a finite set of new clock variables,

(C2) (InvP ′\Xn
) ⊆ InvP ,

(C3) (TP ′\Xn
|InvP ′\Xn

) ⊆ (TP |InvP ′\Xn
), and

(C4) P ′ is F -tolerant to SPEC from InvP ′ .

Obviously, the problem statement can be instantiated for different levels of fault-

tolerance introduced in Definitions 7.2.2 and 7.2.3. Notice that constraint C3 implicitly

implies that the synthesized program is not allowed to exhibit new finite computations,

which in turn means that synthesis algorithms are not allowed to create deadlock states.

Put it another way, this condition ensures that if the given intolerant program satisfies a

universally quantified property, then the synthesized fault-tolerant program satisfies it as

well.

Comparison to controller synthesis and game theory. Our formulation of the

synthesis problem is in spirit close to both controller synthesis, where program and fault

transitions may be modeled as controllable and uncontrollable actions, and game theory,

where program and fault transitions may be modeled in terms of two players. In fact, in

both problems, the objective is to restrict the program actions at each state through syn-

thesizing a controller or a wining strategy such that the behavior of the entire system is

always desirable according to safety and reachability conditions, in the presence of an ad-

versary. Notice that the conditions C1 and C2 precisely express this notion of restriction.

85

Furthermore, the conjunction of all conditions expresses the notion of language inclusion,

where the synthesized program is supposed to exhibit a subset of behaviors of the input

intolerant program. Unlike controller synthesis and game theory algorithms where arbitrary

specifications are often considered, our algorithms are tailored for properties typically used

in specifying real-time and fault-tolerance requirements and, hence, they synthesize pro-

grams more efficiently. We elaborate on comparison and contrast with controller synthesis

and game theory in Chapter 15 in detail.

86

Chapter 8

Synthesizing Real-Time

Fault-Tolerant Programs

In this chapter, we study the problem of addition of fault-tolerance to real-time fault-

intolerant programs. Recall that in Chapter 7, we defined the notion of fault-tolerance

in terms of a variety of levels based on satisfaction of timing independent safety, timing

constraints, and liveness specifications in the presence of faults. For each level of fault-

tolerance, in this chapter, we present the complexity of its addition to an input fault-

intolerant program.

The rest of this chapter is organized as follows. First, in Section 8.1, we present the

Altitude Switch program, which we use as a running demonstration throughout this chapter.

In Section 8.2, we show that there exists a polynomial-time sound and complete algorithm

for adding nonmasking fault-tolerance to a given fault-intolerant program in the size of the

intolerant program’s region graph. Then, in Section 8.3, we present a polynomial-time sound

and complete algorithm for adding soft-failsafe fault-tolerance to a given fault-intolerant

program in the size of the intolerant program’s region graph. We also show the same result

for adding hard-failsafe fault-tolerance, where the timing dependent safety specification

consists of only one timing constraint. Finally, in Section 8.4, we present our results on

automated synthesis of soft and hard-masking fault-tolerant programs. Specifically, we

present a polynomial-time sound and complete algorithm for adding soft-masking fault-

tolerance to a given program. Then, we show that the problem of adding hard-masking

fault-tolerance to a given program where the safety specification requires two or more timing

87

constraints is NP-complete.

8.1 Case Study: Altitude Switch

We use a simplified version of an altitude switch program [BH00] as a running example to

illustrate the concepts and algorithms presented in this chapter.

Fault-intolerant program

The altitude switch program (denoted AS) reads a set of input variables. Then, it pow-

ers on a Device of Interest (Doi) when the aircraft descends below a pre-specified altitude

threshold. There exist three internal variables, a mode variable that determines the op-

erating mode of the program, two environment variables, and three watchdog timers (for

purpose of synthesis the variables are treated identically):

• The internal variables are as follows: (i) iAltBelow is equal to 1 if the altitude is below

a pre-specified threshold, otherwise, it is equal to 0; (ii) iDOIStatus is equal to 1 if

the Doi is powered on, otherwise, it is equal to 0, and (iii) iCorruptSensor is equal

to 1 if the system reads an invalid value from the altitude meter sensors, otherwise,

it is equal to 0.

• The AS program can be in three different modes: (i) initialization mode when

the system is initializing; (ii) await mode when the system is waiting for the Doi

to power on, and (iii) standby mode. We use the variable mStatus with domain

{Init,Await,Standby} to show the system modes in the program.

• We model the validity of signals that come from the altitude meter by the environment

variable eSensorReading . This variable is equal to ⊥ when the system fails to read

the altitude meter. Otherwise, it is not equal to ⊥ (i.e., it is equal to the altitude

of the aircraft). The system may issue reset commands in different situations. The

environment variable eReset is equal to 0 if a system reset command has been issued.

Otherwise, it is equal to 1.

• AS has three watchdog timers: (i) the clock variable x measures the time elapsed

since the system has been in the Init mode; (ii) the clock variable y measures the time

elapsed since the system has failed to read the altitude meter (i.e., iCorruptSensor =

88

AS1 :: (mStatus = Init) ∧ (x ≤ 1) −−→ mStatus := Standby;
AS2 :: (mStatus = Standby) ∧

(eReset = 0)
{x}
−−→ mStatus, eReset := Init, 1;

AS3 :: (mStatus = Standby) ∧ (iAltBelow = 0) ∧

(iDOIStatus = 0)
{z}
−−→ mStatus, iAltBelow := Await, 1;

AS4 :: (mStatus = Await) ∧
(iDOIStatus = 0) ∧ (z ≤ 2) −−→ mStatus, iDOIStatus := Standby, 1;

AS5 :: (mStatus = Await) ∧

(eReset = 0) ∧ (z ≤ 2)
{x}
−−→ mStatus, eReset := Init, 1;

AS6 :: ((mStatus = Standby) ∧ (iCorruptSensor = 0)) ∨
(x ≤ 1) ∨ (y ≤ 2) ∨ (z ≤ 2) −−→ wait;

AS7 :: (eSensorReading = ⊥) ∧

(iCorruptSensor = 0)
{y}
−−→ iCorruptSensor := 1;

AS8 :: (mStatus = Standby) ∧

(iCorruptSensor = 1) ∧ (y ≤ 2)
{x}
−−→ mStatus, iCorruptSensor := Init, 0;

Figure 8.1: Timed guarded commands of AS.

1), and (iii) the clock variable z measures the time elapsed since the system has been

in the Await mode.

Formally, the timed guarded commands of AS are illustrated in Figure 8.1. The pro-

gram changes its mode from Init to Standby within 1 second (timed action AS1). Also,

the program may go back to the Init mode if it is in Standby mode and the reset signal is

received (timed action AS2). If the program is in the Standby mode and the Doi is not

powered on then the program may go to a state where the altitude of the aircraft is below

the threshold and it is in the Await mode (timed action AS3). In this case, the program

starts the watchdog timer z. Otherwise, the program stays in the Standby mode for an

arbitrary time as long as the altitude meter is not showing an invalid value (delay action

AS6). In the Await mode, the program either (i) powers on the Doi within 2 seconds and

goes back to the Standby mode (timed action AS4), or (ii) goes to the Init mode upon

receiving the reset signal (timed action AS5). The program may take delays as long as as it

does not violate the timing constraints of the program (delay action AS6). If the program

receives a signal indicating that the altitude meter sensors are showing an invalid value,

it sets the variable iCorruptSensor to 1 and starts the timer y (timed action AS7). In

this case, the program should go back to the Init mode within 2 seconds (timed actionAS8).

89

Invariant

The invariant of AS consists of the following states:

SAS = {σ | ((mStatus(σ) = Init) ⇒ (x(σ) ≤ 1)) ∧

((mStatus(σ) = Standby) ⇒ (iCorruptSensor(σ) = 0 ∨ y(σ) ≤ 2)) ∧

((mStatus(σ) = Await) ⇒ (z(σ) ≤ 2))}.

Safety specification

The safety specification requires that the program does not change its mode from Standby

to Await, if it fails to read a valid altitude. Also, when the program is in a state outside

the invariant then it can only go to the Init mode. Furthermore, the safety specification

requires three timing constraints with respect to each watchdog timer. Formally, the safety

specification is as follows:

SPEC bt = {(σ0, σ1) |

((iCorruptSensor(σ0) = 1) ∧ (mStatus(σ0) = Standby) ∧

(mStatus(σ1) = Await)) ∨ ((σ0 6∈ SAS) ∧ ((mStatus(σ1) = Standby) ∨

(mStatus(σ1) = Await))) ∨ ((σ0 6∈ SAS) ∧ (eReset(σ1) = 1))}

SPEC br1
= (mStatus = Init) 7→≤1 (mStatus = Standby)

SPEC br2
= (mStatus = Await) 7→≤2 (((mStatus = Standby)∧

(iDOIStatus = 1)) ∨ (mStatus = Init))

SPEC br3
= ((mStatus = Standby) ∧ (iCorruptSensor = 1)) 7→≤2 (mStatus = Init)

Region graph

Figure 8.2 illustrates the region graph of the AS program. Note that due to the large state

space of AS, we only include regions, edges, and (inside each region) variables that are

90

INIT

0 < x ≤ 1

STANDBY

iCorruptSensor = 0

STANDBY

iCorruptSensor = 1

y = 0

STANDBY

iCorruptSensor = 1

0 < y < 1

STANDBY

iCorruptSensor = 1

y = 1

STANDBY

iCorruptSensor = 1

y = 2

STANDBY

iCorruptSensor = 1

1 < y < 2

AWAIT

iAltBelow = 1

z = 0

AWAIT

iAltBelow = 1

0 < z ≤ 2

STANDBY

iDOIStatus = 1

INIT

x = 0

Figure 8.2: Region graph of AS.

important to illustrate how our synthesis algorithms work in Sections 8.2, 8.3, and 8.4. For

the same reason, some regions are collapsed into one region.

Faults

AS is subject to a set of delay faults where the program is (i) initializing; (ii) in Standby

mode and the altitude meter shows an invalid value, or (iii) waiting for the Doi to power on.

Moreover, immediate faults can corrupt the reading of the altitude meter (cf. Figure 8.3).

Figure 8.4 illustrates the region graph of the AS program with respect to the mentioned

delay faults. In sections 8.2, 8.3, and 8.4 we show that how we add nonmasking, hard-

failsafe, and soft-masking fault-tolerance to AS, respectively.

F1 :: (mStatus = Init) ∧ (1 ≤ x ≤ 2)
{t}
−−−→ wait;

F2 :: (mStatus = Standby) ∧

(iCorruptSensor = 1) ∧ (2 ≤ y ≤ 3)
{t}
−−−→ wait;

F3 :: (mStatus = Await) ∧ (2 ≤ z ≤ 3)
{t}
−−−→ wait;

F4 :: (eSensorReading 6= ⊥) −−−→ eSensorReading := ⊥;

Figure 8.3: Fault timed actions in AS.

91

INIT

0 ≤ x ≤ 1

STANDBY

iCorruptSensor = 0

STANDBY

iCorruptSensor = 1

y = 0

STANDBY

iCorruptSensor = 1

0 < y < 1

STANDBY

iCorruptSensor = 1

y = 1

STANDBY

iCorruptSensor = 1

y = 2

STANDBY

iCorruptSensor = 1

1 < y < 2

AWAIT

iAltBelow = 1

z = 0

AWAIT

iAltBelow = 1

0 < z ≤ 2

STANDBY

iDOIStatus = 1

AWAIT

2 < z < 3

t = 0

AWAIT

2 < z < 3

0 < t < 1

AWAIT

z = 3

0 < t < 1

Program

Fault

Legend

Invariant

Fault-span

STANDBY

iCorruptSensor = 1

2 < y < 3

t = 0

STANDBY

iCorruptSensor = 1

2 < y < 3

0 < t < 1

STANDBY

iCorruptSensor = 1

y = 3

0 < t < 1

INIT

1 < x < 2

t = 0

INIT

x = 2

0 < t < 1

INIT

1 < x < 2

0 < t < 1

Figure 8.4: Region graph with respect to fault-span of AS.

8.2 Adding Nonmasking Fault-Tolerance

In this section, we present a synthesis algorithm for adding nonmasking fault-tolerance

to a given fault-intolerant program P. Intuitively, to derive a nonmasking fault-tolerant

program P ′, we need to ensure that if the state of P ′ is perturbed or delayed by faults

then it recovers to a state in the invariant within a pre-specified recovery time. To this

end, we first introduce the procedure Add BoundedRecovery, which guarantees bounded-

time recovery from a source state predicate, say P , to a target state predicate, say Q,

within a required recovery time, say δ, in the presence of faults. Obviously, such recovery

mechanism can be expressed as the bounded response property P 7→≤δ Q. Thus, more

formally, our goal is to ensure that the synthesized program P ′ satisfies P 7→≤δ Q even in

the presence of faults. We reuse this algorithm in this section as well as in Sections 8.3 and

8.4 to design synthesis algorithms for adding nonmasking, hard-failsafe, and soft-masking

fault-tolerance, respectively.

Before we describe our synthesis algorithms, we make the following assumptions in the

context of real-time fault-tolerant programs

Assumption 8.2.1 We assume that faults are immediately detectable and that given a

92

state of the program, we can determine the number of faults that have occurred in reaching

that state. This assumption is needed only for addition of hard fault-tolerance and is

realistic in many commonly-considered systems. For instance, in multiprocessor scheduling

theory, a processor-crash is immediately detectable and its number of occurrences is easily

traceable. Note that one can model faults whose detection is subject to time delays by a pair

of fault transitions: first a delay fault and then the original fault transition. Based on this

assumption, we augment fault timed actions with a timer t that is reset upon occurrence.

Assumption 8.2.2 Observe that the above formulation of program computations in the

presence of faults guarantees that the number of occurrence of faults in all computations

is finite. However, since we deal with real-time programs and our goal is to design trans-

formation algorithms that guarantee bounded-time recovery in the presence of faults, we

assume that the number of occurrence of faults in all computations is bounded by some in-

teger n ∈ Z≥0. This assumption is reasonable in many commonly-considered fault-tolerant

real-time programs. In fact, it can be trivially shown that providing bounded-time recovery

in the presence of unbounded number of arbitrary faults is not possible.

Assumption 8.2.3 Let P = 〈ΠP , InvP〉 be a program that satisfies specification SPEC

from InvP in the absence of faults. Thus, since P satisfies SPEC br ≡
∧m

i=0(Pi 7→≤δi
Qi),

without loss of generality, we assume that for each bounded response property (Pi 7→≤δi
Qi),

1 ≤ i ≤ m, P already has a clock variable that is reset on transitions, say (σ0, σ1) that

originate where σ /∈ Pi and σ1 ∈ Pi. This clock variable acts as a timer in order to keep

track of time when Pi becomes true.

8.2.1 Adding Bounded-Time Recovery in the Presence of Faults

Algorithm sketch. We now develop a procedure that adds bounded-time recovery

to a given region graph from an arbitrary state predicate P to another state predicate Q

within δ time units. The procedure has four phases. First, we transform the region graph

into a weighted directed graph (called MaxDelay digraph [CY91]), in which the length of

a path from a source vertex vs to a target vertex vt is equal to the the delay for reaching

the region that corresponds to vt from the region that corresponds to vs. We use this

digraph to identify and exclude the computations that violate P 7→≤δ Q. Thus, in Phase

2, we rank vertices of the MaxDelay digraph by applying an adjusted Dijkstra’s shortest

93

rank=

0

Pr)
v0

v1

Gi

Gi-1

f

Qr)

rank=

3

rank=

4

rank=

5

rank=

3

rank=

2

rank=

1

rank=

0

Figure 8.5: Adjusted shortest path.

path algorithm. This algorithm adjusts the length of the shortest path from a source to a

target vertex by taking the amount of time wasted by occurrence of faults into account.

For instance, suppose that a computation starts from a state σ0 ∈ P . Now, if faults take

the computation to a state where some computation prefix should be redone, the maximum

delay of that computation to reach Q is obviously increased. Hence, we adjust the length

of the shortest path from σ0 to Q such that the amount of time wasted by every occurrence

of faults is considered (cf. Figure 8.5 for an example). In Phase 3, we include regions and

edges whose rank is at most the required response time δ. Finally, in Phase 4, we transform

the synthesized MaxDelay digraph back into a region graph.

We note that the transformation of region graphs to MaxDelay digraphs is precisely the

same as what described in Section 6.1. Our notation also follows the notation in Section 6.1.

In particular, recall that γ is a bijection that maps each region in R(P) to its corresponding

vertex in the MaxDelay digraph. Also, Γ is a bijection that maps each region predicate R(P)

to its corresponding set of vertices in the MaxDelay digraph.

We now describe the procedure Add BoundedRecovery (cf. Procedure 8.1) in detail:

• (Phase 1) Given a region graph R(P), we first transforms it into a MaxDelay digraph

G = 〈V,A〉 (Line 1). Recall that, by Assumption 8.2.1, faults are detectable and P

has a variable that shows how many faults have occurred in a computation. Thus, we

let 〈V i, Ai〉 be the portion of G, in which n− i faults have occurred, where 0 ≤ i ≤ n

(Line 2). More specifically, initially, a computation starts from the portion Gn where

no faults have occurred. If a fault occurs in a computation that is currently in portion

Gi, the computation will proceed in portion Gi−1. We use these portions to verify

whether it is possible to reach a vertex in Γ(Qr) from each vertex in Γ(P r) within δ

time units.

94

Procedure 8.1 Add BoundedRecovery

Input: region graph R(P) = 〈Πr
P , Invr

P〉, set of fault edges F r, region predicates P r, Qr, and integers n
and δ

Output: revised region graph 〈Πr
P′ , Invr

P′〉 by adding bounded-time recovery from P r to Qr in the presence
of F r, and, the set ns of regions from where P 7→≤δ Q may be violated in the presence of faults.

1: 〈V , A〉 := ConstructMaxDelayGraph(R(P) = 〈Πr
P , Invr

P〉, F
r); {Phase 1}

2: Let Gi = 〈V i, Ai〉 be the portion of G, in which (n − i) faults have occurred, where 0 ≤ i ≤ n;
each vertex v ∈ V 0 {Phase 2}

3: Rank(v) := Length of the standard shortest path from v to Γ(Qr)0;
i = 1 to n
each vertex v0 ∈ V i :

4: Vf := {v1 ∈ V i−1 | (γ−1(v0), γ
−1(v1)) ∈ F r}; Vf 6= {}

5: MinRank(v0) := max{(Rank(v1) + Weight(v0, v1)) for all v1 ∈ Vf}; MinRank(v0) := 0;
6: AdjustShortestPaths(〈V i, Ai〉, Γ(Qr)i);
{Constructing a subgraph of each portion such that the longest distance between Γ(P r) and Γ(Qr) is at

most δ and then adding the arcs and vertices that do not appear on paths from Γ(P r) to Γ(Qr)}

i = 0 to n {Phase 3.1}
7: 〈V ′i, A′i〉 := {}; each vertex v ∈ Γ(P r)i Rank(v) ≤ δ
8: Π := the shortest path from v to Γ(Qr)i;
9: V ′i := V ′i ∪ {u | u is on Π};

10: A′i := A′i ∪ {a | a is on Π};
11: A′i := A′i ∪ {(u, v) ∈ Ai | u /∈ V ′i ∨ (u ∈ Γ(Qr)i)};
12: V ′i := V ′i ∪ {u | ∃v : ((u, v) ∈ A′i ∨ (v, u) ∈ A′i)};
13: Add additional paths from Γ(P r) to Γ(Qr); (see Remark 8.2.4); {Phase 3.2}
{Transforming weighted digraph G′ into a region graph}

14: T ′r
P := {(r1, r2) ∈ T r

P | ((γ(r1), γ(r2)) ∈ A′) ∨ ∃r0 : Weight(γ(r0), γ(r1)) = 1 − ǫ}; {Phase 4}
15: ns := {r | γ(r) ∈ (V − V ′)};
16: return T ′r

P ,ns;

Procedure 8.2 AdjustShortestPaths

Input: directed weighted graph Gi = 〈V i, Ai〉 : and set of vertices Vq {Adjusts the rank of
each vertex based on the ranks computed in Add BoundedRecovery}

1: Apply Dijkstra’s shortest path on all source vertices v ∈ V i to sink vertices Vq with the
following modification: Dijkstra’s shortest path computes a length less than MinRank(v)

2: Rank(v) := MinRank(v);
3: Rank(v) := length of Dijkstra’s shortest path from v to Vq;

• (Phase 2) Next, we rank vertices of all portions of G using a modified Dijkstra’s

shortest path algorithm, which takes state perturbations and delay faults into account

(lines 3-15 in Procedure 8.1 and Procedure 8.2). More specifically, since no faults occur

in G0, we first let the rank of each vertex v ∈ V 0 be the length of standard Dijkstra’s

shortest path from v to Γ(Qr)0 (Line 4). Now, let v0 be a vertex in V i where 1 ≤ i ≤ n,

and let v1 be a vertex in V i−1, such that (γ−1(v0), γ
−1(v1)) is a fault edge in R(P)

where v0 is on a path from Γ(P r) to Γ(Qr). There exist two cases: (1) the fault edge

(γ−1(v0), γ
−1(v1)) decreases or does not change the computation delay, i.e, the length

95

of the shortest distance from v1 to Γ(Qr)i−1 is less than or equal to the length of the

shortest distance from v0 to Γ(Qr)i, and (2) the fault edge (γ−1(v0), γ
−1(v1)) increases

the computation delay, i.e., the length of the shortest distance from v1 to Γ(Qr)i−1

is greater than the length of the shortest distance from v0 to Γ(Qr)i (cf. Figure 8.5

for an example). While the former case does not cause violation of P 7→≤δ Q in the

presence of faults, the later may do. Hence, we set the rank of v0 ∈ V
i to at least

the rank of v1 ∈ V
i−1. Moreover, if there exist multiple fault edges at γ−1(v0) (Line

8) then we take the maximum rank (Line 10). If there exist no fault edges at region

γ−1(v0), we temporarily let the rank of v0 be 0 (Line 11). After computing the rank

of vertices from where faults may occur, we adjust the rank of the rest of vertices from

where faults do not occur by invoking the procedure AdjustShortestPath (Line 12).

• (Phase 3) Now, for each portion Gi, we construct a subgraph of Gi whose longest

distance from each vertex in Γ(P r)i to Γ(Qr)i is at most δ (Lines 17-27). We begin

with an empty digraph 〈V ′i, A′i〉 and we first include the shortest paths from each

vertex v ∈ Γ(P r)i to Γ(Qr)i, provided Rank(v) ≤ δ (Lines 19-23). Next, we include

the remaining arcs and vertices in G′i, so that no arcs of the form (v0, v1), where v0

is on a path from Γ(P r)i to Γ(Qr)i are added (Lines 25-26). Note that if we add an

arc that originates at a vertex on a path from Γ(P r)i to Γ(Qr)i, we cannot guarantee

that the resultant new path reaches Γ(Qr)i within δ.

Remark 8.2.4 Observe that since we do not include all legitimate paths from Γ(P r)

to Γ(Qr), the resultant program is not maximal in terms of transitions. However,

one can include additional paths (which are not necessarily shortest paths) as long as

their addition do not violate the given bounded response property (Phase 3.2). Such

addition can be achieved using graph theoretic polynomial time algorithms for finding

k-shortest paths (e.g., [Epp99]).

• (Phase 4) In the last phase, we first transform the digraph G′ back into a region

graph (Line 29). Then, we return the set T ′r
P of edges from where P 7→≤δ Q may

not be violated even in the presence of faults, and the set ns of regions from where

P 7→≤δ Q may be violated in the presence of faults (Lines 30-31).

96

8.2.2 Adding Nonmasking Fault-Tolerance Using Bounded-Time Recov-

ery

In order to synthesize a nonmasking program, it only suffices to add bounded-time recovery

from the fault-span to the invariant of the intolerant program, as a nonmasking program is

not required to satisfy its safety specification in the presence of faults.

Algorithm sketch. Intuitively, our algorithm for adding nonmasking fault-tolerance

consists of three main phases. In Phase 1, we transform the intolerant program into its

region graph. Then, in Phase 2, we recompute the set of program transitions, invariant,

and fault-span in a loop so that: (1) the fault-span is closed in the set of program transitions

in the presence of faults, (2) program invariant is deadlock-free and it is a subset of the

fault-span, and (3) from each state in the fault-span, there exists a path of length at most

the desirable recovery time which ends at a state in the invariant. This loop terminates

when a fixpoint in recomputing the fault-span and invariant is reached. Finally, in Phase

3, we transform the resultant region graph from Phase 2 back into a real-time program.

97

Algorithm 8.3 Add Nonmasking

Input: real-time program P = 〈ΠP , InvP〉, transition predicate F , integers n, δ

Output: a nonmasking fault-tolerant program P ′ = 〈ΠP ′ , InvP ′〉 with bounded-time re-

covery δ.

1: 〈Πr
P , Inv r

P〉, F
r := ConstructRegionGraph(〈ΠP , InvP〉, F); {Phase 1}

2: Sr
1 := Sr

P ;

3: repeat {Phase 2}

4: Sr
2 , Inv r

2 := Sr
1 , Inv r

1;

5: T r
P1

:= T r
P |Inv r

1 ∪ {((s0, ρ0), (s1, ρ1)) | (s0, ρ0) ∈ (Sr
1 − Inv r

1) ∧ (s1, ρ1) ∈

Sr
1 ∧ ∃ρ2 | ρ2 is a time-successor of ρ0 : (∃λ ⊆ X : ρ1 = ρ2[λ− {t} := 0])};

6: T r
P1
,ns := Add BoundedRecovery(〈Πr

P1
, Inv r

P1
〉, F r, Sr

1 − Inv r
1, Inv r

1, n, δ);

7: Sr
1 := ConstructFaultSpan(Sr

1 − ns, F r);

8: Inv r
1 := RemoveDeadlocks(Inv r

1 ∩ Sr
1 , T

r
P1

);

9: if (Inv r
1 = {} ∨ Sr

1 = {}) then

10: declare no nonmasking F-tolerant program P ′ exists;

11: exit();

12: end if

13: until (Sr
1 = Sr

2 ∧ Inv r
1 = Inv r

2);

14: 〈ΠP ′ , InvP ′〉 := ConstructRealTimeProgram(〈Πr
P1
, Inv r

P1
〉); {Phase 3}

We now describe the algorithm Add Nonmasking (cf. Algorithm 8.3) in detail. Let

P = 〈ΠP , InvP〉 be a fault-intolerant program and F be a set of faults. In order to derive a

nonmasking program P ′ with recovery time δ from P, we merely need to add recovery from

fault-span SP to the invariant InvP within δ. In other words, adding nonmasking fault-

tolerance reduces to adding the bounded response property SP 7→≤δ InvP in the presence

of F . Detailed steps of the algorithm are as follows:

• (Phase 1) We first transform the real-time program P = 〈ΠP , InvP〉, invariant S,

and the set of fault transitions f into a region graph R(P) = 〈Πr
P , Inv r

P〉, region

invariant Inv r
1, and fault edges F r by invoking the procedure ConstructRegionGraph

(Line 1), as described in Subsection 2.3. Next, we let our initial estimate of region

fault-span be the entire region space (Line 2).

98

• (Phase 2) Next, we recompute the set T r
P1

of edges, region fault-span Sr
1 , and region

invariant Inv r
1 until we reach a fixpoint as follows (Lines 3-13):

1. In order to compute the set T r
P1

of edges (Line 5), we first include edges in

T r
P |Inv r

1. Then, in order to ensure that Inv r
1 is reachable from all regions in Sr

1 ,

we add recovery edges that originate from regions in Sr
1 − Inv r

1 and terminate at

regions in Sr
1 where the time-monotonicity condition is preserved. Notice that the

algorithm allows arbitrary clock resets during recovery (except the clock variable

t that keeps track of recovery time δ). Since such clock resets occur only in states

outside the invariant, where a nonmasking program is not required to satisfy its

safety specification, they are legitimate. After adding recovery edges, we invoke

the procedure Add BoundedRecovery (Line 6). This invocation identifies the set

T r
P1

of legitimate program edges with respect to our recovery time requirement,

and the set ns of regions in Sr
1 from where recovery within δ is not possible.

2. Since a program does not have control over occurrence of faults, the set of regions

from where ns is reachable by taking fault edges alone should not be reachable.

Thus, we recompute the region fault-span by invoking the procedure Construct-

FaultSpan (see Procedure 8.4) with parameter Sr
1 − ns (Line 7). This procedure

itself is a largest fixpoint computation. In particular, in procedure Construct-

FaultSpan, we keep removing the regions from where closure of fault-span is

violated through a fault edge until no such regions exist.

3. Next, due to the possibility of removal of some regions and edges in the pre-

vious steps, the algorithm removes deadlock regions by invoking the procedure

RemoveDeadlocks (see Procedure 8.5), which is also a largest fixpoint calculation

(Line 8). Notice that since Inv r
1 must be a subset of Sr

1 , we invoke the procedure

Procedure 8.4 ConstructFaultSpan

Input: region predicate Sr and set of edges F r

Output: the largest subset of Sr that is closed in F r

1: while (∃r0, r1 : r0∈S
r ∧ r1 6∈S

r ∧ (r0, r1)∈F
r) do

2: Sr := Sr − {r0};
3: end while
4: return Sr;

99

Procedure 8.5 RemoveDeadlocks

Input: region predicate Inv r and set of edges T r

Output: the largest subset of Inv r from where all computations of T r are infinite

1: while (∃r0 ∈ Inv r : (∀r1 | (r1 6= r0 ∧ r1 ∈ Inv r) : (r0, r1) 6∈ T r)) do
2: Inv r := Inv r − {r0};
3: end while
4: return Inv r;

RemoveDeadlocks for Inv r
1 ∩ S

r
1 . In the procedure RemoveDeadlocks, we require

that self-loops at open regions are not considered as outgoing edges. We will

use this requirement to prove that computations of the synthesized program are

time-divergent.

• (Phase 3) Finally, upon reaching a fixpoint, the algorithm transforms the synthesized

region graph R(P1) = 〈Πr
P , Inv r

P〉 into a real-time program P ′ = 〈ΠP ′ , InvP ′〉 (Line

14).

Theorem 8.2.5 The algorithm Add Nonmasking is sound and complete.

Proof. First, we show that the algorithm is sound. To this end, we need to prove that

the algorithm meets the three constraints of Problem Statement 7.3.2. Thus, we proceed

as follows:

1. (C2) (InvP ′\Xn
) ⊆ InvP .

By construction of InvP ′ , InvP ′ is obtained by removing zero or more states in S.

Therefore, this condition is trivially satisfied.

2. (C3) (TP ′\Xn
|InvP ′\Xn

) ⊆ (TP |InvP ′\Xn
).

From the construction of TP ′ , the transitions in TP are a subset of the transitions in

TP . Note that all the recovery transitions that the algorithm Add Nonmasking adds

in Line 5 originate outside InvP ′ . Therefore, condition C3 is met.

3. (C4) P ′ is nonmasking F -tolerant to SPEC from InvP ′ .

We distinguish two subgoals based on the behavior of P ′ in the absence and presence

of faults:

• First, we need to show that in the absence of faults, P ′ |=InvP′ SPEC . To this

end, consider a computation σ of TP ′ that starts in InvP ′ : From 1, σ starts from

100

a state in InvP , and from 2, σ is a computation of TP . Moreover, since we remove

deadlock states from InvP ′ , if σ is infinite in P then it is infinite in P ′ as well. It

follows that σ ∈ SPEC . Thus, every computation of TP ′ that starts from a state

in S′ is in SPEC . Also, by construction, InvP ′ is closed in TP ′ . Furthermore,

since we remove deadlock regions from Inv ′r
P , for all open regions, say r0, in Inv r

P ′

there exists an outgoing edge, say (r0, r1), for some r1 ∈ Inv r
P ′ where r0 6= r1.

Clearly, such an edge can only terminate at a different clock region which in turn

advances time. This means that in the absence of faults our algorithm does not

introduce time-convergent computations to P ′ and, hence, P ′ |=InvP′ SPEC .

• First, notice that by construction, SP ′ is closed in TP []F . Now, we need to show

that every computation of TP ′ []F that starts from a state in SP ′ reaches a state in

InvP ′ within δ time units. Consider a computation σ = (σ0, τ0)→ (σ1, τ1)→ · · ·

of TP ′ []F that starts from a state in SP ′ . Let r0 → r1 → · · · be the corresponding

sequence of regions. In the algorithm, after the loop terminates, by construction

of G′ (Phase 2) in the procedure Add BoundedRecovery, the following holds:

∀j : (((Rank(γ(rj)) ≤ δ ∧ (Rank(γ(rj)) > 0)))⇒ Rank(γ(rj+1)) <

Rank(γ(rj))).

Since the rank of regions are integers, it follows that there exists a region rn such

that rn ∈ Inv r
P which in turn means that for all states σ ∈ r including the one

that occurs in σ, say σk at global time τk, σk ∈ InvP ′ and τk − τ0 ≤ δ. Thus,

computation σ reaches InvP ′ within δ. This also means that in the presence of

faults as well, our algorithm does not introduce time-convergent computations

to P ′, as it eventually reaches a state in the invariant.

Now, we show that the algorithm Add Nonmasking is complete. Intuitively, in order to

prove the completeness, we show that if our algorithm removes a state from SP or InvP

then no nonmasking program that meets the constraints of Problem Statement 7.3.2 can

include that state in its fault-span or invariant. Thus, when our algorithm declares failure, it

implies that there does not exist a legitimate state in fault-span or invariant of any solution

to Problem Statement 7.3.2.

Observe that the algorithm removes a state, say σ1, from SP − InvP , if there does not

exist a computation that starts from σ1 and reaches a state in InvP within δ in the presence

101

of faults. It follows that such a state cannot be present in the fault-span of any nonmasking

program that satisfies the constraints of Problem Statement 7.3.2. Now, consider the case

where σ1 is reachable from another state, say σ0, in SP by taking fault transitions alone.

It follows that σ0 and all states in the corresponding computation from σ0 to σ1 cannot be

present in the fault-span of any nonmasking program. Furthermore, if removal of such states

create some deadlock states inside the program invariant then their removal is inevitable as

well. Thus, states removed by our algorithm cannot be present in any nonmasking program.

Our algorithm declares failure when either the invariant or fault-span of the synthesized

program is equal to the empty set. In other words, our algorithm fails to find a solution

when all states of the intolerant program are illegitimate with respect to Problem Statement

7.3.2. Therefore, the algorithm Add Nonasking is complete.

Theorem 8.2.6 The problem of adding nonmasking fault-tolerance to a real-time program

is in PSPACE.

Proof. Observe that the algorithm first generates the region graph of the intolerant pro-

gram which is known to be in Pspace [AD94]. Then, it performs a sequence of polynomial-

time procedures (e.g., reachability analysis and finding shortest paths) in the size of the

region graph. Therefore, our algorithm is in Pspace.

Case study (cont’d). Figure 8.6 illustrates the region graph generated by the Algorithm

Add Nonmasking given AS as the input program and recovery time δ = 1. As can be seen,

new recovery edges are added from all regions in the region fault-span to the regions in the

invariant where at least one clock variable is reset or the regions where the system is in

the Standby mode and no altitude sensor failure is reported. Note that, in the untimed

version of AS, a nonmasking program could have recovery transitions that originate from

fault-span and end at any state in the invariant. However, in the timed setting, since we

do not allow time decreases during recovery (cf. Line 5 in Algorithm 8.3), the algorithm

merely adds recovery edges that either reset a clock variable or let it advance to a time-

successor clock region. In the context of AS, one may argue that recovery from fault-span

to a state where the system is in Await mode to power on the Doi is not desirable and

recovery should be only possible to the Init mode. Such a constraint can be specified by a

safety property that needs to be met in the presence of faults. However, since nonmasking

102

INIT

x = 0
STANDBY

iCorruptSensor = 0

STANDBY

iCorruptSensor = 1

y = 0

STANDBY

iCorruptSensor = 1

0 < y < 1

STANDBY

iCorruptSensor = 1

y = 1

STANDBY

iCorruptSensor = 1

y = 2

STANDBY

iCorruptSensor = 1

1 < y < 2

AWAIT

iAltBelow = 1

z = 0

AWAIT

iAltBelow = 1

0 < z ≤ 2

STANDBY

iDOIStatus = 1

AWAIT

2 < z ≤ 3

0 ≤ t < 1

STANDBY

iCorruptSensor = 1

2 < y ≤ 3

0 ≤ t < 1

INIT

1 < x ≤ 2

0 ≤ t < 1

Program

Recovery

Fault

Legend

Invariant

Fault-span

INIT

0 ≤ x ≤ 1

Figure 8.6: Region graph of nonmasking AS.

AS9 :: (0 ≤ t < 1)
{x}//{y,z}
−−−−−−−→ mStatus := Init

AS10 :: (0 ≤ t < 1) −−−−−−→ mStatus, iCorruptSensor := Standby, 0

AS11 :: (0 ≤ t < 1)
{y}//{x,z}
−−−−−−−→ mStatus := Standby

AS12 :: (0 ≤ t < 1)
{z}//{x,y}
−−−−−−−→ mStatus := Await

AS13 :: (0 ≤ t < 1) −−−−−−→ wait

Figure 8.7: Recovery timed guarded commands of nonmasking AS.

programs are not required to satisfy safety properties in the presence of faults, nonmasking

AS may contain such transitions. In Section 8.4, in synthesizing soft-masking AS, we will

constrain the recovery mechanism by a safety specification such that only desirable recovery

transitions are added.

The algorithm does not remove any states from the invariant, as recovery is possible

from any perturbed or delayed state (i.e., ns = {}). Hence, InvAS . Recovery timed actions

of nonmasking AS are presented in Figure 8.7. The rest of the timed guarded commands of

nonmasking AS are the same as the intolerant AS. The timed actions include transitions

that are not illustrated in Figure 8.6. This is due to the reason that all the reachable regions

are not shown in Figure 8.6. Timed actions associated with two sets of clock variables (e.g.,

{x}//{y, z}) means that the timed action resets all the clock variables in the first set (i.e.,

103

{x}) and a subset of the second set (i.e., either {}, {y}, {z}, or {y, z}).

8.3 Adding Soft and Hard-Failsafe Fault-Tolerance

In this section, we present our algorithms for synthesizing soft and hard-failsafe fault-

tolerant programs. Recall that, intuitively, a soft-failsafe program is required to satisfy only

the untimed part of its safety specification in the presence of faults. Also, recall that a

hard-failsafe program satisfies its untimed part of safety specification as well as its timing

constraints in the presence of fault.

8.3.1 Adding Soft-Failsafe Fault-Tolerance

As mentioned in Section 2.2, the safety specification consists of a set SPEC bt of bad transi-

tions and a conjunction SPEC br of multiple bounded response properties. In the presence

of faults, a soft-failsafe program is required to maintain SPEC bt only.

Algorithm sketch. We adapt the proposed algorithm in [KAE07], which adds fail-

safe fault-tolerance to untimed programs. Intuitively, our algorithm consists of three main

phases. First, we identify and remove the set of states and transitions from where a sequence

of faults alone may take the program to a state where a fault transition directly violates

SPEC bt. In Phase 2, we ensure that this removal does not create new finite computations

in the absence of faults. To this end, we remove deadlock states from the invariant. Fi-

nally, in Phase 3, we ensure the closure of the new program invariant in the set of program

transitions.

We now describe the algorithm Add SoftFalisafe (cf. Algorithm 8.6) in detail. We first

transform the intolerant program P = 〈ΠP , InvP〉 into its region graph R(P) = 〈Πr
P , Inv r

P〉

(Line 1). Since the region graph is time-abstracted, we apply the algorithm for adding

Algorithm 8.6 Add SoftFailsafe

Input: real-time program P = 〈ΠP , InvP〉, fault transition predicate F , and timing inde-
pendent safety specification represented by SPEC bt

Output: a soft-failsafe fault-tolerant program P ′ = 〈ΠP ′ , InvP ′〉

1: 〈Πr
P , Inv r

P〉, F
r, SPEC r

bt := ConstructRegionGraph(〈ΠP , InvP〉, F , SPEC bt);
2: T r

P ′ , Inv r
P ′ := Add UntimedFailsafe(〈Πr

P , Inv r
P〉, F

r,SPEC r
bt);

3: 〈ΠP ′ , InvP ′〉 := ConstructRealTimeProgram(〈Πr
P ′ , Inv r

P ′〉);
4: return 〈ΠP ′ , InvP ′〉

104

failsafe fault-tolerance (from [KAE07]) to the region graph of P so that no edge in SPEC r
bt

occurs in computations of R(P) in the presence of faults. To this end, we invoke the

procedure Add UntimedFailsafe (Line 2).

The procedure Add UntimedFailsafe (cf. Procedure 8.7) first identifies the set ms of

regions from where SPEC bt may be violated by taking faults alone (Line 1) by calculating

the smallest fixpoint of set of such regions. Next (Line 2), we compute the set mt of

edges that consists of (1) edges that directly violate safety (i.e., transitions in SPEC bt)

or (2) edges whose target region is in ms (i.e., edges that lead a computation to a state

from where safety may be violated by faults alone). Since programs do not have control

over occurrence of faults, we remove the set ms (respectively, the set mt) from the region

invariant Inv r
P (respectively, set of program edges T r

P) of R(P) (Line 3). Then, we remove

deadlock regions from Inv r
P (Line 4) to ensure that removal of ms from Inv r

P does not

introduce new finite computations to R(P) = 〈Πr
P , Inv r

P〉. Since we may remove a set of

regions from Inv r
P , we ensure the closure of Inv r

P in T r
P (Line 9). Finally, we return the

failsafe region graph R(P ′) = 〈Πr
P ′ , Inv r

P ′〉 (Line 10).

After computing the failsafe region graph R(P ′) = 〈Πr
P ′ , Inv r

P ′〉 in the algorithm

Add SoftFailsafe (Line 2), we transform the R(P ′) back into a real-time program P ′ (Line

3).

Theorem 8.3.1 The algorithm Add SoftFalisafe is sound and complete.

Proof. First, we show that the algorithm is sound. Similar to the proof of Theorem 8.2.5,

Procedure 8.7 Add UntimedFailsafe

Input: region graph 〈Πr
P , Inv r

P〉, set of faults edges F r, and set of edges SPEC r
bt

Output: an untimed failsafe fault-tolerant program 〈Πr
P ′ , Inv r

P ′〉

1: ms := {r0 | ∃r1, r2 · · · rn :
(∀j | 0≤j<n : (rj , rj+1) ∈ f

r) ∧ (rn−1, rn) ∈ SPEC r
bt }; {Phase 1}

2: mt := {(r0, r1) | r1∈ms ∨ (r0, r1) ∈ SPEC r
bt };

3: Inv r
P , T r

P := Inv r
P −ms, T r

P −mt ; {Phase 2}
4: Inv r

P := RemoveDeadlocks(Inv r
P , T

r
P);

5: if (Inv r
P = {}) then

6: declare no soft/hard-failsafe F-tolerant program P ′ exists;
7: exit();
8: end if
9: T r

P := T r
P − {(r0, r1) | r0∈Inv r

P ∧ r1 6∈ Inv r
P}; {Phase 3}

10: return T r
P , Inv r

P ;

105

we proceed as follows:

1. (C2) (InvP ′\Xn
) ⊆ InvP .

By construction, InvP ′ is obtained by removing zero or more states in InvP . Therefore,

this condition is trivially satisfied.

(C3) (TP ′\Xn
|InvP ′\Xn

) ⊆ (TP |InvP ′\Xn
).

From the construction of TP , the transitions in TP are a subset of the transitions in

TP . Therefore, condition C2 is met.

2. P ′ is soft-failsafe F -tolerant to SPEC from InvP ′ .

We need to show two subgoals based on the behavior of P ′ in the absence and presence

of faults. Proof of P ′ |=InvP′ SPEC is exactly the same as the proof of the first subgoal

of Theorem 8.2.5. Now, we show that P ′ never violates SPEC bt in the presence of F .

Let MS (respectively, MT) be the state predicate (respectively, set of transitions) that

corresponds to ms (respectively, mt). We let the fault-span SP ′ to be the set of states

reached in any computation of TP ′ []F that starts from a state in InvP ′ . Consider a

computation prefix α of TP ′ []F that starts from a state in SP ′ . From the definition

of SP ′ , there exists a computation prefix α′ of TP ′ []F such that α is a suffix of α′ and

α′ starts from a state in InvP ′ . If α′ violates SPEC bt then there exists a prefix of

α′, say (σ0, τ0) → (σ1, τ1) → · · · (σn, τn), such that (σ0, τ0) → (σ1, τ1) → · · · (σn, τn)

violates SPEC bt. Without loss of generality, let (σ0, τ0) → (σ1, τ1) → · · · (σn, τn)

be the smallest such prefix. It follows that (σn−1, σn) violates SPEC bt and, hence,

(σn−1, σn) ∈ MT . By construction, TP ′ does not contain any transitions in MT . Thus,

(σn−1, σn) is a transition of F . If (σn−1, σn) is a transition of F then σn−1 ∈ MS . It

follows that (σn−2, σn−1) ∈ MT . By the same argument, (σn−2, σn−1) is a transition

of f . Hence, σn−2 ∈ MS . Continuing thus, by induction, if (σ0, τ0) → (σ1, τ1) →

· · · (σn, τn) violates SPEC bt, σ0 ∈ MS , which is a contradiction since σ0 ∈ S
′. Thus,

each prefix of α′ maintains SPEC bt and, hence, TP ′ []F maintains SPEC bt from SP ′ .

Note that in the presence of faults a soft-failsafe program need not to recover to its

invariant. In other words, in the presence of faults, a soft-failsafe program is allowed to

deadlock or violate its liveness specification. Hence, we are not required to show that

a soft-failsafe program does not exhibit time-convergent computations in the presence

of faults.

106

Now, we show that the algorithm Add SoftFailsafe is complete. Let program P ′′ =

〈ΠP ′′ , InvP ′′〉 solve the Problem Statement 8.2.4. Clearly, Inv r
P ′′ ∩ ms = {}; if r0 ∈

Inv r
P ′′ ∩ ms then the execution of faults alone from r0 takes the program to a state from

where SPEC bt may be violated. It follows that Inv r
P ′′ ⊆ (Inv r

P −ms). Likewise, T r
P ′′ |Inv r

P ′′

cannot include any edges in mt . Hence, T r
P ′′ ⊆ (T r

P − mt). Finally, every computation of

P ′′ that starts from a state in InvP ′′ must be infinite if it were to be in SPEC . It follows

that there exists a nonempty subset of Inv r
P , namely Inv r

P ′′ , such that all computations of

T r
P −mt within that subset are infinite.

Our algorithm declares that no solution for the synthesis problem exists only when there

is no nonempty subset of Inv r
P −ms such that all the computations of T r

P −mt within that

subset are infinite. It follows that our algorithm declares failure only if there exists no

soft-failsafe fault-tolerant program that solves Problem Statement 7.3.2.

Remark 8.3.2 We note that, the completeness proof of Theorem 8.3.1 implies that the

outcome of adding soft-failsafe is a maximal program in the sense that every state that is

removed by Add SoftFailsafe has to be removed, i.e., such states cannot be present in any

soft-failsafe program that satisfies the constraints of Problem Statement 7.3.2.

Theorem 8.3.3 The problem of adding soft-failsafe fault-tolerance to a real-time program

is in PSPACE.

Proof. Observe that our algorithm first generates the region graph of the intolerant

program which is known to be in Pspace [AD94]. Then it performs a sequence of polynomial

time procedures (mainly reachability analysis) in the size of region graph. Therefore, our

algorithm is in Pspace.

8.3.2 Adding Hard-Failsafe Fault-Tolerance with One Bounded Response

Property

In this subsection, we present our algorithm Add HardFailsafe for the case where the syn-

thesized hard-failsafe program is required to satisfy only one bounded response property in

the presence of faults, i.e., SPEC br ≡ P 7→≤δ Q.

Algorithm sketch. Intuitively, the algorithm works in three phases. First, we add soft-

failsafe fault-tolerance to P to ensure that transitions in SPEC bt occur in no computation

107

of P ′. In Phase 2, similar to addition of nonmasking, we recompute the set of program

transitions, invariant, and fault-span in a loop until we reach a fixpoint. In this loop, the

goal is to remove computations of TP []F that violate SPEC br ≡ P 7→≤δ Q. In Phase 3,

we resolve a special case where a state in InvP ∩ Q becomes a deadlock state. Note that

since such a state is in the invariant, we need to ensure that its removal will not create new

deadlock states unnecessarily. Thus, If such a deadlock state exists in InvP ∩Q, we remove

it from both InvP and Q and rerun the algorithm.

We now describe the algorithm in detail (cf. Algorithm 8.8):

• (Phase 1) In order to ensure that P ′ maintains SPEC bt, we first add soft-failsafe

fault-tolerance to P (Line 1). We then transform P into its region graph R(P) (Line

2). Our first estimate of invariant of P ′ is the invariant generated by Add SoftFailsafe

and our first estimate of fault-span of P ′ is obtained by removing the regions in ms

(as calculated in Add SoftFailsafe) from the region space.

Procedure 8.8 Add HardFailsafe

Input: real-time program P = 〈ΠP , InvP〉, fault transition predicate F , timing independent safety
specification represented by SPEC bt, bounded response property P 7→≤δ Q, and integer n

Output: a hard-failsafe fault-tolerant program P ′ = 〈ΠP′ , InvP′〉

1: 〈ΠP , InvP〉 := Add SoftFailsafe(〈ΠP , InvP〉, F,SPEC bt); {Phase 1}
2: 〈Πr

P , Invr
P〉, P

r, Qr, F r := ConstructRegionGraph(〈ΠP , InvP〉, P,Q, F);
3: Sr

1
, Invr

1
:= Sr

P −ms, Invr
P ;

4: repeat {Phase 2}
5: Sr

2
, Invr

2
:= Sr

1
, Invr

1
;

6: T r
P1

:= T r
P | Invr

1
∪ {((s0, ρ0), (s1, ρ1)) | (s0, ρ0) ∈ (Sr

1
− Invr

1
) ∧ (s1, ρ1) ∈ S

r
1
∧

∃ρ2 | ρ2 is a time-successor of ρ0 : (∃λ ⊆ X : ρ1 = ρ2[λ− {t} := 0])} −mt ;
7: T r

P1
,ns := Add BoundedRecovery(〈Πr

P1
, Invr

P1
〉, F r, P r, Qr, n, δ);

8: Sr
1

:= ConstructFaultSpan(Sr
1
− ns, F r);

9: Invr
1

:= RemoveDeadlocks(Invr
1
∩ Sr

1
, T r

P1
)

10: qrm := Qr ∩ (Invr
P − Invr

1
); {Phase 3}

11: if (qrm 6= {}) then
12: Invr

P := Invr
P − qrm;

13: T r
P := T r

P − {(r0, r1) | (r0 ∈ qrm) ∨ (r1 ∈ qrm)};
14: Qr := Qr − qrm;
15: goto Line 3;
16: end if
17: if (Invr

1
= {} ∨ Sr

1
= {}) then

18: declare no hard-failsafe f-tolerant program P ′ exists;
19: exit();
20: end if
21: until (Sr

1
= Sr

2
∧ Invr

1
= Invr

2
);

22: 〈ΠP′ , InvP′〉 := ConstructRealTimeProgram(〈Πr
P1
, Invr

P1
〉

108

• (Phase 2) We now modify R(P), such that any computation that starts from a

region in P r, reaches a region in Qr within δ time units even in the presence of

faults. We achieve this in the same fashion as we added bounded-time recovery for

synthesizing nonmasking programs in Section 8.2; we recompute the set T r
P1

of edges,

region fault-span Sr
1 , and region invariant Inv r

1 until we reach a fixpoint. However,

there exist two differences: (1) we exclude the set mt from T r
P1

to ensure that the

program does not violate SPEC bt from fault-span (Line 6), and (2) we invoke the

procedure Add BoundedRecovery for region predicates P r and Qr (Line 7).

• (Phase 3) Since the procedure Add BoundedRecovery does not include all legitimate

computations that start in P and end in Q, we need to consider a special case where

a region, say r1, in Inv r
1 ∩ Q

r becomes a deadlock region (Line 9). In this case, it is

possible that all the regions along a path that starts from some region, say r0, in P r

and end in r1 become deadlock regions. Hence, our algorithm needs to identify a new

path from r0 to a region in Qr other than r1. Thus, in such a case, we remove such

deadlock regions and associated edges from Inv r
P ∩Q

r and T r
P1

(Line 13-15) and rerun

the algorithm with the updated region predicates (Line 15).

Finally, the algorithm transforms the synthesized region graph R(P1) = 〈Πr
P1
, Inv r

P1
〉

back into a real-time program P ′ = 〈ΠP ′ , InvP ′〉 (Line 22).

Theorem 8.3.4 The algorithm Add HardFalisafe is sound and complete.

Proof. Again, in order to prove the soundness, we show that our algorithm meets the

constraints of Problem Statement 7.3.2. We only show that the output of our algorithm is

hard-failsafe F -tolerant to SPEC from InvP ′ , as the rest of the proof is the same as proof

of theorems 8.2.5 and 8.3.1.

In order to prove that P ′ is hard-failsafe F -tolerant to SPEC from SP ′ , we need to show

that (1) P ′[]F maintains SPEC bt from SP ′ , and (2) P ′[]F maintains SPEC br = P 7→≤δ Q

from SP ′ . Since the algorithm Add HardFailsafe first adds soft-failsafe fault-tolerance to P

(Line 1) and the edges that are added in Line 6 are disjoint from mt , the first subgoal of

the proof is immediately discharged by applying Theorem 8.3.1.

Let α be a computation prefix of TP ′ []F that starts from a state in SP ′ . From the

definition of SP ′ , there exists a computation prefix α′ of TP ′ []F such that α is a suffix of

α′ and α′ starts from a state in InvP ′ . If α′ violates SPEC br then there exists a prefix of

109

α′, say (σ0, τ0)→ (σ1, τ1)→ · · · (σn, τn), such that (σ0, τ0)→ (σ1, τ1)→ · · · (σn, τn) violates

SPEC br. Without loss of generality, let (σ0, τ0) → (σ1, τ1) → · · · (σn, τn) be the smallest

such prefix. It follows that there exists i ≥ 0 such that (1) σi ∈ P , (2) τn − τi > δ, and

(3) for all k, i ≤ k ≤ n, σk 6∈ Q. Let r be the region that contains σi. It follows that

in the corresponding MaxDelay digraph Rank(γ(r)) > δ, which implies that r ∈ ns. In

this case, (σi−1, σi) is not in TP . Thus, (σi−1, σi) is a transition of f . If (σi−1, σi) is a

transition of f then the procedure ConstructFaultSpan identifies σi−1 and removes it from

SP , which in turn removes the incident transitions in the next iteration (Line 6). By the

same argument, (σi−2, σi−1) is a transition of F and, hence, σn−2 should not be present

in SP ′ as well. Continuing thus, by induction, if (σ0, τ0) → (σ1, τ1) → · · · (σn, τn) violates

SPEC br, σ0 is explored by the procedure ConstructFaultSpan, which is a contradiction, as

we initially assumed that σ0 ∈ InvP ′ . Thus, each prefix of α′ maintains SPEC br. It follows

that TP ′ []F maintains SPEC br from SP ′ . Note that in the presence of faults a hard-failsafe

program need not to recover to its invariant. In other words, in the presence of faults,

a hard-failsafe program is allowed to deadlock or violate its liveness specification. Hence,

we are not required to show that a hard-failsafe program does not exhibit time-convergent

computations in the presence of faults.

We now show that the algorithm is complete. Intuitively, we show that any state that

is removed by our algorithm cannot be present in any hard-failsafe program. First, observe

that in Theorem 8.3.1, we showed that the outcome of adding soft-failsafe fault-tolerance is

a maximal program in the sense that any state removed by the algorithm Add SoftFailsafe

has to be removed (cf. Remark 8.3.2). Hence, in order to prove the completeness of the

algorithm Add HardFailsafe, we only need to focus on the case where the algorithm fails to

synthesize P ′ = 〈ΠP ′ , InvP ′〉 such that TP ′ []F maintains SPEC br from SP ′ . Observe that

the algorithm removes a state, say σ1, in P , if there does not exist a computation that starts

from σ1 and reaches a state in Q within δ in the presence of faults. Notice that such a state

cannot be present in any hard-failsafe program. Moreover, if σ1 is reachable from another

state, say σ0, in SP ′ by taking fault transitions alone then σ0 cannot be present in the fault-

span of any hard-failsafe program as well. Furthermore, if removal of states such as σ0 and

σ1 creates deadlock states inside the program invariant then their removal is also inevitable

(since P ′ must meet constraint C3 of Problem Statement 7.3.2). Notice that Phase 2 of the

algorithm ensures that nonmaximality of the set of transitions does not induce deadlock

110

states unnecessarily. Hence, states removed by our algorithm are present in no hard-failsafe

program. Our algorithm declares failure when the invariant of the synthesized program

is equal to the empty set. In other words, our algorithm fails to find a solution when all

states of the intolerant program are illegitimate with respect to Problem Statement 7.3.2.

Therefore, the algorithm Add HardFailsafe is complete.

Complexity of adding hard-failsafe fault-tolerance. We now show that the problem

of adding hard-failsafe fault-tolerance to real-time programs, where the synthesized program

is required to satisfy only one bounded response property, is Pspace-complete. Our reduc-

tion is from the reachability problem in timed automata known to be Pspace-complete

[AD94].

Instance. A real-time program P = 〈ΠP , InvP〉, a set of faults F , and safety specification

SPEC such that P |=InvP
SPEC .

Hard-failsafe synthesis decision problem. Does there exist a real-time program

P ′ = 〈ΠP ′ , InvP ′〉 such that P ′ is hard-masking F -tolerant to SPEC from InvP ′?

Theorem 8.3.5 The hard-failsafe synthesis decision problem is PSPACE-complete in the

size of the input intolerant program.

Proof. Membership to Pspace follows immediately from the space complexity of the algo-

rithm

Add HardFailsafe. Now, we show that the problem is Pspace-hard. To this end, we

reduce the reachability problem in timed automata to the above decision problem.

Mapping. Let A = 〈L,L0, X, I, E〉 be an instance of the reachability problem in timed

automata. Let s0 and s1 be two locations in L. Without loss of generality, we assume that

s0 ∈ L
0. We map A to an instance of our problem as follows:

• (State space) The state space of P consists of all legitimate states of A. That is,

SP = {(s, ν) | (s ∈ L) ∧ (ν |= I(s))}.

• (Program transitions) The set of program transitions of P is obtained by removing

all transitions in A that originate from s1 and then by adding a self-loop at location

s1. That is,

111

TP = {(s1, ν)→ (s1, ν) | ν |= I(s1)} ∪ {(s, ν)→ (t, µ) | (s 6= s1) ∧

∃〈s′, λ, ϕ, t′〉 ∈ E : (s′ = s) ∧ (t′ = t) ∧ (ν |= ϕ) ∧ (µ |= I(t′))}.

• (Invariant) The invariant of P consists of states whose location is s1:

InvP = {(s1, ν) | ν |= I(s1)}.

• (Fault transitions) We let the set of fault transitions to be F = {(s1, ν)→ (s0, ν[X :=

0]) | ν |= I(s1)}. Note that in timed automata, it is assumed that all clock variables

are reset in initial locations.

• (Safety specification) Let SPEC bt consist of all transitions that are not present in A.

Furthermore, let SPEC br ≡ P 7→≤δ Q, where:

– P = {(s0, ν) | ν |= I(s0)},

– Q = {(s1, ν) | ν |= I(s1)}, and

– We choose the recovery time to be unbounded, i.e., δ =∞.

Reduction. If s1 is reachable from s0 in A then there exists a computation in A which

starts from a state whose location is s0 and ends at a state whose location is s1. A real-

time program P ′ = 〈ΠP ′ , InvP ′〉 constructed from this computation plus the self-loop at s1

is clearly a hard-failsafe program with invariant InvP ′ = InvP and meets the constraints

of Problem Statement 7.3.2. Now, we show the other direction. Let us assume that the

answer to the decision problem is affirmative, i.e., we can synthesize a hard-failsafe program

P ′ with invariant InvP ′ by starting from P. If this is the case then state predicate Q must be

reachable from state predicate P in P ′. Note that due to the way we constructed SPEC bt,

we ruled out hard-failsafe programs that satisfy SPEC br by adding recovery transitions

outside the invariant InvP ′ . Thus, in P ′, a computation that starts from P reaches Q using

transitions in A alone. Hence, location s1 must be reachable from location s0 in timed

automaton A.

Case study (cont’d). We now demonstrate that how our algorithm synthesizes a hard-

failsafe version of AS with respect to SPEC bt and SPEC br3
as defined in case study of

Subsection 2.2. Figures 8.8 and 8.9 illustrate the region graph and revised timed guarded

commands of hard-failsafe AS respectively. Observe that the timed action AS3 in the

112

INIT

x = 0
STANDBY

iCorruptSensor = 0

STANDBY

iCorruptSensor = 1

y = 0

STANDBY

iCorruptSensor = 1

0 < y < 1

STANDBY

iCorruptSensor = 1

y = 1

AWAIT

iAltBelow = 1

z = 0

AWAIT

iAltBelow = 1

0 < z ≤ 2

STANDBY

iDOIStatus = 1

AWAIT

2 < z < 3

t = 0

AWAIT

2 < z < 3

0 < t < 1

AWAIT

z = 3

0 < t < 1

Program

Fault

Legend

Invariant

Fault-span

INIT

1 < x < 2

t = 0

INIT

x = 2

0 < t < 1

INIT

1 < x < 2

0 < t < 1

INIT

0 < x ≤ 1

Figure 8.8: Region graph of hard-failsafe AS.

intolerant program does not maintain SPEC bt when the altitude meter shows an invalid

value due to occurrence of fault action F4. It is easy to see that when the algorithm

Add SoftFailsafe is invoked in Line 2:

• ms = {}, and

• mt = SPEC r
bt.

Thus, invocation of the algorithm Add SoftFailsafe removes edges that originate from

Standby regions, where iCorruptSensor = 1, and end at Await regions. In terms of

timed guarded commands, the algorithm strengthens the guard of timed action AS3 such

that iCorruptSensor 6= 1.

Additionally, SPEC br3
requires that if the program fails to read the altitude meter, it

should initialize within 2 seconds even in the presence of the delay fault action F2. It is

easy to observe that in the algorithm Add HardFailsafe: ns = {(s, ρ) | 1 < y(ρ) ≤ 3}.

Thus, the algorithm removes edges that advance clock variable y beyond y = 1. In terms

of timed guarded commands, the algorithm strengthens delay action AS6 such that y ≤ 1.

In fact, the hard-failsafe AS tolerates F2 by taking delay transitions for at most 1 second

while in the Standby mode. The invariant of hard-failsafe AS is as follows:

InvHfs Asw = {σ | ((mStatus(σ) = Init) ⇒ (x(σ) ≤ 1)) ∧

113

((mStatus(σ) = Standby) ⇒

(iCorruptSensor(σ) = 0 ∨ y(σ) ≤ 1)) ∧

((mStatus(σ) = Await) ⇒ (z(σ) ≤ 2))}.

Hfs AS3 :: (mStatus = Standby) ∧ (iAltBelow = 0) ∧ (iCorruptSensor 6= 1) ∧

(iDOIStatus = 0)
{z}
−−→ mStatus, iAltBelow := Await, 1

Hfs AS6 :: ((mStatus = Standby) ∧ (iCorruptSensor = 0)) ∨
(x ≤ 1) ∨ (y ≤ 1) ∨ (z ≤ 2) −−→ wait

Figure 8.9: Revised timed guarded commands of hard-failsafe AS.

8.4 Adding Soft and Hard-Masking Fault-Tolerance

In this section, we present our results on automated synthesis of soft and hard-masking

fault-tolerant programs. Recall that, intuitively, a soft-masking program is required to

satisfy only the untimed part of its safety specification and provides bounded-time recovery

in the presence of faults. Also, recall that a hard-masking program satisfies its untimed part

of safety specification as well as its timing constraints and provides bounded-time recovery

in the presence of fault.

8.4.1 Adding Soft-Masking Fault-Tolerance

In order to synthesize a soft-masking program, we should generate a program P ′ =

〈ΠP ′ , InvP ′〉 and fault-span SP ′ , such that P ′[]F maintains SPEC bt and if faults perturb the

state of a program to a state in SP ′ , it recovers to InvP ′ within recovery time δ. Since the

algorithm Add SoftMasking (cf. Algorithm 8.9) is very similar to addition of nonmasking

fault-tolerance, we only present the algorithm sketch. In fact, the only difference between

the two algorithms is in soft-masking, in addition to bounded-time recovery from fault-span

to the invariant, the program also guarantees that SPEC bt is never violated. We also do not

present a proof of soundness and completeness, as combining proofs of theorems 8.3.1 and

8.2.5 trivially shows soundness and completeness of Add SoftMasking.

Algorithm sketch. The algorithm consists of two main phases. In Phase 1, our

first estimate of a soft-masking program is a soft-failsafe program. Then, in Phase 2, we

114

Algorithm 8.9 Add SoftMasking

Input: real-time program P = 〈ΠP , InvP〉, transition predicate F , integers n, δ
Output: a soft-masking fault-tolerant program P ′ = 〈ΠP ′ , InvP ′〉 with bounded-time re-

covery δ.

1: 〈Πr
P , Inv r

P〉, F
r := ConstructRegionGraph(〈ΠP , InvP〉, F); {Phase 1}

2: Sr
1 := Sr

P ;
3: repeat {Phase 2}
4: Sr

2 , Inv r
2 := Sr

1 , Inv r
1;

5: T r
P1

:= T r
P |Inv r

1 ∪ {((s0, ρ0), (s1, ρ1)) | (s0, ρ0) ∈ (Sr
1 − Inv r

1) ∧ (s1, ρ1) ∈
Sr

1 ∧ ∃ρ2 | ρ2 is a time-successor of ρ0 : (∃λ ⊆ X : ρ1 = ρ2[λ− {t} := 0])} −mt ;
6: T r

P1
,ns := Add BoundedRecovery(〈Πr

P1
, Inv r

P1
〉, F r, Sr

1 − Inv r
1, Inv r

1, n, δ);
7: Sr

1 := ConstructFaultSpan(Sr
1 − ns, F r);

8: Inv r
1 := RemoveDeadlocks(Inv r

1 ∩ Sr
1 , T

r
P1

);
9: if (Inv r

1 = {} ∨ Sr
1 = {}) then

10: declare no nonmasking F-tolerant program P ′ exists;

11: exit();
12: end if
13: until (Sr

1 = Sr
2 ∧ Inv r

1 = Inv r
2);

14: 〈ΠP ′ , InvP ′〉 := ConstructRealTimeProgram(〈Πr
P1
, Inv r

P1
〉); {Phase 3}

recompute the set of program transitions, invariant, and fault-span so that the fault-span

is closed in TP []f , and from each state in the fault-span, there exists a path which ends at

a state in the invariant within δ and maintains SPEC bt.

Theorem 8.4.1 The algorithm Add SoftMasking is sound and complete.

Theorem 8.4.2 The problem of adding soft-masking fault-tolerance to a real-time program

is PSPACE-complete in the size of the input intolerant program.

Proof. Membership to Pspace follows immediately from the space complexity of the

algorithm Add SoftMasking. Now, we show that the problem is Pspace-hard. To this end,

we reduce the reachability problem in timed automata to the soft-masking synthesis decision

problem. Mapping the elements of reachability problem in timed automata to an instance

of soft-masking synthesis decision problem is the same as our mapping in Theorem 8.3.5

except the following changes:

• (Safety specification) Let SPEC bt consist of all transitions that are not present in

A. Furthermore, we let SPEC br be any arbitrary conjunction of bounded response

properties.

115

INIT

x = 0
STANDBY

iCorruptSensor = 0

STANDBY

iCorruptSensor = 1

y = 0

STANDBY

iCorruptSensor = 1

0 < y < 1

STANDBY

iCorruptSensor = 1

y = 1

STANDBY

iCorruptSensor = 1

y = 2

STANDBY

iCorruptSensor = 1

1 < y < 2

AWAIT

iAltBelow = 1

z = 0

AWAIT

iAltBelow = 1

0 < z ≤ 2

STANDBY

iDOIStatus = 1

AWAIT

2 < z ≤ 3

0 ≤ t < 1

STANDBY

iCorruptSensor = 1

2 < y ≤ 3

0 ≤ t < 1

INIT

1 < x ≤ 2

0 ≤ t < 1

Program

Recovery

Fault

Legend

Invariant

Fault-span

INIT

0 ≤ x ≤ 1

Figure 8.10: Region graph of soft-masking AS.

• (Recovery time) We choose the recovery time from fault-span to the invariant to be

unbounded, i.e., δ =∞. This means that even adding soft-masking fault-tolerance to

real-time programs with unbounded recovery time is Pspace-hard.

Let SP ′ = {(s0, ν) | ν |= I(s0)}. If s1 is reachable from s0 in A then there exists a

computation in A which starts from a state whose location is s0 and ends at a state whose

location is s1. A real-time program P ′ = 〈ΠP ′ , InvP ′〉 constructed from this computation

plus the self-loop at s1 is clearly a soft-masking program with invariant InvP ′ = InvP . Now,

let us assume that we can synthesize a soft-masking program P ′ with invariant InvP ′ by

starting from P. If this is the case then InvP ′ , where InvP ′ ⊆ InvP , must be reachable

from SP ′ in P ′. Note that due to the way we constructed SPEC bt, we ruled out soft-

masking programs that provide recovery from their fault-span to InvP ′ by adding recovery

transitions outside InvP ′ . Thus, in P ′, a computation that starts from SP ′ reaches InvP ′

using transitions in A alone. Hence, location s1 must be reachable from location s0 in timed

automaton A.

Case study (cont’d). We now demonstrate that how our algorithm synthesizes a

soft-masking version of AS with respect to SPEC bt and recovery time δ = 1. Figures

8.10 and 8.11 illustrate the region graph and recovery and revised timed guarded commands

of soft-masking AS, respectively. It is easy to observe that synthesizing soft-masking AS

116

Smk AS3 :: (mStatus = Standby) ∧ (iAltBelow = 0) ∧ (iCorruptSensor 6= 1) ∧

(iDOIStatus = 0)
{z}

−−−−−−→ mStatus, iAltBelow := Await, 1

Smk AS9 :: (0 ≤ t < 1)
{x}//{y,z}
−−−−−−−→ mStatus := Init

Smk AS10 :: (0 ≤ t < 1) −−−−−−→ wait

Figure 8.11: Recovery and revised timed guarded commands of soft-masking AS.

involves strengthening the program invariant as we did in adding hard-failsafe, plus adding

recovery transitions as we did for adding nonmasking fault-tolerance. However, according

to SPEC bt, recovery transitions are constrained such that only recovery to Init mode is

possible. The rest of the timed guarded commands remain unchanged. Finally, the invariant

of the soft-masking program is the same as the invariant of the intolerant program, i.e,

Inv smk AS = InvAS .

8.4.2 Adding Hard-Masking Fault-Tolerance

As mentioned in Section 7.1, a hard-masking program satisfies both SPEC bt and SPEC br

and provides bounded-time recovery in the presence of faults. Let us consider the case

where SPEC br consists of only two bounded response properties. In this subsection, we

show that synthesizing a hard-masking program in this setting is NP-complete in the size

of the program’s region graph. Note, however, that the complexity of this problem remains

open for the case where SPEC br is defined as a single bounded response property.

Instance. A real-time program P = 〈ΠP , InvP〉, a set of faults f , and safety specification

SPEC , where SPEC br ≡ (P 7→≤δ Q) ∧ (R 7→≤θ U), and P |=InvP
SPEC .

Hard-masking synthesis decision problem. Does there exist a program P ′ =

〈ΠP ′ , InvP ′〉 such that P ′ is obtained from the above instance by adding hard-masking

fault-tolerance and satisfies the constraints of Problem Statement 7.3.2?

Theorem 8.4.3 Hard-masking synthesis decision problem is NP-complete in the size of the

region graph.

Proof. Clearly, having a solution to the problem, we can verify it in polynomial time.

Hence, the problem is in NP. In order to show that the problem is NP-hard, we adapt

the NP-hardness proof of the problem of adding two unbounded response properties to an

117

untimed programs in the absence of faults [EKB05]. We prove this theorem by a reduction

from the 3-SAT problem. The 3-SAT problem is as follows: Let x1, x2 · · ·xn be propositional

variables. Given is a Boolean formula y = y1 ∧ y2 · · · yM , where each yj , 1 ≤ j ≤M , is a

disjunction of exactly three literals. The decision problem determines whether there exists

an assignment of truth values to x1, x2 · · ·xn such that y is satisfiable.

Mapping. Mapping of propositional variables and disjunctions to an instance of our

decision problem is as follows:

• (State space, invariant, and state predicates P,Q,R, and U) For each variable xi

in the given 3-SAT instance, we introduce six states Pi, ai, Qi, Ri, bi, and Ui, where

1 ≤ i ≤ n (cf. Figure 8.12). For each disjunction yj , we introduce a state tj , where

1 ≤ j ≤ M . We also introduce the state s, which represents the program invariant.

We let the set of clock variables of P be the empty set. Put it another way, in our

instance, states of P are not associated with clock valuations. Thus, we have:

– SP = {Pi, ai, Qi, Ri, bi, Ui | 1 ≤ i ≤ n} ∪ {tj | 1 ≤ j ≤M} ∪ {s},

– InvP = {s}, and

– P = {Pi | 1 ≤ i ≤ n}, Q = {Qi | 1 ≤ i ≤ n}, R = {Ri | 1 ≤ i ≤ n}, and

U = {Ui | 1 ≤ i ≤ n}.

• (Program transitions) For each variable xi, we include (Pi, ai), (ai, bi), (bi, Qi),

(Qi, s), (Ri, bi), (bi, ai), (ai, Ui), and (Ui, s) in the set TP of program transitions (cf.

ai bi

Pi

Qi

Ri

Ui

s

Figure 8.12: Mapping 3-SAT to addition of hard-masking fault-tolerance.

118

Figure 8.12). We also add a self-loop at state s. Moreover, corresponding to each

disjunction yj , we include the following transitions:

– If xi is a literal in yj then we include the transition (tj , Pi).

– If ¬xi is a literal in yj then we include the transition (tj , Ri).

• (Fault transitions) We also add fault transitions from s to all states that correspond

to a disjunction. That is, F = {(s, tj) | 1 ≤ j ≤M}.

• (Safety specification) We let the set of bad transitions to be the empty set, i.e.,

SPEC bt = {}. Moreover, in SPEC br, we let the response times to be unbounded, i.e.,

δ = θ =∞.

Reduction. Now, we show that the given instance of 3-SAT is satisfiable iff we are able

to synthesize P ′ = 〈ΠP ′ , InvP ′〉 by adding hard-masking fault-tolerance to P = 〈ΠP , InvP〉

(identified above) such that P ′ meets the constraints of Problem Statement 7.3.2. We

distinguish two subgoals:

1. (⇒) First, we show that if the given instance of the 3-SAT formula is satisfiable then

there exists a hard-masking program P ′ = 〈ΠP ′ , InvP ′〉 derived from P = 〈ΠP , InvP〉.

Since the 3-SAT formula is satisfiable, there exists an assignment of truth values to

variables xi, 1 ≤ i ≤ n, such that each disjunction yj , 1 ≤ j ≤M , becomes true. We

construct P ′ = 〈ΠP ′ , InvP ′〉 as follows.

• The invariant of P ′ is identical to the invariant of P, i.e., InvP ′ = InvP .

• For each variable xi, if xi is true then we include the transitions (Pi, ai), (ai, bi),

(bi, Qi), and (Qi, s) in TP ′ .

• For each variable xi, if xi is false then we include the transitions (Ri, bi), (bi, ai),

(ai, Ui), and (Ui, s) in TP ′ .

• For each disjunction yj that contains xi, we include the transition (tj , Pi) in TP ′

if xi is true.

• For each disjunction yj that contains ¬xi, we include the transition (tj , Ri) in

TP ′ if xi is false.

• Finally, we let the self-loop (s, s) to be present in TP ′ as well.

119

t1

a1 b1

P1

Q1

a2 b2

R2

U2

t2

a4 b4

R4

U4

a3 b3

R3

U3

s
Program

Fault
Legend

Figure 8.13: Partial structure of the hard-masking program.

As an illustration, we show the partial structure of P ′, for the formula [(x1 ∨ ¬x2 ∨

x3) ∧ (x1 ∨ x2 ∨ ¬x4)], where x1 = true, x2 = false, x3 = false, and x4 = false

in Figure 8.13. Now, we show that if we construct P ′ as prescribed above, P ′ is

hard-masking F -tolerant to SPEC from InvP ′ :

• Clearly, the first two constraints of the Problem Statement 7.3.2 are satisfied.

• It is easy to observe that by construction, there are no deadlock states. Moreover,

if the state of P ′ is perturbed by a fault transition, the corresponding computa-

tion reaches Pi (i.e., xi = true) and then that computation will eventually reach

Qi and finally recovers back to s. This is due to the fact that TP ′ does not in-

clude the transition (bi, ai). Likewise, if a computation of TP ′ []f reaches Ri (i.e.,

xi = false) then that computation will eventually reach Ui and recovers back to

s. Again, this is because TP ′ does not include the transition (ai, bi). Thus, P ′ is

hard-masking f -tolerant to SPEC from InvP ′ .

2. (⇐) Next, we show that if there exists a hard-masking program P ′ = 〈ΠP ′ , InvP ′〉

such that P ′ meets the constraints of Problem Statement 7.3.2 then the corresponding

3-SAT formula is satisfiable. We assign truth values to the propositional variables as

120

follows. If there exists a computation of TP ′ []f , such that state Pi is reachable then

we assign xi the truth value true. Otherwise, we assign the truth value false.

We now show that the above truth assignment satisfies all disjunctions. Observe that

since S′ is nonempty then InvP ′ = {s}. Let yj be any disjunction and let tj be the

corresponding state in P ′. Since tj is a state in the fault-span and P ′ is a hard-

masking program, P ′ cannot deadlock, i.e., there must be some outgoing transition

from tj . This transition terminates in either Pi or Ri, for some i. If the transition

from tj terminates in Pi then yj contains literal xi and xi is assigned the truth value

true. Hence, yj evaluates to true. If the transition from tj terminates in Ri then Pi is

unreachable. Otherwise, (i) transitions (Ri, bi), (bi, ai), and (ai, Ui) must be included

to ensure that R 7→≤∞ U is satisfied, and (ii) transitions (Pi, ai), (ai, bi), and (bi, Qi)

must also be included to guarantee that P 7→≤∞ Q is satisfied. Since the inclusion of

all six transitions (Pi, ai), (ai, bi), (bi, Qi), (Ri, bi), (bi, ai), and (ai, Ui) creates a cycle

and, hence, causes violation of both P 7→≤∞ Q and R 7→≤∞ U , it follows that Pi must

be unreachable in any computation of TP ′ []f if Ri is reachable. Thus, if Ri is reachable

then xi will be assigned the truth value false. Since in this case yj contains ¬xi, the

disjunction yj evaluates to true. Therefore, the assignment of values considered above

is a satisfying truth assignment for the corresponding 3-SAT formula.

121

Chapter 9

Synthesizing Bounded-Time

Phased Recovery

In this chapter, we focus on the problem of automated synthesis for real-time systems that

provide bounded-time phased recovery in the presence of faults. To motivate the notion of

phased recovery, we return to our traffic controller example (see Section 2.1.2).

Consider the case where sig0 is green and sig1 is red. If the timer that is responsible for

changing sig1 from red to green is reset due to a circuit problem, sig1 may turn green within

some time while sig0 is also green. Obviously, this is a violation of the safety specification.

In order to transform this system into a fault-tolerant one, it is desirable to synthesize a

version of the original system, in which even in the presence of faults, the system

1. never executes a transition in SPEC btT C
, and

2. always meets the following bounded-time recovery specification denoted by SPEC brT C
:

when the system state is in ¬InvT C , it must reach a state in InvT C within a bounded

amount of time.

Although such a recovery mechanism is necessary in a fault-tolerant real-time system,

it may not be sufficient. In particular, one may require that the system must initially

reach a special set of states, say Q, within some time θ, and subsequently recover to InvT C

within δ time units. We call the set Q an intermediate recovery predicate. The intuition

for such phased recovery comes from the requirement that the occurrence of faults must be

noted (e.g., for scheduling hardware repairs or replacement) before normal system operation

122

resumes. Thus, in our example, Q could be the set of states where all signals are red. Such

a constraint ensures that the system first goes to a state in which a set of preconditions for

final recovery (e.g., via a system reboot or rollback) is fulfilled.

The main results in this chapter are as follows:

• We formally define the notion of bounded-time phased recovery in the context of

fault-tolerant real-time systems.

• We show that, in general (i.e., when Q 6⊆ InvP and InvP 6⊆ Q), the problem of

synthesizing fault-tolerant real-time programs that provide phased recovery is NP-

complete. An example of such a case is the traffic signals system in which Q includes

states where all signals are flashing red. This result also shows that the problem

of adding hard-masking fault-tolerance with only one timing constraint is also NP-

complete. This result generalizes Theorem 8.4.3.

• We characterize a sufficient condition for cases where the synthesis problem can be

solved efficiently. In particular, we show that if InvP ⊆ Q, and, execution of the

synthesized system needs to be closed in Q (i.e., starting from a state in Q, the state

of the system never leaves Q) then there exists a polynomial-time sound and complete

synthesis algorithm in the size of the input intolerant program’s region graph. An

example of such a case is the traffic signals system in which Q is the set of states

where either both signals remain red indefinitely or InvT C holds.

9.1 Bounded-Time Phased Recovery

As mentioned earlier, preserving safety specification and providing simple recovery to the

invariant from the fault-span may not be sufficient and, hence, it may be necessary to

complete recovery to the invariant in a sequence of phases where each phase satisfies certain

constraints. We formalize the notion of bounded-time phased recovery by a set of bounded

response properties inside the safety specification, i.e., by SPEC br (cf. Definition 2.2.4). In

this paper, in particular, we focus on 2-phase recovery.

Definition 9.1.1 (2-phase recovery) Let P = 〈ΠP , InvP〉 be a real-time program,

Q be an arbitrary intermediate recovery predicate, F be a set of faults, and SPEC be a

123

specification (as defined in Definitions 2.2.4 and 2.2.5). We say that P provides 2-phase

recovery from InvP and Q with recovery times δ, θ ∈ Z≥0, respectively, iff P[]F maintains

SPEC br from InvP , where SPEC br ≡ (¬InvP 7→≤θ Q) ∧ (Q 7→≤δ InvP).

Note that in Definition 9.1.1, if InvP and Q are disjoint then P has to recover to Q and

then InvP in order, as InvP is closed in P. On the other hand, if InvP and Q are not

disjoint, P has the following options: (1) recover to Q ∩ ¬InvP within θ and then InvP , or

(2) directly recover to InvP ∩Q within min(δ, θ).

Example (cont’d). As described earlier in this Section, when faults F0 or F1 (defined

in Subsection 7.2.3) occur, the program T C has to, first, ensure that nothing catastrophic

happens and then recover to its normal behavior. Thus, the fault-tolerant version of T C has

to, first, reach a state where both signals remain red indefinitely and subsequently recover

to InvP where exactly one signal turns green. In particular, we let the 2-phase recovery

specification of T C be the following:

SPEC brT C
≡ (¬InvT C 7→≤3 QT C) ∧ (QT C 7→≤7 InvT C),

where QT C = ∀i ∈ {0, 1} : (sig i = R) ∧ (zi > 1). The response times in SPEC brT C
(i.e.,

3 and 7) are simply two arbitrary numbers to express the duration of the two phases of

recovery.

9.2 Complexity of Synthesizing Bounded-Time 2-Phase Re-

covery

In this section, we show that, in general, the problem of synthesizing fault-tolerant real-time

programs that provide phased recovery is NP-complete in the size of locations of the given

fault-intolerant real-time program.

Instance. A real-time program P = 〈ΠP , InvP〉, a set of faults F , and a specification

SPEC , such that P |=InvP
SPEC , where SPEC br ≡ (¬InvP 7→≤θ Q) ∧ (Q 7→≤δ InvP) for

state predicate Q and δ, θ ∈ Z≥0.

The decision problem (FTPR). Does there exist an F -tolerant program

P ′ = 〈ΠP ′ , InvP ′〉 such that P ′ meet the constraints of Problem Statement 7.3.2?

124

We now show that the FTPR problem is NP-complete to decide. To this end, we

reduce a variation of the 2-path problem [FHW80] to FTPR.

The simplified 2-path problem (2PP). Given are a digraph G = 〈V,A〉 and three

distinct vertices v1, v2, v3 ∈ V . Decide whether G has a simple (v1, v3)-path that also

contains the vertex v2 [BJG02].

Theorem 9.2.1 The problem of transforming a fault-intolerant real-time program into a

fault-tolerant program that provides bounded-time phased recovery is NP-complete in the size

of locations of the fault-intolerant program.

Proof.

Since showing membership to NP is straightforward, we only show that the problem is

NP-hard.

Mapping. Given an instance of the 2PP problem (i.e., G = 〈V,A〉, v1, v2, and v3), we

first present a polynomial-time mapping from the 2PP instance to an instance of the FTPR

problem (i.e., P = 〈ΠP , InvP〉, S, f , and SPEC) as follows (see also Figure 9.1):

• (clock variables) X = {},

• (state space) SP = {sv | v ∈ V },

• (program transitions) TP = ({(su, sv) | (u, v) ∈ A} ∪ {(sv3
, sv3

)})− {(sv3
, su) | u ∈

V − {v3}},

• (invariant) InvP = {sv3
},

• (fault transitions) F = {(sv3
, sv1

)},

• (safety specification) SPEC bt = {} and SPEC br ≡ (¬S 7→≤θ Q) ∧ (Q 7→≤δ S),

where Q = {sv2
}, δ =∞, and θ =∞.

An intuitive description of the above mapping is as follows. First, we let the set of

clock variables of P be the empty set. This is simply because our goal is to show that the

problem is NP-hard in the size of locations of the input program. The state space of P

125

f

fault-span

S
Q invariant state

S)-state

Q-state

program transition

fault transition

recovery path

 sv3 sv2 sv1

Figure 9.1: Mapping 2-path problem to fault-tolerance synthesis.

consists of all vertices in V . The program invariant InvP merely includes state sv3
. The

set of program transitions consists of all arcs in A except arcs that originate at v3, plus a

self-loop at sv3
. Inclusion of the self-loop guarantees that all program computations are

infinite. Exclusion of arcs that originate from v3 ensures the closure of InvP . There is no

bound on recovery times. Finally, we let SPEC bt be the empty set so that all program

transitions can potentially participate in the synthesized program.

Reduction. Given the above mapping, we now show that 2PP has a solution iff the

answer to the FTPR problem is affirmative:

• (⇒) Let the answer to the 2PP be a simple path π that originates at v1, ends at v3,

and contains v2. We claim that in the structure shown in Figure 9.1, the set of program

transitions TP ′ obtained by taking only the transitions corresponding to the arcs along

π plus the self-loop (sv3
, sv3

) satisfies the constraints of Problem Statement 7.3.2. We

prove our claim as follows. Notice that (1) SP = SP ′ , (2) InvP ′ = InvP = {sv3
}, (3)

TP ′ |InvP ′ ⊆ TP |InvP ′ , and (4) P ′ is fault-tolerant to SPEC from InvP ′ , as (i) in the

absence of faults, by starting from the invariant InvP ′ , all computations of TP ′ are

infinite, and (ii) in the presence of faults, P ′ |=InvP′ SPEC br (since π is a simple path

that meets Q and S, respectively), and, P ′ |=InvP′ SPEC bt.

• (⇐) Let the answer to the FTPR problem be P ′ = 〈ΠP ′ , InvP ′〉 with invariant InvP ′ .

Since InvP ′ must be nonempty, InvP ′ = {sv3
}. Now, consider a computation prefix of

P ′ that starts from InvP ′ and the fault transition (sv3
, sv1

) perturbs the state of P ′.

Since P ′ is fault-tolerant it must satisfy the bounded response properties ¬InvP ′ 7→≤θ

Q and Q 7→≤δ InvP ′ . Hence, there should exist a computation prefix σ that originates

at {sv1
} and reaches Q = {sv2

}. Moreover, σ must also visit InvP ′ = {sv3
}. Notice

that starting from sv1
, σ must first visit sv2

and subsequently sv3
. This is because if σ

126

first visits sv3
then due to the closure of InvP ′ in TP ′ , it will never reach sv2

. Now, we

claim that a path, say π, whose vertices and arcs correspond to state and transitions

in σ, is the answer to 2PP. We prove this claim as follows. Obviously, π starts from

v1, ends at v3 and contains v2. Moreover, since σ reaches both InvP ′ and Q in a finite

number of steps, σ cannot contain cycles. Therefore, π is a simple path.

Example (cont’d). The proof of Theorem 9.2.1 particularly implies that if Q and

InvP are disjoint in the problem instance then NP-completeness of the synthesis problem

is certain. In the context of T C, notice that according to the definitions of InvT C and QT C

in Sections 2.2 and 9.1, it is the case that InvT C ∩ QT C = {}. Hence, the T C program

and specification in their current form exhibit an instance where the synthesis problem is

NP-complete. However, in Subsection 9.3.1, we demonstrate that a slight modification in

the specification of T C makes the problem significantly easier to solve.

9.3 A Sufficient Condition for a Polynomial-Time Solution

In this section, we present a sufficient condition under which one can devise a polynomial-

time sound and complete solution to the Problem Statement 7.3.2 in the size of time-abstract

bisimulation of input program.

Claim 9.3.1 Let P = 〈ΠP , InvP〉 be a program and recovery specification SPEC br ≡

(¬InvP 7→≤θ Q) ∧ (Q 7→≤δ InvP). There exists a polynomial-time sound and complete

solution to Problem Statement 7.3.2 in the size of the region graph of P, if (InvP ⊆ Q)∧ (Q

is closed in TP ′).

In order to validate this claim, we propose the Algorithm

Add BoundedPhasedRecovery.

Algorithm sketch. Intuitively, the algorithm works as follows. In Step 1, we transform

the input program into a region graph. In Step 2, we isolate the set of states from where

SPEC bt may be violated. In Step 3, we ensure that any computation of P ′ that starts from

a state in ¬InvP ′ − Q (respectively, Q − InvP ′) reaches a state in Q (respectively, InvP ′)

within θ (respectively, δ) time units. In Step 4, we ensure the closure of fault-span and

deadlock freedom of invariant. We repeat Steps 3-4 until a fixpoint is reached. Finally, in

Step 5, we transform the resultant region graph back into a real-time program.

127

Algorithm 9.1 Add BoundedPhasedRecovery

Input: A real-time program P = 〈ΠP , InvP〉, fault transitions F , bad transitions SPEC bt,
intermediate recovery predicate Q s.t. InvP ⊆ Q, recovery time δ, and intermediate
recovery time θ.

Output: If successful, a fault-tolerant real-time program P ′ = 〈ΠP ′ , InvP ′〉.

1: 〈Πr
P , Inv r

P〉, Q
r, f r, SPEC r

bt := ConstructRegionGraph(〈ΠP , InvP〉, Q, f , SPEC bt);
2: ms := {r0 | ∃r1, r2 · · · rn : (∀j | 0≤j<n : (rj , rj+1) ∈ F

r) ∧ (rn−1, rn) ∈ SPEC r
bt};

3: mt := {(r0, r1) | (r1 ∈ ms) ∨ ((r0, r1) ∈ SPEC r
bt)};

4: Sr
1 := Sr

P −ms;
5: repeat
6: Sr

2 , Inv r
2 := Sr

1 , Inv r
1;

7: T r
P1

:= T r
P |Inv r

1 ∪ {((s0, ρ0), (s1, ρ1)) | (s0, ρ0) ∈ (Sr
1 −Q

r) ∧ (s1, ρ1) ∈ T
r
1 ∧

8: ∃ρ2 | ρ2 is a time-successor of ρ0 : (∃λ ⊆ X : ρ1 = ρ2[λ := 0])} ∪
9: {((s0, ρ0), (s1, ρ1)) | (s0, ρ0) ∈ (Qr − Inv r

1) ∧ (s1, ρ1) ∈ Q
r ∧

10: ∃ρ2 | ρ2 is a time-successor of ρ0 : (∃λ ⊆ X : ρ1 = ρ2[λ := 0])} − mt ;
11: T r

P1
, ns := Add rtUNITY(〈Πr

P1
, Inv r

P1
〉, Sr

1 −Q
r, Qr, θ);

12: Sr
1 := Sr

1 − ns;
13: T r

P1
, ns := Add rtUNITY(〈Πr

P1
, Inv r

P1
〉, Qr − Inv r

1, Inv r
1, δ);

14: Sr
1 , Q

r := Sr
1 − ns, Qr − ns;

15: while (∃r0, r1 : r0∈S
r
1 ∧ r1 6∈S

r
1 ∧ (r0, r1)∈F

r) do
16: Sr

1 := Sr
1 − {r0};

17: end while
18: while (∃r0∈(Inv r

1 ∩ S
r
1) : (∀r1 | (r1 6= r0 ∧ r1 ∈ Inv r

1) : (r0, r1) 6∈ T r
)1

) do

19: Inv r
1 := Inv r

1 − {r0};
20: end while
21: if (Inv r

1 = {} ∨ Sr
1 = {}) then

22: ‘‘declare no fault-tolerant program exists’’; exit;
23: end if
24: until (S1 = S2 ∧ Inv1 = Inv2)
25: 〈ΠP ′ , InvP ′〉 := ConstructRealTimeProgram(〈Πr

P1
, Inv r

P1
〉);

26: return 〈ΠP ′ , InvP ′〉;

Assumption 1 Let α = (σ0, τ0)→ (σ1, τ1)→ · · · (σn, τn) be a computation prefix where

σ0, σn ∈ S and σi 6∈ S for all i ∈ {1..n− 1}. Only for simplicity of presentation, we assume

that the number of occurrence of faults in α is one. Precisely, we assume that in α, only

(σ0, σ1) is a fault transition and no faults occur outside the program invariant. In Chapter

8, we have shown how to deal with cases where multiple faults occur in a computation when

adding bounded response properties. The same technique can be applied while preserving

soundness and completeness of the algorithm Add BoundedPhasedRecovery in this paper.

Furthermore, notice that the proof of Theorem 9.2.1 in its current form holds with this

assumption.

128

We now describe the algorithm Add BoundedPhasedRecovery in detail:

• (Step 1) First, we use the above technique to transform the input program P =

〈ΠP , InvP〉 into a region graph R(P) = 〈Πr
P , Inv r

P〉. To this end, we invoke the

procedure ConstructRegionGraph as a black box (Line 1). We let this procedure convert

state predicates and sets of transitions in P (e.g., InvP and TP) to their corresponding

region predicates and sets of edges in R(P) (e.g., Inv r
P and T r

P).

• (Step 2) In order to ensure that the synthesized program does not violate SPEC bt,

we identify the set ms of regions from where a computation may reach a transition in

SPEC bt by taking fault transitions alone (Line 2). Next (Line 3), we compute the set

mt of edges, which contains (1) edges that directly violate safety (i.e., SPEC r
bt), and

(2) edges whose target region is in ms (i.e., edges that lead a computation to a state

from where safety may be violated by faults alone). Since the program does not have

control over occurrence of faults, we remove the set ms from the region predicate Sr
1 ,

which is our initial estimate of the fault-span (Line 4). Likewise, in Step 3, we will

remove mt from the set of program edges T r
P when recomputing program transitions.

• (Step 3) In this step, we add recovery paths to R(P) so that R(P) satisfies

¬InvP ′ 7→≤θ Q and Q 7→≤δ InvP ′ . To this end, we first recompute the set TP1
of

program edges (Line 7) by including (1) existing edges that start and end in Inv r
1, and

(2) new recovery edges that originate from regions in Sr
1−Q

r (respectively, Qr−Inv r
1)

and terminate at regions in Sr
1 (respectively, Q) such that the time-monotonicity con-

dition is met. We exclude the set mt from T r
P1

to ensure that these recovery edges do

not violate SPEC bt. Notice that the algorithm allows arbitrary clock resets during

recovery. If such clock resets are not desirable, one can rule them out by including

them as bad transitions in SPEC bt.

After adding recovery edges, we invoke the procedure Add rtUNITY (Line 8) with pa-

rameters Sr
1−Q

r, Qr, and θ to ensure that R(P) indeed satisfies the bounded response

property ¬InvP 7→≤θ Q. The details of how the procedure Add rtUNITY (first pro-

posed in Chapter 6) functions are not provided in this paper, with the exception of the

following properties: (1) it adds a clock variable, say t1, which gets reset when S1−Q

becomes true, to the set X of clock variables of P, (2) for each state σ in S1 −Q, it

includes the set of transitions that participate in forming the computation that starts

129

from σ and reaches a state in Q with smallest possible time delay, if the delay is less

than θ, and (3) the regions made unreachable by this procedure (returned as the set

ns) cannot be present in any solution that satisfies ¬Inv1 7→≤θ Q. The procedure may

optionally include additional computations, provided they preserve the corresponding

bounded response property. Thus, since there does not exist a computation prefix

that maintains the corresponding bounded response property from the regions in ns,

in Line 9, the algorithm removes ns from Sr
1 . Likewise, in Line 10, the algorithm adds

a clock variable, say t2, which gets reset when Q − Inv1 becomes true and ensures

that R(P) satisfies Q 7→≤δ Inv1.

• (Step 4) Since we remove the set ns of regions from Inv r
1, we need to ensure that

S1 is closed in F . Thus, we remove regions from where a sequence of fault edges can

reach a region in ns (Lines 12-14). Next, due to the possibility of removal of some

regions and edges in the previous steps, the algorithm ensures that the region graph

〈Πr
P1
, Inv r

P1
〉 does not have deadlock regions in the region invariant Inv r

1 (Lines 15-17).

If the removal of deadlock regions and regions from where the closure of fault-span is

violated results in empty invariant or fault-span, the algorithm declares failure (Lines

18-20).

• (Step 5) Finally, upon reaching a fixpoint, we transform the resulting region graph

〈Πr
P1
, Inv r

P1
〉 back into a real-time program P ′ = 〈ΠP ′ , InvP ′〉 by invoking the pro-

cedure ConstructRealTimeProgram. In fact, the program P ′ is returned as the final

synthesized fault-tolerant program. Note that since a region graph is a time-abstract

bisimulation [AD94], we will not lose any behaviors in the reverse transformation.

We now show that the algorithm Add BoundedPhasedRecovery is sound in the sense that

any program that it synthesizes is correct-by-construction. We also show that the algorithm

is complete in the sense that if it fails to synthesize a solution then no other correct solution

exists.

Theorem 9.3.2 The Algorithm Add BoundedPhasedRecovery is sound.

Proof. We show that the algorithm satisfies the constraints of Problem Statement 7.3.2.

Let the algorithm add two clock variables t1 and t2 when invoking Add rtUNITY (cf. Lines

8 and 10). We proceed as follows:

130

1. (Constraints C1..C3) By construction, correctness of these constraints trivially fol-

lows.

2. (Constraint C4) We distinguish two subgoals based on the behavior of P ′ in the

absence and presence of faults:

• We need to show that in the absence of faults, P ′ |=InvP′ SPEC . To this end,

consider a computation σ of TP ′ that starts in InvP ′ . Since the values of t1 and

t2 are of no concern inside InvP ′ , from C1, σ starts from a state in InvP , and

from C2, σ is a computation of TP . Moreover, since we remove deadlock states

from InvP ′ (cf. Lines 15-17), if σ is infinite in P then it is infinite in P ′ as well. It

follows that σ ∈ SPEC . Hence, every computation of TP ′ that starts from a state

in InvP ′ is in SPEC . Also, by construction, InvP ′ is closed in TP ′ . Furthermore,

for all open regions, say r0, in S′r there exists an outgoing edge, say (r0, r1), for

some r1 ∈ Inv r
P ′ where r0 6= r1. Since the intolerant program exhibits no time-

convergent behavior, such an edge can only terminate at a different clock region,

which in turn advances time by an integer. This implies that in the absence

of faults, our algorithm does not introduce time-convergent computations (Zeno

behaviors) to P ′ and, hence, P ′ |=InvP′ SPEC .

• Notice that by construction, SP ′ is closed in TP ′ []F (cf. Lines 12-14). Now, we

need to show that every computation of TP ′ []F that starts from a state in SP ′

reaches a state in Q and subsequently a state in InvP ′ within θ and δ time units,

respectively. Consider a computation σ = (σ0, τ0) → (σ1, τ1) → · · · of TP ′ []F

that starts from a state in SP ′ . If σ0 ∈ InvP ′ a single fault transition may take

σ to SP ′ − InvP ′ and by Assumption 1, none of the subsequent transitions in

σ is in F . Thus, σ1 = (σ1, τ1) → (σ2, τ2) → · · · is a computation of TP ′ where

σ1 ∈ SP ′ − InvP ′ . In the algorithm, when the repeat-until loop terminates, by

construction, (1) σ1 reaches a state, say σk, in Q where τk − τ1 ≤ θ (cf. Lines

7-8), and (2) from σk, σ reaches a state in InvP ’ within δ (cf. Line 10). This also

implies that in the presence of faults as well, our algorithm does not introduce

time-convergent computations to P ′, as σ eventually reaches a state in InvP ′ .

Theorem 9.3.3 The Algorithm Add BoundedPhasedRecovery is complete.

131

Proof. The proof of completeness is based on the observation that if any state is removed

then it must be removed, i.e., there is no fault-tolerant program that meets the constraints

of Problem Statement 7.3.2 and includes this state. For example, in the computation of ms,

if (σ0, σ1) is a fault transition and violates safety then state σ0 must be removed (i.e., not

reached). Likewise, ms includes states from where execution of faults alone violates safety.

Hence, they must be removed. In Line 7, we compute the input program that includes all

possible transitions that may be used in the final program. Due to constraint C3 of the

Problem Statement 7.3.2, any transition that begins in the invariant must be a transition of

the fault-intolerant program. Due to closure of Q in the sufficient condition, any transition

from Q (precisely Q− InvP since states in InvP are already handled) must end in Q. And,

due to closure of fault-span, any transition that begins in SP (precisely SP −Q) must end

in SP . Thus, the transitions computed in Line 7 are maximal. Furthermore, using the

property of the Add rtUNITY, if any state is removed in spite of considering all possible

transitions that could be potentially used, then that state must be removed (i.e., states in

ns).

Our algorithm declares failure when either the invariant or fault-span of the synthesized

program is equal to the empty set. In other words, our algorithm fails to find a solution

when all states of the intolerant program are illegitimate with respect to Problem Statement

7.3.2. Therefore, the algorithm Add BoundedPhasedRecovery is complete.

9.3.1 Example (cont’d)

We now demonstrate how the algorithm Add BoundedPhasedRecovery synthesizes a fault-

tolerant version of T C, which provides bounded-time recovery. In the recovery specification

of T C (cf. in Section 9.1), the invariant predicate InvT C and intermediate recovery predicate

QT C were disjoint and in Section 9.2, we showed such specifications make the synthesis

problem NP-complete. Now, let the intermediate recovery predicate be:

Qnew = InvT C ∪ QT C .

In other words, after the occurrence of faults, the recovery specification requires that either

both signals turn red within 3 time units and then return to the normal behavior within 7

time units, or, the system reaches a state in InvT C within 3 time units. Since, InvT C ⊆ Qnew ,

we apply the Algorithm Add BoundedPhasedRecovery to transform T C into a fault-tolerant

132

program T C′. We note that due to many symmetries in T C and the complex structure of

the algorithm, we only present a highlight of the process of synthesizing T C′.

First, observe that in Step 2 of the algorithm, ms = {} and mt = SPEC btT C
. In Step 3,

consider a subset of S1 − Qnew where (sig0 = sig1 = R) ∧ (z0, z1 ≤ 1). This predicate is

reachable by a single occurrence of (for instance) F0 from an invariant state where (sig0 =

sig1 = R) ∧ (z0 > 1) ∧ (z1 ≤ 1). After adding legitimate recovery transitions (Line 7), the

invocation of Add rtUNITY (Line 8) results in addition of the following recovery action:

T C5i :: (sig0 = sig1 = R) ∧ (z0, z1 ≤ 2) ∧ (t1 ≤ 2) −−→ wait;

for all i ∈ {0, 1}. This action enforces the program to take delay transitions so that the

program reaches a state in Q where (sig0 = sig1 = R) ∧ (z0, z1 > 1).

Comment. One may notice that although it is perfectly legitimate to wait up to 3

time units inside T1 − Qnew , as θ = 3, the action T C5 lets the program wait only for 2

time units. This is because Add rtUNITY first includes computations with the smallest

possible time delay and optionally includes additional computations to increase the level

non-determinism. In this context, other such additional computations may be constructed

by the following actions for sig0:

T C60 :: (sig0 = sig1 = R) ∧ (z0, z1 ≤ 1) ∧ (t1 ≤ 1)
{x0}
−−−→ (sig0 := G);

T C70 :: (sig0 = G) ∧ (sig1 = R) ∧

(x0 = 1) ∧ (z0, z1 ≤ 1) ∧ (t1 ≤ 2)
{y0}
−−−→ (sig0 := Y);

T C80 :: (sig0 = G) ∧ (sig1 = R) ∧

(x0 ≤ 1) ∧ (z0, z1 ≤ 1) ∧ (t1 ≤ 2) −−−→ wait;

Notice that while executing recovery action T C60 results in reaching another state in S1 −

Qnew , execution of actions T C70 and T C80 result in reaching a state in invariant InvT C ,

which is clearly in Qnew as well.

Now, consider the case where T C is in a state where (sig0 = G) ∧ (sig1 = R) ∧ (x0 =

1) ∧ (z0, z1 ≤ 1). In this case, one may argue that T C has the option of executing action

T C31 and reaching a state where sig0 = sig1 = G, which is clearly a violation of safety

specification SPEC btT C
. However, since we remove the set mt from TP1

(Line 7), action

T C3i would be revised as follows:

T C3i:: (sig i = R) ∧ (zj ≤ 1) ∧ (sigj 6= G)
{xi}
−−−→ (sig i := G);

133

for all i ∈ {0, 1} where j = (i + 1) mod 2. In other words, the algorithm strengthens the

guard of T C1i such that in the presence of faults, a signal does not turn green while the

other one is also green.

In Step 4, consider the state predicate Qnew−Inv1T C
= (sig0 = sig1 = R) ∧ (z0, z1 > 1).

Similar to Step 3, the algorithm adds recovery paths with the smallest possible time delay,

which is the following action for either i = 0 or i = 1:

T C9i:: (sig i = sigj = R) ∧ (zi, zj > 1)
{zi}
−−→ skip;

It is straightforward to verify that by execution of T C9i, the program reaches the in-

variant InvT C from where the program behaves correctly. Similar to Step 3, the procedure

Add rtUNITY may include the following additional actions:

T C10i:: (sig i = sigj = R) ∧ (zi, zj > 1) ∧ (t2 ≤ 7)
{xi}
−−→ (sig i := G);

T C11i:: (sig i = sigj = R) ∧ (zi, zj > 1) ∧ (t2 ≤ 7)
{yi}
−−→ (sig i := Y);

T C12i:: (sig i = sigj = R) ∧ (zi, zj > 1) ∧ (t2 ≤ 7) −−→ wait;

Comment. One may notice that action T C11i adds a strange behavior to T C by

allowing a signal to change phase from red to yellow. Our algorithm allows addition of

such recovery action, since it does not violate the safety specification SPEC btT C
. One may

enforce the algorithm not to add such actions by simply adding the transitions in the set

{(σ0, σ1) | ∃i ∈ {0, 1} : (sig i(σ0) = R) ∧ (sig i(σ1) = Y)} to SPEC btT C
. In fact, we

expect that our synthesis techniques have the potential to identify missing properties in

cases where the specification is incomplete.

In the context of T C, in Step 5, the algorithm removes states from neither the fault-

span nor the invariant, as ns = {}, and, hence, the algorithm finds the final solution in one

iteration of the repeat-until loop.

134

Chapter 10

Disassembling Real-Time

Fault-Tolerant Programs

Dependability and time-predictability are two vital properties of most embedded (especially,

safety/mission-critical) systems. Consequently, providing fault-tolerance and meeting tim-

ing constraints are two inevitable aspects of dependable real-time embedded systems. Thus,

it is highly desirable to have access to methodologies to formally reason about and, hence,

gain assurance of these aspects during the design and analysis of embedded systems. Al-

though in Part III of this dissertation, our focus is mainly on automated synthesis of such

systems, their analysis is also of great interest. In the context of analysis, verification of

fault-tolerant real-time embedded systems may be accomplished by illustrating the exis-

tence of constituents that (1) guarantee fault-tolerance, (2) ensure timing constraints, and

(3) perform basic functionalities. One can also pose this problem as whether the structure of

the programs that we synthesize is sensible. With this motivation, we focus on the following

question:

Can a real-time fault-tolerant program be decomposed into components that can

assist in its verification?

In this chapter, we answer this question affirmatively by broadening the theory of fault-

tolerance components [AK98b] to the context of real-time programs. The theory in [AK98b]

essentially separates fault-tolerance and functionality concerns of untimed systems. More

specifically, the theory identifies two types of fault-tolerance components, namely detectors

and correctors. These components are based on the principle of detecting a state predicate

135

to ensure that program actions would be safe and correcting a state predicate to ensure

that the program eventually reaches a legitimate state. We emphasize that since these

components do not rely on detecting faults or correcting faults, they can be applied in cases

where faults are not detectable (e.g., Byzantine faults).

In the context of real-time programs, we focus on decomposition of hard-masking real-

time fault-tolerant programs (cf. Definition 7.2.2), where (1) (timing independent) safety,

(2) timing constraints, and (3) liveness properties (including recovery to legitimate states)

are met even in the presence of faults. We identify three types of components, namely, detec-

tors, weak δ-correctors, and strong δ-correctors. We show that these three components are in

turn responsible for meeting the three properties of hard-masking fault-tolerant programs.

Our proofs are constructive in the sense that they assist in identifying and subsequently

decomposing a given hard-masking program into its fault-intolerant version, detectors, and

δ-correctors.

Intuitively, detectors and δ-correctors work as follows. Each of these components is

specified using two predicates: a detection (respectively, correction) predicate and a witness

predicate. The goal of the detector component is to detect whether the given detection

predicate is true and subsequently satisfies the witness predicate. It is required that when-

ever the witness predicate is true, the detection predicate must be true as well. Thus, the

fault-tolerant program can use the witness predicate of the detector to provide the desired

fault-tolerance requirements. In case of a δ-corrector, the component restores the program

to a state where the correction predicate is true within a bounded amount of time. The use

of the witness predicate by the program is optional, as the program may not need to know

when the program state is restored.

Since we focus on demonstrating the existence of these components in a given hard-

masking program, our notion of decomposition differs from that in [AK98b]. In particular,

we precisely define what it means for a fault-tolerant program to reuse a fault-intolerant

program. Furthermore, we formally define what it means for a fault-tolerant program

to contain detectors and/or δ-correctors. We note that for assistance in analysis, it is

necessary to ensure that the specification of the added components can be derived from the

fault-intolerant version. Thus, in case of detectors, it is necessary to specify how the results

of these components (intuitively, the conclusion that the predicate being detected is true)

are syntactically used in the fault-tolerant real-time program. This part is not important

136

in the context of a design methodology and, hence, is not formalized in [AK98b].

Although detectors and correctors have been found to be useful in the design of fault-

tolerant programs 1, their significance in analysis has not been evaluated except in empirical

case studies. In these studies [KRS99, GJ04], decomposition of a fault-tolerant program

into its components has been found valuable in formal verification of the program. Thus,

we expect that an affirmative answer to existence of the components would significantly

assist in analysis of real-time embedded fault-tolerant programs.

The rest of this chapter is organized as follows. In Section 10.1, we present the basic

concepts and assumptions related to this chapter. Then, in Section 10.2 (respectively, 10.3),

we present the notion of detectors (respectively, δ-correctors) components, the concept of

their containment in real-time programs, and their theory of decomposition.

10.1 Basic Concepts and Assumptions

In this section, we present some modifications to definitions presented in previous chapters.

We start with computation. Notice that in Definition 2.1.7, we did not specify an initial

value for the global time. Now, let Σ be any set of computations. We require that Σ must

be closed with respect to time offsets. That is, ∀σ ∈ Σ : ∀t ∈ R : (σ+ t) ∈ Σ, where σ+ t

denotes the computation (σ0, τ0 + t)→ (σ1, τ1 + t)→ · · · , st. τ0 + t ≥ 0.

Notation. Let σi denote the pair (σi, τi) in computation σ. Also, let α be a finite

computation of length n and β be a finite or infinite computation. The concatenation

of α and β (denoted αβ) is a computation, iff states αn−1 and β0 meet the constraints

of Definition 2.1.7. Otherwise, the result of concatenation is null. If Γ and Ψ are two

sets containing finite and finite/infinte computations respectively, then ΓΨ = {αβ —

(α ∈ Γ) ∧ (β ∈ Ψ) }.

Definition 10.1.1 (suffix and fusion closure) Suffix closure of a set of computations

means that if a computation σ is in that set then so are all the suffixes of σ. Fusion closure of

a set of computations means that if computations α(σ, τ)γ and β(σ, τ)ψ are in that set then

so are the computations α(σ, τ)ψ and β(σ, τ)γ, where α and β are computation prefixes, γ

1The components have been shown to suffice in the design of a large class of fault-tolerant programs
[AK98b] including programs designed using replication, state machine approach, and, checkpointing and
recovery.

137

and ψ are computation suffixes, and σ is a state at global time τ .

Definition 10.1.2 (S-computations) Let S be a state predicate and P = 〈ΠP , InvP〉

be a program. The S-computations of P, denoted as P ⊲ S, is the set of all computations

in ΠP that start in a state where S is true.

In this chapter, we assume that all sets of computations are suffix and fusion closed.

Also, in this chapter, we relax the definition of computations (see Definition 2.1.7) by

allowing them to exhibit time-divergent behavior as well. One can observe that removing

the time-convergence restriction allows real-time programs and specifications to exhibit

Zeno behavior where a program is forced into a corner to take infinite number of steps

within a finite amount of time. The reason for this modification in this chapter is that

when we develop the theory of fault-tolerance components in Sections 10.2 and 10.3, we

allow components to exhibit Zeno behavior. Such modeling gives freedom in dealing with

situations where a component reaches a state from where another component must make

progress. However, as we will illustrate, it is important that the collection of components

working together in a program does not exhibit Zeno behavior. We emphasize that all

results in this paper are independent of Zeno or nonZeno constraints on components.

We now redefine what it means for a program to refine a specification and what it means

for a program P ′ (typically, a fault-tolerant program) to refine a program P (typically, a

fault-intolerant program). Essentially, we would like to say that ‘P ′ refines P’ iff computa-

tions of P ′ are a subset of that in P. However, if P ′ is obtained by adding fault-tolerance to

P then P ′ may contain additional variables that are not in P. Hence, it will be necessary

to project the computations of P ′ on (the variables of) P and then check if the projected

computation is a computation of P. Recall that VP and XP denote the set of discrete and

clock variables of program P, respectively.

Definition 10.1.3 (state projection) Let P and P ′ be real-time programs st. VP ′ =

VP ∪∆v and XP ′ = XP ∪∆x for some ∆v and ∆x. The projection of a state of P ′ on P

is a state obtained by considering VP ∪XP only, i.e., by abstracting away the variables in

∆v ∪∆x.

The same concept applies to programs and specifications. Extending this definition for

computations, we say that the projection of a computation of P ′ on P (respectively, SPEC)

138

is a computation obtained by projecting each state in that computation on P (respectively,

SPEC).

Definition 10.1.4 (refines) Let P and P ′ be real-time programs, S be a state predicate

and SPEC be a specification. We say that P ′ refines P (respectively, SPEC) from S iff

the following two conditions hold: (1) S is closed in P ′, and (2) for every computation of P ′

that starts in a state where S is true, the projection of that computation on P (respectively,

SPEC) is a computation of P (respectively, SPEC .

Specifying timing constraints. In order to express time-related behaviors of real-

time programs (e.g., deadlines and recovery time), in this chapter, we focus on a special

type of bounded response properties known as stable bounded response property (equivalent

to Unity bounded-time ensures properties). A stable bounded response property, denoted

P 7→≤δ Q, where P andQ are two state predicates and δ ∈ Z≥0, is the set of all computations

(σ0, τ0) → (σ1, τ1) → · · · in which, for all i ≥ 0, if σi |= P then there exists j, j ≥ i, st.

(1) σj |= Q, (2) τj − τi ≤ δ, and (3) for all k, i ≤ k < j, σk |= P , i.e., it is always the case

that a state in P is followed by a state in Q within δ time units and P remains true until

Q becomes true. We call P the event predicate, Q the response (or recovery) predicate, and

δ the response (or recovery) time.

Assumption 10.1.5 We assume that the set of clock variables of any stable bounded

response property P 7→≤δ Q contains a special clock variable, which gets reset whenever

P becomes true. This assumption is necessary to ensure that stable bounded response

properties are fusion closed.

10.2 Detectors and Their Role in Hard-Masking Programs

This section is organized as follows. We formally introduce the notion of detector com-

ponents in Subsection 10.2.1. In Subsection 10.2.2, we precisely define what we mean by

containment of a detector in a real-time program. Then, we present detector components

of the hard-masking version of our traffic controller in Subsection 10.2.3. Finally, in Sub-

section 10.2.4, we develop the theory of detectors by proving the necessity of existence of

hard-masking detectors in hard-masking fault-tolerant programs.

139

10.2.1 Detectors

Intuitively, a detector is a program component that ensures satisfaction of timing indepen-

dent safety (i.e., SPEC bt in Definition 2.2.4).

Definition 10.2.1 (detects) Let W and D be state predicates. Let ‘W detects D’ be

the specification, that is the set of all infinite computations σ = (σ0, τ0) → (σ1, τ1) → · · · ,

satisfying the following three conditions:

• (Safeness) For all i ∈ Z≥0, if σi |= W then σi |= D. (In other words, σi |= (W ⇒ D).)

• (Progress) For all i ∈ Z≥0, if σi |= D then there exists k, k ≥ i, st. σk |= W or σk 6|= D.

• (Stability) There exists i ∈ Z≥0, st. for all j, j ≥ i, if σj |= W then σj+1 |= W or

σj+1 6|= D.

Definition 10.2.2 (detectors) Let D be a program and D, W , and U be state predicates

of D. We say that W detects D in D from U (i.e., D is a detector) iff D refines ‘W detects

D’ from U .

A detector D is used to check whether its “detection predicate”, D, is true. Since

D satisfies Progress from U , in any computation of D, if U ∧ D is true continuously, D

eventually detects this fact and makes W true. Since D satisfies Safeness from U , it follows

that D never lets W witness D incorrectly. Moreover, since D satisfies Stability from U ,

it follows that once W becomes true, it continues to be true unless D is falsified. In the

context of fault-tolerance, D is typically a predicate of the fault-intolerant program from

where safety should be always satisfied and W is a predicate of the fault-tolerant program

that witnesses the detection of D.

In order to analyze the behavior of a detector in the presence of faults, we consider the

notion of hard-masking tolerant detectors. More specifically, a detector D is a hard-masking

tolerant detector.

10.2.2 Containment of Detectors in Real-Time Programs

In order to show the existence of detectors in hard-masking fault-tolerant programs, we

would like to show that the program contains a detector for a detection predicate associated

with the fault-intolerant program. However, we need to identify syntactic characteristics of

140

a program before detection predicates can be identified. In particular, since a detector is

used to ensure that the execution of an action is safe, its witness predicate must be used by

the fault-tolerant program. Intuitively, the syntactic constraints identified in this section

require the witness predicate to be a guard of the corresponding action in the fault-tolerant

program.

In order to accomplish our goal, first, we show that violation of timing independent safety

(i.e., SPEC bt in Definition 7.1.6) can be merely determined by considering transitions in

SPEC bt.

Lemma 10.2.3 Let SPEC be a specification, α be a computation prefix, σ and σ′ be two

states, and τ, τ ′ ∈ R≥0, where τ = τ ′.

If

• α(σ, τ) maintains SPEC bt

then

• α(σ, τ)(σ′, τ ′) maintains SPEC bt iff (σ, τ)(σ′, τ ′) maintains SPEC bt .

Proof. We distinguish two cases:

• (⇒) If α(σ, τ)(σ′, τ ′) maintains SPEC bt then by definition of main-

tains (cf. Definition 7.1.4), there exists a computation suffix β

st. α(σ, τ)(σ′, τ ′)β ∈ SPEC bt. Moreover, by suffix closure of

SPEC bt, (σ, τ)(σ′, τ ′)β must be in SPEC bt as well. Hence, by definition of

maintains, (σ, τ)(σ′, τ ′) maintains SPEC bt.

• (⇐) Consider the case where α(σ, τ) maintains SPEC bt and

(σ, τ)(σ′, τ ′) maintains SPEC bt. By definition of maintains there ex-

ists a suffix β st. α(σ, τ)β is in SPEC bt and there exists β
′

st.

(σ, τ)(σ′, τ ′)β
′

is in SPEC bt. Moreover, by fusion closure of SPEC bt,

α(σ, τ)(σ′, τ ′)β
′

is also in SPEC bt. Thus, by definition of maintains, α(σ, τ)(σ′, τ ′)

maintains SPEC bt.

In Lemma 10.2.4, we show that there exists a set of states from where execution of pro-

grams maintains SPEC bt. We call such a state predicate a detection predicate for SPEC bt.

141

Lemma 10.2.4 Given a program P, there exists a state predicate D (called detection pred-

icate) st. all computations of P that start from D maintain SPEC bt.

Proof. First, the set of computations of P is suffix and fusion closed, P can be represented

in terms of a set of transitions (and consequently timed actions) that it can execute. Now,

consider a computation prefix of ΠP , say α(σ, τ), that maintains SPEC bt. Observe that

from (σ, τ) execution of (a timed action of) P maintains SPEC bt iff the extended prefix

α(σ, τ)(σ′, τ ′), after execution of P maintains SPEC bt. Notice that since (σ′, τ ′) is not

reached by a delay action, τ = τ ′. In other words, there exists a set of computation

prefixes, say Γ, from which execution of P maintains SPEC bt.

From Lemma 10.2.3, it follows that the extended prefix

α(σ, τ)(σ′, τ ′) maintains SPEC bt iff (σ, τ)(σ′, τ ′) maintains SPEC bt. Thus, the execution

of P maintains SPEC bt iff it execute in a state in the set {(σ, τ) | ∃α : α(σ, τ) ∈ Γ)}.

The predicate characterized by this set of states suffices as a witness for the lemma (i.e.,

predicate D).

We now prove the uniqueness of the weakest detection predicate for a given program P.

Lemma 10.2.5 Given a program P and a specification SPEC , there exists a unique weakest

detection predicate of P for SPEC bt.

Proof. From Lemma 10.2.4, observe the existence of a detection predicate, and that a

program may have multiple detection predicates. Formally, let wdp be a detection predicate

of P for SPEC bt and D be an arbitrary state predicate. It is easy to see that if D ⇒ wdp,

then D is also a detection predicate of P for SPEC bt. Moreover, if wdp1 and wdp2 are two

detection predicates of P for SPEC bt then so is wdp1 ∨ wdp2. Thus, there exists a unique

weakest detection predicate for the given program.

We are now ready to define what it means for a program to contain detectors. Given

a timed guarded command, say L :: g
λ
−−→ st , Lemma 10.2.5 shows that there exists a

unique weakest detection predicate, say wdp, from where execution of L does not violate

SPEC bt. Hence, to show the existence of detectors, we require the detection predicate of

such a timed action to be g ∧ wdp. Furthermore, to show that the fault-tolerant program

contains the desired detector, we show that it must be using the witness predicate of that

detector to ensure that execution of the corresponding timed action is safe. Towards this

142

end, we define the notion of encapsulation. Intuitively, if (typically, a fault-tolerant) program

P ′ encapsulates fault-intolerant) program P then for each timed action of P of the form

g
λ
−−→ st , P ′ contains a timed action of the form g∧g′

λ∪λ′

−−−−→ st ||st ′. The semantic of st ||st ′

corresponds to the statement where st and st ′ are executed simultaneously, clock variables

in λ ∪ λ′ are reset, and the timed action is executed only when its guard, g ∧ g′, is true.

In other words, P ′ has a timed action corresponding to each timed action of P (possibly)

with a stronger guard, additional assignments in st ′, and additional clock variables in λ′.

Notice that the assignments in st ′ and clock variables in λ′ may be added in order to add

fault-tolerance to P (cf. the notion of state projection in Definition 10.1.3). To show that

P ′ is using a detector for a timed action of P, we require the witness predicate of that

detector to be g ∧ g′ which is the guard of the corresponding timed action in P ′.

Definition 10.2.6 (encapsulates) Let P and P ′ be two real-time programs and S be

a state predicate. We say that P ′ encapsulates P from S iff each timed action in P ′ that is

enabled in a state in S and that updates variables in VP is of the form g ∧ g′
λ∪λ′

−−−→ st ||st ′,

where g
λ
−→ st is a timed action of P and st ′ does not update variables in VP and λ′ ∩XP =

{}.

Based on the above discussion, given a timed guarded command of the form g
λ
−−→ st of

P, its (weakest) detection predicate wdp and the corresponding action g ∧ g′
λ∪λ′

−−−−→ st ||st ′

of P ′, we require the detection predicate of the desired detector to be g ∧ wdp and the

witness predicate of the desired detector to be g ∧ g′.

Finally, in order to formalize the notion of containment and existence of detectors,

we need to define what it means to obtain a fault-tolerant program by reusing its

fault-intolerant version.

Definition 10.2.7 (reuses) Let P and P ′ be two real-time programs. We say that P ′

reuses P from S iff the following two conditions are satisfied:

• P ′ refines P from S, and

• P ′ encapsulates P from S.

10.2.3 Example (cont’d)

Let T C be in a state where (sig0 = sig1 = R) ∧ (z0 > 1) ∧ (z1 ≤ 1). In this case,

if fault F0 occurs, subsequent execution of T C30 and T C31 results reaching a state where

143

sig0 = sig1 = G, which is clearly a violation of SPEC btT C
. It is straightforward to see that

the weakest detection predicate for T Ci is:

wdpT C′
i
= {σ | sigj(σ) = R},

where i ∈ {0, 1} and j = (i + 1) mod 2. Thus, in program T C′, the guard of T C3i is

strengthened in order for T C′ to refine SPEC btT C
in the presence of faults. Intuitively,

T C′ is allowed to change phase from red to green only when the other signal is red. More

precisely, T C′ uses the detector DT C′
i

which consists of timed guarded commands T C′1i,

T C′2i, and T C′4i with the following detection and witness predicates:

DT C′
i
= guard(T C3i) ∧ wdpT C′

i

WT C′
i
= guard(T C′3i).

It is easy to see that WT C′
i

detects DT C′
i

in DT C′
i

from InvT C in both absence and

presence of F0 and F1. Observe that in this example, the witness and detection predicates

happen to be equal. However, as we will show in the proof of Claim 10.2.10, this is not

always the case. Notice that DT C′
i
exhibits Zeno behavior since when the witness predicate

becomes true, there does not exist a timed guarded command whose guard is enabled except

T C′4i. However, as explained in Section 10.1, it is important that the entire program does

not show Zeno behavior. For instance, one can observe that, T C′3i ensures time progress

for T C′.

10.2.4 The Necessity of Existence of Detectors in Hard-Masking Pro-

grams

Based on the formalization of the notion of containment, we are now ready to prove that

hard-masking programs contain hard-masking tolerant detectors. Our strategy to accom-

plish our goal is as follows. First, based on Definitions 10.2.6 and 10.2.7, we show that

if a program refines SPEC bt in the absence of faults then it contains detectors. The in-

tuition is that if program P ′ is designed by transforming P so as to refine SPEC bt, then

the transformation must have added detectors for P, and P ′ reuses P. We formulate this

in Claim 10.2.10. Then (in the presence of faults), using Claim 10.2.10, we show that if a

hard-masking program P ′ is designed by reusing P to tolerate a set F of faults, P ′ contains

a hard-masking tolerant detector for each action of P. This is shown in Theorem 10.2.11.

144

In order to show that a program contains a detector component, we are required to

show that the corresponding timed guarded commands satisfy the Progress condition of

Definition 10.2.1. Thus, we assume that programs need to satisfy the following fairness

condition.

Assumption 10.2.8 We assume that program computations are fair in the sense that

in every computation, if the guard of an action is continuously true then that action is

eventually chosen for execution.

Assumption 10.2.9 Without loss of generality, for simplicity, we assume that transitions

that correspond to different actions of the program are mutually disjoint, i.e., they do not

contain overlapping transitions. The results in this paper are valid without this assumption

since we can easily modify a given program to one that satisfies this assumption.

We are now ready to formulate our claim on existence of detectors in programs that

refine SPEC bt in the absence of faults.

Claim 10.2.10 Let P and P ′ be real-time programs, Inv be a nonempty state predicate,

and SPEC be a specification.

If

• P ′ reuses P from Inv , and

• P ′ refines SPEC bt from Inv ,

then

• (∀ac | ac is a timed action of P : P ′ contains a detector of a detection predicate of

ac for SPEC).

Proof. Let ac be a timed action of P. We show that P ′ contains a detector of a detection

predicate of ac. Let wdp be the weakest detection predicate for ac. Since P ′ reuses (and,

hence, encapsulates) P from Inv , if ac is of the form g
λ
−−→ st , P ′ contains a timed action,

say ac′, of the form g ∧ g′
λ∪λ′

−−−−→ st ||st ′. Now, we instantiate witness predicate W and

detection predicate D as follows:

W = g ∧ g′, and

D = g ∧ wdp.

145

Following Lemma 10.2.4, since D ⇒ wdp, whenever D is true, execution of ac maintains

SPEC bt. Hence, D is a detection predicate of ac. Thus, it only remains to show that P ′

refines ‘W detects D’ from Inv . To this end, we verify Safeness, Progress, and Stability

constraints of our detector:

• (Safeness) By definition of W , W ⇒ g. Since P ′ refines SPEC bt from Inv , whenever

ac is executed in a state where Inv is true, its execution maintains SPEC bt. Since

wdp is the weakest detection predicate of ac, Inv ∧W ⇒ wdp. Thus, W ⇒ D and,

hence, Safeness is satisfied.

• (Progress) Consider any computation, say σ′, of P ′ which starts in a state where Inv

is true, and, D is true in each state in σ′. By definition of D, g is true in each state in

σ′. Now, consider the computation, say σ, obtained by projecting σ′ on P. Since P ′

refines P from Inv , σ is a computation of P and g must be continuously true. Hence by

fairness (cf. Assumption 10.2.8), action ac must eventually be executed. Let σ denote

the state where timed action ac executes in σ, and let σ′ denote the corresponding

state in σ′. Consider the action ac′ executed by P ′ in state σ′. Since we assume that

the transitions included in different timed actions are mutually exclusive, ac′ is the

only action that can be executed at σ′. In other words, no other action in P ′ has the

same effect on variables of P from state σ. Thus, W is true in state σ′ and, therefore,

Progress is satisfied.

• (Stability) Let ac and ac′ be as defined above. If Stability does not hold in P ′, it

implies there exists a computation of P ′ where the action ac′ is never executed. Now,

consider this computation of P ′ and its projection on P. In the projected computation,

g is continuously true. However, action ac is not executed. And, this is a contradiction

since P ′ reuses P from Inv .

Now, we show that if a hard-masking F -tolerant program P ′ is designed by reusing P

then P ′ contains a hard-masking tolerant detector for each action in P.

146

Theorem 10.2.11 Let P and P ′ be real-time programs, Inv be a nonempty state

predicate, F be a set of faults, and SPEC be a specification.

If

• P refines SPEC bt from Inv ,

• P ′ reuses P from R, where R ⇒ Inv for some nonempty state predicate R,

and

• P ′ is hard-masking F -tolerant to SPEC from R

then

• (∀ac | ac is a timed action of P : P ′ is a hard-masking F -tolerant detector

of a detection predicate of ac for SPEC).

Proof. Let ac be a timed action of P and let wdp be the weakest detection predicate for

ac. Since P ′ reuses (and, hence, encapsulates) P from R, if ac is of the form g
λ
−−→ st then

P ′ contains a timed action, say ac′, of the form g ∧ g′
λ∪λ′

−−−−→ st ||st ′. Now, for each timed

action ac of P, we instantiate witness predicate W and detection predicate D as follows:

W = g ∧ g′, and

D = g ∧ wdp.

Following Claim 10.2.10, it is straightforward to show that in the absence of faults, P ′

refines ‘W detects D’ from R. For the case where faults may perturb computations of P ′,

we show that P ′ contains a hard-masking tolerant detector to SPEC . To this end, we

need to show that there exists an F -span S st. P ′[]F refines the hard-masking tolerance

specification of ‘W detects D’ from S. To this end, we let S be the F -span used to show

that P ′ is hard-masking f -tolerant for SPEC from R. Now, we only need to show that all

computations of P ′[]F satisfy Safeness, Progress, and Stability. The proof of this part of

the theorem is identical to the proof of Safeness, Progress, and Stability in Claim 10.2.10.

147

10.3 δ-Correctors and Their Role in Hard-Masking Pro-

grams

This section is organized as follows. We formally introduce the notion of weak and strong

δ-corrector components in Subsection 10.3.1. In Subsection 10.3.2, we define what we mean

by containment of a δ-corrector in a real-time program. Then, we present δ-corrector com-

ponents of the hard-masking version of our traffic controller in Subsection 10.3.3. Finally, in

Subsections 10.3.4 and 10.3.5, we develop the theory of strong and weak δ-correctors, respec-

tively, by proving the necessity of existence of hard-masking weak and strong δ-correctors

in hard-masking fault-tolerant programs.

10.3.1 Weak and Strong δ-Correctors

Intuitively, a δ-corrector is a program component that ensures bounded-time recovery to

a correction predicate. In fault-tolerant computing, recovery is essential to guarantee that

liveness properties (cf. Definition 2.2.5) and timing constraints (cf. SPEC br in Definition

2.2.4) are met where the state of a program is perturbed by the occurrence of faults.

Depending upon the closure of the correction predicate in δ-correctors, they are classified

into weak and strong.

Definition 10.3.1 (weakly corrects) Let C and W be state predicates. Let ‘W weakly

corrects C within δ’ be the specification, that is the set of all infinite computations σ =

(σ0, τ0)→ (σ1, τ1)→ · · · , satisfying the following conditions:

• ([Weak] Convergence) There exists i ∈ Z≥0, st. σi |= C and (τi − τ0) ≤ δ.

• (Safeness) For all i ∈ Z≥0, if σi |= W then σi |= C.

• (Progress) For all i ∈ Z≥0, if σi |= C then there exists k, k ≥ i, st. σk |= W or σk 6|= C.

• (Stability) There exists i ∈ Z≥0, st. for all j, j ≥ i, if σj |= W then σj+1 |= W or

σj+1 6|= C.

Definition 10.3.2 (strongly corrects) Let C and W be state predicates. Let ‘W

strongly corrects C within δ’ be the specification, that is the set of all infinite computations

σ, satisfying the following two conditions:

148

• W weakly corrects C within δ, and

• ([Strong] Convergence) In addition to Weak Convergence, C is closed in σ.

Definition 10.3.3 (δ-correctors) Let C be a program and C, W , and U be state

predicates of C. We say that W weakly/strongly corrects C in C from U (i.e., C is a

weak/strong δ-corrector) iff C refines ‘W weakly/strongly corrects C within δ’ from U .

Similar to the concept of tolerant detectors, in order to analyze the behavior of a δ-

corrector C in the presence of faults, we consider the notion of hard-masking tolerant δ-

correctors.

Notice that since C satisfies Weak (respectively, Strong) Convergence from U , it follows

that C reaches a state where C becomes true within δ time units (and, respectively, C

continues to be true thereafter). In addition to convergence, a δ-corrector never lets the

predicate W witness the correction predicate C incorrectly, as C satisfies Safeness from U .

Moreover, since C satisfies Progress from U , it follows that W eventually becomes true.

And, finally, since C satisfies Stability from U , it follows that when W becomes true, W is

never falsified.

10.3.2 Containment of δ-Correctors in Real-Time Programs

As mentioned earlier, in the context of real-time programs, δ-correctors ensure bounded-

time recovery to their correction predicate. Intuitively, we will use weak δ-correctors where

we need refinement of stable bounded response properties in the presence of faults. In such

properties, when the event predicate becomes true, the program needs to reach a state

where the response predicate holds within the respective recovery time. Nonetheless, the

program does not need to remain in the response predicate.

Unlike weak δ-correctors, we will use strong δ-correctors where we need bounded-time

recovery to a state predicate in which the program is required to stay in. The correction

predicate of a δ-corrector C is typically an invariant predicate of the fault-intolerant pro-

gram while the witness predicate witnesses the correction of the correction predicate. This

is obviously due to the fact that real-time programs are closed in their invariant predi-

cate. Existence of strong δ-correctors are of special interest, since recovery to the invariant

predicate automatically ensures refinement of the liveness specification. In particular, in

149

Subsection 10.3.4, we show the necessity of existence of strong δ-correctors in hard-masking

programs in order to refine the property ¬Inv 7→≤θ Inv , where Inv is in invariant predicate.

In terms of the behavior of δ-correctors, observe that in Definition 10.3.1 (and, hence,

Definition 10.3.2 as well), state σ0 is the earliest state from where recovery must commence.

Thus, τi is the time instance where correction is complete and τi − τ0 is the duration of

correction. In case of strong δ-correctors, σ0 is also the earliest state reached outside the

invariant due to occurrence of faults.

We note that although detectors and δ-correctors share three identical constraints, the

semantics of their containment in real-time programs are completely different. Intuitively,

a detector uses the witness predicate in order to detect whether program execution is safe.

Hence, as we developed the theory of detectors in Section 10.2, we imposed constraints

that require the witness predicate to be used. To the contrary, a program may not use the

witness predicate of a δ-corrector, as a fault-tolerant program may not need to know when

correction is complete.

10.3.3 Example (cont’d)

Continuing with our traffic controller example, we identify δ-correctors for each stable

bounded-response property in SPEC brT C
introduced in Subsection 7.2.3. To this end, first,

consider the property ¬ST C 7→≤3 Q. When T C[]{F0, F1} reaches a state in ¬ST C∧¬Q where

at least one signal is red and the value of both z timers is less than or equal to 1, it needs

to recover to Q within 3 time units. Let C1
T C′ be the weak 3-corrector in T C′ consisting

of timed actions T C′5i and T C′6i with correction and witness predicates both equal to Q.

Intuitively, C1
T C′ ensures that when T C′ is in a state outside the invariant, it reaches a state

where both signals are red within 3 time units.

Likewise, for the property ¬ST C 7→≤7 ST C , let C2
T C be the strong 7-corrector consisting

of timed actions T C′7i and T C′8i with witness and corrections predicates equal to ST C . In

C2
T C′ , a z timer gets reset when the state of T C′ is in ¬ST C ∧Q within 7 time units since the

occurrence of a fault. Such a reset takes the traffic controller back to its invariant predicate

ST C where timed action T C1i is enabled.

An alert reader notices that both C1
T C′ and C2

T C′ exhibit Zeno behavior when running

individually. However, observe that C2
T C′ provides new execution paths where C1

T C′ ’s only

choice is executing delay actions T C′6i. Moreover, when reaching the invariant predicate

150

using C2
T C′ , timed and delay action of the intolerant program prevent the δ-corrector C2

T C′

to exhibit a Zeno behavior.

10.3.4 The Necessity of Existence of Strong δ-Correctors in Hard-

Masking Programs

We are now ready to prove that hard-masking programs contain hard-masking tolerant

strong δ-correctors. Our strategy to accomplish our goal is as follows. First, in Claim

10.3.5, we show that in the absence of faults, if a program refines a specification within θ

time units then it contains strong δ-correctors for some δ ∈ Z≥0. Then, (in the presence

of faults), using Claim 10.3.5, we show that if a hard-masking program P ′ is designed by

reusing P to tolerate a set f of faults, P ′ contains a hard-masking tolerant strong δ-corrector.

This is shown in Theorem 10.3.8.

Notation. For simplicity, we use the pseudo-arithmetic expressions to denote timing

constraints over finite computations. For instance, σ≤δ, denotes a finite computation

(σ0, τ0) → (σ1, τ1) → · · · (σn, τn) that satisfies the timing constraint τn − τ0 ≤ δ, where

δ ∈ Z≥0. We use S∗ to denote a finite computation (σ0, τ0) → (σ1, τ1) → · · · (σn, τn) st.

σi |= S for all i, 0 ≤ i ≤ n. Thus, (true)∗≤∞ denotes an arbitrary finite computation with

no specific time bound.

Definition 10.3.4 (becomes) Let P and P ′ be two real-time programs. We say that

P ′ becomes P within θ from T iff P ′ refines (true)∗≤θΓ from T , where Γ is the set of all

computations of P.

In Claim 10.3.5, we show that given a program P, state predicate S, and specification

SPEC , where P refines SPEC from S, if a program P ′ is designed st. it behaves like P

within θ and, thus, has a suffix in SPEC , then P ′ is a strong δ-corrector of an invariant

predicate of P for some δ ∈ Z≥0. We prove this Claim by showing that P ′ itself refines the

required strong δ-corrector specification.

Claim 10.3.5 Let P and P ′ be real-time programs, Inv and S be nonempty state predicates,

SPEC be a specification, and θ be a nonnegative integer.

If

• P refines SPEC from Inv ,

151

• P ′ refines P from Inv , and

• P ′ becomes P ⊲ S within θ from S,

then

• there exists δ ∈ Z≥0 st. P ′ is a strong δ-corrector of Inv .

Proof. We prove this claim by, first, instantiating recovery time, whiteness predicate, and

correction predicate as follows:

δ = θ,

C = Inv , and

W = Inv∧{σ | σ is a state of P ′ st. it is reached in some computation of P ′ starting from S}.

The rest of the proof is to verify that by this instantiation, P ′ refines ‘W strongly corrects

C within δ’ from S via showing Strong Convergence, Safeness, Progress, and Stability. To

this end, we proceed as follows:

• (Safeness) By definition of W , in any state where W is true, Inv is true. Thus,

Safeness is satisfied.

• (Progress) Since P ′ becomes P ⊲Inv within θ from T , i.e., P ′ refines (true)∗≤θ(P ⊲Inv)

from S, every computation of P ′ starting from S will reach a state where Inv is true

within θ. By definition of W , W is true in this state as well. Thus, Progress is

satisfied.

• (Stability) Since P ′ refines P from Inv , it follows that Inv is closed in P ′. Obviously,

the second conjunct in W is closed in P ′ as well and, thus, W is closed in P ′. Hence,

Stability is satisfied.

• (Strong Convergence) Since P ′ refines (true)∗≤θ(P ⊲ Inv) from S, every computation

of P ′ that originates from S reaches a state where Inv is true within θ. Moreover,

Inv (= C) is closed in P ′. Thus, since δ = θ, Strong Convergence within δ is satisfied.

The next lemma generalizes Claim 10.3.5. In general, given a program P that refines

SPEC from S, P ′ may not behave like P from each state in S but only from a subset of S,

152

say R. This may happen, for example, if P ′ contains additional variables and P ′ behaves

like P only after the values of these additional variables are restored. Lemma 10.3.6 shows

that in such a case, P ′ contains a hard-masking tolerant strong δ-corrector of an invariant

predicate of P. The strong δ-corrector is hard-masking in the sense that the correction

predicate is preserved only after P ′ reaches a state where R is true.

Lemma 10.3.6 Let P and P ′ be real-time programs, R, Inv , and S be nonempty state

predicates where R⇒ Inv , SPEC be a specification, and θ be a nonnegative integer.

If

• P refines SPEC from Inv ,

• P ′ refines P from R, and

• P ′ becomes (P ⊲ R) within θ from S,

then

• there exists δ ∈ Z≥0 st. P ′ is a hard-masking strong δ-corrector with recovery time θ

of Inv .

Proof. First, we instantiate correction and witness predicates as follows:

C = Inv , and

W = R.

We now show that there exists δ ∈ Z≥0 st. P ′ refines the hard-masking tolerance

specification with recovery time θ of ‘W strongly corrects C within δ’ from S. In particular,

we first show that a computation of P ′ that starts from a state where S is true reaches a

state where R is true within θ time units. Then, we show that starting from this state P ′

refines ‘W strongly corrects C within δ’.

• For the first part, since P ′ becomes P ⊲ R within θ from S, it follows that P ′ reaches

a state where R is true within θ.

• For the second part, we show that there exists δ ∈ Z≥0 such that starting from S,

P ′ satisfies Safeness, Progress, Stability, and Strong Convergence within δ. Thus, we

proceed as follows:

153

– (Safeness) Since R⇒ Inv is trivially true, Safeness is satisfied by construction.

– (Progress) In a state where R is true, Inv also holds. Thus, Progress is satisfied.

– (Stability) Since P ′ refines P from R and R is closed in P ′, Stability is satisfied.

– (Strong Convergence) Finally, since in a computation starting from a state where

R is true, Inv is immediately true at all states and P ′ is closed in Inv , by choosing

δ = 0 Strong Convergence is satisfied.

We now illustrate the role of strong δ-correctors in hard-masking programs in the pres-

ence of faults. In particular, we use Claim 10.3.5 and Lemma 10.3.6 to show that if a

hard-masking F -tolerant program P ′ with recovery time θ is designed by reusing P then

there exists δ ∈ Z≥0 st. P ′ contains a hard-masking F -tolerant strong δ-corrector with

recovery time θ for an invariant predicate of P. Notice that, since our goal is to identify

components that provide bounded-time recovery in the presence of faults, there needs to be

some bound on the number of occurrence of faults. In fact, it is straightforward to show

that providing bounded-time recovery in the presence of unbounded occurrence of faults is

generally impossible.

Assumption 10.3.7 Let P = 〈ΠP , InvP〉 be a program and F be a set of faults. Also,

let (σ0, τ0) → (σ1, τ1) → · · · (σn, τn) be a computation prefix in P[]F where σ0 |= Inv and

σi 6|= Inv , 1 ≤ i ≤ n. We assume that the number of occurrence of faults between states σ1

and σn is at most k for some k ∈ Z≥0.

154

Theorem 10.3.8 Let P and P ′ be real-time programs, R and Inv be nonempty

state predicates, SPEC be a specification, and θ be a nonnegative integer.

If

• P refines SPEC from Inv ,

• P ′ is hard-masking F -tolerant for SPEC from R, where R⇒ S,

• P ′ refines P from R, and

• P ′ becomes P ⊲ R within θ from S, where S is an F -span of P ′,

then

• there exist δ and θ′ in Z≥0 st. P ′ is a hard-masking F -tolerant strong δ-

corrector with recovery time θ′ of Inv .

Proof. First, we construct a fault-span of P ′ for the rest of our proof. Let S1 be the

fault-span used to show that P ′ is hard-masking F -tolerant from R. Let S2 = S1∧S. Since

S1 and S are F -spans, both are closed in P ′[]F . Hence S2 is also closed in P ′[]F . Moreover,

since S2 ⇒ S, P ′ becomes P ⊲ R from S2 as well.

We instantiate correction and witness predicates as follows:

C = Inv ,

W = R.

We now show that there exist δ, θ′ ∈ Z≥0 st. P ′ is hard-masking F -tolerant to ‘W

strongly corrects C within δ’ with recovery time θ′ from R. To this end, we first show that

there exists δ ∈ Z≥0 st. P ′ refines ‘W strongly corrects C within δ’ from R. Then, we show

that there exists δ, θ′ ∈ Z≥0 st. P ′[]F refines the hard-masking tolerance specification of

‘W strongly corrects C within δ’ with recovery time θ′ from S2.

For the first part, from Lemma 10.3.6, we know that there exists δ st. P ′ refines hard-

masking tolerance specification of ‘W strongly corrects C within δ from R. Thus, the first

part of proof is discharged. For the second part, we instantiate the recovery times as follows:

δ = θ, and

θ′ = (k + 1).θ,

155

where k is the bound on the number of faults that may occur in a computation (cf. As-

sumption 10.3.7). Observe that, after occurrence of at most k faults, P ′ reaches a state in

S2 within at most k.θ time units. Moreover, from this state, P ′ refines ‘W strongly corrects

C within δ(= θ)’ from S2 (proof would be identical to proof of Lemma 10.3.6). Thus, after

faults stop occurring, P ′ reaches a state where R is true. Therefore, P ′ is a hard-masking

F -tolerant strong δ-corrector with recovery time θ′ = (k + 1).θ to ‘W strongly corrects C

within δ’ from R.

Remark. In the proof of Theorem 10.3.8, we showed that the recovery time that a strong

δ-corrector provides in worst case depends on the maximum number of occurrence of faults.

However, one can design correctors with better recovery time. For instance, in Chapter

8, we presented automated methods to synthesize one type of such correctors using state

exploration and Dijkstra’s shortest path algorithm.

10.3.5 The Necessity of Existence of Weak δ-Correctors in Hard-Masking

Programs

Just like the relation between recovery constraint and strong δ-correctors in hard masking

programs, we show that if a hard-masking F -tolerant program P ′ is designed by reusing pro-

gram P then P ′ contains a hard-masking tolerant weak δ-corrector for each stable bounded

response property in SPEC br.

156

Theorem 10.3.9 Let P and P ′ be real-time programs, R and Inv be nonempty

state predicates where R⇒ Inv , SPEC be a specification, and θ be a nonnegative

integer.

If

• P refines SPEC from Inv ,

• P ′ reuses P from R,

• P ′ is hard-masking F -tolerant to SPEC from R

then

• (∀i | 0 ≤ i ≤ m: there exists δ ∈ Z≥0 st. P ′ is a hard-masking tolerant weak

δ-corrector for the response predicate of stable bounded response property

Pi 7→≤δi
Qi of SPEC br).

Proof.

Following Definition 7.1.6, SPEC br consists of m+1 stable bounded response properties

of the form Pi 7→≤δi
Qi, where 0 ≤ i ≤ m. In order to show the existence of hard-masking

weak δ-correctors, for each stable bounded response property in SPEC br, we let

C = Qi,

W = Qi ∧ {σ | σ is a state of P ′ st. σ is reached in some computation of P ′ starting from

Pi}.

Now, we need to show that there exist δ, θ′ ∈ Z≥0 st. P ′ is hard-masking F -tolerant to

‘W weakly corrects C within δ’ with recovery time θ′ from R. By instantiating δ = δi, for

each i ∈ 0..m, the rest of the proof strategy is identical to that of Theorem 10.3.8. The

only point of difference is that for this theorem, we only need to show Weak Convergence,

as P ′ does not have to be closed in each Qi.

157

Chapter 11

Symbolic Synthesis of Distributed

Fault-Tolerant Programs

The complexity of automated synthesis can be characterized in two parts. The first part

has to deal with questions such as which recovery transitions/actions should be added, and

which transitions/actions should be removed to prevent safety violation in the presence of

faults. The second part has to deal with questions such as how quickly such recovery and

safety violating transitions can be identified.

Observe that the solution to the first part is independent of issues such as representa-

tion of programs, faults, specifications etc. Hence, in previous chapters of this dissertation,

we utilized explicit-state (enumerative) techniques to identify the complexity of revision.

Explicit-state techniques are especially valuable in this context, as we can identify how

different heuristics affect a given program, and thereby enable us to identify circumstances

where they might be useful. Explicit-state techniques, however, are undesirable for the

second part, as they suffer from state explosion problem and prevent one from synthesizing

programs where the state space is large. In other words, although the polynomial-time com-

plexity of the heuristics (e.g., in [KAC01]) allow us to deal with the problem of synthesis of

distributed programs, which is known to be NP-complete, their explicit-state implementa-

tion is problematic with scaling up for large programs.

With this motivation, in this chapter, we focus on the second part of the problem to

improve the time and space complexity of synthesis. Towards this end, we focus on sym-

bolic synthesis (implicit-state) where programs, faults, specifications etc., are modeled using

158

Boolean formulae (represented by Bryant’s Ordered Binary Decision Diagrams [Bry86]).

Although symbolic techniques have been shown to be very successful in model checking

[BCM+92] (e.g., in model checkers SMV and SAL), they have not been greatly used in the

context of program synthesis and transformation in the literature. Thus, in this chapter,

our goal is to evaluate how such symbolic synthesis can assist in reducing the time and

space complexity, and thereby permit synthesis of large(r) programs.

Our contributions in this chapter are as follows.

1. We illustrate that our symbolic technique can significantly improve the performance

of synthesis in terms of both time and space complexity. In particular, our analysis

shows that the growth of the total synthesis time is sublinear in the state space. For

example, in case of Byzantine agreement for five processes, the time spent for explicit-

state synthesis was 15 minutes whereas the time spent for symbolic synthesis was less

than a second.

2. Symbolic synthesis significantly assists in coping with the space complexity. For ex-

ample, we could synthesize a solution for Byzantine agreement with 25 processes. The

size of reachable states in this case is 1019, whereas in our implementation the amount

of memory used during synthesis was only 14.2 MB. To the best of our knowledge,

this is the first instance that can deal with such large state space in the context of

program synthesis.

3. We analyze the cost incurred in different tasks during synthesis. In particular, our

analysis identifies several potential bottlenecks that need to be overcome, namely,

(1) deadlock resolution, (2) computation of reachable states in the presence of faults,

(3) checking whether a group of transitions violates the safety specification, (4) cycle

detection, and (5) addition of recovery paths. We show that depending upon the

structure of distributed programs, a combination of these bottlenecks may affect the

performance of automated synthesis.

We would like to note that just as with model checking, this work does not imply

that synthesis would be feasible for all programs where the size reachable of states is 1019.

However, this work does illustrate that large state space by itself is not an obstacle to

permit efficient synthesis. Finally, while techniques such as symmetry reduction or other

159

abstraction techniques have the potential to reduce the complexity of synthesis, with the

use of such techniques, the actual state space of the given problem may not correspond to

the state space encountered during synthesis. Since our goal in this work has been to focus

on feasibility of dealing with large state space and its impact to the automated synthesis

and transformation of distributed programs, we have chosen not to use such techniques.

The rest of this chapter is organized as follows. In Section 11.1, we present our sym-

bolic heuristic for adding fault-tolerance to distributed programs. In Sections 11.2-11.6, we

present our experimental results and analysis of the performance of our symbolic heuristics.

Our analysis identifies potential bottlenecks of our methods based on the structure of the

input program.

11.1 The Symbolic Synthesis Algorithm

In this section, we present our symbolic algorithm based on the heuristics developed in

[KAC01]. In particular, the algorithm is formalized in terms of Boolean formulae which will

later enable us to implement them using BDDs.

Algorithm sketch. The algorithm takes an input intolerant program, a safety

specification, and a set of fault transitions and synthesizes a fault-tolerant program that

satisfies the constraints of the Synthesis Problem 7.3.2. The algorithms consists of five

steps. The first step is initialization, where we identify state and transition predicates

from where execution of faults alone may violate the safety specification. The algorithm

makes these state and transition predicates unreachable in order to guarantee that the

synthesized fault-tolerant program does not violate the safety. In Step 2, we identify the

fault-span by computing the state predicate reachable by program in the presence of faults,

starting from the program invariant. In Step 3, the algorithm identifies and rules out

transitions whose execution violates the safety specification. Then, in Step 4, we resolve

deadlock states. Resolving deadlock states is crucial in the sense that existence of such

states contributes in creation of finite computations that the input fault-intolerant program

does not exhibit. Hence, in order to ensure that the synthesized fault-tolerant program

satisfies liveness specification of the input program, deadlock states must be handled by

160

either adding recovery paths or state elimination. Finally, in Step 5, we re-compute the

invariant predicate so that it is closed in the final program. We repeat steps 2-3, 2-4, and

2-5 until a fixpoint is reached. The fixpoint computations are represented by three nested

repeat-until loops in the algorithm. Thus, the algorithm terminates when no progress is

possible in all the steps described above.

We now describe the algorithm Symbolic Add FT (cf. Algorithm 11.1) in detail:

• Step 1: Initializations (Lines 1-3). First, we compute the state predicate

ms from where execution of faults alone violate the safety specification (Line 1).

To this end, we start from state predicate where Guard(F ∧ SPEC bt) is true (i.e.,

states from where faults directly violate the safety specification) and explore back-

ward reachable states by applying fault transitions only. This is achieved by invoking

the procedure BWReachStates as a black box. The first parameter of the procedure

is the state predicate from where we start computing backward reachable states.

The second parameter is the transition predicate applied for identifying reachable

states. The procedure FWReachStates works in a similar fashion. The only

difference is it explores forward reachable states. Symbolic implementation of

these procedures has been studied extensively in automated verification techniques

[BCM+92, McM93, BCL91]. Nonetheless, as we will illustrate in Sections 11.2-

11.6, small changes in implementation may have tremendous impact on efficiency

of state exploration with respect to different programs. This impact is often more

dramatic in program synthesis than verification since reachability analysis procedures

may be applied multiple times during the course of synthesizing a program.

Since a program do not have control over the occurrence of faults, one has to

ensure that the state predicate ms never becomes true in any program computation.

Otherwise, faults alone may lead the program to a state where the safety is violated.

Thus, we remove ms from the invariant of the fault-tolerant program (Line 2). We

also compute the transition predicate mt whose transitions should not be executed

by the fault-tolerant program. Initially, mt is equal to the union of SPEC bt and

transitions that start from any arbitrary state and end in ms (Line 3). Since the

fault-tolerant program is not supposed to reach a state in ms, we allow the transitions

161

that originate in ms to be in the fault-tolerant program (Line 3). Notice that in

Algorithm Add Symbolic FT and its sub-procedures, any addition or removal of a

transition predicate has to be applied along with its group predicate due to the

issue of read restrictions. Thus, issues with regard to distributed processes are all

handled in computing group predicates. In fact, when allowing the program to

execute transitions that originate in ms automatically includes other transitions that

may originate outside ms. This inclusion increases the level of non-determinism and,

hence, diversity of existence of program transitions at reachable states. Such diversity

often increases chances for successful synthesis as well. Observe that although a state

predicate, in Line 3, one can interpret ms as a transition predicate that starts in ms

and ends in true.

• Step 2: Re-computing the fault-span (Lines 9-11). After initializations, we

start re-computing the invariant predicate, program transition predicate, and fault-

span of the fault-tolerant program in three nested loops, respectively. Each loop

resembles a fixpoint calculation. We start with the most inner loop, where we re-

compute the fault-span. The reason for re-computing the fault-span is due to the fact

that in other steps of our algorithm, we add and remove transitions that originate

in the fault-span. Hence, after such addition or removal, new states may become

reachable and some states may become unreachable. Thus, re-computation is needed

to update the fault-span.

Let the initial fault-span S1 be equal to the invariant Inv1 (Line 7). We re-compute

the fault-span by starting exploration from states where the invariant Inv1 is true

and applying the program transition predicate in the presence of faults (i.e., T1 ∨ F).

To this end, we invoke the procedure FWReachStates (Line 10). After recomputing

the fault-span, we remove the state predicate fte from the new fault-span S1

(Line 11). This state predicate is identified later in Step 4 where we resolve dead-

lock states. For now, fte contains states failed to eliminate during deadlock resolution.

• Step 3: Identifying and removing unsafe transitions (Lines 12-13). We first

identify unsafe transitions. Suppose there exists a state predicate which is a subset of

162

Algorithm 11.1 Symbolic Add FT

Input: program transition predicate TP , invariant predicate InvP , fault transitions F , and
bad transition predicate SPEC bt.

Output: program transition predicate TprimeP and invariant predicate InvP ′ .

// initializations
1: ms := BWReachStates(Guard(F ∧ SPEC bt), F);
2: Inv1 := InvP −ms;
3: mt := (〈ms〉′ ∨ SPEC bt) ∧ Group(¬ms);

4: repeat {recomputing the invariant predicate}
5: Inv2 := Inv1;
6: repeat {recomputing the transition predicate}
7: S1, T2 := Inv1, T1;
8: repeat {recomputing the fault-span}
9: S2 := S1;

10: S1 := FWReachStates(Inv1, T1 ∨ F);
11: S1 := S1 − fte;
12: mt := mt ∧ S1;
13: T1 := T1 − Group(T1 ∧ ¬mt); {removing unsafe transitions}
14: until (S1 = S2);

{Resolving deadlock states through adding recovery or state elimination}
15: ds := S1 ∧ ¬Guard(T1);
16: T1 := T1 ∨ AddRecovery(ds, Inv1, S1, mt);
17: ds := S1 ∧ ¬Guard(T1);
18: T1, fte := Eliminate(ds, T1, Inv1, S1, F, false, false);
19: until (T1 = T2);
20: T1, Inv1 := ConstructInvariant(T1, Inv1, fte);
21: until (Inv1 = Inv2);
22: InvP ′ , TprimeP := Inv1, T1;
23: return InvP ′ , TprimeP;

Guard(mt), but it is unreachable by transitions in T1 ∨F starting from the invariant.

In other words, it does not intersect with the fault-span. Since this state predicate

is unreachable by computations of the program even in the presence of faults, we do

not consider them as unsafe transitions and we let the transitions that originate in

that state predicate be in the fault-tolerant program (Line 12). In other words, the

necessary condition for a transition to be unsafe is its source state has to be in the

fault-span. Otherwise, the transition can exist in the fault-tolerant program transition

predicate, even if it is in SPEC bt. The reason for not including such transitions in mt

is due to the fact that their corresponding group predicates are also included in the

synthesized program transition predicate which in turn adds to non-determinism and

163

diversity of the program.

The fault-tolerant program transition predicate is computed based on the following

principle: a transition can be included if it is not unsafe. Thus, once we identify

unsafe transitions (i.e., transition predicate mt), we rule them out from the program

transition predicate (Line 13). Note that a transition can be included in the

fault-tolerant program if its entire corresponding group predicate can be included.

• Step 4: Resolving deadlock states (Lines 15-18). Since the algorithm may

remove some transitions from the input program, some states may have no outgoing

transitions due to this removal. Consequently, computations that reaches such states

deadlock. Thus, when the execution of the algorithm reaches a fixpoint in the inner

loop, we identify deadlock states inside the fault-span. We cure such deadlock states

in two ways. We either add a safe recovery path from a deadlock state to the program

invariant, or (if recovery is not possible) we eliminate the deadlock state. By state

elimination, we mean making the state unreachable. The deadlock resolution mecha-

nisms are implemented in two procedures AddRecovery and Eliminate (cf. Procedures

11.2 and 11.3), respectively. We now describe these mechanisms in detail. First, the

algorithm identifies the deadlock state predicate ds (Line 15). Intuitively, a state in

the fault-span is deadlocked if the guard of T1 is false in that state.

Procedure 11.2 AddRecovery

Input: deadlock states ds, invariant Inv , fault-span S, and transition predicate mt .
Output: recovery transition predicate rec.

1: lyr , rec := Inv , false;
2: repeat
3: rt := Group(ds ∧ 〈lyr〉′);
4: rt := rt − Group(rt ∧mt);
5: if DetectCycles(T ∨ rec ∨ rt , S) then
6: rt := false;
7: end if
8: rec := rec ∨ rt ;
9: lyr := Guard(ds ∧ rt);

10: until (lyr = false);
11: return rec;

– (Adding safe recovery paths) The Procedure AddRecovery (cf. Procedure 11.2)

164

takes a deadlock state predicate ds, invariant predicate Inv , fault-span S, and

unsafe transition predicate mt as input. It returns a transition predicate which

contains new recovery transitions as output. We add recovery paths in an itera-

tively layered fashion. Let the first layer be the program invariant, i.e., lyr = Inv1

(Line 1). Also, let rt be the transition predicate that originates from the deadlock

state predicate ds and ends in lyr (Line 3). Since we require the fault-tolerant

program to satisfy safety during recovery, rt must be disjoint from mt . Thus, we

check whether the group predicate of rt maintains the safety specification (Line

4). If so, we check whether addition of rt to the program transition predicate

creates a cycle that is entirely in the fault-span. Existence of such a cycle obvi-

ously prevents the program to always recover to the invariant predicate within a

finite number of steps. To this end, we invoke the procedure DetectCycles with

parameters T ∨ rec∨ rt and S. If there is indeed a cycle in the fault-span created

due to addition of rt to the program transition predicate, we do not add the new

recovery transitions rt to the rec which is the final set of recovery transitions.

Otherwise, it is safe to add rt to rec (Line 8). There exist several symbolic

approaches in the literature for detecting cycles [FFK+01]. We, in particular,

incorporate the approach introduced by Emerson and Lei [EL86].

In the next iteration, we let lyr be the state predicate from where one-step safe

recovery is possible (Line 9). We continue adding recovery steps until no new

recovery transition is added.

– (Eliminating deadlock states) Now, if safe recovery is not possible from a dead-

lock state predicate, we choose to eliminate it. By state elimination we mean

making that state unreachable. The recursive Procedure Eliminate takes a dead-

lock state predicate ds, program transition predicate T , invariant predicate Inv ,

fault-span S, fault transitions F , a predicate vds of deadlock states visited while

eliminating, and a predicate fte of deadlock states failed to eliminate as input.

It returns a program transition predicate T
′
, visited deadlock states vds ′, and

states fte ′ failed to eliminate as output.

The Procedure Eliminate works as follows. First, if all deadlock states in ds

has already been considered for elimination, the procedure returns immediately

165

Procedure 11.3 Eliminate

Input: deadlock states ds, transition predicate T , invariant Inv , fault-span S, fault tran-
sitions F , visited deadlock states vds, and predicate fte failed to eliminate.

Output: revised program transition predicate T , visited deadlock states vds, and predicate
fte failed to eliminate, where states in ds become unreachable.

1: ds := ds − vds;
2: if (ds = false) then
3: T

′
, vds ′, fte ′ := T , vds, fte;

4: return T
′
, vds ′, fte ′;

5: end if
6: vds := vds ∨ ds;

7: tmp := (S − Inv) ∧ T ∧ 〈ds〉′; {eliminating states in ds}
8: T := T −Group(tmp);

9: fs := Guard(S ∧ F ∧ 〈ds〉′); {eliminating source states of incoming fault
transitions}

10: fte := fte ∨ 〈fs ∧ F 〉′′;
11: OffendingStates := OffendingStates ∨ (fs ∧ Inv);
12: if (fs 6= false) then
13: T , vds, fte := Eliminate(fs − Inv , T , Inv , S, F, vds, fte);
14: end if

15: nds := Guard(S ∧Group(tmp) ∧ ¬T); {testing whether removal of incoming program
transitions creates new deadlock states}

16: T := T ∨ (Group(tmp) ∧ nds);
17: fte := fte ∨ ((nds ∧ 〈Group(tmp)〉′′) − Inv);
18: T

′
, vds ′, fte ′ := Eliminate(nds, T , Inv , S, F, vds, fte);

19: return T
′
, vds ′, fte ′;

(Lines 1-5). Otherwise, we add ds to the predicate vds of states already visited

(Line 6). There are potentially two ways to reach the states in ds: (1) by

program transitions, and (2) by fault transitions. If ds is reachable by some fault

transitions, we need to backtrack to the source state predicate and make that

predicate unreachable. If ds is reachable by program transitions, we remove those

transitions and their corresponding group predicates from T , provided no new

deadlock states are introduced. Thus, we proceed as follows. If ds is reachable by

some program transitions, we temporarily remove such transitions, say tmp, with

the hope that this removal makes ds unreachable (Lines 7-8). Unlike program

transitions, since the program does not have control over the occurrence of faults,

166

if there exist states in ds that are reachable by fault transitions from another

state predicate, say fs (Line 9), then we backtrack and eliminate fs. Thus,

we mark the states reachable by fault transitions from fs as failed to eliminate

(Line 10). Elimination of states in fs is based on the following principle: we

do not eliminate states in the invariant predicate. Thus, if fs intersects with

the invariant, we mark the intersection as OffendingStates and deal with them

when we re-compute the invariant predicate in Step 5. At this point, we invoke

Eliminate recursively with parameter fs − Inv (Line 13).

Once we deal with incoming fault transitions, we ensure that removal of

Group(tmp) does not introduce new deadlock states to the program. If this

is the case, the predicate nds (computed in Line 15) is not equal to false. Thus,

we take the following steps: We

1. add the transitions originating from nds back to the program (Line 16),

2. mark the states in nds as failed to eliminate (Line 17), and

3. attempt to ensure that nds is never reached by invoking Eliminate with pa-

rameter nds recursively (Line 18).

As mentioned earlier the Algorithm Symbolic Add FT exploits the above mechanisms

to deal with deadlock states. As can be seen, first it invokes the Procedure AddRecov-

ery on the existing deadlock states (Line 16). Then, if AddRecovery fails to resolve

some deadlock states, we make them unreachable by invoking the Procedure Eliminate

(Line 18). Finally, notice that in Line 11 of the algorithm, we exclude state predicate

fte from the re-computed fault-span. This is due to the face that these states have

to eventually become unreachable and if we include them in the fault-span, in the

next iteration of resolving deadlock states, they will be unnecessarily re-considered

for elimination.

• Step 5: Re-computing the invariant (Line 20). Once we reach a fixpoint after

re-computing fault-span and program transition predicate, we re-compute the invari-

ant by invoking the Procedure ConstructInvariant (Line 20) due to possible existence

of offending states. Recall that a computation, say σ = σ0 → σ1 → · · · , that starts

from an offending state may reach a state that was considered for elimination. In

167

Procedure 11.4 ConstrucInvariant

Input: invariant predicate Inv , program transition predicate T , and offending states
OffendingStates.

Output: revised invariant predicate Inv ′ and program transition predicate T
′
.

1: while (OffendingStates 6= false) do
2: Inv := Inv − OffendingStates;
3: tmp := T ∧ Inv ∧ 〈¬Inv 〉′;
4: T := T − Group(tmp);
5: OffendingStates := 〈tmp〉′′;
6: end while

7: Inv ′, T
′

:= Inv , T ;
8: return Inv ′, T

′
;

particular, since the first transition of σ is a fault transition, σ0 which is an offending

state has to become unreachable. To this end, we first remove offending states from

the invariant (Line 2). Then, due to this removal, we need to ensure that the invariant

predicate is closed in T . Thus, we remove the transition predicate that violates the

closure of T (Lines 3 and 4). We continue these step until a fixpoint is reached in the

sense that no offending states exist and Inv is closed in T .

The algorithm keeps repeating steps 1-5 until the three fixpoints are reached. At the

end of each fixpoint computation, we verify the correctness of conditions of the Synthesis

Problem 7.3.2. Hence, when the algorithm terminates, we are guaranteed the solution is

sound.

Regarding the structure of the output program in terms of guarded commands, one

can notice that the output of our algorithm typically consists of three types of actions as

compared to the input intolerant program. These action type are the following:

1. Unchanged actions. These actions identically exist in both tolerant and intolerant

programs.

2. Strengthened actions. Transitions corresponding to these actions exist in the input

program. However, the guard of the corresponding actions are stronger than their

counterpart actions in the input program. This is due to the fact that the transformed

program makes unsafe states and some deadlock states unreachable.

3. Recovery actions. These action do not exist in the input program at all. Recovery

168

actions are added to the input program in order to resolve some deadlock states that

are reachable by the program in the presence of faults.

In the next five sections, we present the experimental results of implementation of the

Algorithm Symbolic Add FT and its procedures in our tool Sycraft [BK08c]. Our case

studies include three classic examples in the literature of distributed fault-tolerant comput-

ing, namely, the Byzantine agreement problem [LSP82], Byzantine agreement with fail-stop

faults, and the token ring [AK98a] problem. We also present experimental results on ad-

dition of fault-tolerance to a bulk data dissemination protocol in wireless sensor networks,

known as Infuse [KA06]. As mentioned in the introduction, our case studies address a wide

variety of structural issues and obstacles that can potentially affect the efficiency of our

algorithm. In all case studies, we find a considerable improvement in both time and space

complexity as compared to the existing approaches.

11.2 Case Study 1: Byzantine Agreement

Throughout this section and Sections 11.3, 11.4, 11.5, 11.6 , all experiments are run on a

dedicated PC with a 2.2GHz AMD Opteron processor and 1.2GB RAM. The BDD rep-

resentation of the Boolean formulae is implemented using the Glu/CUDD package [Som].

We analyze all the experiments in terms of time and space. From the time perspective, we

consider total synthesis time, time spent for resolving deadlock states (including addition of

safe recovery and state elimination), cycle detection, and computing the fault-span. From

the space perspective, we consider the number of states reachable by each distributed pro-

gram in the presence of faults (i.e., the size of fault-span) and the actual memory usage.

Our first case study is the continuation of our running example, the Byzantine agreement

program.

Example (cont’d). The output of our algorithm with respect to program BA is program

BA′ which tolerates the Byzantine faults identified in Section 7.2.3 in the sense that BA′

never violates its specification and it does not deadlock when faults occur. We note that our

synthesized program is identical to the canonical version of Byzantine agreement program

manually designed in [LSP82]. The actions of the synthesized program for a non-general

process j are as follows:

169

BA′1j :: d.j = ⊥ ∧ f.j = false

−→ d.j := d.g;

BA′2j :: d.j 6= ⊥ ∧ f.j = false ∧ (d.k=⊥ ∨ d.k = d.j) ∧

(d.l=⊥ ∨ d.l = d.j) ∧ (d.k 6= ⊥ ∨ d.l 6= ⊥)

−→ f.j := true;

BA′3j :: d.j = 1 ∧ d.k = 0 ∧ d.l = 0 ∧ f.j = false

−→ d.j, f.j := 0, false|true;

BA′4j :: d.j = 0 ∧ d.k = 1 ∧ d.l = 1 ∧ f.j = false

−→ d.j, f.j := 1, false|true;

BA′5j :: d.j 6= ⊥ ∧ f.j= false ∧

((d.j=d.k ∧ d.j 6= d.l) ∨ (d.j=d.l ∧ d.j 6= d.k))

−→ f.j := true;

Notice that action BA′1 is unchanged, actions BA′3 and BA′4 are recovery actions, and

actions BA′2 and BA′5 are strengthened actions.

We now present the results of our experiments with respect to the Byzantine agreement

program. Figure 11.1-a shows actual memory usage in megabytes and time needed to

accomplish each subtask of the algorithm in seconds in terms of the number of non-general

processes (BAi denotes Byzantine agreement program with i non-general processes).

Figure 11.1-b compares the total synthesis time and the time spent to complete subtasks

of the algorithm graphically. Notice that the x-axis is in logarithmic scale. The number

of processes synthesized in our experiments ranges over 5 to 40. Although it is feasible

to synthesize programs with more number of processes in a reasonable amount of time,

the trend of the graph with maximum 40 processes is sufficiently clear to make sound

judgments. We now analyze the results.

Total synthesis time

First, observe that it takes less than one second to synthesize 5 non-general processes. It is

noteworthy to mention that an enumerative implementation of similar heuristics [KAC01,

EKAar] requires 900 seconds to synthesize the same number of processes. Moreover, this

enumerative implementation can not handle more than 5 processes due to the state explosion

170

Space Time(s)
reachable memory deadlock resolution fault-span total

states (MB) Eliminate Recovery generation

BA5 104 3.5 < 1 < 1 < 1 < 1

BA10 109 6.2 4 2 < 1 6

BA15 1012 11.5 39 5 < 1 45

BA20 1015 13.68 185 10 1 199

BA25 1019 14.2 642 19 5 669

BA30
1022 15.2 1791 32 7 1836

BA35 1026 15.6 4492 54 10 4565

BA40 1030 16.5 9253 82 16 9366

(a)

 0.1

 1

 10

 100

 1000

 10000

 5 10 15 20 25 30 35 40

T
im

e
(s

)
(lo

g
sc

al
e)

Number of Processes

Time vs. Number of Processes

total synthesis time
state elimination

recovery addition
fault-span generation

(b)

Figure 11.1: Experimental results for algorithm Symbolic Add FT and the Byzantine agreement
problem.

problem. To the contrary, our symbolic approach is cable of synthesizing 40 processes (1030

reachable states and beyond) in a reasonable amount of time, which is obviously a significant

improvement. Note that the size of state space of BA40 is 1028 times larger than the size

state space of BA5.

More importantly, Figure 11.1-b shows that the growth rate of total time spent to

synthesize Byzantine agreement is sublinear to the size of reachable states, left alone the

171

size of entire state space. In particular, our analysis shows that the fraction Time

ReachableStates0.13

remains constant as the number of non-general processes grows. Sublinearity of total

synthesis time to the size of state space is important in the sense that the exponential

blow-up of state space does not affect the time complexity of our synthesis algorithm.

More precisely, the size of reachable states is not an obstacle by itself in order to synthesize

distributed programs.

Fault-Span Generation

As can be seen in Figure 11.1-b, the generation of fault-span is fairly fast in case of the

Byzantine agreement program. This is mainly due to the following contributing factors:

1. The state space of the program is partially reachable. To illustrate the issue of size

of reachable states let us consider the Byzantine agreement program with i processes.

Since we represent the decision value of each processes by two Boolean variables, as the

size of their respective domain is 3, each non-general process has Boolean 4 variables.

Also, the general has 2 variables. Hence, the program has 4i+ 2 Boolean variables in

total and the size of state space is 24i+2. In order to compute the size of reachable

states approximately, observe that non-general processes are either undecided (i.e.,

d.j = ⊥), or they are decided (i.e., d.j = 0|1) and their decision is either finalized or

not yet finalized (i.e., f.j = false|true). Hence, each non-general can have 5 different

combinations. Furthermore, the general can have either decision value (i.e., d.g = 0|1)

and be Byzantine or non-Byzantine (i.e., b.g = false|true). Hence, the size of reachable

states is at least 5i ∗ 4. Thus, the size of reachable states is considerably less than the

size of entire explicit state space. For instance, in case of BA40, the size of state space

is 1045, while only 1030 states are reachable.

2. The diameter of the state-transition graph of the program is not long and, hence,

shallow reachability is possible. For instance, in case of BA30, the fault-span can be

computed by only 32 rounds of frontier generation.

These reasons significantly affect the efficiency of fault-span generation. It is important

to notice that the above factors may completely be the opposite in distributed programs

with different structures. As a matter of fact, our experiments with respect to the token

172

ring problem (see Section 11.5) validates this statement.

Deadlock resolution

Figure 11.1 also shows the time spent to resolve deadlock states for different number of pro-

cesses. As mentioned earlier, deadlock resolution is crucial in order for the output program

to meet liveness properties. We note that deadlock resolution (as defined in Section 11.1)

is a problem that uniquely exists in the context of program synthesis and transformation

and, hence, has not been addressed by the model checking community. In fact, there is very

little experimental analysis with regard to synthesis of liveness properties in the literature.

Since deadlock resolution is achieved through adding recovery paths and state elimination,

we present the time spent in each subtask for a more thorough analysis.

Addition of safe recovery is the first attempt that the algorithm makes in order to resolve

deadlock states. The results of our experiments in case of Byzantine agreement shows that

this mechanism is not costly as compared to the total synthesis time (see Figure 11.1-b).

This is solely due to the structure of the fault-span of BA where the size of invariant and

safety specification are not barriers in efficient addition of safe recovery paths.

As can be seen in Figure 11.1-b, the graph of total synthesis time is almost identical to

the graph of state elimination time. In fact, in the range of 5-40 processes, in average, 96%

of the total synthesis time is spent to resolve deadlock states through state elimination.

In other words, only 4% of the total synthesis time is spent to re-compute the fault-span,

checking the safety of group predicates, computing recovery paths, and re-computing the

program invariant. This is basically due to the fact that state elimination can potentially

involve many backtracking steps. As a matter of fact, this is exactly what is happening in

Byzantine agreement. For instance, in case of BA5, the Procedure Eliminate needs to be

called 26 times recursively. Thus, state elimination can potentially be a serious stumbling

block in efficiency of synthesis algorithms. We note that the existence and diversity of

deadlock states directly depends on the structure of the given program. In Section 11.5, we

show that in case of token ring, for instance, deadlock resolution is not a crucial issue.

Finally, the numbers in Figure 11.1-a show that if we were not required to resolve

deadlocks states, identifying a solution to the problem can be accomplished considerably

faster. Although such a solution is not a sensible masking fault-tolerant program, it is a

correct failsafe fault-tolerant program. A failsafe program is one that is required to merely

173

satisfy its safety specification and not necessarily its liveness specification in the presence

of faults. Consequently, there is no need to resolve deadlock states in order to synthesize a

failsafe solution. Thus, one can synthesize a failsafe solution to BA40 in 22 seconds. This

result is significantly better than the DiConic approach in [Ebn07] where synthesis of a

failsafe version of BA40 requires 353 seconds using a cluster of workstations.

Memory usage

Figure 11.1-a also shows the amount of virtual memory that the Algorithm Symbolic Add FT

requires (in MB) for different number of non-general processes. As can be seen, the amount

of memory that the algorithm requires to synthesize 40 processes (16.5 MB) is not

considerably greater than the amount of memory required to synthesize 5 processes (3.5

KB). The insignificant growth trend of memory usage is more appreciable when it is

compared to the growth of number of reachable states in case of 5 and 40 processes. Low

memory usage of our algorithm with respect to this case study is clearly due to efficient

representation of Boolean formulae by BDDs.

The issue of variable ordering

The key reason to efficient encoding of a Boolean formula in a BDD is to identify an

appropriate order of variables when constructing the BDD [Bry86]. In our implementation,

we order the variables based on the following two principles, regardless of the structure of

the given fault-intolerant program:

1. Each primed variable is always ordered immediately after its corresponding unprimed

variable, and

2. Variables of each process are ordered subsequently one after another.

For instance, in Byzantine agreement program, the order of variables is as follows:

d.j < d′.j < f.j < f ′.j < b.j < b′.j < d.k < d′.k < f.k < f ′.k < b.k < b′.k < · · · .

The first principle is a rule of thumb in existing symbolic model checkers as well. This

is due to the fact that a transition often updates a subset of program variables, say U , and

leave the rest unchanged. Hence, for each variable v where v /∈ U , v = v′ must hold in

the BDD that encodes the transition. Therefore, in order to reduce the number of nodes

174

in the BDD, it is more efficient to order each primed variable immediately right after its

corresponding unprimed variable.

The second principle reduces the number of nodes in BDDs that encode group predicates.

Recall that the value all readable variables in source state of all transitions in a group

predicate are equal. The same premise holds for target states. Thus, it is beneficial to order

readable variables of a process subsequently. As a concrete example, an implementation of

Symbolic Add FT that does not apply the second principle requires one minute to synthesize

BA10, which is 10 times slower than the case where the second principle is applied.

11.3 Case Study 2: Exploiting Human Knowledge to Assist

Synthesis Algorithms

Our experiments on the Byzantine agreement problems clearly exhibited the most serious

bottleneck, namely, state elimination. One way to remedy this problem is by making states

that have to considered for elimination unreachable. This can be achieved through labeling

transitions that can potentially lead a computation to reach such states as bad transitions

in the safety specification. In order to analyze state elimination in the Byzantine agreement

program, we we take a closer look at the state-transition graph of the BA.

Let the sequence 〈x1, x2, x3, x4〉 denote the set of states with respect to decision value

of processes, i.e., x1 = d.g, x2 = d.j, x3 = d.k, and x4 = d.l. In this notation, an overlined

(respectively, underlined) d-value shows that the corresponding process has finalized its

decision (respectively, is Byzantine). Now consider the following scenario: Starting from a

state s0 in 〈1,⊥,⊥, 1〉, where the general and process l agree on decision 1 and processes

j and k are undecided, the program may reach the following sequence of states due to

the occurrence of faults (denoted 99K) and execution of program actions (denoted →):

〈1,⊥,⊥, 1〉 → 〈1,⊥,⊥, 1〉 99K 〈1,⊥,⊥, 1〉 99K 〈0,⊥,⊥, 1〉 → 〈0, 0,⊥, 1〉 → 〈0, 0, 0, 1〉. Let

s1 be a state in 〈0, 0, 0, 1〉, where non-general processes j and k agree with the Byzantine

general on decision 0, but process l has finalized its decision on 1. Observe that s1 is a

deadlock state and since process l has finalized its decision, we cannot resolve s1 by adding

safe recovery. Thus, s1 has to be eliminated.

One way to make s1 and symmetrically equal states unreachable is by constraining a

non-general process such that it is allowed to finalize its decision only when there does not

175

Space Time(s)
reachable memory deadlock resolution fault-span total

states (MB) Eliminate Recovery generation

BA5 104 3 < 1 < 1 < 1 < 1

BA10 109 6 0 2 < 1 3

BA15 1012 14.5 0 14 1 17

BA20 1015 18 0 63 1 67

BA25 1019 24 0 188 1 199

BA30
1022 31 0 506 4 526

BA35 1026 44 0 1203 7 1237

BA40 1030 64 0 2428 25 2496

(a)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 5 10 15 20 25 30 35 40

T
ot

al
 S

yn
th

es
is

 T
im

e
(s

)

Number of Processes

Total Synthesis Time vs. Number of Processes

modified Byzantine agreement
original Byzantine agreement

(b)

Figure 11.2: Experimental results for modified Byzantine agreement problem.

exist two ore more undecided non-generals. In this case, the the process cannot reach a

state such as s1. Thus, we modify the safety specification of BA (i.e., the bad transition

predicate SPEC btBA
introduced in Subsection 2.2.1) as follows:

SPEC btBA
= SPEC btBA

∨ ∃p :: ¬b′.p ∧ f ′.p ∧ (∃q, r :: d.q = d.r = ⊥),

where p, q, and r range over non-general processes.

176

Figure 11.2 shows the result of our experiments for Byzantine agreement with the above

modification in the safety specification. One can make the following observations from this

figure:

• Figure 11.2-a shows that no time is spent for state elimination. This is obviously due

to non-existence of deadlock states from where safe recovery is not possible.

• Figure 11.2-b compares total synthesis time of the the original and modified versions of

Byzantine agreement. One can obviously see a considerable improvement. Precisely,

in average, the modified version can be synthesized 4 times faster than the original

version for the range of 5 to 40 processes. It is expected that this factor becomes

larger as the number of processes increases.

• Although constraining a non-general process casts away states that have to be elim-

inated, it affects the performance of addition of safe recovery. Our analysis shows

this is mainly due to enlarging the transition predicate SPEC btBA
and as a result its

corresponding BDD. Recall that recovery paths are not allowed to violate the safety

specification and, hence, the large size of BDD that encodes SPEC btBA
affects the

performance of addition of recovery. Nonetheless, this cost does not diminish the

improvement of total synthesis time.

• Due to the same reason, memory usage of our modified version of Byzantine agreement

is increased. Although this increase suffers by a factor of 2 in average, we argue that

the trade-off is worthwhile. A closer look at Figures 11.1 11.2 uncovers that unlike

verification where the time complexity of algorithms is generally not high, our crucial

issue in synthesis is time and not space. In other words, in synthesis, we run out of

time before we run out of space. Thus, given the low memory usage of our case study,

it is beneficial to increase memory usage by a factor of 2 to gain speed-up by a factor

of 4.

11.4 Case Study 3: Byzantine Agreement with Fail-Stop

Faults

A fail-stop fault is one that halts a process in response to any internal failure and does

so before the effects of that failure become visible [SS83]. In this Section, we introduce

177

Space Time(s)
reachable memory deadlock resolution fault-span total

states (MB) Eliminate Recovery generation

BA5 105 5.2 1 < 1 < 1 1

BA10 108 13 28 3 2 36

BA15 1012 14.5 505 15 5 528

BA20 1016 15.9 4322 35 9 4378

BA25 1020 17.8 23387 76 21 23502

(a)

 0.1

 1

 10

 100

 1000

 10000

 100000

 5 10 15 20 25

T
im

e
(s

)
(lo

g
sc

al
e)

Number of Processes

Time vs. Number of Processes

total synthesis time
state elimination

recovery addition
fault-span generation

original BA total synthesis time

(b)

Figure 11.3: Experimental results for Byzantine agreement subject to fail-stop faults.

fail-stop faults to the Byzantine agreement problem to make the program more complicated

(denoted BAFS). To this end, we first add a Boolean variable u to teach process; if u is

true then the process is alive and working, otherwise, the process has been stopped and is

not working. Thus, actions of a process, say j, are as follows:

BAFS1j :: (d.j = ⊥) ∧ (f.j = false) ∧ (u.j = true) −→ d.j := d.g;

BAFS2j :: (d.j 6= ⊥) ∧ (f.j = false) ∧ (u.j = true) −→ f.j := true;

In addition to the faults introduced in the example in Section 7.2.3, we introduce the

following fault action:

178

∀p :: (u.p) −→ u.j := false;

In other words, a process may stop working only if all other processes are alive. Conse-

quently, a Byzantine process can change its decision only if it is alive. Thus, we revise fault

action F1 as follows:

F1 :: b.j ∧ u.j −→ d.j, f.j := 0|1, false|true;

Likewise, the safety specification and invariant of BAFS must express the fact that a

process may decide or finalize its decision only if it has not stopped due to the occurrence

of faults. Thus, SPEC btBA
and InvBAFS are as follows:

SPEC btBAFS
= (∃p ∈ {j, k, l} :: ¬b′.g ∧ ¬b′.p ∧

(d′.p 6= ⊥) ∧ f ′.p ∧ (d′.p 6= d′.g)) ∨

(∃p, q ∈ {j, k, l} :: ¬b′.p ∧ ¬b′.q ∧

f ′.p ∧ f ′.q ∧ u′.p ∧ u′.q ∧

(d′.p 6= ⊥) ∧ (d′.q 6= ⊥) ∧ (d′.p 6= d′.q)) ∨

(∃p ∈ {j, k, l} :: ¬b.p ∧ ¬b′.p ∧ f.p ∧ ¬u′.p ∧

((d.p 6= d′.p) ∨ (f.p 6= f ′.p))),

and

InvBAFS = (∀p, q ∈ {j, k, l} :: u.p ∨ u.q) ∧

[¬b.g ∧ (∀p, q ∈ {j, k, l} :: (¬b.p ∨ ¬b.q)) ∧

(∀p ∈ {j, k, l} :: ¬b.p⇒ (d.p = ⊥ ∨ d.p = d.g)) ∧

(∀p ∈ {j, k, l} :: (¬b.p ∧ f.p) ⇒ (d.p 6= ⊥))

∨

(b.g ∧ ¬b.j ∧ ¬ b.k ∧ ¬ b.l ∧

∀p, q ∈ {j, k, l} :: ((u.p ∧ u.q) ⇒

((d.p = d.q) ∧ (d.p 6= ⊥))))].

Figure 11.3 shows the result of our experiments on Byzantine agreement program subject

to fail-stop faults with 5-25 non-general processes. The growth trend of both time and

space as the number of processes increases is similar to the normal Byzantine agreement.

However, BAFS has obviously a larger state space and occurrence of fail-stop faults makes

the synthesis problem more complex. In particular, state elimination is significantly harder

179

to solve, as the Procedure Eliminate involves more backtracking steps due to existence of a

failed process on reachability paths. As a concrete example, observe that it takes about 6.5

hours to synthesize a solution to BAFS25, while it only takes 11 minutes to synthesize a

solution to BA25.

11.5 Case Study 4: Token Ring

In a token ring program for solving distributed mutual exclusion (denoted T R), pro-

cesses 0..N are organized in a ring and the token is circulated along the ring in a fixed

direction. Each process, say p where p ∈ {0..N}, maintains a variable x.p with domain

{0, 1,⊥}, where ⊥ denotes a corrupted value. Process p, 0 ≤ p ≤ N − 1, has the token

and can enter the critical section iff x.p differs from its successor x.(p + 1) and process N

has the token iff x.N is the same as its successor x.0. Each process p can only write its

local variable (i.e., x.p). Moreover, a process can only read its own local variable and the

variable of its predecessor. Thus, the read/write restrictions are as follows:

Vp = {x.i | 0 ≤ i ≤ N}, where p ∈ {0..N},

Wp = {x.p}, where p ∈ {0..N},

Rp = {x.p, x.(p− 1)}, where p ∈ {1..N}, and

R0 = {x.0, x.N}.

Fault-intolerant program. The program, consists of two actions. Formally, these actions

are as follows:

T Rp :: x.p 6= x.(p− 1) −→ x.p := x.(p− 1);

T R0 :: x.0 = x.N −→ x.0 := x.N +2 1;

where p ∈ {1..N} and where +2 denotes modulo 2 addition.

Fault action. Faults can restart at most N−1 processes. Thus, the fault action for process

p, where p ∈ {0..N}:

F :: ∃i, j ∈ {0..N} | (i 6= j) :: (xi 6= ⊥) ∧ (xj 6= ⊥) −→ x.p := ⊥;

180

Safety specification. The safety specification of T R requires that a process whose state

is uncorrupted should not copy the value of a corrupted process. Formally, the safety

specification is the following set of bad transitions:

SPEC btT R
=

∨N
p=0(x.p 6= ⊥ ∧ x′.p = ⊥).

Note that in token ring (unlike Byzantine agreement), we require that the safety specifica-

tion can only be violated by execution of program actions. In other words, when a fault

action restarts a process, safety is not violated.

Invariant predicate. Finally, the invariant predicate of the token ring problem is

determined as follows. Consider a state where a process, say p, has the token. In this state,

since no other process has the token, the x-value of all processes 0..p is identical and the

x-value of all processes (p+ 1)..N is identical. Letting X denote the string of binary values

x.0, x.1 · · ·x.N , we have that X satisfies the regular expression (0l1(N+1−l) ∪ 1l0(N+1−l)),

which denotes a sequence of length N + 1 consisting of zeros followed by ones or ones

followed by zeros.

Fault-tolerant program. The output of our algorithm is a program T R′ that tolerates

the above fault action. Intuitively, a process in the synthesized program is allowed to copy

the value of its predecessor, if this value in not corrupted. The actions of the synthesized

fault-tolerant program are as follows:

T R′
p :: (x.p 6= x.(p− 1)) ∧ (x.(p− 1) 6= ⊥) −→ x.p := x.(p− 1);

T R′
0 :: (x.0 6= (x.N +2 1)) ∧ (x.N 6= ⊥) −→ x.0 := x.N +2 1;

where p ∈ {1..N}. Observe that action T R′
0 stipulates recovery transitions that start from

outside program invariant as well.

Figure 11.4 shows the results of our experiments with respect to the token ring program.

Although token ring has a less complex structure than Byzantine agreement, it exhibits

features that Byzantine agreement does not. One of these features is the existence of two

cycles in both input and output programs which affects the addition of multi-step recovery.

Another feature is concerned with the size of fault-span. Unlike Byzantine agreement, the

fault-span (i.e., the set of all reachable states) of token ring is almost identical to the state

181

space of the program.

Space Time(s)
reachable memory recovery cycle fault-span total

states (MB) addition detection generation

T R30 1014 8 5 5 < 1 5

T R40 1019 13.3 13 13 < 1 35

T R50 1023 14.5 43 43 < 1 44

T R60 1028 15.2 176 174 1 179

T R70 1033 18.8 433 432 1 438

T R80
1038 25.3 992 990 2 999

T R90 1042 33.7 2272 2270 4 2283

T R100 1047 44.2 7824 7819 4 7837

(a)

 0.1

 1

 10

 100

 1000

 10000

 30 40 50 60 70 80 90 100

T
im

e
(s

)
(lo

g
sc

al
e)

Number of Processes

Time vs. Number of Processes

total synthesis time
recovery addition

fault-span generation
cycle detection

(b)

Figure 11.4: Experimental results for token ring mutual exclusion program.

Total synthesis time

Similar to the previous case studies, in case of token ring, the total synthesis time is also

sublinear to the number of reachable states. We emphasize that the result of our experiments

with respect to token ring is considerably different from the results reported in [BK07b];

we can synthesize up to 100 processes in less than two hours while it takes 8 hours to

182

synthesize 25 processes using the method in [BK07b]. Besides, obvious optimizations in

the core algorithm, the most effective factor contributing in such a dramatic improvement

is the approach in reachability analysis. BDD-based computation of reachable states is

normally achieved using a breadth-first search algorithm on state-transition graph of the

input program. Such a BFS algorithm involves a frontier generation step which can be

implemented in two ways:

1. Applying the transition predicate only on unexplored states which at iteration d,

consists of all states at distance exactly d from the invariant predicate.

2. Applying the transition predicate to all known states, that is all states at distance at

most d from the invariant predicate.

While the second approach may sound wasteful the cost of applying the transition

predicate in a symbolic setting depends on the number of nodes in the corresponding

BDD, not on the number of states encoded by the BDD. Thus, even in the verification

research community, it is unknown which approach is better. In [BK07b], we implemented

the first approach, but through analyzing more case studies, we choose to incorporate the

second approach for its generality. An obvious reason for better performance of the second

approach in the context of our synthesis problem that it is highly probable that the entire

state space of programs is reachable in the presence of faults. Thus, many variables may

become don’t care in the corresponding BDD which in turn reduces the number of nodes

in the BDD. Moreover, in programs such as token ring, there exists many transitions that

visits states that are already explored. Consequently, the issue of fault-span generation is

not a serious bottleneck as it was in [BK07b].

Deadlock resolution and cycle detection

In this case study, we are not concerned with state elimination time, as safe recovery from

all deadlock states is possible. Thus, in order to analyze deadlock resolution time, we only

focus on addition of recovery. As can be seen in Figure 11.4, the total synthesis time is

almost equal to the time spent for adding recovery paths to the program. Moreover, the time

spent for adding recovery is almost equal to the time spent for detecting cycles. First, we

note that in previous case studies, cycle detection time were negligible and, hence, was not

discussed. However, in this case study, a considerable amount of time is spent for detecting

183

cycles. Recall that in Procedure AddRecovery, after adding a new layer to recovery paths,

we check whether or not a cycle has been introduced to the fault-span of the intermediate

program (see Line 5). Since the input program in previous case studies does not contain a

cycle, the cycle detection algorithm tends to return a negative answer fairly fast. However,

one can easily observe that the token ring intolerant program has two cycles that cover

all states in the invariant. Thus, in the steps of adding multi-step recovery paths, new

cycles are introduced to the faults-span symmetrically which is reflected in the time spent

to detect cycles and subsequently removing transitions involved in the cycles. In fact, one

can observe in Figure 11.4-b the total synthesis times, and time spent detecting cycles and

adding recovery are almost equal. Thus, in programs such as token ring cycle detection

becomes the stumbling block of our synthesis algorithm.

11.5.1 The Effect of Multi-Step Recovery

The issue of cycle detection exists in addition of recovery, as our algorithm constructs multi-

step recovery paths. Notice that the first recovery step includes transitions that originate

from a set of reachable deadlock states and end in the invariant predicate. Recall that each

transition has to be added along with its corresponding group predicate. Thus, including

additional recovery steps can potentially introduce cycles to the fault-span which in turn

prohibits the program to recover to the invariant predicate in a finite number of steps.

Hence, an algorithm that synthesizes single-step recovery to an input program need not

detect cycles.

Obviously, depending upon the structure of input program, a different type of recovery

path may be required. For instance, in case of the token ring program, single-step recovery

suffices to resolve all deadlock states. Thus, a respective algorithm need not include the

while loop and DetectCycle function in the Procedure AddRecovery. Figure 11.5 shows the

result of experiments using such an algorithm for adding single-step recovery to T R. As

can be seen, an enormous speed-up is gained. Precisely, in average, the total synthesis time

drops by a factor of 330. To illustrate the effect of such a small change in the algorithm, we

note that one can synthesize token ring with 200 processes (reachable states of size 1095) in

less than 2 minutes.

184

Space Time(s)
reachable memory recovery cycle fault-span total

states (MB) addition detection generation

T R30 1014 4 < 1 0 < 1 0

T R40 1019 5 < 1 0 < 1 1

T R50 1023 7.6 1 0 < 1 1

T R60 1028 9.8 1 0 < 1 2

T R70 1033 11.4 1 0 1 3

T R80
1038 12.5 1 0 3 5

T R90 1042 12.9 1 0 4 6

T R100 1047 13 2 0 4 8

(a)

 1

 10

 100

 1000

 10000

 30 40 50 60 70 80 90 100

Lo
g-

S
ca

le
 T

ot
al

 S
yn

th
es

is
 T

im
e

(s
)

Number of Processes

Total Synthesis Time vs. Number of Processes

token ring with single-step recovery
token ring with multi-step recovery

(b)

Figure 11.5: Experimental results for token ring mutual exclusion with single-step recovery.

11.6 Case Study 5: Infuse

We now focus on Infuse, a time division multiple access (TDMA) based reliable data dis-

semination protocol in sensor networks [KA06]. Our intention to present this case study

is twofold. First, we intend to demonstrate an application of our algorithm outside the

literature of fault-tolerant distributed computing. In other words, we demonstrate the ap-

plicability of our algorithm in real-world problems by adding fault-tolerance to a sensor

network protocol. Secondly, we use Infuse as yet another case study to analyze the perfor-

185

mance of our algorithm.

In Infuse, a base station is responsible for communicating with the outside world. The

data is split into fixed size packets. Note that Infuse is not concerned with the contents of

the data. In our version of case study, all sensors are located in a simple line topology. The

base station sends new data to its sole neighbor. Then, this neighbor forwards the packet

to its neighbor and so on.

Each sensor maintains two variables r and s where r denotes the sequence number of

the last packet the sensor has received and s denotes the sequence number of the packet to

be sent to its neighbor. Each variable ranges over 0..M , where M is the number of bytes

in each packet. Thus, if sensors are numbered 0 to N , where sensor 0 is the base station,

the read/write restrictions for corresponding processes are as follows:

R0 = {s.0, r.0, s.1, r.1},

W0 = {s.0, r.0},

Rj = {s.(j − 1), r(j − 1), s.j, r.j, s.(j + 1), r.(j + 1)},

Wj = {s.j, r.j}, where 1 ≤ j ≤ N − 1,

RN = {s.N, r.N, s.(N − 1), r.(N − 1)},

WN = {s.N, r.N}.

Fault-intolerant program. Initially, all packets are disseminated from the base station. A

new packet is sent to sensor 1 when base station knows that sensor 1 has received the last

packet it had sent. Thus, the action for the base station is as follows:

IF0 :: s.0 = r.1 −→ s.0 := s.0 + 1;

Intuitively, a sensor, say j, where j ∈ {1..N − 1}, may receive a new packet, if

1. the successor (i.e., j + 1) has all the packets that j has, and

2. j − 1 is transmitting the next packet.

If this is the case, then j receives the packet and transmits it in the next slot. Thus, the

186

Space Time(s)
reachable memory recovery fault-span total

states (MB) addition generation

IF30 1015 4.7 1 < 1 1

IF50 1025 10 8 < 1 8

IF70 1034 11 26 < 1 26

IF90 1043 14.5 53 1 53

IF110 1051 15 85 1 87

IF130
1060 16 118 2 121

(a)

 0.1

 1

 10

 100

 1000

 20 40 60 80 100 120 140

T
im

e
(s

)
(lo

g
sc

al
e)

Number of Processes

Time vs. Number of Processes

total synthesis time
recovery addition

fault-span generation

(b)

Figure 11.6: Experimental results for Infuse bulk data dissemination protocol in sensor networks.

action that models packet transmission for sensors 1..N − 1 is as follows:

IF j :: (r.j = r.(j + 1)) ∧ (s.(j − 1) = r.j + 1) −→ r.j, s.j := r.j + 1, s.j + 1;

Finally, sensor N obtains a packet, if its predecessor has the next packet that sensor N

expects. Formally,

IFN :: s.(N − 1) = r.N + 1 −→ r.N := r.N + 1;

187

Fault actions. A fault causes the base station to transmit a packet that sensor 1 does not

expect. In other words, some packet transmitted by the based station is lost. For the rest

of sensors, a fault allows a sensor, say j, to receive a packet from its predecessor j − 1 even

though its successor j+1 did not obtain the packet that j transmitted last. Thus, the fault

actions of Infuse are as follows:

F0 : true −→ s.0 := s.0 + 1;

Fj :: (r.j ≤ r.(j − 1)) ∧ (s.(j − 1) = r.j + 1)

−→ r.j, s.j := r.j + 1, s.j + 1;

Safety specification. The safety specification of Infuse informally consists of the following

constrains:

• Transmission of a packet cannot be undone and packets can be sent in a subsequence,

• A sensor is not allowed to receive a packet unless its predecessor neighbor has it,

• A sensor may not send a packet that it has not obtained yet.

• Finally, the current s-value of a sensor should reflect the packet it expects from the

neighboring sensor.

Thus, the safety specification of Infuse is formally as follows:

SPEC btIF
= ∃p ∈ {1..N} :: (r′.p < r.p) ∨ (r′.p > r.p + 1) ∨

∃p ∈ {1..N − 1} :: (r′.p = r.p + 1) ∧

((r′.p 6= s.(p− 1)) ∧ (r′.p 6= s.(q + 1))) ∨

(r′.N = r.N + 1 ∧ r′.N 6= s.(N − 1)) ∨

∃p ∈ {0..N} :: (r′.p < s′.p) ∨

∃p ∈ {0..N − 1} :: (s.p > r.(p+ 1) + 1) ∧

(s′.p < r.(p+ 1) + 1).

Invariant. Informally, the invariant of Infuse specifies the following set of legitimate

states:

• It is illegitimate for a sensor to send a pack that it has not received.

188

• The packet to be sent by a sensor must be expected by its successor sensor.

• The base station initially owns all the packets.

• Finally, a sensor should not have a packet that its predecessor sensor dose not.

Thus, the invariant of Infuse is formally defined as follows: is as follows:

InvIF = (∀p ∈ {0..N} :: s.p ≤ r.p) ∧

(s.0 ≤ r.1 + 1) ∧

(∀p ∈ {1..N − 1} :: (s.q ≤ r.(p− 1) + 1) ∧

(s.p ≤ r.(p+ 1) + 1)) ∧

(s.N ≤ r.(N − 1) + 1) ∧

(r.0 = M) ∧

(∀p ∈ {1..N} :: r.p ≤ r.(p− 1))

Fault-tolerant program. Given IF , F , SPEC btIF
, and InvIF , the out-

put of our algorithm is a fault-tolerant version of Infuse, denoted IF ′. Adding

fault-tolerance to IF basically results in synthesizing recovery paths. This is

due to the fact that occurrence of faults does not lead the program to a

state from where safety may be violated. Hence, the only task Algorithm

Add Symbolic FT needs to accomplish is to guarantee deadlock freedom. And, such dead-

lock freedom can be achieved by adding safe recovery and no state elimination is required.

Formally, the fault-tolerant of Infuse is the following program:

IF ′0j :: (r.j = r.(j + 1)) ∧ (s.(j − 1) = r.j + 1)

−→ r.j, s.j := r.j + 1, s.j + 1;

IF ′1j :: (s.j > r.(j + 1) + 1)

−→ s.j := r.(j + 1) + 1;

IF ′2j :: (s.j > r.(j + 1) + 1) ∧

(s.(j − 1) = r.j + 1)

−→ s.j, r.j := r.(j + 1) + 1, r.j + 1;

where j ∈ {1..N − 1}. Actions of the base station and sensor N can be derived similarly.

Observe that IF ′0j is an unchanged action. Actions IF ′1j and IF ′2j are recovery actions

and resolve reachable deadlock states. Essentially, these actions enable the program to

189

retransmit packets that are lost while maintaining the safety specification to keep the correct

sequence of packet transmission.

Figure 11.6 shows the result of our experiments with respect to Infuse. We note that

IF does not reach states that need to be eliminated. In addition, the state-transition graph

of Infuse does not include cycles. Thus, cycle detection and state elimination do not play

any role in adding fault-tolerance to IF . Given these facts, Figure 11.6 is self-evident in

describing the behavior of Algorithm Symbolic Add FT with respect to Infuse. The majority

of total synthesis time is spent to add safe recovery which is expected due to the structure

of Infuse. One can also observe that the fault-span generation time is negligible. This is

due to the fact that the diameter of the state-transition graph of Infuse is short.

190

Chapter 12

The Tool SYCRAFT

This chapter describes the tool Sycraft (SYmboliC synthesizeR and Adder of Fault-

Tolerance). In Sycraft, a distributed fault-intolerant program is specified in terms of

a set of processes and an invariant. Each process is specified as a set of actions in a guarded

command language, a set of variables that the process can read, and a set of variables that

the process can write. Given a set of fault actions and a specification, the tool transforms

the input distributed fault-intolerant program into a distributed fault-tolerant program via

a symbolic implementation of respective algorithms.

The tool has been tested using various case studies. These case studies include prob-

lems from the literature of fault-tolerant computing in distributed systems (e.g., Byzan-

tine agreement, Byzantine agreement with fail-stop faults, Byzantine agreement with con-

strained specification, token ring, triple modular redundancy, alternating bit protocol) as

well as examples from research and industrial institutions (e.g., an altitude switch con-

troller [BH00], and a data dissemination protocol in sensor networks [KA06]). Sycraft

is written in C++ and the symbolic algorithms are implemented using the Glu/CUDD

2.1 package1. The source code of Sycraft is freely available and can be downloaded from

http://www.cse.msu.edu/~borzoo/sycraft. Installation instructions and other resources

are also available in the web site. The tool has been tested on Sun Solaris, Mac OS, and

various distributions of Linux (e.g., Debian, Ubuntu, and Fedora).

This chapter is organized as follows. First, in Section 12.1, we present the grammar for

input programs to Sycraft. Then, in Sections 12.4-12.6, we present three examples for

1Details about Colorado University Decision Diagram Package are available at
http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html.

191

http://www.cse.msu.edu/~borzoo/sycraft
http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html

specifying programs, invariants and safety specifications in Sycraft.

12.1 SYCRAFT Input Program Language and Grammar

Every input program to Sycraft has eight declaration sections. These sections are meant

to declare program name, constants, variables, processes, faults, invariant, safety specifica-

tion, and finally a transition predicate which the output program is prohibited to execute.

<prog> ::= <progdecl> <constdecl> <vardecl> <procdecl>

<faultdecl> <invariantdecl> <specdecl> <prohibited>

<progdecl> ::= “program” <identifier> “;”

The rule <identifier> is reduced by Sycraft’s lexical analyzer and returned as a token.

An identifier can be any combination of alphanumeric characters. The only constraints

are an identifier has to start with an alphabet and case matters. A typical structure of a

Sycraft input program is illustrated bellow:

192

program MyProgram;

const

· · ·

var

· · ·

process p1

· · ·

endprocess

process p2

· · ·

endprocess

fault MyFaults

· · ·

endfault

invariant

· · ·

specification

· · ·

prohibited

· · ·

12.1.1 Program, Constant, and Variable Declaration

We now describe each declaration section by starting from constants. Constants are often

used to facilitate parameterizing Booleans and integers such as domain of variables, number

of processes, or range of quantifiers.

<constdecl> ::= “const” <constlist> | <empty>

<constlist> ::= <concreteconst> | <constlist> <concreteconst>

193

<concreteconst>::= “int” <identifuer> “=” <guard> “;” |

“boolean” <identifier> “=” <guard> “;”

<empty> ::=

We explain the rule <guard> in detail in the next section. For now, a guard can be any

combination of arithmetic and Boolean expressions, including a single integer or Boolean.

For example, the following is a constant declaration:

const

int N = 2;

int bot = 2;

int M = N - 1;

In Sycraft, variables are of two types: nonnegative integer and Boolean. Note that

Sycraft does not have a perfect type checker and it is user’s responsibility to ensure correct

type checking. Each integer must be declared along with its domain. The lower-bound of

an integer domain must be zero, but its upper bound is optional. Variables can be defined

as an array. The index of the first element of an array is always zero.

<vardecl> ::= “var” <varlist>

<varlist> ::= <concretevar> | <varlist> <concretevar>

<concretevar> ::= <booldecl> | <intdecl>

<booldecl> ::= “boolean” <identifuer> “;” |

“boolean” <identifier> “.” <range> “;”

<range> ::= <rangedelim> “..” <rangedelim>

<rangedelim> ::= <guard>

<intdecl> ::= “int” <indetifier> “: domain” <range> “;”|

“int” <identifier> “.”<range>“: domain” <range> “;”

For example, the following is a variable declaration.

194

var

boolean bg;

boolean b.0..N;

boolean f.0..N;

int dg: domain 0..1;

int d.0..N: domain 0..2;

One can refer to elements of array d declared above, by d.0, d.1, ..., d.N. One can also use ex-

pressions such as d.(i+1) where i is an integer ranges over 0..N-1. We explain parameterized

variable elements in the next section.

12.1.2 Process Declaration and Structure

As mentioned earlier, a distributed program consists of a set of processes. In Sycraft,

each process includes:

1. A set of process actions given in guarded commands,

2. A fault section which accommodates fault actions that the process is subject to,

3. a prohibited section which defines a set of transitions that the process is not allowed

to execute,

4. a set of variables that the process is allowed to read, and

5. a set of variables that the process is allowed to write.

The syntax of actions is of the form g → st, where the guard g is a Boolean expression

and statement st is a set of (possibly non-deterministic) assignments. The semantics of

actions is such that at each time, one of the actions whose guard is evaluated as true is

chosen to be executed non-deterministically. The read-write restrictions model the issue of

distribution in the input program. Note that in Sycraft, fault actions are able to read

and write all the program variables. Prohibited transitions are specified as a conjunction

of an (unprimed) source predicate and a (primed) target predicate.

195

<procdecl> ::= <procstruct> | <procdecl> <procstruct>

<procstruct> ::= “process” <identifier> <procrange> <faultdecl>

<prohibited> <rwrestrict> “endprocess”

<procrange> ::= “:” <range> | <empty>

For example, a process declarations template without range is the following:

process MyProcess

guarded commands

· · ·

fault actions

· · ·

prohibited transitions

· · ·

read/write restrictions

endprocess

Likewise, an array of symmetric processes can be defined as follows:

process j:0..N

· · ·

endprocess

We emphasize that fault actions and prohibited transitions sections are allowed to be empty

in a process. The reason for providing the feature of defining an array of processes is due to

the fact that many distributed programs consist of identical processes that can be modeled

196

through parametrization. We now describe constituents of a process. First, the set of

guarded commands which essentially model the behavior of a process.

<actions> ::= <actionlist>

<actionlist> ::= <action> | <actionlist> “[]” <action>

<action> ::= <guard> “- ->” <statement> “;”

The following is an example of two guarded commands (actions) joined by “[]” operator:

(d.j == bot) & !f.j & !b.j - -> d.j := dg;

[]

(d.j != bot) & !f.j & !b.j - -> f.j := true;

We now describe each nonterminal of the above rules for defining a process. The first rule

is <guard>. A guard is essentially a combination of quantified Boolean and arithmetic

expressions.

<guard>::= <guard> “&” <guard> |

<guard> “|” <guard> |

<guard> “=>” <guard> |

<guard> “ ˆ ” <guard> |

“!”<guard> |

“exists” <boundlist> “in” <range>

<quantcond> “:: (” <guard> “)” |

“forall” <boundlist> “in” <range>

<quantcond> “:: (” <guard> “)” |

<arithmaticexp> |

<comparison>

197

<boundlist> ::= <identifier> | <boundlist> “,” <identifier>

<quantcond> ::= “: (” <guard> “)” | <empty>

The first five rules of “guard” are concerned with logical and, or, implication, xor, and

negation operators, respectively. The next two rules are concerned with universal and

existential quantifiers, respectively. A quantifier has a list of bound variables separated

by comma. All variables must be from the same range. Moreover, a quantifier may have

two conditions determined by the internal nonterminals <quantcond> and <guard>.

The first condition reduced by rule <quantcond> is on bound variables. The second

condition is on which Sycraft’s compiler eliminates the quantifier. Although the above

grammar allows nested quantifiers, we emphasize that Sycraft’s code generator currently

does not support nested quantifiers. In other words, an input program containing nested

quantifiers may compile successfully, but the corresponding BDDs would encode a different

expression. We describe the syntax of arithmetic and comparison expressions later in this

section. The following is an example of a Boolean expression without arithmetic expression:

!bg & (forall p, q in 0..N: (p != q) :: (!b.p | !b.q))

where is N is a constant. We note that in Sycraft, equality of Boolean variables has to

be expressed using Boolean operators only. For instance, the following expressions are not

meaningful to Sycraft:

• (x == true),

• (x == false),

• (x == y), and

• (x != y).

The right way to write the above expressions in Sycraft is respectively as follows:

• x,

• !x,

198

• !(xˆy), and

• (xˆy).

In addition to logical operators, expressions can contain arithmetic expressions and

integer comparisons as well. Arithmetic expressions may include addition, subtraction, and

modulo operators. Comparisons may involve equality, inequality, greater than, less than,

greater than or equal, and less than or equal comparisons. As mentioned earlier, equality

and inequality are not meant to be used for Boolean variables.

<arithmaticexp> ::= <arithmaticexp> “+” <arithmaticexp> |

<arithmaticexp> “-” <arithmaticexp> |

<arithmaticexp> “%” <arithmaticexp> |

“(” <guard> “)” |

<number> |

<id> |

“true” |

“false”

<comparison> ::= <arithmaticexp> “==” <arithmaticexp> |

<arithmaticexp> “!=” <arithmaticexp> |

<arithmaticexp> “>” <arithmaticexp> |

<arithmaticexp> “<” <arithmaticexp> |

<arithmaticexp> “>=” <arithmaticexp> |

<arithmaticexp> “<=” <arithmaticexp> |

<id> ::= <identifier> |

<identifier> “ ‘ ” |

<identifier> “.” <arithmaticexp> |

<identifier> “.” <arithmaticexp> “ ‘ ”

The following is an example of an expression that involves both Boolean and arithmetic

operators along with comparisons:

199

forall q in 1..K :: ((s.q <= r.(q-1) + 1) & (s.q <= r.(q+1) + 1))

where s and r and two arrays of integers and K is a constant.

In an expression a (Boolean or integer) variable can appear in four different forms (cf.

the <id> rule). A variable can be either primed or unprimed. A primed variable is meant

to express the next-state value of the variable. For example, if x is a Boolean variable, (x

& !x‘) expresses a transition where x is true in the source state, but it becomes false in the

target state. A variable may also be indexed or unindexed. For instance, bg is unindexed.

An indexed variable is one that is declared in an array and is used along with an arithmetic

expression as parameter. For instance, d.(i+1) is an indexed variable which refers to element

(i+1) in array d where i can be a process range, quantifier, or simply a constant. We note

that if an indexed variable is primed, its index must appear in parentheses and the prime

character must be place after the right parenthesis. For instance, b.i‘ is a meaningless

primed index variable. The right way to write this variable is b.(i)‘. Another example of a

primed indexed variable is d.(i-1)’.

Finally, a guarded command ends with a statement, which is a set of deterministic or

non-deterministic assignments.

<statement> ::= “(” <statement> “)” |

<statement> “[]” <statement> |

<statement> “,” <statement> |

<statementstruct>

<statementstruct> ::= <id> “:=” <arithmaticexp>

Precisely, given an action, a non-deterministic assignment (i.e., , operator) stipulates that

one assignment is chosen non-deterministically when the guard of the action holds. For

example, a guarded command with non-deterministic assignment is as follows:

(b.j) - -> (d.j := 1) [] (d.j := 0) [] (f.j := false) [] (f.j := true);

200

To the contrary, in a deterministic assignment, all assignments are considered to determine

the next state. The following guarded command contains deterministic assignments.

(cs != 2) & (br == 0) - -> (cs := 2), (rr := true);

We note that although the Sycraft grammar allows a combination of deterministic and

non-deterministic assignments, such combinations are not handled during translation of

guarded commands to BDDs.

A fault section inside a process expresses the set of fault transitions that the process is

subject to. Such fault transitions are modeled using guarded commands. Thus, fault and

process actions have exactly the same syntax.

<faultdecl> ::= “faults” <identifier> <actions> “endfaults” | <empty>

Recall that in addition to each process of a program, the program itself may have a fault

section as well. These section are allowed to be empty, but there must exist at least one

nonempty fault section. Otherwise, it means that the program is subject to no faults and,

hence, adding fault-tolerance becomes irrelevant.

Finally, we declare the read/restrictions of a process.

<rwrestrict> ::= “read:” <rwlist> “;”

“write:” <rwlist> “;”

<rwlist> ::= <idrange> | <rwlist> “,” <idrange>

<idrange> ::= <id> | <identifier> “.” <range>

For example, the following is a legal declaration of read/write restrictions:

read: d.0..N, dg, f.j, b.j;

write: d.j, f.j;

201

12.1.3 Invariant, Safety Specification, and Prohibited Transitions Decla-

ration

Invariant predicate, safety specification, and prohibited transitions are simply a combination

of Boolean and arithmetic expressions. The invariant predicate has a triple role: it (1) is a

set of states from where execution of the program satisfies its safety specification (described

below) in the absence of faults, (2) must be closed in the execution of the input program and,

(3) specifies the reachability condition of the program, i.e., if occurrence of faults results in

reaching a state outside the invariant, the (synthesized) fault-tolerant program must safely

reach the invariant predicate in a finite number of steps. In order to increase the chances

of successful synthesis, it is desired that Sycraft is given the weakest possible invariant.

Our notion of specification is based on the one defined by Alpern and Schneider [AS85].

The specification section describes the safety specification as a set of bad prefixes that

should not be executed neither by a process nor a fault action. Currently, the size of

such prefixes in Sycraft is two (i.e., a set of transitions). Since safety specification and

prohibited transitions model a set of bad transitions that should not occur in any program

computation, they typically involve primed variables to model states that should not be

reached. The input program and its processes may or may not have prohibited transitions.

<invariantdecl> ::= “invariant” <guard> “;”

<specdecl> ::= “specification” <guard> “;” | <empty>

<prohibited> ::= “prohibited” <guard> “;” | <empty>

We emphasize that the main difference between transitions specified in prohibited and spec-

ification sections is that transitions in prohibited section should not be executed by the

program only. In other words, it is perfectly legitimate for a fault action to executes a

transition that is specified in the prohibited section. To the contrary, transitions specified

in the specification are not allowed to be executed by both program and fault actions. We

202

typically use prohibited transitions to specify transition that cannot be used in order to add

recovery paths.

12.1.4 Operator Precedence

The precedence of operators and their associativity in Sycraft are as follows:

:= left

ˆ left

=> left

| left

& left

==, != left

>, <, <=, >= left

+, - left

forall, exists left

% left

, left

[] left

! left

. non-associative

‘ non-associative

12.2 Internal Functionality

Sycraft implements three nested symbolic fixedpoint computations presented in Algo-

rithm 11.1 in Chapter 11. The inner fixedpoint deals with computing the set of states

reachable by the input intolerant program and fault transitions. The second fixedpoint

computation identifies the set ms of states from where the safety condition may be violated

by fault transitions. It makes ms unreachable by removing program transitions that end

in a state in ms. Note that in a distributed program, since processes cannot read and

write all variables, each transition is associated with a group of transitions. Thus, removal

or addition of a transition must be done along with its corresponding group. The outer

fixedpoint computation deals with resolving deadlock states by either (if possible) adding

203

$ bin/sycraft examples/ByzantineAgreement.fin

Initializing MDD manager Glu2.1...
Compiling the input fault-intolerant program...
Creating the symbol table...
Creating intolerant program MDDs...
Input program compiled successfully

Computing ms....
Computing mt....
Running the synthesis algorithms for 3 processes

SAFETY.........................OK.
DEADLOCKS......................OK.
INVARIANT NONEMPTINESS.........OK.
INVARIANT CLOSURE..............OK.
F-SPAN CLOSURE..............FAILED.

Computing the fault-span...
Removing unsafe transitions...
Unsafe transitions removed...
Computing the fault-span...
Step 3-4 Fixpoint reached ...

SAFETY.........................OK.
DEADLOCKS..................FAILED.
INVARIANT NONEMPTINESS.........OK.
INVARIANT CLOSURE..............OK.
F-SPAN CLOSURE.................OK.

Resolving deadlocks by adding recovery paths
Removing unsafe transitions...
Resolving deadlocks by adding recovery paths
Removing unsafe transitions...
Cycle(s) detected/removed from the fault-span...

SOME RECOVERY ACTION ADDED

Eliminating remaining deadlock states...
Eliminating remaining deadlock states...
Eliminating remaining deadlock states...
Eliminating remaining deadlock states...
Eliminating remaining deadlock states...
Eliminating remaining deadlock states...
Eliminating remaining deadlock states...
Something was eliminated.

SAFETY.........................OK.
DEADLOCKS..................FAILED.
INVARIANT NONEMPTINESS.........OK.
INVARIANT CLOSURE..............OK.
F-SPAN CLOSURE.................OK.

Computing the fault-span...
Removing unsafe transitions...
Step 3-4 Fixpoint reached ...

SAFETY.........................OK.
DEADLOCKS..................FAILED.
INVARIANT NONEMPTINESS.........OK.
INVARIANT CLOSURE..............OK.
F-SPAN CLOSURE..............FAILED.

Resolving deadlocks by adding recovery paths
Removing unsafe transitions...
Resolving deadlocks by adding recovery paths
Removing unsafe transitions...
SOME RECOVERY ACTION ADDED

Eliminating remaining deadlock states...
No program transitions removed.

SAFETY.........................OK.
DEADLOCKS......................OK.
INVARIANT NONEMPTINESS.........OK.
INVARIANT CLOSURE..............OK.
F-SPAN CLOSURE..............FAILED.

Computing the fault-span...
Removing unsafe transitions...
Step 3-4 Fixpoint reached ...

SAFETY......................FAILED.
DEADLOCKS..................FAILED.
INVARIANT NONEMPTINESS.........OK.
INVARIANT CLOSURE..............OK.
F-SPAN CLOSURE..............FAILED.

Resolving deadlocks by adding recovery paths
Removing unsafe transitions...
Resolving deadlocks by adding recovery paths
Removing unsafe transitions...
SOME RECOVERY ACTION ADDED

Eliminating remaining deadlock states...
No program transitions removed.

SAFETY......................FAILED.
DEADLOCKS......................OK.
INVARIANT NONEMPTINESS.........OK.
INVARIANT CLOSURE..............OK.
F-SPAN CLOSURE..............FAILED.

Computing the fault-span...
Removing unsafe transitions...
Step 3-4 Fixpoint reached ...
Step 3-5 Fixpoint reached ...
Step 3-7 Fixpoint reached ...
SAFETY.........................OK.
DEADLOCKS......................OK.
INVARIANT NONEMPTINESS.........OK.
INVARIANT CLOSURE..............OK.
F-SPAN CLOSURE.................OK.

Total synthesis time = 0.125s

Select the process you wish to see its
fault-tolerant version:
(1) j:0..2 (example: "j 1")
(2) quit

Output process:

Destroying MDD manager Glu2.1...
$

Figure 12.1: A sample run snapshot of Sycraft.

safe recovery simple paths from deadlock states to the program’s invariant predicate, or,

making them unreachable via adding minimal restrictions on the program. We note that

the BDD-based implementation of the aforementioned fixedpoint computations does not

apply dynamic variable reordering in the current version of Sycraft.

Figure 12.1 demonstrates (1) steps of heuristics implemented in Sycraft, (2) veri-

fication of corresponding concerns such as satisfaction of safety, closure of invariant and

fault-span (i.e., the set of states reachable by program and fault actions), and nonexistence

of deadlock states for each step (denoted by OK and FAILED), and (3) satisfaction of

fixedpoint computations. In particular, the tool has a solution to the synthesis problem

when the answer to verification of all above concerns is affirmative.

204

The problem of synthesizing distributed fault-tolerant programs is known to be NP-

complete and Sycraft implements a set of heuristics (cf. Algorithm 11.1) to deal with

this complexity. Obviously, the heuristics are incomplete in the sense that they may be

unable to synthesize a solution while there exists one. Although we have not observed this

incompleteness in our case studies, the incompleteness of heuristics may be observed where

recovery through a state outside the fault-span is possible.

The performance of the symbolic algorithms that Sycraft implements is discussed

in detail in Chapter 11 using case studies including the Byzantine agreement and token

ring problems with various number of processes. In particular, by applying more advanced

techniques than those introduced in Chapter 11 (e.g., exploiting symmetry in distributed

processes and state space partitioning) we have been able to synthesize Byzantine agreement

with 3 processes in 0.07s and up to 40 processes (reachable states of size 1050) in less than

100 minutes using a regular personal computer.

12.3 Output Format

The output of Sycraft is a fault-tolerant program in terms of its actions. Sycraft

organizes these actions in three categories. Unchanged actions entirely exist in the input

program. Revised actions exist in the input program, but their guard or statement have been

strengthened. Sycraft adds Recovery actions to enable the program to safely converge

to its invariant predicate. Notice that the strengthened actions prohibit the program to

reach a state from where validity or agreement is violated in the presence of faults. It also

prohibits the program to reach deadlock states from where safe recovery is not possible.

12.4 Example 1: Never 7

This example is adapted from M.Sc. thesis of Bastian Braun at University of Mannheim,

Germany. Note that in Braun’s thesis the objective is to synthesize a failsafe program,

where safe recovery to the program invariant is not required, whereas Sycraft synthesizes

masking fault-tolerant programs where safe recovery is provided in order to ensure that the

synthesized program does not deadlock in the presence of faults. Thus, the our program is

slightly different from that developed by Braun.

The program’s state-transition graph is illustrated in Figure 12.2. This program has 8

205

states and the safety specification requires that state 7 should never be reached. The in-

variant predicate of the program is the set {0, 1, 2}. Program and fault transitions are clear

in the figure. It is easy to observe that the program does not reach state 7 in the absence

of faults, but it may reach state 7 due to the occurrence of faults. We use Sycraft to syn-

thesize a fault-tolerant program, i.e., a program that never reaches state 7 in both absence

and presence of faults. For the sake of illustration, we require that potential transitions

(6, 1), (6, 2), and (3, 0) should not be used for adding recovery computations.

0 7654321

program

fault

Figure 12.2: Never7 program state-transition graph.

We now model this program in Sycraft’s input language. We use a variable state with

domain 0..7 which encodes each state shown in Figure 12.2. We declare and define only one

process and this process can read and write the variable state, as there is no distribution

involved. It is straightforward to see that the guarded commands in process trans of Figure

12.3 model the transitions in Figure 12.2. Obviously, process trans can read and write

variable state which concludes the definition of process trans.

As mentioned earlier, the invariant predicate of Never7 consists of state in the set

{0, 1, 2}. It is easy to see that the invariant in Figure 12.3 defines the equivalent expression.

The safety specification of our program consists of the simple expression (state’ == 7),

which essentially includes any transition that ends in state where the value of variable state

is 7.

Finally, the expression in the prohibited section of Figure 12.3, specifies the transitions

that we ruled out for adding recovery, i.e., transitions (6, 1), (6, 2), and (3, 0).

After running Sycraft on the input file in Figure 12.3, the output is a fault-tolerant

version of Never7 shown in Figure 12.5. As can be seen in this figure, Sycraft has removed

transitions (3, 4) and (6, 7). Notice that existence of transition (3, 4) may lead the program

to state 5 from where occurrence of faults alone violate the safety. Moreover, if the program

reaches state 6 due to the occurrence of faults, then transition (6, 7) violates the safety.

206

program never7;

var int state: domain 0..7;
{- -}
process trans

(state == 0) - -> state := 1;
[]
(state == 1) - -> state := 2;

[]
(state == 2) - -> state := 0;

[]
(state == 3) - -> state := 4;

[]
(state == 6) - -> state := 7;

fault Malfunction
(state == 1) - -> state := 3;

[]
(state == 1) - -> state := 6;

[]
(state == 4) - -> state := 5;

[]
(state == 5) - -> state := 7;

endfault

read: state;
write: state;

endprocess

{- -}
invariant

(state == 0) | (state == 1) | (state == 2);
{- -}
specification

(state‘== 7);
{- -}
prohibited

((state == 6) & ((state‘ == 1) | (state‘ == 2)))
|
((state == 3) & (state‘ == 0));

Figure 12.3: Never7 program as input to Sycraft.

One can also notice that Sycraft has added three recovery transitions in order to

resolve deadlock states. Notice that these transitions do not intersect with transitions

specified in the prohibited section. For the reader’s convenience, Figure 12.4 shows the

state-transition graph of the fault-tolerant version of Never7.

207

0 7654321

program

fault

Figure 12.4: Fault-tolerant Never7 state-transition graph.

--

UNCHANGED ACTIONS:

--

1- (state == 0) --> (state := 1)

2- (state == 1) --> (state := 2)

3- (state == 2) --> (state := 0)

--

REVISED ACTIONS:

--

--

NEW RECOVERY ACTIONS:

--

1- (state == 6) --> (state := 0)

2- (state == 3) --> (state := 2)

3- (state == 3) --> (state := 1)

--

Figure 12.5: Sycraft output: fault-tolerant Never7.

12.5 Example 2: Token Ring

We now reiterate the description of the token ring problem (cf. Section 11.5) in order to

describe the input to Sycraft more clearly. In a token ring program, the processes 0..N

are organized in a ring and the token is circulated along the ring in a fixed direction. Each

process, say j, maintains a variable x with the domain {0, 1, 2}, where the value 2 denotes

a corrupted value. Process j, where j is greater than zero, has the token iff x.j differs from

its successor x.(j + 1) and process N has the token iff x.N is the same as its successor x.0.

Each process can only write its local variable (i.e., x.j). Moreover, a process can only read

its own local variable and the variable of its predecessor. In this program, faults can restart

208

at most N-1 processes.

The invariant predicate of the token ring problem is determined as follows. Consider a

state where a process j has the token. In this state, since no other process has a token, the

value of variable x of all processes 0..j is identical and the x value of all processes (j+1)..N

is identical. Letting X denote the string of binary values x.0, x.1,..., x.N, we have that X

satisfies the regular expression (0l.1(N+1−l) ∪ 1l.0(N+1−l)), which denotes a sequence of

program BinaryTokenRing;
const N = 3;
var int x.0..N: domain 0..2;
{- -}
process p

(x.0 == 0) & (x.N == 0) - -> x.0 := 1;
[]
(x.0 == 1) & (x.N == 1) - -> x.0 := 0;

read: x.0, x.N;
write: x.0;

endprocess

{- -}
process q: 1..N

x.q != x.(q - 1) - -> x.q := x.(q - 1);

prohibited (x.0 == 2) & (x.N == x.(0)‘)

read: x.q, x.(q - 1);
write: x.q;

endprocess

{- -}
fault TokenCorruption

exists i, j in 0..N : (i != j) :: ((x.i != 2) & (x.j != 2))
- -> (x.0 := 2) [] (x.1 := 2) [] (x.2 := 2) [] (x.3 := 2);

endfault

{- -}
invariant

((x.0 == 1) & (x.1 == 0) & (x.2 == 0) & (x.3 == 0)) |
((x.0 == 1) & (x.1 == 1) & (x.2 == 0) & (x.3 == 0)) |
((x.0 == 1) & (x.1 == 1) & (x.2 == 1) & (x.3 == 0)) |
((x.0 == 1) & (x.1 == 1) & (x.2 == 1) & (x.3 == 1)) |
((x.0 == 0) & (x.1 == 0) & (x.2 == 0) & (x.3 == 0)) |
((x.0 == 0) & (x.1 == 0) & (x.2 == 0) & (x.3 == 1)) |
((x.0 == 0) & (x.1 == 0) & (x.2 == 1) & (x.3 == 1)) |
((x.0 == 0) & (x.1 == 1) & (x.2 == 1) & (x.3 == 1)) ;

{- -}
prohibited

exists i in 0..N :: ((x.i != 2) & (x.(i)‘ == 2));

Figure 12.6: Token ring program as input to Sycraft.

209

length N + 1 consisting of zeros followed by ones or ones followed by zeros.

In token ring processes whose state is uncorrupted are not allowed to copy the value of

a corrupted process. Note that in token ring, since this constraint has to be met only by

execution of program actions (not fault actions), we specify it under the prohibited section

in Sycraft.

Figure 12.6 shows how we model the token ring problem in Sycraft. Specifically, we

define two processes, p and q. Process p models process 0 in the ring and process q which

ranges over 1..N models the rest of processes in the ring. Currently, Sycraft’s grammar

does not feature regular expressions. Thus, we have to model them explicitly in Sycraft.

An alert reader observes that the above program works correctly in the absence of faults.

However, in the presence of faults, it deadlocks due to existence of several tokens or no tokens

in the ring. The output of Sycraft after adding fault-tolerance to BinaryTokenRing is as

follows (cf. Figure 12.7). Intuitively, a q-process in the synthesized program is allowed to

copy the value of its predecessor, if this value in not corrupted. Notice that recovery action

process p in the synthesized program stipulate recovery mechanism that starts from outside

program invariant and reaches the invariant in one step.

12.6 Example 3: Byzantine Agreement

We now reiterate the description of the Byzantine agreement problem (cf. Subsection 2.1.3)

in order to describe the input to Sycraft more clearly. In Byzantine agreement [LSP82],

the program consists of a general g and three (or more) non-general processes: 0, 1, and 2

Figure 12.8. Since, the non-general processes have the same structure, we model them as a

process j that ranges over 0..2. The general is not modeled as a process, but by two global

variables bg and dg. Each process maintains a decision d; for the general, the decision can

be either 0 or 1, and for the non-general processes, the decision can be 0, 1 or 2, where

the value 2 denotes that the corresponding process has not yet received the value from the

general. Each non-general process also maintains a Boolean variable f that denotes whether

that process has finalized its decision. To represent a Byzantine process, we introduce a

variable b for each process; if b.j is true then process j is Byzantine, where process j cannot

read b.k for k 6= j.

210

For process q = 1
--

UNCHANGED ACTIONS:

--

--

REVISED ACTIONS:

--

1- (x0 == 1) & (x1 == 2) --> (x1 := 1)

2- (x0 == 0) & (x1 == 2) --> (x1 := 0)

3- (x0 == 1) & (x1 == 0) --> (x1 := 1)

4- (x0 == 0) & (x1 == 1) --> (x1 := 0)

--

NEW RECOVERY ACTIONS:

--

--

For process p:

UNCHANGED ACTIONS:

1- ((x0 == 0) & (x3 == 0)) --> (x0 := 1)

2- ((x0 == 1) & (x3 == 1)) --> (x0 := 0)

REVISED ACTIONS:

NEW RECOVERY ACTIONS:

1- (x0 == 2) & (x3 == 0) --> (x0 := 1)

2- (x0 == 2) & (x3 == 1) --> (x0 := 0)

Figure 12.7: Sycraft output: fault-tolerant token ring.

The program works as follows. Each non-general process copies the decision value from

the general (Line 12) and then finalizes that value (Line 14). A fault action may turn

a process to a Byzantine process, if no other process is Byzantine (Line 16). Faults also

change the decision (i.e., variables d and f) of a Byzantine process arbitrarily and non-

deterministically (Line 18). As mentioned earlier, in Sycraft, one can specify faults that

are not associated with a particular process. This feature is useful for cases where faults

affect global variables, e.g., the decision of the general (Lines 24-28). In the prohibited

211

1) program Byzantine Agreement;
2) const

3) int N = 2;
4) int bot = 2;
5) var

6) boolean bg;
7) boolean b.0..N;
8) boolean f.0..N;
9) int dg: domain 0..1;
10) int d.0..N: domain 0..2;

{- -}
11) process j: 0..N
12) (d.j == bot) & !f.j & !b.j - -> d.j := dg;
13) []
14) (d.j != bot) & !f.j & !b.j - -> f.j := true;
15) fault Byzantine NonGeneral
16) !bg & (forall p in 0..N:: (!b.p)) - -> b.j := true;
17) []
18) b.j - -> (d.j := 1) [] (d.j := 0) [] (f.j := false) [] (f.j := true);
19) endfault

20) prohibited

21) !b.j & !b.(j)’ & f.j & ((d.j != d.(j)’) | !f.(j)’);
22) read: d.0..N, dg, f.j, b.j;
23) write: d.j, f.j;
24) endprocess

{- -}
25) fault Byzantine General
26) !bg & (forall p in 0..N:: (!b.p)) - -> bg := true;
27) []
28) bg - -> (dg := 1) [] (dg := 0);
29) endfault

{- -}
30) invariant

31) (!bg & (forall p, q in 0..N:(p != q):: (!b.p | !b.q)) &
32) (forall r in 0..N:: (!b.r => ((d.r == bot) | (d.r == dg)))) &
33) (forall s in 0..N:: ((!b.s & f.s) => (d.s != bot))))
34) |
35) (bg & (forall t in 0..N::

(!b.t)) & (forall a,b in 0..N:: ((d.a == d.b) & (d.a != bot))));
{- -}

36) specification:
37) (exists p, q in 0..N: (p != q) :: (!b.(p)’ & !b.(q)’ & (d.(p)’ != bot) &
38) (d.(q)’ != bot) & (d.(p)’ != d.(q)’) & f.(p)’ & f.(q)’)) |
39) (exists r in 0..N:: (!bg’ & !b.(r)’ & f.(r)’ &

(d.(r)’ != bot) & (d.(r)’ != dg’)));

Figure 12.8: The Byzantine agreement problem as input to Sycraft.

section, we specify transitions that violate safety by process (and not fault) actions. For

instance, it is unacceptable for a process to change its final decision (Line 21). Finally, a

212

non-general process is allowed to read its own and other processes’ d values and update its

own d and f values (Lines 12-23).

The following states define the invariant predicate: (1) at most one process may be

Byzantine (Line 31), (2) the d value of a non-Byzantine non-general process is either 2

or equal to dg (Line 32), and (3) a non-Byzantine undecided process cannot finalize its

decision (Line 33), or, if the general is Byzantine and other processes are non-Byzantine

their decisions must be identical and not equal to 2 (Line 35).

The safety specification of Byzantine agreement requires agreement and validity. Agree-

ment requires that the final decision of two non-Byzantine processes cannot be different

(Lines 37-38). And, validity requires that if the general is non-Byzantine then the final

decision of a non-Byzantine process must be the same as that of the general (Lines 39).

Notice that in the presence of a Byzantine process, the program may violate the safety

specification.

Similar to other examples, the Byzantine agreement program works fine in the absence of

faults. However, it may violate its safety specification (agreement or validity) or deadlock in

the presence of faults. Figure 12.9 shows how Sycraft adds fault-tolerance to Byzantine

agreement. As can be seen the first action is unchanged, i.e., a non-general process can

copy the general’s decision under no constraints. However, the second action of the input

program is revised. Intuitively, the revised action stipulates that a non-general process

can finalize its decision only if it agrees with a majority of non-general processes on its

decision. Finally, safe recovery actions of a non-general process of the tolerant program

resolves deadlock states by reading the decision of other non-general processes in order to

adjust its own decision (recovery actions 6 and 7). The process has also the option of

finalizing its decision while recovering (recovery actions 8 and 9).

213

--

UNCHANGED ACTIONS:

--

1-((d0==2) & !(f0==1)) & !(b0==1) --> (d0 := dg)

--

REVISED ACTIONS:

--

2-(b0==0) & (d0==1) & (d1==1) & (f0==0) --> (f0 := 1)

3-(b0==0) & (d0==0) & (d2==0) & (f0==0) --> (f0 := 1)

4-(b0==0) & (d0==0) & (d1==0) & (f0==0) --> (f0 := 1)

5-(b0==0) & (d0==1) & (d2==1) & (f0==0) --> (f0 := 1)

--

NEW RECOVERY ACTIONS:

--

6-(b0==0)& (d0==0)& (d1==1)& (d2==1)& (f0==0) --> (d0 := 1)

7-(b0==0)& (d0==1)& (d1==0)& (d2==0)& (f0==0) --> (d0 := 0)

8-(b0==0)& (d0==0)& (d1==1)& (d2==1)& (f0==0) --> (d0 := 1), (f0 := 1)

9-(b0==0)& (d0==1)& (d1==0)& (d2==0)& (f0==0) --> (d0 := 0), (f0 := 1)

--

Figure 12.9: Sycraft output: fault-tolerant Byzantine agreement.

214

Part IV

Distributed and Parallel Revision

Techniques

215

In Chapter 11, we presented a BDD-based approach to remedy the state explosion

problem as well as time complexity in the context of synthesizing distributed programs.

Alternatively, in order to overcome the space explosion problem, recently, an increasing

interest in parallel and distributed techniques has emerged in the model checking community

(e.g., [GMS01, SD97, HGGS00, LSW03, CC06]). Such techniques parallelize enumerative

or symbolic state space of a given model over a network or cluster of workstations and

run a distributed verification algorithm over the parallelized state space. On the other

hand, the space explosion problem and high time complexity of synthesis methods remain

unaddressed.

With this motivation, in this part of the dissertation, we concentrate on distributed and

parallel techniques as means to address the state explosion problem and utilizing multiple

processors for more efficient program revision. This part is organized as follows. In Chap-

ter 13, we propose two distributed algorithms (multiple processors-distributed memory) for

synthesizing failsafe and masking fault-tolerant untimed centralized programs. Then, in

Chapter 14, we present a parallel BDD-based algorithm (multiple processors-shared mem-

ory) for deadlock resolution. This algorithm can be used as a building block for automated

synthesis of masking distributed fault-tolerant programs.

216

Chapter 13

Distributed Synthesis of

Centralized Fault-Tolerant

Programs

In this chapter, we concentrate on the problem of designing distributed algorithms (multi-

ple processors-distributed memory) for automated program synthesis. More specifically, we

parallelize two synthesis algorithms (from [KA00]) for adding two levels of fault-tolerance,

namely failsafe and masking, to existing fault-intolerant programs. As mentioned in previ-

ous chapters, intuitively, in the presence of faults, a failsafe fault-tolerant program satisfies

only its safety specification, but a masking fault-tolerant program satisfies both its safety

and liveness specifications. We assume that programs are untimed and centralized, where

all processes can read and write all program variables in one atomic step. We note that

following the Problem Statement 7.3.2, the aforementioned synthesis algorithms solely add

fault-tolerance to a fault-intolerant program in the sense that they add no new behaviors

to the input program in the absence of faults.

Similar to distributed model checking techniques, developing distributed synthesis algo-

rithms consists of two phases:

1. parallelizing the state space over a network of workstations, and

2. designing a distributed algorithm that runs on each partition of the state space.

In this chapter, we only focus on the second phase. In particular, we assume that paral-

217

lelization of state space is already done using one of the known enumerative techniques in the

literature. Precisely, we use the state space parallelization technique proposed by Garavel,

Mateescu, and Smarandache [GMS01] with some modifications tailored for the purpose of

synthesis rather than model checking. Although there exist more efficient ways for parallel

construction of state space (e.g., using abstract interpretation), we cannot trivially apply

them as a means for synthesizing programs. This is due to the fact that in synthesis (unlike

model checking), we usually require full information about the program being synthesized,

as we need to manipulate a program by removing or adding computations. Thus, we con-

servatively choose to develop distributed algorithms that run over the detailed parallelized

enumerative state space.

Since the essence of the proposed algorithm in [KA00] for synthesizing failsafe fault-

tolerant programs is calculating fixpoint of formulae, in this chapter, we propose a dis-

tributed multi-threaded algorithm for calculating smallest and largest fixpoints. Further-

more, since a masking fault-tolerant program recovers to its normal behavior after the oc-

currence of faults, we also propose a distributed algorithm for synthesizing recovery paths.

The main results of this chapter are as follows. We propose (i) a distributed multi-

threaded synthesis algorithm for adding failsafe fault-tolerance, and (ii) a distributed multi-

threaded synthesis algorithm for adding masking fault-tolerance to existing fault-intolerant

programs. These algorithms involve designing distributed techniques for fixpoint calcula-

tions and adding recovery computations to a program. To the best of our knowledge, our

method is the first that addresses challenges and proposes solutions for designing distributed

algorithms in the context of program synthesis and transformation. We believe that this

study paves the way for further research on designing distributed synthesis algorithms.

The rest of this chapter is organized as follows. We first present the state space construc-

tion technique due to Garavel, Mateescu, and Smarandache [GMS01] in Section 13.1. We

make some modifications to the techniques in [GMS01] tailored for the purpose of synthesis

rather than model checking. Then, in Sections 13.2 and 13.3, we present our distributed

algorithms for adding failsafe and masking fault-tolerance, respectively.

218

13.1 Parallel Construction of State Space

In order to represent a program P = 〈ΠP , InvP〉 with state space SP on N machines

(numbered from 0 to N − 1), we use the notion of partitioned programs. More specifically,

the state space SP is partitioned to S0
P · · · S

N−1
P , where SP = ∪N−1

i=0 S
i
P and Si

P ∩ S
j
P = {}

for all 0 ≤ i 6= j < N (i.e., the state space is partitioned into N classes, one class per

machine). Likewise, state predicates are partitioned in the same fashion. For instance,

machine i contains Inv i
P and Si

P partitions of the invariant InvP and the fault-span SP .

From now on, we call InvP the global invariant and each Inv i
P the local invariant with

respect to machine i. The same concept applies to any other state predicate such as the

fault-span SP , i.e., SP is the global fault-span and Si
P is the local fault-span with respect

to machine i.

The set TP of transitions is partitioned to T 0
P · · ·T

N−1
P , where TP = ∪N−1

i=0 T
i
P , and

(σ0, σ1) ∈ T i
P iff (σ0 ∈ S

i
P ∨ σ1 ∈ S

i
P) for all 0 ≤ i < N (i.e., if the source and target

of a transition belong to different machines, the transition is stored in both the source

and target machines). We call such transitions cross transitions. Likewise, F and SPEC bt

are partitioned in the same fashion. From now on, we call TP the global set of program

transitions and each T i
P the local set of program transitions with respect to machine i. The

same concept applies to any other set of transitions such as the set of faults F and the set

of bad transitions SPEC bt.

Remark 13.1.1 We choose to store cross transitions in both source and target machines

due to two reasons:

1. as we shall see in Sections 13.2 and 13.3, such duplication decreases the number of

potential broadcast messages considerably, and

2. it allows us to efficiently do both forward and backward reachability analysis at the

same time.

In fact, this deviation from distributed model checking techniques is due to the nature

synthesis as compared to verification.

Assumption 13.1.2 In our synthesis algorithms, we assume that the input fault-intolerant

program P is already partitioned over a network using a reasonable static partition function

219

h : SP → [0, N − 1] using the above parallelization method. In other words, machine i

contains a state σ iff h(σ) = i. We also assume that all the synthesis processes over the

network have a replica of h.

Revised problem statement

With this setting, we revise the Problem Statement 7.3.2 as follows. Given are a partition

function h, a partitioned program T 0
P · · ·T

N−1
P with state space S0

P · · · S
N−1
P , local invari-

ants Inv0
P · · · InvN−1

P , a partitioned class of faults F 0 · · ·FN−1, and safety specification

SPEC 0
bt · · ·SPECN−1

bt such that P |=InvP
SPEC bt. Our goal is to design distributed algo-

rithms that synthesize a program P ′ with invariant InvP ′ such that P ′ is failsafe/masking

F -tolerant to SPEC bt from InvP ′ .

13.2 Distributed Addition of Failsafe Fault-Tolerance

In order to synthesize a failsafe fault-tolerant program, we transform P into P ′ such

that transitions of SPEC bt occur in no computation prefixes of P ′. Towards this end, we

parallelize the proposed centralized algorithm in [KA00] for adding failsafe fault-tolerance.

Algorithm sketch. The essence of adding failsafe fault-tolerance consists of two

parts: (1) a smallest fixpoint calculation for identifying the set of states from where safety

may be violated, and (2) a largest fixpoint calculation for computing the invariant of the

failsafe program. Our algorithm consists of a set of distributed processes each running

on one machine across the network. Each process consists of two threads, namely, Dis-

tributed Add failsafe (cf. Thread 13.1) and MessageHandler (cf. Thread 13.5). Briefly, the

thread Distributed Add failsafe is in charge of initiating local fixpoint calculations and man-

aging synchronization points of the algorithm. The thread MessageHandler is responsible for

handling messages sent by other synthesis processes across the network and invoking appro-

priate procedures. The thread Distributed Add failsafe consists of three main parts, namely,

Lines 1-4 which is a smallest fixpoint computation, Lines 5-9 which is a largest fixpoint

computation, and Lines 10-13 where we check the emptiness of the synthesized program (to

declare failure or success). It also invokes three procedures, namely, FindLocalUnsafeStates,

RemoveLocalDeadlocks, and EnsureClosure.

220

Thread 13.1 Distributed Add failsafe

Input: local program transitions T i
P , invariant Inv i

P , fault transitions F i, safety specifica-
tion SPEC i

bt, state space Si
P , integer N , partition function h, and Boolean bLeader i.

Output: a failsafe partition of program P.

1: cbSnt i, cbRcvd i := 0; ns i := {};
2: ms i := {σ0 | ∃σ1 ∈ S

i
P : (σ0, σ1) ∈ F

i ∧ (σ0, σ1) ∈ SPEC i
bt};

3: ms i := FindLocalUnsafeStates(Si
P ,ms i, F i);

4: BlkReceive (Trm dtct); {←−}
5: cbSnt i, cbRcvd i := 0;
6: mt i := {(σ0, σ1) | σ1 ∈ (ms i ∪ ns i) ∨ (σ0, σ1) ∈ SPEC i

bt};
7: Inv i

P := Inv i
P −ms i; T i

P := T i
P −mt i;

8: Inv i
P ′ , T i

P ′ := RemoveLocalDeadlocks(Inv i
P , T

i
P);

9: BlkReceive (Trm dtct); {←−}
10: if (Inv i

P ′ 6= {}) then
11: TP ′ := ∪N−1

i=0 T
i
P ′ ;

12: InvP ′ := ∪N−1
i=0 Inv i

P ′ ;
13: return TP ′ , InvP ′ ;
14: else
15: if (bLeader i) then
16: Send((i+ 1) mod N , Empt inv(0));
17: end if
18: end if

Assumption 13.2.1 Throughout this chapter, we assume that procedure invocations are

atomic.

We now describe our algorithm in detail. First, the thread Distributed Add failsafe finds

the set ms i of states from where a single fault transition violates the safety (Line 2). Next,

we invoke the procedure FindLocalUnsafeStates where we find the set of states from where

faults alone may violate the safety (Line 3). We find this set by calculating the smallest

fixpoint of backward reachable states, given the initial set ms i (see Procedure 13.2). In this

calculation, if we find a fault transition, say (σ0, σ1), where σ1 ∈ ms
i, but σ0 resides in a

machine other than i (i.e., h(σ0) 6= i), we send a New ms message to process h(σ0) indicating

that σ0 is a state from where faults alone may violate the safety specification.

Notation: At the receiver’s side, we denote messages by msgj(params), where msg is the

name of message, j is the sender process, and params is a list of parameters sent along with

the message. All messages (except Trm dtct) are handled in the thread MessageHandler.

At the sender’s side, we omit the sender’s subscript.

The receiver of a New ms message (cf. Lines 3-7 in Thread 13.5) adds σ0 to its local ms i

221

(Line 4) and invokes the procedure FindLocalUnsafeStates (Line 6) so that by taking σ0

into account, new states from where faults alone may violate the safety specification are

explored. The set ns i consists of states that are in msj . Notice that every time a process

sends (respectively, receives) such messages, it increments the variable cbSnt i (respectively,

cbRcvd i). We shall use these variables for termination detection as a means to synchronize

processes at certain points.

Procedure 13.2 FindLocalUnsafeStates

Input: state predicates Si,ms i and transition predicate F i.
Output: returns the set of states from where safety may be violated by faults alone.

1: while (∃σ0, σ1 : (σ1 ∈ ms
i ∧ (σ0, σ1) ∈ F

i)) do
2: if h(σ0) = i then
3: ms i := ms i ∪ {σ0};
4: else
5: Send(h(σ0), New ms(σ0, σ1)); cbSnt i := cbSnt i + 1;
6: end if
7: end while
8: return ms i;

The next phase of the algorithm is removing the states of global ms from the global

invariant. To this end, we need to have a synchronization mechanism to ensure that cal-

culation of ms i is completed for all i ∈ [0..N − 1]. In particular, we use the termination

detection technique proposed by Mattern [Mat87]. More specifically, in Line 6, the thread

Distributed Add failsafe waits to receive a Trm dtct message indicating that all processes

are finished by calculating their local ms i and all communication channels are empty. The

arrows (←−) in Thread 13.1 mark the synchronization barriers. We will describe the ter-

mination detection technique later in this subsection.

Procedure 13.3 RemoveLocalDeadlocks

Input: state predicate Inv i and transition predicate T i.
Output: returns the largest subset of Inv i such that computations of T i within that subset

are infinite.

1: while (∃σ1 ∈ Inv i
P : (∀σ2 | (∃σ0 | (σ0, σ2) ∈ T

i) : (σ1, σ2) 6∈T
i)) do

2: Inv i := Inv i − {σ1};
3: T i := EnsureClosure(T i, Inv i, σ1);
4: end while
5: return Inv i, T i;

222

Procedure 13.4 EnsureClosure

Input: state predicate Inv i, transition predicate T i, and state σ1.
Output: state predicate Inv i and transition predicate T i where Inv i is closed in T i.

1: while (∃σ0 : ((σ0, σ1) ∈ T
i ∧ h(σ0) 6= i)) do

2: Send(h(σ0), New ds(σ0, σ1));
3: cbSnt i := cbSnt i + 1;
4: T i := T i − {(σ0, σ1)};
5: end while
6: return T i − {(σ0, σ1) | σ0∈Inv i

P};

After calculating the global set ms, we remove this set from the invariant to ensure that

no computation of P ′ that starts from a state in InvP ′ violates the safety specification.

We also remove the transitions of the set mt i from T i
P , where mt i consists of transitions

whose target states are in ms i or directly violate the safety specification (Line 7). No-

tice that this removal may create deadlock states (i.e., states from where there exist no

outgoing transitions). Thus, the thread Distributed Add failsafe invokes the procedure Re-

moveLocalDeadlocks (Line 8) to remove deadlock states which is in turn calculating the

largest fixpoint of backward reachable states, given the initial set Inv i
P . In other words,

it keeps removing deadlock states until it reaches a fixpoint (see Procedure 13.3). In this

calculation, since removal of a deadlock state, say σ1, may create transitions, say (σ0, σ1),

such that (σ0, σ1) violates the closure of invariant, we invoke the procedure EnsureClosure

to ensure that no such transitions exist in the final synthesized program. Furthermore, if

we encounter a program transition, say (σ0, σ1), where σ1 is a deadlock state and σ0 resides

in a machine other than i (i.e., h(σ0) 6= i), then we send a New ds message to process h(σ0)

indicating that σ0 might be a deadlock state (Line 2 in Procedure 13.4). Upon receipt

of such a message (cf. Line 8 in Figure 13.5), the receiver removes the transition (σ0, σ1)

to maintain consistency of transitions and then invokes the procedure RemoveLocalDead-

locks (cf. Line 10 in Figure 13.5) to remove possible new deadlock states due to removal of

(σ0, σ1). Similar to the calculation of ms, our algorithm ensures completion of calculation of

the largest fixpoint InvP ′ using the same termination detection technique (Line 9 in Figure

13.1).

At this point, each process has synthesized a local set of program transitions T i
P ′ with

a local invariant Inv i
P ′ . The union of these portions is the final synthesized program, i.e.,

TP ′ = ∪N−1
i=0 T

i
P ′ and InvP ′ = ∪N−1

i=0 Inv i
P ′ . However, since invariant predicates cannot be

223

empty, if InvP ′ turns out to be equal to the empty set, the algorithm declares failure. To

test the emptiness of InvP ′ , a pre-specified leader process identified by the variable bLeader

initiates an emptiness polling of the global invariant InvP ′ as follows. For this polling (and

also termination detection), we consider a unidirectional virtual ring which connects every

machine i to its successor machine (i+1) mod N . Note that this virtual ring is independent

of the fully connected topology of the network. Now, if the local invariant of the leader is

equal to the empty set then it sends an Empt inv(0) message to its first neighbor on the

virtual ring (process (i+ 1) mod N) indicating that its own local invariant is equal to the

empty set (cf. Lines 15-17 in Thread 13.1). If the local invariant of the ((i+ 1) mod N)th

process is equal to the empty set as well, it increments the value of k (the integer received

along with the message Empt inv) by one and sends the same message to the next process

on the ring (cf. Line 14 in Figure 13.5). Otherwise, it does not change the value of k and

sends an Empt inv(k) message to the next process (Line 18). Upon the completion of one

round of sending the Empt inv messages, the leader finally finds out whether the global

invariant InvP ′ is equal to the empty set or not (Lines 22-28). If the global invariant InvP ′

is indeed equal to the empty set then the leader declares failure (Line 22). Otherwise, it

calculates and returns P ′ and InvP ′ (Line 25). Notice that Lines 11-13 in Thread 13.1 and

25 and in thread 13.5 respectively describes that the output of the distributed algorithm

is indeed a program which is the union of all local sets of transitions and local invariants.

Termination detection

In order to detect the termination of the fixpoint calculations, we use a virtual ring-based

algorithm inspired by Mattern [Mat87]. According to the general definition, global termina-

tion is reached when all local computations are complete (i.e., each machine i has calculated

a local fixpoint) and all communication channels are empty (i.e., all sent transitions have

been received). The core of the termination detection algorithm is as follows. Every time

the leader process finishes its local fixpoint calculations, it checks whether global termi-

nation has been reached by generating two successive waves of Report rcv (respectively,

Report snd) messages on the virtual ring to collect the number of messages received (re-

spectively, sent) by all machines. A message Report rcvj(k) (respectively, Report sndj(k))

received by machine i indicates that k messages have been received (respectively, sent) by

the machines from the leader up to j = (i − 1) mod N . Each machine i counts the mes-

sages it has received and sent using two integer variables cbRcvd i and cbSnt i, and adds

224

Thread 13.5 MessageHandler (part 1)

1: msg := Receive();
2: Switch msg is
3: Case New msj(σ0, σ1):
4: msi := msi ∪ {σ0}; nsi := nsi ∪ {σ1};
5: cbRcvd i := cbRcvd i + 1;
6: msi := FindLocalUnsafeStates(Si

P ,msi, F i);
7: EndCase
8: Case New dsj(σ0, σ1):
9: T i

P := T i
P − {(σ0, σ1)}; cbRcvd i := cbRcvd i + 1;

10: Inv i
P′ , T i

P′ := RemoveLocalDeadlocks(Inv i
P , T

i
P);

11: EndCase
12: Case Empt invj(k):
13: if (¬bLeader ∧ Inv i

P = {}) then
14: Send((i+ 1) mod N , Empt inv(k + 1));
15: return {};
16: else
17: if (¬bLeader ∧ Inv i

P 6= {}) then
18: Send((i+ 1) mod N, Empt inv(k));
19: return T i

P′ , Inv i
P′ ;

20: else
21: if (bLeader ∧ (k = N − 1)) then
22: declare no failsafe program P ′ exists;
23: exit();
24: else
25: return TP′ := ∪N−1

i=0
T i
P′ , InvP′ := ∪N−1

i=0
Inv i

P′ ;
26: end if
27: end if
28: end if
29: EndCase
30: Case Report rcvj(k):
31: if (¬bLeader i) then
32: Send((i+ 1) mod N , Report rcv(k + cbRcvd i));
33: else
34: nbTotal := k;
35: Send((i+ 1) mod N , Report snd(cbSnt)i);
36: end if
37: EndCase
38: Case Report sndj(k):
39: if (¬bLeader i) then
40: Send((i+ 1) mod N , Report snd(k + cbSnt i));
41: else
42: if (nbTotal = k) then
43: Send([(i+ 1) mod N..(i+N − 1) mod N], Trm dtct);
44: end if
45: end if
46: EndCase

their values to the numbers carried by Report rcv and Report snd messages (Lines 32, 35,

and 40). Upon receipt of the Report sndj(k) message ending the second wave, the leader

225

Thread 13.6 MessageHandler (part 2)

47: Case New fs(σ0):
48: Si

1
:= Si

1
− {σ0};

49: cbRcvd i := cbRcvd i + 1;
50: Si

1
:=ConstructLocalFaultSpan(Si

1
, Si

2
− Si

1
, F i);

51: EndCase
52: Case Search pathj(X):
53: ri := {}; cbRcvd i := cbRcvd i + 1;
54: for each σ0 ∈ X do
55: if (∃σ1 : (Rank(σ1) 6=∞)) ∧ ((σ0, σ1) 6∈ mt i) then
56: ri := ri ∪ {(σ0, σ1,Rank(σ1) + 1)};
57: end if
58: end for
59: Send(j, New path(ri)); cbSnt i := cbSnt i + 1;
60: EndCase
61: Case New pathj(r

i):
62: qi := {};
63: cbRcvd i := cbRcvd i + 1;
64: for each(σ0, σ1, a) s.t. ((σ0, σ1, a) ∈ r

i ∧ σ0 ∈ (Si
2
− Si

1
)) do

65: if (σ0, σ1) 6∈ T
i
P then

66: T i
P := T i

P ∪ (σ0, σ1); q
i := qi ∪ (σ0, σ1);

67: Rank(σ0) := a;
68: Si

1
, Si

2
:= Si

1
∪ {σ0}, S

i
2
− {σ0};

69: T i
1
, T i

1
:= ConstructLocalRecoveryPaths(Inv i

1
, Si

2
, T i

1
,mt i);

70: Send(j, Confirm trns(qi)); cbSnt i := cbSnt i + 1;
71: end if
72: end for
73: EndCase
74: Case Confirm trnsj(q

i):
75: T i

P := T i
P ∪ q

i;
76: cbRcvd i := cbRcvd i + 1;
77: Send(j, Commit);
78: cbSnt i := cbSnt i + 1;
79: EndCase
80: Case Commitj :
81: cbRcvd i := cbRcvd i + 1;
82: Wait to receive Commit message from all providers;
83: Send(i+ 1 mod N , Token);
84: cbSnt i := cbSnt i + 1;
85: EndCase
86: Case Tokenj :
87: cbRcvd i := cbRcvd i + 1;
88: Send([(i+ 1) mod N..(i+N − 1) mod N], Search path(Si

2
− Si

1
));

89: cbSnt i := cbSnt i + 1;
90: EndCase
91: EndSwitch

machine checks whether the total number k of messages sent is equal to the total num-

ber nbTotal of messages received (the result of the Report rcv wave). If this is the case,

it informs the other machines that termination has been reached, by sending a broadcast

226

Trm dtct message. Otherwise, the leader concludes that termination has not been reached

yet and will generate a new termination detection wave later (Line 43).

Theorem 13.2.2 The algorithm Distributed Add failsafe is sound and complete.

Proof. Since the output of our algorithm is identical to the output of the centralized algo-

rithm by Kulkarni and Arora [KA00], the proof of soundness and completeness immediately

follows.

Performance of parallelized addition of failsafe

Distributing the synthesis algorithm is aimed at reducing the space complexity and time

complexity. Of these, similar to the goals for distributed model checking, reducing the

space complexity is a higher priority. We expect that our approach would assist in this

case. In particular, if N machines are used to perform synthesis then each of them is

expected to have (1/N)th number of states and at most (2/N)th number of transitions (be-

cause a transition may be stored in up to two machines). Regarding time complexity, in

each phase, a machine performs some local computation that results a set of queries (e.g.,

New ms, New ds, etc.) for other machines. Now, consider the role of the two threads Dis-

tributed Add failsafe and MessageHandler. The thread MessageHandler provides a new list of

tasks (received from other machines) that should be performed by Distributed Add failsafe.

Since Distributed Add failsafe begins with a list of tasks (based on its local states and tran-

sitions) and MessageHandler continues to provide new tasks based on requests received from

others, we expect that the list of tasks that Distributed Add failsafe needs to perform will

typically be nonempty at all times. In other words, communication cost will not be in the

critical path for the synthesis. Therefore, we expect that the distributed synthesis algorithm

will be able to provide significant benefits regarding time complexity as well.

13.3 Distributed Addition of Masking Fault-Tolerance

In order to synthesize a masking program, we should generate a program P ′ with invariant

InvP ′ and fault-span SP ′ , such that P ′ never violates its safety specification and if faults per-

turb the state of P ′ to a state in SP ′ , it recovers to InvP ′ within a finite number of recovery

steps. Similar to the distributed algorithm for adding failsafe fault-tolerance, our algo-

rithm for adding masking fault-tolerance consists of two threads Distributed Add masking

227

(cf. Thread 13.7) and MessageHandler (cf. Thread 13.5).

Our first estimate of a masking program is a failsafe program. Hence, we let our first

estimate Inv i
1 be the local invariant of its failsafe fault-tolerant program (cf. Lines 1-2 in

Figure 13.7). Likewise, we estimate the local fault-span to be Si
1 where Si

1 includes all the

states in the local state space minus the states from where safety of P ′ may be violated

(Lines 3-4). Next, we compute the local set of transitions T i
1, local fault-span Si

1, and local

invariant Inv i
1 in a loop (Lines 6-25). This loop consists of three main steps for constructing

recovery paths, calculating fault-span, and calculating invariant as follows:

1. In order to compute the local set of transitions T i
1, we construct recovery paths from

each state in the fault-span to a state in the invariant. To this end, we identify two

types of recovery paths: (1) recovery paths consist of only local program transitions,

and (2) recovery paths consist of both local program transitions as well as cross

transitions. We note that since these transitions originate outside the invariant, they

do not violate the second constraint of the problem statement (i.e., in the absence of

faults, no new computation is introduced to fault-tolerant program).

Recovery paths through local transitions. The thread Distributed Add masking

invokes the procedure ConstructLocalRecoveryPaths (Line 9), which identifies layers of

states in the local fault-span corresponding to the number of steps of recovery paths,

in a loop (Lines 4-10 in Procedure 13.8). In the beginning of the loop it assigns a

rank to each state which is equal to the number of recovery steps from that state to

a state in the local invariant. In this setting, the rank of states in the local invariant

are zero. In the first iteration of the loop, we identify the set of states from where

one-step recovery to the local invariant is possible while maintaining the safety, i.e.,

Xi
1 = {σ0 | σ0 ∈ (Si

1 − Inv i
1) ∧ ∃σ1 ∈ Inv i

1 : (σ0, σ1) 6∈ mt i}. Thus, we add the

transitions, say (σ0, σ1) where σ0 ∈ X
i
1 and σ1 ∈ Inv i

P , to the set of local program

transitions. In the second iteration of the loop, we identify the set of states from where

two-step recovery is possible. Indeed, this is equivalent to identifying the set of states

from where one-step recovery is possible from Si
1−X

i
1 to the set Xi

1∪Inv i
1. Continuing

thus inductively, we identify layers of states from where multi-step recovery is possible.

Finally, we reach a point where we identify the set Xi
1 of states from where recovery

to the local invariant using local transitions is possible and the set Si
1 −X

i
1 of states

228

Thread 13.7 Distributed Add masking

Input: local program transitions T i
P , invariant Inv i

P , fault transitions F i, safety specifica-
tion SPEC i

bt, state space Si
P , integer N , partition function h, and Boolean bLeader i.

Output: a masking partition of program P.

1: Compute ms i and mt i as in Distributed Add failsafe;
2: Let Inv i

1 be the local invariant of the failsafe version of P;
3: Si

1 := Si
P −ms i;

4: ∀σ ∈ (Si
1 − Inv i

1) : Rank(σ) :=∞;
5: T i

1 := T i
P ;

6: repeat
7: Si

2, Inv i
2 := Si

1, Inv i
1;

8: cbSnt i, cbRcvd i := 0;
9: T i

1, S
1
1 := ConstructLocalRecoveryPaths(Inv i

1, S
1
1 , T

i
P ,mt i);

10: BlkReceive (Trm dtct); {←−}
11: cbSnt i, cbRcvd i := 0;
12: if (bLeader) then
13: Send([(i+ 1) mod N..(i+N − 1) mod N], Search path(Si

1 − S
i
1));

14: cbSnt i := cbSnt i + 1;
15: end if
16: BlkReceive (Trm dtct); {←−}
17: cbSnt i, cbRcvd i := 0;
18: Si

1 := ConstructLocalFaultSpan(Si
1, S

i
2 − S

i
1, F

i);
19: BlkReceive (Trm dtct); {←−}
20: cbSnt i, cbRcvd i := 0;
21: Inv i

1 := RemoveLocalDeadlocks(Inv i
1 ∩ S

i
1, T

i
1);

22: BlkReceive (Trm dtct); {←−}
23: if (Inv i

1 ={} ∨ Si
1 ={}) then break;

24: end if
25: until (Si

1 = Si
2 ∧ Inv i

1 = Inv i
2)

26: BlkReceive (Trm dtct); {←−}
27: Si

P ′ , Inv i
P ′ := Si

1, Inv i
1;

28: if (bLeader i ∧ (Inv i
P ′ ={})) then

29: Send((i+ 1) mod N , Empt inv(0));
30: end if
31: if (bLeader i ∧ (Si

P ′ ={})) then
32: Send((i+ 1) mod N , Empt fs(0));
33: end if

from where such recovery is not possible.

Recovery paths through cross transitions. After constructing local recovery

paths, the leader process initiates a wave of communication among all processes to

identify the set of states from where local recovery is not possible, but recovery through

cross transitions is possible. More specifically, the leader process sends a Search path

229

Procedure 13.8 ConstructLocalRecoveryPaths

Input: state predicates Inv i, Si and transition predicates T i,mt i.
Output: returns transition predicate containing recovery transitions

1: Xi
1 := Inv i

P ;
2: j = 0;
3: Xi

2 := {};
4: repeat
5: ∀σ ∈ (Xi

1 −X
i
2) : Rank(σ) := j;

6: Xi
2 := Xi

1; j := j + 1;
7: ri := {(σ0, σ1) | σ0 ∈ (Si

1 −X
i
1) ∧ σ1 ∈ X

i
1} −mt i;

8: T i := T i | Inv i ∪ ri;
9: Xi

1 := Xi
1 ∪ {σ0 | ∃σ1 : (σ0, σ1) ∈ ri};

10: until (Xi
1 = Xi

2)
11: return T i, Xi;

message to all other processes (Line 13 in Thread 13.7). Let us call the process which

sends a Search path the requester process. Upon receipt of this message along with

the set X of states from where local recovery is not possible (Line 52 in Thread 13.5),

each process offers a recovery cross transition, say (σ0, σ1), provided (σ0, σ1) 6∈ mt i and

there exists a recovery path from σ1 (i.e., Rank(σ1) 6=∞), for each state σ0 ∈ X (Line

56). Let us call such processes the providers. Each provider sends a New path message

carrying the set ri of cross recovery transitions along with the rank of state σ0 to the

requester (Line 59). Obviously, if the requester accepts the provider’s transitions, the

rank of σ0 will be Rank(σ1) + 1.

Upon receipt of this message (Line 61 in Thread 13.5), the requester adds the new

recovery cross transitions, say (σ0, σ1), to its set of local program transitions (Line 66)

and sets the rank of source states σ0 (Line 67). These states should be added to the

local fault-span (Line 68). Next, it invokes the procedure ConstructLocalRecoveryPaths

to add new possible local recovery transitions by taking the newly added recovery cross

transitions into account (Line 69). Then, it sends a Confirm trns message to the

providers of the cross transitions so that the set of cross transitions of providers and

the requester processes are consistent (Line 70). Obviously, if the requester receives

other offers for a cross transition originated at σ0, say (σ0, σ1) with rank a, where the

current rank of σ0 is greater than a, then the requester can replace its current cross

transition with (σ0, σ1). However, we do not illustrate such implementation details in

230

Procedure 13.9 ConstructLocalFaultSpan

Input: state predicates Si
1, S

i
2 and transition predicatef F i.

Output: returns the largest fault-span closed in F i

1: while (∃σ0, σ1 : ((σ0 ∈ S
i
1) ∧ (σ1 ∈ S

i
2) ∧ (σ0, σ1) ∈ F

i)) do
2: Si

1 := Si
1 − {σ0};

3: end while
4: for each σ1 ∈ S

i
2 do

5: if (∃σ0 : ((σ0, σ1) ∈ F
i ∧ h(σ0) 6= i)) then

6: Send(h(σ0), New fs(σ0));
7: cbSnt i := cbSnt i + 1;
8: end if
9: end for

10: return Si
1;

the algorithms.

Finally, upon the receipt of a Confirm trns message, the providers add the set qi of

cross transitions (selected by the requester) to their set of local program transitions as

well (Line 74). At this point, providers send a Commit message to the requester (Line

77) indicating that the changes are committed. Upon receipt of Commit message from

all providers (Lines 81-82), the requester sends a Token message to the next process

on the virtual ring (Line 83) so that it starts identifying the cross recovery transitions

in the same fashion (Line 88). We continue doing this until no cross transition is

added across the network.

Notice that in both types of recovery paths, we do not introduce cycles to the fault-

span, as we do not add transitions from a state with a lower rank to a state with

higher rank. Hence, after occurrence of faults, recovery within a finite number of

steps is guaranteed. We synchronize the completion of construction of recovery paths

in Line 10.

2. Since there may exist states from where recovery to the invariant is not possible, we

need to recompute the local fault-span by removing the states from where closure of

fault-span is violated through fault transitions. To this end, we invoke the procedure

ConstructFaultspan which is a largest fixpoint calculation (Line 18 in Thread 13.7)

to calculate the largest fault-span which is closed in P[]f . Since this removal may

cause other states in the local fault-span of other processes to violate the closure of

231

the global fault-span, we send a New fs message to such processes to indicate this

fact (Line 6 in Procedure 13.9). Note that in order to synchronize the completion of

calculation of local fault-spans, here as well, we need a barrier synchronization (Line

19).

3. Due to the removal of some states in step 2, we recompute the local invariant by

invoking the procedure RemoveLocalDeadlocks. Notice that since Inv i
1 must be a

subset of Si
1, this invocation is parameterized by Inv i

1 ∩ Si
1 (Line 21). At this point,

if both Inv i
1 and Si

1 are nonempty, we jump back to step 1 and we keep repeating the

loop until a fixpoint is reached, i.e., (Si
1 = Si

2 ∧ Inv i
1 = Inv i

2).

Upon the termination of the repeat-until loop, recovery without violation of the safety

specification from Si
1 to Inv i

1 is provided. At this point, if there exist processes i and j such

that Inv i
P ′ and Sj

P ′ are both nonempty then we have a solution to the synthesis problem.

Thus, similar to addition of failsafe, we run an emptiness poll among the processes (Lines 28-

33). To this end, we send a Empt fs(0), which is similar to Empt inv, except the message

handler tests the emptiness of the local fault-span rather than local invariant. We skip

including this message in Thread 13.5.

We note that, in this chapter, we have modified the recovery mechanism of the central-

ized algorithm in [KA00]. This is due to the fact that in that algorithm the authors add

all possible transitions, i.e., the set T 1|Inv1 ∪ {(σ0, σ1) | σ0 ∈ S1 − Inv1 ∧ σ1 ∈ S1}, and

then remove non-progress cycles. However, since the size of this set in worst case is in the

square order of the size of the state space, it implies that in worst case, each machine i

must store a set whose size is in the square order of the state space which obviously does

not make sense. Hence, instead of adding all possible transitions and removing cycles, we

construct recovery paths in a more space-efficient way in a stepwise manner using the notion

of layered fault-span (cf. the Procedure ConstructLocalRecoveryPaths).

Theorem 13.3.1 The algorithm Distributed Add masking is sound.

232

Chapter 14

Parallelizing Symbolic Deadlock

Resolution

In Chapter 11, we observed that depending upon the structure of the given distributed

intolerant program, performance of synthesis may suffer from several major complexity

obstacles, namely generation of fault-span, resolution of deadlock states, cycle detection,

and addition of recovery. Thus, more efficient techniques are still needed to overcome the

aforementioned bottlenecks. In this chapter, we focus on parallelizing deadlock resolution in

symbolic synthesis of fault-tolerant distributed programs. Deadlock resolution is especially

crucial in the context of dependable systems, as it guarantees that the synthesized fault-

tolerant program meets its liveness requirements even in the presence of faults.

This chapter is organized as follows. First, in Section 14.1, we describe the problem in

detail. Then, in Section 14.2, we present our parallel algorithm for deadlock resolution.

14.1 The Deadlock Resolution Problem

We now describe the issue of deadlock resolution using the Byzantine agreement (denoted

BA) problem [LSP82]. We omit other steps involved in synthesizing a fault-tolerant version

of BA (e.g., fault-span generation, preserving safety, and reconstructing invariant predicate),

as they are not in the scope of this paper. BA consists of a general, say g, and three (or

more) non-general processes: j, k, and l. Each process of BA maintains a decision d; for

the general, the decision can be either 0 or 1, and for the non-general processes, the decision

can be 0, 1, or ⊥, where the value ⊥ denotes that the corresponding process has not yet

233

received the decision from the general. Each non-general process also maintains a Boolean

variable f that denotes whether that process has finalized its decision. For each process, a

Boolean variable b shows whether or not the process is Byzantine. In the fault-intolerant

version of this program, each non-general process copies the decision from the general and

then finalizes (outputs) that decision, provided it is non-Byzantine. A fault transition can

cause a process to become Byzantine, if no other process is initially Byzantine. Also, a

fault can change the d and f values of a Byzantine process. Let the sequence 〈x1, x2, x3, x4〉

denote the set of states with respect to decision value of processes, i.e., x1 = d.g, x2 = d.j,

x3 = d.k, and x4 = d.l. In this notation, an overlined (respectively, underlined) d-value

shows that the corresponding process has finalized its decision (respectively, is Byzantine).

Now consider the following scenarios:

• Starting from a state σ0 in 〈1,⊥,⊥, 1〉, where the general and process l agree on

decision 1 and processes j and k are undecided, the program may reach the following

sequence of states due to occurrence of faults (denoted 99K) and execution of program

actions (denoted →): 〈1,⊥,⊥, 1〉 99K 〈1,⊥,⊥, 1〉 99K 〈0,⊥,⊥, 1〉 → 〈0, 0,⊥, 1〉 →

〈0, 0, 0, 1〉. Let σ1 be a state in 〈0, 0, 0, 1〉, where the Byzantine general g and non-

general processes j and k agree on decision 0, but process l has decided on 1. Now,

consider the tasks for a synthesis algorithm in dealing with state σ1. Note that

no process can determine whether other processes have finalized their decision due

to the issue of distribution. Thus, the synthesis algorithm rules out transitions that

originate from σ1 and j finalizes its decision, as it would violate safety (i.e., agreement).

Likewise, it cannot allow k and l to finalize either. We call states such as σ1 a deadlock

state, since the program cannot proceed its execution. A synthesis algorithm can

resolve this deadlock state by simply adding a recovery transition that changes the

decision of l to 0 which results in reaching a legitimate state without violating safety.

After adding such transitions, in the next iteration of the synthesis algorithm, we can

allow j and k to finalize their decision after concluding that 〈0, 0, 0, 1〉 (i.e., where l is

not Byzantine and has finalized) is not reached.

• Now, consider the scenario where σ0 reaches the following sequence of states:

〈1,⊥,⊥, 1〉 → 〈1,⊥,⊥, 1〉 99K 〈1,⊥,⊥, 1〉 99K 〈0,⊥,⊥, 1〉 → 〈0, 0,⊥, 1〉 → 〈0, 0, 0, 1〉.

Let σ2 be a state in 〈0, 0, 0, 1〉, where non-general processes j and k agree with the

234

Byzantine general on decision 0, but process l has finalized its decision on 1. Obvi-

ously, σ2 is also a deadlock state. However, unlike σ1 in the previous scenario, since

process l has finalized its decision, we cannot resolve σ2 by adding safe recovery. One

approach to deal with such deadlock states is to simply eliminate them (i.e., making

them unreachable). However, since we require that during elimination of a dead-

lock state, no new deadlock states must be created, a respective deadlock resolution

algorithm involves many backtracking steps. In particular, in order to resolve σ2,

the algorithm needs to explore the reachability graph and remove the transition that

allows a process to finalize its decision while there exist two undecided processes.

In Chapter 11, we observed that in order to automatically synthesize a fault-tolerant version

of BA identical to the one by Lamport, Shostak, and Pease [LSP82], 96% of the total

synthesis time is spent to resolve deadlock states.

With this motivation, in this chapter, we introduce a parallel BDD-based algorithm for

resolving deadlock states in distributed programs that are subject to a set of faults. We

specifically design our algorithm for multiprocessor architectures with shared memory (e.g.,

multi-core processors) due to their availability in virtually any organization. Intuitively, our

algorithm partitions the transition relation of the given intolerant program across multiple

threads where each thread works on a different processor core. The algorithm makes no

assumptions about the structure of a given program (e.g., set of transitions, number of

distributed processes, or its reachable states) in order to resolve deadlock states. Thus, we

expect the algorithm to be generally applicable to a wide variety of distributed programs.

Our parallel algorithm tends to require more memory than its sequential version. However,

based on our experimental results, unlike model checking, BDD-based synthesis algorithms

run out of time before they run out of memory. Hence, the increased space complexity is

unlikely to be a bottleneck during synthesis.

We note that symbolic algorithms are known to be notoriously hard to parallelize due

to the interdependence among data structures involved in such algorithms. As a matter

of fact, while parallel implementations of symbolic model checkers are often successful in

increasing available memory, the speedup gained from such techniques is limited. This is

largely due to the irregular nature of the state-space generation task and the resulting high

parallel overheads such as load imbalance and scheduling of small computations.

235

14.2 Parallel Symbolic Resolution of Deadlock States

In this section, we present our parallel BDD-based algorithm for resolving deadlock states

reachable in the presence of faults in a distributed program. A major barrier in such

parallelization is that BDD manipulation packages are not reentrant due to data structures

shared across several BDDs (e.g., a hash table that stores all BDD nodes). There are two

approaches to deal with this obstacle. The first approach is to modify a BDD package

to make it reentrant. The second approach is to utilize multiple instances of the BDD

package that do not share memory. With this approach, each thread works on its own

copy of related BDDs. However, changes made by one thread would not be immediately

available to other threads. Hence, threads may change the BDDs (e.g., the program being

synthesized) inconsistently. Therefore, we need to merge the results and remove/manage

the inconsistencies. In this work, we consider the second approach.

Algorithm sketch. Intuitively, our algorithm works as follows. During deadlock resolu-

tion, a master thread spawns several worker threads each running on a different processor

core in parallel with an instance of its own BDD package. The instance of the BDD package

assigned to each worker thread is initialized using BDDs for program transitions, invariant

predicate, fault-span, and fault transitions. The master thread partitions the set of dead-

lock states and provides each worker thread with one such partition. Subsequently, worker

threads start resolving their assigned set of deadlock states in parallel by either (1) adding

safe recovery, or (2) eliminating the ones (i.e., making them unreachable) from where safe

recovery is not possible. Upon completion, the master thread merges the results returned

by each worker thread and resolves inconsistencies.

14.2.1 Parallel Addition of Safe Recovery

Given a program P, faults F , fault-span SP , invariant predicate InvP , safety specification

SPEC bt, and partition predicates prt1 . . . prtn, where n ≥ 1 is the number of worker threads

to be spawned, our goal is to synthesize a transition predicate TP ′ such that SP contains no

deadlock states, i.e., SP∧¬Guard(TP ′) = false. Before we describe our parallel algorithm for

resolving deadlock states through addition of recovery actions, notice that such a recovery

mechanism should not violate the safety specification. Thus, we first identify the state

236

Algorithm 14.1 ResolveDeadlockStates

Input: program transition predicate TP , faults F , invariant InvP , fault span SP , safety
specification SPEC bt, and partition predicates prt1..prtn, where n is the number of
worker threads.

Output: program transition predicate TP ′ and the predicate fte of states failed to eliminate.

1: Let rfo be the state predicate reachable by faults only from the invariant predicate;
2: Let ms be the state predicate from where faults alone can reach a state where Guard(F∧

SPEC bt) is true.
3: mt := SPEC bt ∨ 〈ms〉′;
4: ds := SP ∧ ¬Guard(TP);

{// Resolving deadlock states by adding safe recovery}
5: for i := 1 to n do
6: rt i := SpawnThread AddRecovery(ds ∧ prt i, InvP , mt);
7: end for
8: ThreadJoin(1..n);

9: TP := TP ∨
∨n

i=1 rt i;
10: vds, fte := false;
11: ds := SP ∧ ¬Guard(TP);

{// Eliminating deadlock states from where safe recovery is not possible}
12: for i := 1 to n do
13: rpi, vds i, ftei := SpawnThread Eliminate(ds ∧ prt i, TP , InvP , F, SP , vds, rfo, fte);
14: end for
15: ThreadJoin(1..n);

{// Merging results from worker threads}
16: TP ′ := Group(

∧n
i=1 rpi);

17: fte :=
∨n

i=1 ftei;
18: vds :=

∨n
i=1 vds i;

19: nds := ((SP ∧ ¬InvP) ∧ ¬Guard(TP ′)) ∧ ¬((SP ∧ ¬InvP) ∧ ¬Guard(TP));
20: TP ′ := TP ′ ∨Group(TP ∧ nds);
21: TP ′ := TP ′ ∨Group(TP ∧ 〈fte ∧ rfo〉′);
22: return TP ′ , fte;

predicate ms (Line 2 of ResolveDeadlockStates in Algorithm 14.1) from where faults alone

can reach a state where Guard(F ∧SPEC bt) is true (i.e., faults alone can violate the safety).

Now, let mt include the transitions in SPEC bt as well as transitions in TP that end in ms.

Observe that in order to ensure safety, TP ′ (including its recovery actions) must be disjoint

from mt .

After identifying the set ds of deadlock states in SP (Line 4), we partition ds using

237

the partition predicates such that
∨n

i=1(prt i ∧ ds) = ds. To efficiently partition deadlock

states between threads, one needs to design a method such that (1) deadlock states are

evenly distributed among worker threads, and (2) states considered by different threads

for eliminating have a small overlap during backtracking. Regarding the first constraint,

we can partition deadlock states based on values of some variable and evaluate the size of

corresponding BDDs by the number of minterms that satisfy the corresponding formula.

Regarding the second constraint, we expect that the overhead for such a split is as high

as it requires dedicated analysis of program transitions. Hence, instead of satisfying this

constraint, we add synchronization between threads. Thus, we design partition predicates

based value of variables. For example, in the case of Byzantine agreement program with

four worker threads, we let prt1 = (d.j = 0) ∧ (d.k = 0), prt2 = (d.j = 0) ∧ (d.k 6= 0),

prt3 = (d.j 6= 0)∧(d.k = 0), and prt4 = (d.j 6= 0)∧(d.k 6= 0). Next, we assign each partition

prt i∧ds of deadlock states to a worker thread to identify safe recovery paths from prt i∧ds to

the invariant predicate in a layered fashion (Lines 5-8 in Algorithm ResolveDeadlockStates).

Each worker thread for adding recovery works as follows (cf. AddRecovery in Thread

14.2). Let the first layer, lyr , be the invariant predicate S (Line 1). We now construct the

recovery transition predicate rt by (1) including transitions that originate from the given

set of deadlock states ds and end in lyr (Line 3), and (2) excluding transitions that can

lead the program to a state where safety may be violated (Line 4). We add the resulting

recovery transition predicate to rec (Line 5). Now, for the next iteration, we let lyr be the

state predicate from where one-step safe recovery is possible (Line 6). We continue adding

recovery transition predicates until no such transition predicate is added. Notice that our

strategy on adding recovery paths guarantees that no cycles are introduced to the fault-

span. Hence, any computation that takes a recovery path reaches the invariant predicate

in a finite number of steps.

Once all worker threads complete there job (Line 8 in Algorithm 14.1), the master

thread adds all the recovery transitions returned by worker threads to the program’s tran-

sition predicate (Line 9 in Algorithm ResolveDeadlockStates). At this point, the remaining

deadlock states (Line 11) have to be made unreachable, as it is not possible to add safe

recovery from them to the invariant predicate.

238

Thread 14.2 AddRecovery

Input: deadlock states ds, invariant InvP , and transition predicate mt .
Output: recovery transition predicate rec.

1: lyr , rec := InvP , false;
2: repeat
3: rt := Group(ds ∧ 〈lyr〉′);
4: rt := rt ∧ ¬Group(rt ∧mt);
5: rec := rec ∨ rt ;
6: lyr := Guard(ds ∧ rt)
7: until (lyr = false);
8: return rec;

Thread 14.3 Eliminate

Input: deadlock states ds, program TP , invariant InvP , fault transitions F , fault span SP ,
visited deadlock states vds, states predicate reachable by faults only rfo, predicate fte
failed to eliminate.

Output: revised program transition predicate TP , visited deadlock states vds, predicate
fte failed to eliminate.

1: wait(mutex);
2: ds := ds ∧ ¬vds;
3: vds := vds ∨ ds;
4: signal (mutex);
5: if (ds = false) then
6: return TP ;
7: end if

8: old := TP ;
9: tmp := (SP ∧ ¬InvP) ∧ TP ∧ 〈ds〉

′;
10: TP := TP ∧ ¬Group(tmp);
11: fs := Guard(SP ∧ ¬InvP ∧ F ∧ 〈ds〉

′) ∧ ¬rfo;
12: TP , vds, fte := Eliminate(fs, TP , InvP , F, SP , vds, rfo, fte);
13: nds := Guard(SP ∧ ¬InvP ∧Group(tmp) ∧ ¬Guard(TP));
14: TP := TP ∨ (Group(tmp) ∧ nds);
15: nds := nds ∧Guard(tmp);
16: fte := fte ∨ ¬〈old ∧ ¬TP ∧ SP ∧ 〈ds〉

′〉′′;
17: TP , vds, fte := Eliminate(nds ∧ ¬InvP , TP , InvP , F, SP , vds, rfo, fte);
18: return TP , vds, fte;

Example. As mentioned in the introduction, one type of deadlock states in BA is of the

form 〈0, 0, 0, 1〉, where the Byzantine general g and non-general processes j and k agree on

decision 0, but process l has decided on 1. The algorithm ResolveDeadlockStates resolves

such deadlock states and their symmetrical states by adding the following recovery actions

239

to process l (and by symmetry to processes j and k) of BA:

BA3l :: d.j = 0 ∧ d.k = 0 ∧ d.l = 1 ∧ f.l = 0 −→ d.l, f.l := 0, 0|1

BA4l :: d.j = 1 ∧ d.k = 1 ∧ d.l = 0 ∧ f.l = 0 −→ d.l, f.l := 1, 0|1

14.2.2 Parallel State Elimination

Let ds be a deadlock state predicate from where recovery to the invariant predicate cannot

be added. Hence, in order for P ′ (the synthesized program) to satisfy the third condition of

the synthesis problem, we need to ensure that ds is eliminated from the set of states that

P ′ can reach in the presence of faults. Similar to addition of recovery paths, the Algorithm

ResolveDeadlockStates launches one worker thread per each partition of ds for elimination

(Lines 12-15).

The Thread Eliminate (cf. Thread 14.3) works as follows. We first keep track of visited

deadlock states by all worker threads (Lines 1-4) so that no thread attempts to eliminate

deadlock states that have already been considered for elimination. In particular, all threads

synchronize on the predicate vds which contains visited deadlock states by all threads (Lines

1-4). Next, we remove all incoming transitions to ds (Lines 8-10). Then, since a program

does not have control over the occurrence of faults, we eliminate states that can reach ds via

a fault transition (Lines 11-12). Now, if removal of transitions in Line 10 causes some state

predicate nds to become a deadlock state predicate (Line 13) then we add the transitions

(and the corresponding group) that begin from nds (Lines 15-17) to TP and instead, we

eliminate nds1. We keep repeating this procedure recursively until there does not exist a

state to eliminate.

Once all worker threads complete their job (Line 15 in Algorithm 14.1), the master

thread merges all the results by collecting transitions that all worker threads agree on (Line

16). Although the above algorithm is a sound building block for a sequential algorithm, it

may create inconsistencies when multiple instances of it run in parallel.

Handling Inconsistencies. Let σ1 and σ2 be two states that are considered for elim-

ination and (σ0, σ1) and (σ0, σ2) be two transitions for some σ0. A sequential algorithm

1Let TP be a transition predicate. 〈TP〉
′′ denotes the state predicate obtained by first abstracting un-

primed variables in TP and then replacing all primed variables of TP by their corresponding unprimed
variables.

240

that applies Eliminate, removes transitions (σ0, σ1) and (σ0, σ2) which causes σ0 to be a new

deadlock state (cf. Algorithm 14.1). Hence, it puts (σ0, σ1) and (σ0, σ2) (and corresponding

group predicates) back into the program being synthesized and invokes Eliminate on state

σ0. However, when multiple worker threads, say th1 and th2, run concurrently, there are

three possible scenarios that cause inconsistencies, described next.

Case 1. Consider the case where deadlock states σ1 and σ2 are in different partitions.

Hence, th1 invokes Eliminate on σ1 which in turn removes (σ0, σ1), and, th2 invokes Eliminate

on σ2 which removes (σ0, σ2) (cf. Figure 14.1.b). Thus, neither thread invokes Eliminate on

σ0, since they do not identify σ0 as a deadlock state. Subsequently, when the master thread

merges the results returned by th1 and th2 (i.e., Line 16 in Algorithm 14.1), σ0 becomes

a new deadlock state which has to be eliminated while the group predicates of transitions

(σ0, σ1) and (σ0, σ2) have been removed unnecessarily. In order to resolve this case, we

replace all outgoing transitions that start from σ0 and mark σ0 as a state that has to be

eliminated in subsequent iterations (Lines 19-20).

Case 2. Due to backtracking behavior of Eliminate, it is possible that th1 and th2 consider

common states for elimination. In particular, if th1 considers σ1 and th2 considers both σ1

and σ2 for elimination (cf. Figure 14.1.b), after merging the results, no new deadlock states

are introduced. However, (σ0, σ1) would be removed unnecessarily. In order to resolve this

case, we collect all the states that worker threads failed to eliminate (i.e., state predicate fte

in Line 17 in Algorithm 14.1) and replace all incoming transitions into those states (Line

21).

Case 3. It is also possible that th1 considers σ1 and th2 considers neither σ1 nor σ2 (cf.

Figure 14.1.c). This case occurs when th2 stops backtracking at a level higher than σ1 and σ2

in the reachability graph due to facing either Case 1 or Case 2. Thus, when the master thread

s1 s2

s0

s1 s2

s0

Before elimination After elimination

Sequential
s1 s2

s0

s1 s2

s0

s1 s2

s0

s1 s2

s0

Case 1

s1 s2

s0

s1 s2

s0

s1 s2

s0

s1 s2

s0

Case 2

Thread 1 Thread 2 Merged Fixed

s1 s2

s0

s1 s2

s0

s1 s2

s0

Case 3

(a)

(b)

(c) A state Eliminated state

To be considered for elimination

Legend
Not

Handled

Figure 14.1: Inconsistencies raised by concurrency.

241

merges the results returned by the worker threads, no new deadlock state is introduced,

but (σ0, σ1) is removed unnecessarily. While identifying this case given the structures in

Figure 14.1.c is not straightforward, one approach to resolve this inconsistency is to force

all worker threads to synchronize at each backtracking step. Since such synchronization

seems to decline the performance of the parallel algorithm, we choose not to handle this

case. Notice that removal of (σ0, σ1) does not result in synthesizing an incorrect program.

However, the program synthesized using the parallel algorithm may have less transitions

than the program synthesized by the sequential algorithm. We note that this case is not

due to our algorithm strategy, but an artifact of breadth-first-search nature of BDD-based

reachability analysis. In fact, any random state space search strategy may as well exhibit

this case.

Example. As mentioned in the introduction, another type of deadlock states in BA is of

the form 〈0, 0, 0, 1〉, where non-general processes j and k agree with the Byzantine general

on decision 0, but process l has finalized its decision on 1. Since process l has finalized

its decision, we cannot resolve such deadlock states by adding safe recovery. Thus, the

algorithm ResolveDeadlockStates has to eliminate states in 〈0, 0, 0, 1〉. More specifically, the

Thread Eliminate backtracks through the reachability graph until it removes the transi-

tion 〈1,⊥,⊥, 1〉 → 〈1,⊥,⊥, 1〉. This removal creates no new deadlock state and, hence,

Eliminate terminates successfully. Precisely, our algorithm revises action BA2l, so that no

computation of BA in the presence of faults reaches a deadlock state as follows:

BA2l :: (d.l 6= ⊥) ∧ (f.l = false) ∧ (d.j 6= ⊥ ∨ d.k 6= ⊥) −→ f.l := true

We note that in the context of of BA, inconsistency of type Case 3 does not occur. However,

Cases 1 and 2 do occur, but our algorithm fixes them. In fact, the output of our synthesis

algorithm is identical to the solution proposed by Lamport, Shostak, and Pease [LSP82].

242

Part V

Literature Survey and Conclusion

243

Chapter 15

Related Work

In this chapter, we illustrate how the contributions of this dissertation differ from exist-

ing approaches in program synthesis. Before we discuss the related work in the context of

program revision and synthesis, we note that like many other words in computer science,

the term “synthesis” is used to mean different things in different contexts. These contexts

range from code generation from (formal or informal) specification to transformation, be

it fully automated, semi-automated, or fully manual. In this dissertation, we used the

term “synthesis” in the context of program “revision”, where we focus on fully automated

transformation of one abstract program into another abstract program that meets additional

requirements (e.g., safety, timing constraints, fault-tolerance). Thus, in this chapter, we fo-

cus on related work that (1) are fully automated, (2) their output is correct-by-construction,

and (3) deal with programs represented by state-transition systems. Thus, the following

lines of research are orthogonal to our approach in this dissertation:

1. Platform and architecture dependent techniques. There exists an extensive

line of research in the systems area on fault-tolerant real-time and distributed comput-

ing. For instance, in the literature of real-time computing, most approaches address

fault-tolerance in the context of scheduling theory (e.g., [PM98, AM99a, LMM00,

AAMM00, MMG03, AMM00]). In fault-tolerant real-time scheduling, the objective

is to find the optimal schedule of a set of tasks on a set of processors dynamically,

such that the largest possible number of tasks meet their deadlines. Since time com-

plexity is a critical issue in dynamic scheduling, most of the proposed algorithms are

best-effort heuristics designed for specific platforms and special types of faults (e.g.,

244

transient, fail-stop, Byzantine, etc). We note that the output of our algorithms is

an abstract program that may be further refined into a deterministic program in a

high-level language for a specific platform and architecture.

2. Logic-based program synthesis. Deductive program synthesis methods (e.g.,

[MW80, MW92, YqRzH85, CK89]) rely on a theorem-proving approach. This ap-

proach combines techniques of unification, mathematical induction, and transforma-

tion rules within a single deductive system. However, since eductive program synthesis

methods do not observe a program as a state-transition system, they are not quite

relevant to the scope of this dissertation. Although it is unclear how one can use

theorem proving techniques in state-transition graph-based synthesis or vice versa, it

is certainly an interesting question for further investigation.

3. Manual techniques. Dijkstra [Dij90], Chandy and Misra [CM88], and Gries

[Gri81] propose a wide variety of techniques for stepwise development of correct pro-

grams. When using their methodology, a programmer begins with a specification of

the problem written in an assertion language such as predicate logic and incrementally

refines the specification into code. Such a refinement technique is intended for human

use, as it may require intuition of the programmer during the application process. In

Section 15.4, we discuss how (possibly manual) pre-synthesized program components

can be used to for adding fault-tolerance to a program.

The rest of this chapter is organized as follows. In Section 15.1, we present the re-

lated work on synthesis of programs in closed systems. Then, in Section 15.2, we present

the related work on program synthesis in open systems. Section 15.3 is dedicated to de-

scribe state-of-the-art synthesis tools. Finally, we discuss the related work on the theory of

detectors and correctors in Section 15.4.

15.1 Program Synthesis in Closed Systems

In this section, we present the related work on automated synthesis of closed systems.

Specifically, in Subsection 15.1.1, we discuss the line of research on comprehensive synthesis

of closed systems. Then, in Subsection 15.1.2, we present comparison and contrast between

our work and the related work in the area of program correction and repair.

245

15.1.1 Comprehensive Synthesis

Most existing comprehensive synthesis methods for closed systems focus on deriving the

synchronization skeleton of a program from its specification in terms of a temporal logic ex-

pressions [EC82, MW84, AAE04, Att99, AE01]. The synchronization skeleton of a program

is an abstract structure of the code of the program implementing inter-process synchroniza-

tion. Although such synthesis methods differ in the type of input specification language and

the program model that they synthesize, they are all based on a proof that the specification

is satisfiable. This makes it difficult to provide reuse during synthesizing programs. In other

words, any change in the specification requires the synthesis to be restarted from scratch.

To the contrary, in our approach, since the input to our algorithms is an existing program,

our methods have the potential to reuse the structure of the program incrementally add

new properties.

The seminal work in this area is due to Emerson and Clarke [EC82], where they propose

a tableau-based method for deriving a finite state model from a Ctl formula. Specifically,

their synthesis method builds a tableau, which contains all potential models. Thus, if a

formula f is satisfiable, then a model of f exists in the tableau. And, if there indeed

exists a model, then their method extracts a synchronization skeleton of the model from

the tableau. Briefly, a tableau for a Ctl formula is a finite directed AND/OR graph. This

graph is built systematically in two steps: (1) setting the formula as the root of the tableau,

and (2) continuing the reduction of unreduced AND-nodes and OR-nodes, while there exists

an unreduced node (i.e., a node without successor).

Manna and Wolper [MW84] present a similar method for synthesizing distributed com-

municating processes from a formula in Propositional Linear Temporal Logic. The output

model of [MW84] stipulates that all the inter-process communications (through message

passing) take place through a synchronizer process.

Attie and Emerson study the problem of synthesizing concurrent programs from Ctl

specifications in a line of papers. Specifically, in [AE98], they address the state explosion

problem using the behavioral similarity of processes of a concurrent program. They argue

that in a set of concurrent processes, similarity in behavior often exists. For instance, in

a mutual exclusion problem, a set of process are competing to acquire a critical section.

Attie and Emerson also address the problem of synthesizing distributed processes using the

246

method in [EC82] and by incorporating atomic read/write actions [AE01].

Algorithms for comprehensive redesign of timed automata [AD94] from real-time tem-

poral logic Mitl formulae was first introduced in [AFH96]. More recently, in [MNP06],

the authors present much simpler algorithms for constructing timed automata from Mitl

formulae than the ones in [AFH96].

15.1.2 Program Repair and Correction

There has been an extensive line of research in the area of correction of combinational

hardware circuits. In this line of research, the notion of fault does not have exactly the

same meaning as what we defined in Chapter 7. In particular, a fault is observed as: any

gate can be replaced by an arbitrary function. In [MCB89, LTL90, PYC94], the authors

present formal methods for fault localization and correction based on Boolean equations.

Similar to most formal methods, in these papers, the correct behavior of circuits is given as

a specification. We note that circuits consider in the aforementioned papers are sequential.

Motivated by the same concept, Jobstmann, Griesmayer, and Bloem [JGB05] formulate

the problem of program repair as a two player Büchi game. In their framework, the speci-

fication is given in Linear Temporal Logic, and state the correction problem as a game, in

which the protagonist selects a faulty component and suggests alternative behavior. The

objective of their work is very similar to our goal in Part II of this dissertation. In partic-

ular, the authors have independently shown that deciding whether a memoryless strategies

exists is NP-complete. Existence of a memoryless strategy for a Büchi game can be pre-

cisely translated to adding two eventually properties to an untimed centralized program

(see Theorem 4.2.1).

Buccafurri et al. [BEGL99] study the correction problem for Ctl as an abductive

reasoning problem. The authors present a method based on invoking a model checker once

for every possible correction to see if it is successful. Our approach, on the other hand,

needs to consider the problem only once, considering all possible corrections at the same

time, and is likely to be more efficient. In fact, in our approach, we do not need to call a

model checker at all.

Finally, Janjua and Mycroft [JM06] describe how to automatically insert synchronization

statements in a multi-threaded program in order to prevent bugs due to an unfortunate

scheduling. In [SLTB+06], the authors propose a C-like language, in which programs can

247

be modeled. A synthesizer then completes the model so that it adheres to a specification.

15.2 Program Synthesis in Open Systems

In this section, we present the related work on automated synthesis of open systems. Specif-

ically, in Subsection 15.2.1, we discuss the line of research on incremental synthesis of fault-

tolerant programs. Then, in Subsections 15.2.2 and 15.2.2, we present comparison and

contrast between our work and the related work in the area of discrete controller synthesis

and game theory, respectively.

15.2.1 Automated Synthesis of Fault-Tolerance

The problem of synthesizing untimed fault-tolerant programs has been studied in the liter-

ature from different perspectives. The seminal work in this area is due to Attie, Arora, and

Emerson, where they study the problem of synthesizing fault-tolerant concurrent untimed

programs from temporal logic specifications expressed in Ctl formulae [AAE04]. Their

approach is essentially based on Emerson and Clarke’s tableau-based method [EC82]. The

input to the their algorithm is (1) a specification represented by a Ctl formula, (2) fault

actions and fault specification, which is a set of auxiliary atomic propositions, (3) the cou-

pling specification, which is also a Ctl formula, and (4) a level of fault-tolerance. The

algorithm, first, generates a finite model of the program using the tableau-based method in

[EC82]. Then, they apply the fault actions to every state of the generated model in order

to generate new states, i.e., states that the program can reach in the presence of faults.

Then, they generate recovery transitions that can reach the program invariant. At the end,

they apply a set of modified deletion rules to prune the augmented global state-transition

diagram in order to extract the individual processes. Similar to comprehensive synthesis

approaches, this approach cannot start from a given intolerant program. Thus, the lack of

reuse is the key difference between our approach and the method in [AAE04].

The algorithms for automatic addition of fault-tolerance [KA00, KAC01, KE02, KE03,

KE04] add fault-tolerance concerns to existing untimed programs in the presence of faults,

and guarantee the addition of no new behaviors to the original program in the absence of

faults. In the seminal work in this area [KA00], the authors introduce synthesis methods

for automated addition of fault-tolerance to untimed centralized and distributed programs.

248

In particular, they introduce polynomial-time sound and complete algorithms for adding

all levels of fault-tolerance (failsafe, nonmasking, and masking) to centralized programs.

The input to these algorithms is a fault-intolerant centralized program, safety specification,

and a set of fault transitions. The algorithms generate a fault-tolerant program along

with an invariant predicate. The authors also show that the problem of adding masking

fault-tolerance to distributed programs is NP-complete in the size of the input program’s

state space. We note that Theorem 5.2.1 in this dissertation is a generalization of the

NP-completeness result in [KA00]. This is because in Theorem 5.2.1, we showed that the

problem of adding a progress property (in other words, adding recovery in [KA00]) to a

distributed program is NP-complete even in the absence of faults.

In order to cope with the exponential complexity identified in [KA00], Kulkarni, Arora,

and Chippada introduce a set of heuristics to solve the problem of synthesizing distributed

masking programs in polynomial-time. Our heuristics in Chapter 11 are based on the ones

in [KAC01] with the obvious difference that our heuristics are symbolic. Unfortunately,

there is no published data on performance analysis of the heuristics in [KAC01].

In [KE02, KE05b], Kulkarni and Ebnenasir show that the problem of adding failsafe

fault-tolerance to distributed programs is also NP-complete in the size of the input program’s

state space. They also identify a class of specifications, monotonic specifications, and a class

of programs, monotonic programs, for which the synthesis of failsafe fault-tolerance can be

done in polynomial-time (in program state space). Moreover, they prove that if only one

of the monotonicity conditions is satisfied, the synthesis of failsafe fault-tolerance is still

NP-complete. Intuitively, the notion of of monotonicity captures the case where a program

P can safely assume that a variables x is false and, even if x were true when P executes,

the corresponding transition would not violate safety. We emphasize that Theorem 5.1.1 in

this dissertation is a generalization of the NP-completeness result in [KE02, KE05b]. This

is because in Theorem 5.1.1, we showed that the problem of adding only one safety property

(in other words, removing unsafe transition in [KE02, KE05b]) to a distributed program is

NP-complete even in the absence of faults.

Kulkarni and Ebnenasir [KE03] also present algorithmic solutions for enhancing the level

of fault-tolerance of programs from nonmasking to masking. The problem of enhancing

fault-tolerance from nonmasking to masking requires that safety be added and recovery be

preserved. The authors present a sound and complete algorithm for centralized programs

249

and a sound algorithm for distributed programs. Obviously, the algorithms in this work are

useful for the case where the input program at hand is already nonmasking.

In [KE04], Kulkarni and Ebnenasir address the problem of automated synthesis of un-

timed multitolerant programs, i.e., programs that tolerate multiple classes of faults and

provide a (possibly) different level of fault-tolerance to each class. They show that if one

needs to add failsafe (respectively, nonmasking) fault-tolerance with respect to one class of

faults and masking fault-tolerance with respect to another class of faults, then such addition

can be done in polynomial-time in the size of state space of the fault-intolerant program.

The novelty of their algorithm is, it adds fault-tolerance in a stepwise fashion. They, how-

ever, show that if one needs to add failsafe fault-tolerance with respect to one class of faults

and nonmasking fault-tolerance with respect to another class of faults, then the problem is

NP-complete.

Jhumka and Gärtner [GJ04] consider the problem of automated synthesis of failsafe

programs, where the safety specification is not fusion closed. In other words, the (timing

independent) safety specification (i.e., SPEC bt) cannot be represented by a set of bad tran-

sitions; rather, by a set of bad prefixes. In general, fusion closure of specifications can be

achieved by adding history variables. However, as Jhumka and Gärtner argue, the addi-

tion of history variables causes an exponential growth of the state space of the program,

causing addition of fault tolerance to be expensive. To address this problem, the authors

present a method which can be used to add history information to a program in a way that

significantly reduces the number of states added due to incorporating history variables.

Kulkarni and Ebnenasir [KE05b] also investigate the effect of non-fusion closed safety

specifications on the complexity of adding masking fault-tolerance to untimed centralized

programs. As mentioned earlier, it is known that adding masking fault-tolerance to untimed

centralized programs can be achieved in polynomial-time [KA00]. However, the authors in

[KE05b] show that for the case where one represents the safety specification by a set of bad

pairs of transitions, the problem of adding masking fault-tolerance to untimed centralized

programs is NP-complete. We note that this NP-completeness result is our most fundamen-

tal reason for representing (timing independent) safety specification (see Definition 7.1.6)

by a set of bad transitions in our framework.

Ebnenasir [Ebn07] develops a method for dividing the revision problem that scales up. In

an application of this approach for safety properties, Ebnenasir develops an algorithm that

250

statically analyzes (and possibly revises) program instructions on separate machines in a

parallel/distributed platform. Based on this method, the author implements a distributed

framework that exploits the computational resources of wide area networks for program

revisions. Using this approach, it is possible to synthesize failsafe Byzantine agreement

with 40 processes on a cluster of three machines in 353 seconds. Using our BDD-based

approach, the same program can be synthesized in 22 seconds.

The problem of online fault detection in timed automata is studied in [Tri02]. In this

work, Tripakis proposes a polynomial-space online algorithm for designing a diagnoser that

detects faults in behaviors of a given timed automaton after they occur. It is assumed that

(1) the given system is in synchronous model, and (2) faults and failures are identical events.

Thus, this model does not capture situations where the occurrence of faults (although

undesirable) is common and expected, but may lead a system to failures. Bouyer, Chevalier,

and D’Souza [BCD05] address the same problem where the diagnoser is realizable as a

deterministic timed automaton or an event record automaton.

15.2.2 Controller Synthesis

Synthesis of discrete-event systems has mostly been studied in the context of controller

synthesis and game theory. In this subsection, we compare and contrast our approach to

controller synthesis and game theory. The seminal work in the area of controller synthesis

is due Ramadge and Wonham [RW89]. The discrete controller synthesis (DCS) problem

is as follows: starting from two languages U and D, identify a third language C such that

U ∩ C ⊆ D. In DCS terminology, the three languages U , D, and C are called the plant,

the desired system, and the controller, respectively. U ∩ C is called the controlled system.

Finally, the set A of alphabets is represents events that can occur. Obviously, the languages

U and D may represent the set of computations of a given program and a safety and/or

reachability specification. Moreover, C identifies the computations that do not violate D in

the presence of uncontrollable transitions.

One can notice that our work in this dissertation is in spirit close to DCS. Specifically,

an input program and fault transitions may be modeled as controllable and uncontrollable

actions. In fact, in both problems, the objective is to restrict the program actions at

each state through synthesizing a controller such that the behavior of the entire system

is always desirable according to safety and reachability conditions, in the presence of an

251

adversary. As mentioned in Section 7.3, notice that the conditions C1 and C2 precisely

express this notion of restriction. Furthermore, the conjunction of all conditions expresses

the notion of language inclusion, where the synthesized program is supposed to exhibit a

subset of behaviors of the input intolerant program. Having said that, our work differs from

synthesizing discrete-event controllers in that:

1. The computation model for synthesizing controllers is based on prioritized synchro-

nization, whereas ours is based on interleaving.

2. The complexity of synthesizing a fault-tolerant design in the context of the formulation

presented in Problem Statement 7.3.2 for untimed centralized programs is polynomial-

time whereas the complexity of synthesizing controllers is NP-hard [GW00].

3. Our algorithms are concerned with properties typically used in specifying real-time

and distributed fault-tolerance requirements and, hence, they synthesize programs

more efficiently.

4. In controller synthesis, the notion of addition of recovery computations does not exist,

which is a crucial concept in fault-tolerant systems. To the best of our knowledge, this

difference exists between Sycraft and virtually all tools that implement controller

synthesis as well.

5. Finally, we model distribution by specifying read/write restrictions, whereas the issue

of decentralized plants is modeled through partial observability [LW90, RW92].

In the context of real-time systems, Asarin, Maler, and Pnueli [AMP95] introduce a

symbolic method to synthesize timed controllers. At the semantic level their approach

synthesize a controller is synthesized by finding a winning strategy for either safety

or reachability games (but not both) defined by traditional finite state automata or

by timed-automata. The complexity gap between our approach and timed controller

synthesis approaches is more visible. For example, the synthesis problems presented in

[FLM02, AMPS98, AM99b, dAFH+03] are Exptime-complete. Moreover, deciding the

existence of a controller in [DM02, BDMP03] is 2Exptime-complete. By contrast, as we

showed in Chapter 8, the complexity of our algorithms is significantly less.

252

15.2.3 Game Theory

Game-theoretic approaches for the synthesis of controllers and reactive programs [PR89a]

are generally based on the model of two-player games [Tho95]. In such games a program

makes moves in response to the moves of its environment. The program and its environment

interact through a set of interface variables and, hence, the environment can only update

the interface variables. In our model, however, faults can perturb all program variables.

Moreover, in a two-player game model, players take turns and the set of states from where

the first player can make a move is disjoint from the set of states from where the second

player can move [WHT03]. To the contrary, in our work, fault-tolerance should be provided

against faults that can execute from any state.

Game theoretic methods are based on the theory of tree automata [Tho90]. Such an

automaton represents the specification of a system. A synthesis algorithm checks the non-

emptiness of the automaton, i.e., whether there exists a tree acceptable by the tree automa-

ton. If the tree automaton is indeed nonempty, then the specification is called realizable

and there exists a model of the synthesized program.

Pnueli and Rosner address the problem of synthesizing synchronous open reactive mod-

ules in [PR89a]. They generalize their method in [PR89b], by proposing a technique for

synthesizing asynchronous reactive modules. In particular, they investigate the problem of

synthesizing an asynchronous reactive module that include only one process and interacts

with a non-deterministic environment through a Boolean variable x and a Boolean output

variable y. In order to define the realizability problem, Pnueli and Rosner define a program

as a function from the set of finite sequences of input values to a sequence of output values.

Given a domain D for input and output values, a program P is a function f : D+ → D

(D+ represents the set of sequences of input values), where the variables x and y range

over D. Thus, for every step i of execution, the program generates f(a0, a1 · · · ai) as the

value of y, where ak is the observable value of x at step k, 0 ≤ k ≤ i. Hence, each asyn-

chronous behavior of the system consists of an infinite sequence of ordered pairs (ai, bi),

where ai ∈ D is the input value of x and bi ∈ D is the output value of y at step i. Also,

Pnueli and Rosner incorporate tow other infinite sequences that represent the scheduling

state of the program. Finally, they define the realizability problem as follows: given an Ltl

specification φ(x, y), does there exist a program P that satisfies φ(x, y). They show that

253

the necessary and sufficient condition for realizability of a specification is its validity, and

not just satisfiability.

While symbolic model checking has been studied extensively (e.g., [BCM+92, McM93,

HNSY94]), little work has been done on symbolic synthesis and especially on performance

analysis. Recently, Wallmeier, Hütten, and Thomas [WHT03] introduce an algorithm for

synthesizing finite state controllers by solving infinite games over finite state spaces. They

model the winning constraint by safety conditions and a set of request-response properties as

liveness conditions. They transform this game into a Büchi game which inevitably involves

an exponential blow-up. The approach in [WHT03] does not address the issue of distribution

or time. Moreover, the reported maximum number of variables in their experiments is 23,

which is far less than the number of variables that we have handled using our symbolic

algorithms.

Finally, we emphasize that similar to discrete controller synthesis, game theoretic ap-

proaches do not address the issue of addition of recovery. Also, in game theory, the notion

of distribution is modeled by partial observability.

15.3 Synthesis Tools

The most relevant synthesis tool to Sycraft is FTSyn [EKAar]. This tool implements

the synthesis heuristics introduced by Kulkarni, Arora, and Chippada [KAC01] in an enu-

merative fashion. The input language of FTSYn is similar to Sycraft; it accepts a set of

processes along with read/write restrictions, safety specification, and an invariant. How-

ever, the grammar of input language of FTSyn is not as rich as Sycraft. For instance,

FTSyn does not allow quantifiers and range on symmetric processes. It is also not possible

to associate each process with a set of faults and prohibited transitions. Given an input

program, the output of FTSyn is a masking fault-tolerant distributed program. Also, the

output of Sycraft is more optimized than FTSyn in the sense that Sycraft simplifies

Boolean minterms better than FTSyn. Unfortunately, at the time of writing this disserta-

tion, there is no published data on performance of FTSyn. However, our experiments show

a considerable difference between performance of FTSyn and Sycraft. For example, in

case of Byzantine agreement for five processes, it take FTSyn about 15 minutes to gener-

ate an output, whereas Sycraft can generate the same output within less than a second.

254

Furthermore, FTSyn fails to add fault-tolerance to more than six non-general processes,

whereas Sycraft has successfully been used to synthesize up to 50 non-general processes.

The tool LiLY [JB] synthesizes a functionally correct design from a formal specification

expressed in Ltl based on the new advances on optimizations for Ltl synthesis [JB06]. In

particular, LiLy is a tool for comprehensive synthesis from Ltl specification written in Perl.

The output of LiLY is a state machine represented as a Verilog1 module or as a directed

graph in DOT format. Anzu [JGWB07] is another tool from the same research group.

The tool synthesizes Verilog designs from specifications written in Ltl. Unlike LiLY, Anzu

implements the Reactive-1 algorithm due to Pnueli, Piterman, and Sa’ar’s [PPS06], which

can handle a huge subset of Ltl.

As mentioned earlier, Our synthesis problem is in sprit close to controller synthesis and

game theory problems. However, there exist several distinctions in theories and, hence,

the corresponding tools. In particular, in controller synthesis and game theory, the notion

of addition of recovery computations does not exist, which is a crucial concept in fault-

tolerant systems. To the best of our knowledge, this difference exists in virtually all tools

that implement controller synthesis or game theoretic algorithms. Moreover, we model

distribution by specifying read/write restrictions, whereas related tools either do not address

the notion of distribution or their modeling is in a higher level of abstraction (e.g., the SMT-

based method in [FS07]). Below, we present some of such tools. Some tools (e.g., TICC

and Supremia) model the issue of distribution using synchronization on input actions.

Sigali [BBG00] supports verification of reactive systems and synthesizing discrete con-

trollers. In Sigali, a system is represented by a labeled transition system, while the control

of the system is performed by restricting the controllable input values to values suitable for

the control goal. This restriction is obtained by incorporating new algebraic equations into

the initial system. Similar to most controller synthesis approaches, in Sigali the control

objectives are reachability and persistence (e.g., a set of safe states). As mentioned earlier,

in controller synthesis, some of the crucial features of fault-tolerance (e.g., safe recovery

after a fault occurs) are not addressed. This is the case in Sigali as well. Moreover, it is

not possible to model distribution in Sigali.

Supremica [AFFM06, AFFV03] is also a tool for verification, synthesis, and simulation

1Verilog is a hardware description language (HDL) used to model electronic systems. For more informa-
tion, visit http://www.verilog.com/.

255

http://www.verilog.com/

of discrete event systems. Similar to Sigali, the input model in Supremica is a finite state

automaton, where the transitions have an associated event together with a guard condition

and an action function that updates the system variables. Supremica exploits modularity

in order to address the state explosion problem, a feature that Sycraft currently lacks.

Similar to Sycraft, implementations of Supremica is BDD-based. Another difference

between Sycraft and Supremica is that input programs to Sycraft are modeled in an

asynchronous setting, whereas in Supremica different transitions of the given automaton

synchronize on input actions. Thus, comparison of experimental results is irrelevant.

TCT [FW06] is also a tool for supervisory control synthesis of untimed finite state sys-

tems. It incorporates BDDs in implementation of its core algorithms. Also, TCT exploits

system hierarchical structure in order to remedy the state explosion problem. The latest

version of TCT can compute systems that would need about 1020 states if computed ex-

tensionally in automata. We note that although TCT and Sycraft implement different

models, as far as synchronization is concerned, Sycraft is able to synthesize programs

with 1050 reachable states an beyond.

In [dAFL06], de Alfaro, Faella, and Legay introduce the tool TICC for game-based

modeling of software and distributed systems. The core of TICC is based on the theory of

interface automata [dAH01]. In TICC, components are modeled via both discrete variables

and actions (to describe synchronization). The implementation of TICC is also BDD-based.

In particular, TICC can synthesize input assumptions of some environment in which a dis-

tributed program can be executed without reaching a deadlock due to unanticipated moves

by the environment. Similar to Supremica and unlike Sycraft, Ticc models distribution

concerns as modules that synchronize on shared actions.

15.4 Component-Based Analysis of Fault-Tolerant Programs

In Chapter 10, we extended the theory of fault-tolerance components [AK98b] to the context

of real-time programs. The theory in [AK98b] essentially separates fault-tolerance and

functionality concerns of untimed systems. More specifically, the theory identifies two types

of fault-tolerance components, namely detectors and correctors. These components are

based on the principle of detecting a state predicate to ensure that program actions would

be safe and correcting a state predicate to ensure that the program eventually reaches a

256

legitimate state. We emphasize that since these components do not rely on detecting faults

or correcting faults, they can be applied in cases where faults are not detectable (e.g.,

Byzantine faults).

Our work in Chapter 10 differs from the work on failure detectors (e.g., the line of

research pioneered by Chandra and Toueg) in that the predicates being detected in [CT96,

CHT96] are of the type “process j has failed”. To the contrary, the predicates in our work

are arbitrary state predicates. Moreover, in [CT96, CHT96], the authors have considered

detectors that are not perfect; similar detectors can also be constructed from the components

in this paper. However, this issue is important in the context of a design methodology and

is discussed in [BK06b, KE04, AK98a]. Since the discussion about imperfect detectors is

not needed in our context, this issue is outside the scope of this paper. Likewise, issues such

as atomicity of the fault-tolerance components are important for design; in the context of

analysis, the components contained in a fault-tolerant program, by definition, would satisfy

any atomicity restrictions imposed on that fault-tolerant program.

Although detectors and correctors have been found to be useful in the design of fault-

tolerant programs 2, their significance in analysis has not been evaluated except in empirical

case studies. In these studies [KRS99, GJ04], decomposition of a fault-tolerant program

into its components has been found valuable in formal verification of the program. Thus,

we expect that our affirmative answer to existence of the components in Chapter 10 would

significantly assist in analysis of real-time embedded fault-tolerant programs.

The theory of detectors and correctors [AK98b] was extended in [JGFS02] for safety-

critical systems. In [TG99], the authors have used a similar approach for proving conver-

gence of systems to legitimate states. The theory has also been used in design of several

multi-tolerant examples [KE04, GH00] where tolerance to different types of faults is pro-

vided and the level of fault-tolerance varies depending upon the severity of faults. In

the context of automation of addition of fault-tolerance, the theory has been exploited in

[BK08a, BK06b, KE04, GJ04, JHS02]. In the context of verification, simplified versions of

this theory are applied in verification of time-triggered architectures [Rus02]. It has also

been used in software verification through separation of concerns [KRS99, JHA07].

2The components have been shown to suffice in the design of a large class of fault-tolerant programs
[AK98b] including programs designed using replication, state machine approach, and, checkpointing and
recovery.

257

In [KE05a], the authors consider the problem of incorporating pre-synthesized detec-

tor and corrector components for synthesizing masking fault-tolerant distributed programs.

The motivation of their work is based on the facts that the problem of synthesizing dis-

tributed masking programs is NP-complete and heuristics introduced in [KAC01] may fail to

synthesize a program. Similar to our approach in this dissertation, their synthesis method

reuses the given fault-intolerant program. It also ensures interference freedom among the

given pre-synthesized components and the intolerant program, i.e., the execution of one of

them does not violate the (safety or liveness) specification of another one. Obviously, such a

synthesis method is semi-automated as the designer has to somehow provide their synthesis

method with the right pre-synthesized components.

Based on the detector-corrector theory Ebnenasir and Cheng [EC07] introduce an object

analysis pattern, called the detector pattern, that provides a reusable strategy for capturing

the requirements of failsafe fault-tolerance in an existing conceptual model. They also

present a method that uses the detector pattern for creating a behavioral model of a failsafe

fault-tolerant system in UML. Their method also generates and model checks formal models

of UML state diagrams of the fault-tolerant system. In addition it visualizes the model

checking results in terms of the UML diagrams. Ebnenasir and Cheng [EC06] also introduce

the notion of correctors pattern in order to model and analyze error recovery in fault-tolerant

programs.

258

Chapter 16

Conclusion and Future Work

In this dissertation, we focused on the problem of automated revision of distributed and real-

time programs in the context of open and closed systems. In both cases, we concentrated

on properties that are typically used in specifying distributed and real-time systems (e.g.,

Unity properties [CM88]). In the context of closed systems, we observed the revision

problem as the problem of adding properties that the original program fails to satisfy, while

preserving the existing universally quantified properties of the original program. We studied

revision of open systems by considering programs that are subject to a set of uncontrollable

faults imposed by the environment. We also developed symbolic, distributed, and parallel

techniques to improve the performance of our revision algorithms.

Our approach is based on local revision of programs whereby behaviors that violate the

new properties are removed. This approach also ensures that all existing universally quanti-

fied properties continue to be satisfied. As mentioned in the introduction, we classified our

results into three types of (1) sound and complete polynomial-time algorithms, (2) identify-

ing complexity hierarchy, and (3) efficient heuristics that can be deployed in building tools.

A sound and complete algorithm is highly valuable since it allows designers to determine

whether a given program is fixable and if the program is indeed fixable, the algorithm syn-

thesizes a new program that satisfies the desired property (or level of fault-tolerance). The

knowledge of complexity bounds is also important in building tools for automated program

revision. For instance, an NP-completeness result demonstrates that corresponding tools

must utilize efficient heuristics to expedite the revision algorithm at the cost of complete-

ness. Moreover, hardness proofs often identify where the exponential complexity lies in the

259

problem. Thus, thorough analysis of proofs is also crucial in devising efficient heuristics.

In this chapter, we present an overall picture of the status of our research on automated

revision of real-time and distributed programs. In Section 16.1, we summarize the contri-

butions of this dissertation. Then, in Section 16.2, we present some open problems and

characterize future research directions.

16.1 Contributions

The main results of this dissertation in the context of revising closed systems are as follows:

1. We introduced a sound and complete algorithm for adding a single Unity progress

property (i.e., leads-to or ensures) along with a set of Unity safety properties (i.e.,

unless, stable, and invariant) to untimed centralized programs. The time complexity

of our algorithm is polynomial in the size of the input program’s state space.

2. We presented a counterintuitive result where we showed that adding two or more

progress properties to an untimed centralized program is NP-complete. Based on

this result, we find that adding one progress property is significantly easier than

simultaneous addition of multiple such properties.

3. We showed that the problem of adding a single leads-to property to an untimed cen-

tralized program while preserving maximum non-determinism is NP-complete.

4. We proved that addition of only one Unity safety or only one Unity progress property

to a distributed program is NP-complete. This result formally validates the common

belief that designing finite state distributed systems is significantly more difficult than

finite state centralized systems.

5. We proposed a sound and complete polynomial-time algorithm in the size of the

input program’s region graph for addition of a single bounded-time leads-to property.

Similar to the untimed case, our algorithm is able to add a single bounded-time ensures

property along with a set of safety properties as well.

6. We showed another counterintuitive result that the problem of providing maximum

non-determinism while adding a single bounded-time leads-to property to a real-time

260

program is NP-complete (in the size of the input program’s region graph) even if the

original program satisfies the corresponding unbounded leads-to property.

The main results of this dissertation in the context of revision of open systems are as

follows:

1. We introduced a generic fault-tolerance framework for real-time programs independent

of platform, architecture, and type of faults. In particular, we formally defined what

we mean by faults and levels of fault-tolerance (e.g., soft and hard fault-tolerance) in

the context of real-time programs.

2. We presented a polynomial-time algorithm (in the size of the input program’s region

graph) that adds bounded-time recovery from an arbitrary state predicate to another

arbitrary state predicate. Using this algorithm, we proposed sound and complete

synthesis algorithms for adding nonmasking and soft-masking fault-tolerance to fault-

intolerant real-time programs.

3. We introduced a sound and complete algorithm that transforms a fault-intolerant

real-time program into a hard-failsafe program where the output program is required

to satisfy only one bounded-time response property in the presence of faults.

4. We showed that the problems of adding hard-failsafe (with only one bounded-time

response property) and soft-masking fault-tolerance to a fault-intolerant real-time

program are Pspace-complete in the size of the input intolerant program.

5. We showed that the problem of adding hard-masking fault-tolerance is NP-complete

in the size of the region graph of the input program.

6. We introduced the notion of bounded-time phased recovery in the context of fault-

tolerant real-time programs. We also identified a sufficient condition for existence

of a polynomial-time sound and complete algorithm for adding phased recovery to

real-time programs.

7. Finally, we showed that the output of our revision algorithms is sensible programs in

the sense that any output program can be decomposed to a fault-intolerant program

and a set of components called detectors and δ-correctors.

261

In order to deploy the revision algorithms presented in this dissertation, we first consid-

ered a BDD-based implementation of adding a leads-to property to a distributed program

(cf. Algorithm 5.1). The performance of our implementation obviously depends on the

structure of the input program. In particular, our implementation can handle complex pro-

grams with reachable states of size 1010 in less than an hour. By a complex program we

mean one whose reachability graph involves multiple cycles.

Also, using symbolic techniques, we developed heuristics for addition of fault-tolerance

to distributed programs. We demonstrated that synthesis of distributed untimed programs

with moderate-sized set of reachable states (1050 and beyond) can be achieved within a

reasonable amount of time and memory. Our analysis also shows that the growth of the

time complexity is sublinear in the state space.

Using our symbolic synthesis algorithms, we developed the tool Sycraft for adding

fault-tolerance to existing fault-intolerant distributed programs. In Sycraft, a distributed

fault-intolerant program is specified in terms of a set of processes and an invariant. Each

process is specified as its set of transitions, a set of variables that the process can read, and

a set of variables that the process can write. Given a set of fault transitions and a safety

specification, the tool can synthesize a fault-tolerant distributed program. We demonstrated

the application of Sycraft in adding fault-tolerance to problems from the literature of

distributed computing as well as a data dissemination protocol in sensor networks.

Time and space complexity has always been a major obstacle in deployment of auto-

mated formal methods. Thus, exploiting multiple machines to expand available memory

and multiple processors to increase computing power seem to be sensible breakthroughs.

Thus, as yet another tool to improve the performance of automated revision, we explored

the potential of using distributed and parallel techniques in automated program revision.

In particular, we proposed a distributed algorithm for synthesizing failsafe and masking

untimed centralized programs. We also introduced a symbolic multi-core algorithm for

resolving deadlock states in distributed fault-tolerant programs.

16.2 Open Problems and Future Research Directions

In this section, we present some open problems in the context of revision of real-time

and distributed programs. We characterize these problems based on their application in (1)

262

complexity theory, (2) techniques for improving the performance of existing algorithms, and

(3) deployment of algorithms introduced in this dissertation in synthesis tools in Subsections

16.2.1, 16.2.2, and 16.2.3, respectively. In Subsections 16.2.2 and 16.2.3, we also describe

how one can exploit model checking techniques to make synthesis algorithms more efficient.

Note, however, that in Subsection 16.2.3, we explain the model checking techniques (e.g.,

efficient reachability analysis) that can be trivially applied in synthesis, but in Subsection

16.2.2, we describe cases where such techniques (e.g., predicate abstraction) cannot be

trivially applied due to the natural differences between verification and synthesis.

16.2.1 Open Problems Related to Complexity of Synthesis

Open questions in this category deal with the complexity of decision problems in the context

of revision of real-time and distributed programs. Identifying the class of complexity of

decision problems is important in the sense that if the problem involves exponential blow-

up, a set of new questions on how to cope with such complexity is raised. In this context,

the following problems are currently open:

• In Part II of this dissertation, we assumed that all program computations are un-

fair. An important open question is whether involving fair computations changes the

complexity hierarchy of algorithms that add progress properties to programs.

• Complexity of synthesis of hard-failsafe fault-tolerant real-time programs where

SPEC br consists of two bounded-time response properties. (we showed that the prob-

lem for only one bounded response property is Pspace-complete)

• Pspace-hardness of synthesis of nonmasking and soft-failsafe real-time programs.

• In [KE04], Kulkarni and Ebnenasir address the problem of automated synthesis of

untimed multitolerant programs, i.e., programs that tolerate multiple classes of faults

and provide a (possibly) different level of fault-tolerance to each class. They show that

if one needs to add failsafe (respectively, nonmasking) fault-tolerance with respect to

one class of faults and masking fault-tolerance with respect to another class of faults,

then such addition can be done in polynomial-time in the size of state space of the

fault-intolerant program. The novelty of their algorithm is, it adds fault-tolerance in a

stepwise fashion. They, however, show that if one needs to add failsafe fault-tolerance

263

with respect to one class of faults and nonmasking fault-tolerance with respect to

another class of faults, then the problem is NP-complete. In the context of real-time

programs, an open problem is whether stepwise synthesis of multitolerance is feasible.

Another future work in this context includes identifying constraints under which a

multitolerant real-time program can be designed in a stepwise manner where only one

class of faults is considered at a time.

• In Chapter 9, we showed that the problem of adding phased recovery to a program is

NP-complete. We also developed a sufficient condition for adding phased recovery in

polynomial-time in the size of the input program’s region graph. An open problem in

this context is developing other sufficient conditions based on the set relation between

intermediate and final recovery predicates. A more interesting problem is identifying

a necessary condition under which the problem can be solved in polynomial-time.

16.2.2 Open Problems on Improving the Performance of Existing Algo-

rithms

Open questions in this category deal with techniques that improve the performance of

existing algorithms. In this context, we note that problems associated with automated

formal analysis of distributed and especially real-time systems are generally considered to

be difficult. For instance, the simple problem of reachability analysis in timed automata is

Pspace-complete. We plan to investigate the following techniques as a means to cope with

the complexity of such problems:

• (Synthesis using zone automata) Region graphs are not the most efficient finite rep-

resentation of real-time programs in terms of space complexity. On the other hand,

zone automata [ACH+92] are more efficient time-abstracted representation of real-

time programs. For instance, the UPPAAL model checker [LPY97] incorporates zone

automata. In this dissertation, since our goal was to evaluate the complexity classes

and feasibility of adding fault-tolerance to real-time programs, we focused on region

graphs. However, an obvious improvement is modifying the algorithms for revision

of real-time programs presented in this dissertation so that they manipulate zone

automata rather than detailed region graphs.

• (Developing efficient heuristics) A synthesis algorithm with exponential complexity

264

would clearly limit its application only to programs whose state space is small. One

way to redress this limitation is to identify a set of heuristics under which the synthe-

sis algorithm takes polynomial time. For instance, let us consider the NP-complete

problem of synthesis of hard-masking programs whose safety specifications consist of

two bounded response properties. As we showed in the proof of Theorem 8.4.3, the

bottleneck of the problem lies in the existence of cycles that permit the program to

violate its bounded response properties. In this context, a natural question is under

what circumstances we can efficiently identify such undesirable cycles and break them

such that the resulting program satisfies the bounded-time response properties. An

answer to this question will lead us to heuristics that are more efficient than brute-

force solutions.

• (Multi-processor/Multi-core synthesis algorithms) In Part IV, we developed two

explicit-state approaches for distributed synthesis of failsafe and masking fault-

tolerant untimed centralized programs. We also developed a symbolic algorithm for

resolving deadlock states in masking fault-tolerant distributed programs. We are cur-

rently investigating similar synthesis algorithms in the real-time and symbolic settings.

Specifically, as the first step, we are developing a multi-core algorithm (similar to the

concept of multi-core saturation [ELS06]) for fault-span generation of programs in

synchronous systems.

• (Predicate abstraction) Exploiting abstract interpretation techniques is essential for

reducing large or infinite state systems to small or finite state systems. While such

techniques have been widely used in model checking (e.g., [CC92, SS99]), it is unclear

whether existing techniques can be trivially used in the context of program synthesis.

Notice that when we represent a state predicate, say X, by a Boolean variable, say

x, using an abstraction technique, due to the nature of synthesis, we may need to

manipulate X and/or the transitions that originate or end at X. Hence, after this

manipulation, x does not represent X any more. Thus, an interesting research direc-

tion is to modify existing abstraction techniques or develop new ones that would work

in the context of program synthesis and transformation.

• (Symmetry reduction) Symmetry reduction is also a means for exploiting the presence

of replication in a model, which has yielded considerable success in model checking

265

[CFJ93, ES96]. Since symmetry occurs very often in distributed programs [AE98],

we expect that a significant improvement can be achieved using symmetry reduction

techniques.

• (SAT-based deadlock resolution) As mentioned in Subsection 11.2, the most serious

bottleneck in synthesizing fault-tolerant Byzantine agreement program is deadlock

resolution. In particular, we observed that on average, 96% of the total synthesis time

is spent in resolving deadlocks. We note that in the case of Byzantine agreement, the

deadlock states that are hard to resolve are the ones from where safe recovery to the

program invariant is not possible. Such states have to be eliminated. We are cur-

rently investigating ways to encode the deadlock resolution problem as a satisfiability

problem. Using our encoding, we plan to use a state-of-the-art SMT1 or SAT solver

(e.g., zChaff) as means for benchmark analysis.

We note that in synthesizing failsafe fault-tolerant versions of distributed programs,

where only satisfaction of safety specification in the presence of faults is required,

deadlock resolution is not a concern. Thus, we expect that such programs can be

synthesized more efficiently.

• (Symbolic cycle resolution) Let us consider the following scenario for deadlock resolu-

tion. Let σd be a deadlock state inside the fault-span SP of a program P. Recall that

the algorithm Symbolic Add Ft (cf. Algorithm 11.1) resolves deadlock states by (1)

adding safe recovery transitions, and (2) if such addition is not possible, eliminating

the state. Now, suppose that it is not possible to either add safe recovery or eliminate

this state (i.e., the resulting program will become empty). In such a case, it may be

possible to add a safe transition from σd to a state σ0, where σ0 6∈ SP , and then add

another transition from σ0 to a state σ1, where σ1 ∈ SP such that recovery from σ1

to the invariant is possible. In order to ensure that this solution is sound, we need

to resolve cycles created by adding transitions that originate from the fault-span and

end in a state outside the fault-span. For instance, in our scenario, if there exists

the transition (σ1, σd), then we have created the cycle σd − σ0 − σ1 − σd. Although

there exist several heuristics for symbolic cycle detection in the literature of model

1In SMT (satisfiability modulo theories) solvers (e.g., Yices [yic] and z3 [dMB08]), in addition to Boolean
variables, one can use other types such as abstract data types, integers, reals etc., in formulae that involve
arithmetic and quantifiers as well. We expect that such integration improves the performance of synthesis.

266

checking [FFK+01, BGS06, GPP03], to the best of our knowledge, there does not

exist a solution to symbolic cycle resolution other than our algorithm Add LeadsTo

(cf. Algorithm 5.1). However, this algorithm is not as efficient as our algorithm Sym-

bolic Add Ft. One reason is Add LeadsTo is more general than Symbolic Add Ft and

it is less likely to fail when there exists a solution. However, an interesting research

direction is developing other cycle resolution heuristics that are more efficient than

Add LeadsTo.

Cycle resolution has application in adding properties in untimed centralized programs

as well. For instance, the most crucial step in the algorithm Add UNITY (cf. Section

4.1) is breaking cycles that violate the desirable progress property. Since removing

non-progress cycles from programs is often a tedious task, we believe such heuristics

will be extremely beneficial if integrated with model checkers.

• (Dynamic variable reordering) BDD representation of a Boolean formula is often more

space-efficient than an enumerative representation, provided a good ordering of vari-

ables is chosen. In model checking, since the goal is to “verify” the correctness of a

model against a property, once the BDD of the model is constructed, there is no need

to reconstruct it during verification. Hence, an appropriate initial order of variables is

sufficient during the course of verification. To the contrary, automated synthesis has

a different dynamic, as we often add and remove states and transitions to manipulate

a given program such that it satisfies a desired property (e.g., fault-tolerance). In

other words, since the structure of a program changes during synthesis, we expect

that dynamic reordering of the variables of BDDs will be beneficial. However, there

is a trade-off between time spent to reorder variables for memory efficiency on one

side, and time spent to synthesize the program on the other side. Thus, another

open problem is to determine the circumstances under which dynamic reordering is

beneficial.

16.2.3 Extending the Boundaries of SYCRAFT

In this subsection, we describe the model checking techniques that can be trivially applied

to our synthesis algorithms in order to improve the efficiency of Sycraft. Moreover, we

also describe some applications of our work in model checking.

267

Improving the Efficiency of SYCRAFT Using Techniques from Model Checking

Observe that the complexity of the algorithms presented in this dissertation is comparable

(in the same complexity class) to the corresponding problem in model checking. We believe

that this complexity order is especially helpful in improving the performance of Sycraft

by incorporating techniques from model checking.

Based on the analysis of our algorithms and experimental results, we identified five

different bottlenecks (depending upon the structure of the program being synthesized),

namely, (1) deadlock resolution, (2) computation of fault-span, (3) cycle resolution, (4)

computing recovery paths, and (5) checking safety of groups of transitions. The issues of

deadlock resolution, cycle resolution, and computing recovery paths are not related to model

checking and were discussed in Subsection 16.2.2. On the other hand, computation of fault-

span is simply equivalent to computation of the set of states reachable in the presence of

faults. Thus, more efficient reachability analysis algorithms are strongly needed to improve

the performance of synthesis of fault-tolerant distributed programs. We categorize model

checking techniques that can be trivially used in Sycraft as follows:

• In our implementation, the Procedure ForwardReachableStates is implemented sim-

ply by a next-state relation. This approach is efficient for cases where the size of

BDDs are small (e.g., in Byzantine agreement). However, as soon as the size of

BDDs become larger (e.g., in token ring), next-state reachability analysis can be as

bad as enumerative methods. We are planning to incorporate more recent symbolic

techniques such as clustering [RAB+95], partitioning [BCL91], and saturation-based

reachability analysis [CLS01, CY05] in our current implementation. These techniques

will certainly improve computation of state predicates such as program invariant and

fault-span. However, due to the dynamic nature of synthesis, since we add and re-

move transitions and states, in each iteration of the algorithm, we need to recompute a

new fault-span starting from the program invariant using the modified set of program

transitions. Thus, another improvement is to develop algorithms that reuse the old

fault-span from previous iterations and remove unreachable states.

• Observe that in case of Byzantine agreement, the first action of the program never

violates safety. This fact suggests that it is beneficial if we can somehow identify such

268

actions and rule them out in early stages of synthesis. Also, observe that if processes of

a distributed program are allowed to read and write only a small number of variables

(e.g., in token ring), the size of associated group predicates become relatively large.

Since violation of safety can be modeled as a satisfiability problem [EK04], we expect

that integrating our implementation with SAT and SMT solvers is beneficial.

We believe that the above improvements will enable us to synthesize a large class of

fault-tolerant distributed programs from their fault-intolerant version.

Synthesizing Real-Time Programs in SYCRAFT

An important extension of Sycraft can be achieved by implementing our algorithm in

Chapters 8 and 9. Synthesis of fault-tolerant real-time programs is of special interest, as

augmenting programs with the notion of time often makes their formal analysis significantly

more difficult.

Benefiting Synthesis in Model Checking

To extend the results of this dissertation, we plan to integrate the algorithms presented

in this dissertation with model checking algorithms to provide developers with automated

assistance. As a result, if model checking of a program with respect to a property fails, then

our revision algorithms automatically (1) determine whether or not the model is fixable, and

(2) fix the model if it is indeed fixable.

16.3 Other Research Directions

In this section, we describe other interesting research directions in the context of synthesis

of fault-tolerant systems. These directions include synthesizing hybrid systems and incor-

porating multidisciplinary techniques such as machine learning and logic of knowledge.

16.3.1 Synthesizing Fault-Tolerant Hybrid Systems

A few blended theories of analytical and computational models have emerged to capture the

hybridity of deeply embedded systems. In particular, the use of hybrid automata [Hen96]

makes it possible to model both analytical and computational behaviors of embedded sys-

tems at the same time. Thus, by developing a framework for defining the concept of levels

269

of fault-tolerance in terms of safe and live semantics of hybrid automata, one can specify

and reason about fault-tolerance properties of cyber-physical systems [Lee06, SLMR05] in

a formal and elegant fashion. Meanwhile, the fundamental research problem in this context

is to identify the possibilities and limitations in developing synthesis algorithms that trans-

form fault-intolerant hybrid systems to fault-tolerant ones. Moreover, the formal framework

can be generalized to capture multitolerant hybrid systems as well; building a rich theory

of dependable cyber-physical systems.

16.3.2 Incorporating Machine Learning and Data Mining techniques

The input to our transformation problem is a program in terms of a state-transition function

and the goal is to generate another system that satisfies a set of new properties. Since

state-transition functions can be represented by (possibly weighed) directed graphs, the

transformation problem can be formulated as a graph transformation problem as well. In

fact, the output is the transformed input graph that satisfies the set of properties of interest.

In recent years, an increasing interest in the use of graph mining algorithms has been

emerged in the graph transformation community. Interestingly, our transformation problem

can be elegantly formulated as a graph mining problem as follows. Having a database of

programs (i.e., directed graphs) that satisfy a property of interest and another database

containing programs that do not satisfy the property, the problem is to identify possibilities

and limitations of deciding the exitance of a solution to the transforation problem for a

particular program with respect to a property of interest. Furthermore, if the answer to

the decision problem is affirmative, another research problem is to devise algorithms that

efficiently find a witness to the decision problem.

16.3.3 Revising Fault-Tolerant Distributed Systems in Epistemic Logic

Another direction is to explore the possibilities and limitations of addition of fault-tolerance

to fault-intolerant distributed programs using epistemic logic [FnYMV95]. To this end, first,

one develops a knowledge-based formal framework for defining the notions of faults and lev-

els of fault-tolerance in epistemic logic. Unlike the related work, this framework should

be generic in the sense that the representation of faults will be possible notwithstanding

the type of the faults (be they stuck-at, crash, fail-stop, timing, performance, Byzantine,

message loss, etc.), the nature of the faults (be they permanent, transient, or intermittent),

270

or the ability of the program to observe the effects of the faults (be they detectable or unde-

tectable). In this framework, programs will be specified based on the approach introduced

by Fagin, Halpern, Moses, and Vardi [FHMV95]. One has to formally define what it means

for a knowledge-based program to tolerate a class of faults. The notion of tolerance of a

class of faults by a program will be based on an epistemic specification. In other words,

a knowledge-based program tolerates a class of faults if and only if it does not violate its

epistemic specification in the presence of faults.

It has been shown that synthesis of distributed protocols with more than one agent

from epistemic specifications is undecidable [vdMW05]. However, given a knowledge-based

program, it is an open question that whether it is possible to revise the program according to

some epistemic specification in the absence or presence of faults. If this problem is decidable

for all epistemic properties, then it shows that revising knowledge-based programs can be

especially useful when it is undecidable to synthesize the given program (i.e., synthesis

from scratch is not possible). In case the revision problem is undecidable for arbitrary

epistemic specifications, one has to identify epistemic properties based on decidability of

their corresponding revision problem.

We would like to note that a knowledge-based formal framework seems to be especially

beneficial for specifying and reasoning about programs and protocols with multiple concerns,

i.e., protocols consist of concerns such as security, fault-tolerance, distribution, communica-

tion, real-time, etc. Thus, results on epistemic-based synthesis of fault-tolerance paves the

way for further research on specifying and synthesizing protocols with multiple concerns.

271

Bibliography

[AAE04] P. C. Attie, A. Arora, and E. A. Emerson. Synthesis of fault-tolerant concur-

rent programs. ACM Transactions on Programming Languages and Systems

(TOPLAS), 26(1):125–185, 2004.

[AAMM00] P. M. Alvarez, H. Aydin, D. Mossé, and R. G. Melhem. Scheduling optional

computations in fault-tolerant real-time systems. In Real-Time Computing

Systems and Applications (RTCSA), 2000.

[ACH+92] R. Alur, C. Courcoubetis, N. Halbwachs, D. L. Dill, and H. Wong-Toi. Mini-

mization of timed transition systems. In International Conference on Concur-

rency Theory (CONCUR), pages 340–354, 1992.

[AD94] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer

Science, 126(2):183–235, 1994.

[AE98] P. Attie and E. A. Emerson. Synthesis of concurrent systems with many

similar processes. ACM Transactions on Programming Languages and Systems

(TOPLAS), 20(1):51–115, 1998.

[AE01] P.C. Attie and E. A. Emerson. Synthesis of concurrent programs for an atomic

read/write model of computation. ACM Transactions on Programming Lan-

guages and Systems (TOPLAS), 23(2):187 – 242, 2001.

[AFFM06] K. Akesson, M. Fabian, H. Flordal, and R. Malik. Supremica an integrated

environment for verification, synthesis and simulation of discrete event systems.

In International Workshop on Discrete Event Systems, pages 384–385, 2006.

[AFFV03] K. Akesson, M. Fabian, H. Flordal, and A. Vahidi. Supremica a tool for verifi-

272

cation and synthesis of discrete event supervisors. In Mediterranean Conference

on Control and Automation, 2003.

[AFH96] R. Alur, T. Feder, and T.A. Henzinger. The benefits of relaxing punctuality.

Journal of the ACM, 43(1):116–146, 1996.

[AG93] A. Arora and M. G. Gouda. Closure and convergence: A foundation of fault-

tolerant computing. IEEE Transactions on Software Engineering, 19(11):1015–

1027, 1993.

[AH93] R. Alur and T.A. Henzinger. Real-Time Logics: Complexity and Expressive-

ness. Information and Computation, 10(1):35–77, May 1993.

[AH97] R. Alur and T. A. Henzinger. Real-time system = discrete system + clock

variables. International Journal on Software Tools for Technology Transfer,

1(1-2):86–109, 1997.

[AK98a] A. Arora and S. S. Kulkarni. Component based design of multitolerant systems.

IEEE Transactions on Software Engineering, 24(1):63–78, 1998.

[AK98b] A. Arora and S. S. Kulkarni. Detectors and correctors: A theory of fault-

tolerance components. In International Conference on Distributed Computing

Systems (ICDCS), pages 436–443, 1998.

[ALW89] M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable concurrent

program specification. In International Colloqium on Automata, Languages,

and Programming (ICALP), pages 1–17, 1989.

[AM99a] P. M. Alvarez and D. Mossé. A responsiveness approach for scheduling fault

recovery in real-time systems. In IEEE Real Time Technology and Applications

Symposium (RTAS), pages 4–13, 1999.

[AM99b] E. Asarin and O. Maler. As soon as possible: Time optimal control for timed

automata. In Hybrid Systems: Computation and Control (HSCC), pages 19–

30, 1999.

[AMM00] H. Aydin, R. G. Melhem, and D. Mossé. Optimal scheduling of imprecise

273

computation tasks in the presence of multiple faults. In Real-Time Computing

Systems and Applications (RTCSA), pages 289–296, 2000.

[AMP95] E. Asarin, O. Maler, and A. Pnueli. Symbolic controller synthesis for discrete

and timed systems. In Hybrid System, 1995.

[AMPS98] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed

automata. In IFAC Symposium on System Structure and Control, pages 469–

474, 1998.

[AS85] B. Alpern and F. B. Schneider. Defining liveness. Information Processing

Letters, 21:181–185, 1985.

[Att99] P. C. Attie. Synthesis of large concurrent programs via pairwise composition.

In International Conference on Concurrency Theory (CONCUR), pages 130–

145, 1999.

[ATW05] C. S. Althoff, W. Thomas, and N. Wallmeier. Observations on determinization

of büchi automata. In Implementation and Application of Automata (CIAA),

pages 262–272, 2005.

[BAK08] B. Bonakdarpour, F. Abujarad, and S. S. Kulkarni. Parallelizing deadlock

resolution in symbolic synthesis of distributed programs. Technical Report

MSU-CSE-08-25, Department of Computer Science and Engineering, Michigan

State University, 2008.

[BBG00] P. Bournai, M. Le Borgne, and P. Le Guernic. Synthesis of discrete-event con-

trollers based on the signal environment. In Discrete Event Dynamic System:

Theory and Applications, pages 325–346, 2000.

[BCD05] P. Bouyer, F. Chevalier, and D. D’Souza. Fault diagnosis using timed au-

tomata. In Foundations of Software Science and Computation Structure, pages

219–233, 2005.

[BCL91] J.R. Burch, E.M. Clarke, and D.E. Long. Symbolic model checking with par-

titioned transition relations. In International Conference on Very Large Scale

Integration, pages 49–58, 1991.

274

[BCM+92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Sym-

bolic model checking: 1020 states and beyond. Information and Computation,

98(2):142–170, 1992.

[BDMP03] P. Bouyer, D. D’Souza, P. Madhusudan, and A. Petit. Timed control with

partial observability. In Computer Aided Verification (CAV), pages 180–192,

2003.

[BEGL99] F. Buccafurri, T. Eiter, G. Gottlob, and N. Leone. Enhancing model checking

in verification by ai techniques. Artificial Intelligence, 112:57–104, 1999.

[BEKar] B. Bonakdarpour, A. Ebnenasir, and S. S. Kulkarni. Complexity results in

revising UNITY programs. ACM Transactions on Autonomous and Adaptive

Systems (TAAS), To appear.

[BGS06] R. Bloem, H. N. Gabow, and F. Somenzi. An algorithm for strongly connected

component analysis in n log n symbolic steps. Formal Methods in System

Design, 28(1):37–56, 2006.

[BH00] R. Bharadwaj and C. Heitmeyer. Developing high assurance avionics systems

with the SCR requirements method. In Digital Avionics Systems Conference,

2000.

[BJG02] J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applications.

Springer, 2002.

[BK06a] B. Bonakdarpour and S. S. Kulkarni. Automated incremental synthesis of

timed automata. In International Workshop on Formal Methods for Industrial

Critical Systems (FMICS), LNCS 4346, pages 261–276, 2006.

[BK06b] B. Bonakdarpour and S. S. Kulkarni. Incremental synthesis of fault-tolerant

real-time programs. In International Symposium on Stabilization, Safety, and

Security of Distributed Systems (SSS), LNCS 4280, pages 122–136, 2006.

[BK07a] B. Bonakdarpour and S. S. Kulkarni. Distributed synthesis of fault-tolerant

programs in the high atomicity model. In International Symposium on Stabi-

lization, Safety, and Security of Distributed Systems (SSS), LNCS 4838, pages

21–36, 2007.

275

[BK07b] B. Bonakdarpour and S. S. Kulkarni. Exploiting symbolic techniques in au-

tomated synthesis of distributed programs with large state space. In IEEE

International Conference on Distributed Computing Systems (ICDCS), pages

3–10, 2007.

[BK08a] B. Bonakdarpour and S. S. Kulkarni. Masking faults while providing bounded-

time phased recovery. In International Symposium on Formal Methods (FM),

pages 374–389, 2008.

[BK08b] B. Bonakdarpour and S. S. Kulkarni. Revising distributed UNITY programs is

np-complete. In Principles of Distributed Systems (OPODIS), page To appear,

2008.

[BK08c] B. Bonakdarpour and S. S. Kulkarni. SYCRAFT: A tool for synthesizing fault-

tolerant distributed programs. In Concurrency Theory (CONCUR), pages

167–171, 2008.

[BKA08] B. Bonakdarpour, S. S. Kulkarni, and A. Arora. Disassembling real-time fault-

tolerant programs. In ACM International Conference on Embedded Software

(EMSOFT), page To appear, 2008.

[Bry86] R. E. Bryant. Graph-based algorithms for Boolean function manipulation.

IEEE Transactions on Computers, 35(8):677–691, 1986.

[Car94] A. Carruth. Real-time UNITY. Technical Report CS-TR-94-10, University of

Texas at Austin, January 1994.

[CC92] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of

Logic and Computation, 2(4):511547, August 1992.

[CC06] M.-Y. Chung and G. Ciardo. A dynamic firing speculation to speedup dis-

tributed symbolic state-space generation. In International Parallel and Dis-

tributed Processing Symposium (IPDPS), 2006.

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-

state concurrent systems using temporal logic specifications. ACM Transac-

tions on Programming Languages and Systems (TOPLAS), 8(2):244–263, 1986.

276

[CFJ93] E. M. Clarke, T. Filkorn, and S. Jha. Exploiting symmetry in temporal logic

model checking. In Computer Aided Verification (CAV), pages 450–462, 1993.

[CHT96] T. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for

solving consensus. Journal of the ACM, 43(4):685–722, 1996.

[CK89] B. H. C. Cheng and S. M. Kaplan. A semantically oriented program synthe-

sis system. In Annual Hawaii International Conference on Systems Sciences,

volume 2, pages 85–94, 1989.

[CLS01] G. Ciardo, G. Lüttgen, and R. Siminiceanu. Saturation: An efficient iteration

strategy for symbolic state-space generation. In Tools and Algorithms for the

Construction and Analysis of Systems (TACAS), pages 328–342, 2001.

[CM88] K. M. Chandy and J. Misra. Parallel program design: a foundation. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1988.

[CT96] T. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed

systems. Journal of the ACM, 43(2):225–267, 1996.

[CY91] C. Courcoubetis and M. Yannakakis. Minimum and maximum delay problems

in real-time systems. In Computer-Aided Verificaion (CAV), pages 399–409,

1991.

[CY05] G. Ciardo and A. J. Yu. Saturation-based symbolic reachability analysis using

conjunctive and disjunctive partitioning. In Correct Hardware Design and

Verification Methods (CHARME), pages 146–161, 2005.

[dAFH+03] L. de Alfaro, M. Faella, T. A. Henzinger, R. Majumdar, and M. Stoelinga.

The element of surprise in timed games. In International Conference on Con-

currency Theory (CONCUR), 2003.

[dAFL06] L. de Alfaro, M. Faella, and A. Legay. An introduction to the tool Ticc. Techni-

cal Report UCSC-CRL-06-14, School of Engineering, University of California,

Santa Cruz, 2006.

[dAH01] L. de Alfaro and T. A. Henzinger. Interface automata. In European Software

Engineering Conference, pages 109–120, 2001.

277

[Dij90] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs,

NJ., 1990.

[DM02] D. D’Souza and P. Madhusudan. Timed control synthesis for external specifi-

cations. In Symposium on Theoretical Aspects of Computer Science (STACS),

pages 571–582, 2002.

[dMB08] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Tools and

Algorithms for the Construction and Analysis of Systems (TACAS), pages

337–340, 2008.

[Ebn07] A. Ebnenasir. DiConic addition of failsafe fault-tolerance. In Automated Soft-

ware Engineering (ASE), pages 44–53, 2007.

[EC82] E. A. Emerson and E. M. Clarke. Using branching time temporal logic

to synthesize synchronization skeletons. Science of Computer Programming,

2(3):241–266, 1982.

[EC06] A. Ebnenasir and B. H. C. Cheng. A pattern-based approach for modeling

and analyzing error recovery. In Workshops on Software Architectures for

Dependable Systems (WADS), pages 115–141, 2006.

[EC07] A. Ebnenasir and B. H. C Cheng. Architecting Dependable Systems IV, chapter

A Pattern-Based Approach for Modeling and Analyzing Error Recovery, pages

115–141. Springer Berlin / Heidelberg, 2007.

[EJ91] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy

(extended abstract). In Foundations of Computer Science (FOCS), pages 368–

377, 1991.

[EK04] A. Ebnenasir and S. S. Kulkarni. SAT-based synthesis of fault-tolerance. Fast

Abstracts of the International Conference on Dependable Systems and Net-

works (DSN), 2004.

[EKAar] Ali Ebnenasir, S. S. Kulkarni, and A. Arora. FTSyn: A framework for auto-

matic synthesis of fault-tolerance. International Journal of Software Tools for

Technology Transfer (STTT), To appear.

278

[EKB05] A. Ebnenasir, S. S. Kulkarni, and B. Bonakdarpour. Revising UNITY pro-

grams: Possibilities and limitations. In On Principles of Distributed Systems

(OPODIS), pages 275–290, 2005.

[EL86] E. A. Emerson and C. L. Lei. Efficient model checking in fragments of the

propositional model mu-calculus. In Logic in Computer Science (LICS), pages

267–278, 1986.

[ELS06] J. Ezekiel, G. Lüttgen, and R. Siminiceanu. Can Saturation be parallelised?

on the parallelisation of a symbolic state-space generator. In International

Workshop on Parallel and Distributed Methods of Verification (PDMC), pages

331–346, 2006.

[Eme90] E. A Emerson. Handbook of Theoretical Computer Science, volume B, chapter

16: Temporal and Modal Logics, pages 995–1067. Elsevier Science Publishers

B. V., Amsterdam, 1990.

[Epp99] D. Eppstein. Finding the k shortest paths. SIAM Journal of Computing,

28(2):652–673, 1999.

[ES96] E. A. Emerson and A. P. Sistla. Symmetry and model checking. Formal

Methods in System Design: An International Journal, 9(1/2):105–131, August

1996.

[FFK+01] K. Fisler, R. Fraer, G. Kamhi, M. Y. Vardi, and Z. Yang. Is there a best

symbolic cycle-detection algorithm? In In Tools and Algorithms for the Con-

struction and Analysis of Systems (TACAS), pages 420–434, 2001.

[FHMV95] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Knowledge-based pro-

grams. In Symposium on Principles of Distributed Computing (PODC), pages

153–163, 1995.

[FHW80] S. Fortune, J. E. Hopcroft, and J. Wyllie. The directed subgraph homeomor-

phism problem. Theoretical Computer Science, 10:111–121, 1980.

[FLM02] M. Faella, S. LaTorre, and A. Murano. Dense real-time games. In Logic in

Computer Science (LICS), pages 167–176, 2002.

279

[FnYMV95] R. Fagin, J.Y. Halpern nad Y. Moses, and M. Vardi. Reasoning About Knowl-

edge. The MIT Press, 1995.

[FS07] B. Finkbeiner and S. Schewe. SMT-based synthesis of distributed systems. In

Automated Formal Methods (AFM), 2007.

[FW06] L. Feng and W. M. Wonham. TCT: A computation tool for supervisory control

synthesis. In International Workshop on Discrete Event Systems, pages 388–

389, 2006.

[GH00] S. Ghosh and X. He. Fault-containing self-stabilization using priority schedul-

ing. Information Processing Letters, 73(3–4):145–151, 2000.

[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman, New York, 1979.

[GJ04] F. C. Gärtner and A. Jhumka. Automating the addition of fail-safe fault-

tolerance: Beyond fusion-closed specifications. In FORMATS/FTRTFT, pages

183–198, 2004.

[GMS01] H. Garavel, R. Mateescu, and I. Smarandache. Parallel state space construction

for model-checking. In 8th International SPIN Workshop on Model Checking

of Software, pages 217–234, 2001.

[GPP03] R. Gentilini, C. Piazza, and A. Policriti. Computing strongly connected com-

ponents in a linear number of symbolic steps. In ACM-SIAM Symposium on

Discrete Algorithms (SODA), pages 573–582, 2003.

[Gri81] D. Gries. The Science of Programming. Springer-Verlag, 1981.

[GW00] P. Gohari and W. M. Wonham. On the complexity of supervisory control design

in the RW framework. IEEE Transactions on Systems, Man, and Cybernetics,

30(5):643–652, 2000.

[Hen92] T. A. Henzinger. Sooner is safer than later. Information Processing Letters,

43(3):135–141, 1992.

[Hen96] T. A. Henzinger. The theory of hybrid automata. In IEEE Symposium on

Logic in Computer Science (LICS), pages 278–292, 1996.

280

[HGGS00] T. Heyman, D. Geist, O. Grumberg, and A. Schuster. Achieving scalabil-

ity in parallel reachability analysis of very large circuits. In Computer-Aided

Verification (CAV), pages 20–35, 2000.

[HNSY94] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model check-

ing for real-time systems. Information and Computation, 111(2):193–244, 1994.

[JB] B. Jobstmann and R. Bloem. Lily - A LInear Logic Synthesizer.

http://www.ist.tugraz.at/staff/jobstmann/lily/.

[JB06] B. Jobstmann and R. Bloem. Optimizations for LTL synthesis. In Formal

Methods in Computer Aided Design (FMCAD), pages 117–124, 2006.

[JGB05] B. Jobstmann, A. Griesmayer, and R. Bloem. Program repair as a game. In

Computer Aided Verification (CAV), pages 226–238, 2005.

[JGFS02] A. Jhumka, F. Gartner, C. Fetzer, and N. Suri. On systematic design of

fast and perfect detectors. Technical Report 200263, School of Computer and

Communication Sciences, EPFL, 2002.

[JGWB07] B. Jobstmann, S. Galler, M. Weiglhofer, and R. Bloem. Anzu: A tool for

property synthesis. In Computer Aided Verification (CAV), pages 258–262,

2007.

[JHA07] R. D. Jeffords, C. L. Heitmeyer, and M. Archer. Adding fault-tolerance to

requirements specifications. Under review - Personal communication, 2007.

[JHS02] A. Jhumka, M. Hiller, and N. Suri. Component-based synthesis of dependable

embedded software. In Formal Techniques in Real-Time and Fault-Tolerant

Systems (FTRTFT), pages 111–128, 2002.

[JM06] M. U. Janjua and A. Mycroft. Automatic correction to safety violations in

programs. In Thread Verification (TV), page Unpublished, 2006.

[Jur00] Marcin Jurdzinski. Small progress measures for solving parity games. In

Symposium on Theoretical Aspects of Computer Science (STACS), pages 290–

301, 2000.

281

[KA00] S. S. Kulkarni and A. Arora. Automating the addition of fault-tolerance.

In Formal Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT),

pages 82–93, 2000.

[KA06] S. S. Kulkarni and M. Arumugam. Infuse: A TDMA based data dissemina-

tion protocol for sensor networks. International Journal on Distributed Sensor

Networks (IJDSN), 2(1):55–78, 2006.

[KAC01] S. S. Kulkarni, A. Arora, and A. Chippada. Polynomial time synthesis of

Byzantine agreement. In Symposium on Reliable Distributed Systems (SRDS),

pages 130–140, 2001.

[KAE07] S. S. Kulkarni, A. Arora, and A. Ebnenasir. Software Engineering and Fault-

Tolerance, chapter Adding Fault-Tolerance to State Machine-Based Designs.

World Scientific Publishing Co. Pte. Ltd, 2007.

[Kar72] R. M. Karp. Reducibility among combinatorial problems. In Symposium on

Complexity of Computer Computations, pages 85–103, 1972.

[KE02] S. S. Kulkarni and A. Ebnenasir. The complexity of adding failsafe fault-

tolerance. International Conference on Distributed Computing Systems

(ICDCS), pages 337–344, 2002.

[KE03] S. S. Kulkarni and A. Ebnenasir. Enhancing the fault-tolerance of nonmasking

programs. International Conference on Distributed Computing Systems, 2003.

[KE04] S. S. Kulkarni and A. Ebnenasir. Automated synthesis of multitolerance. In

International Conference on Dependable Systems and Networks (DSN), pages

209–219, 2004.

[KE05a] S. S. Kulkarni and A. Ebnenasir. Adding fault-tolerance using pre-synthesized

components. In European Dependable Computing Conference (EDCC), pages

72–90, 2005.

[KE05b] S. S. Kulkarni and A. Ebnenasir. Complexity issues in automated synthesis of

failsafe fault-tolerance. IEEE Transaction on Dependable and Secure Comput-

ing (TDSC), 2(3):201–215, 2005.

282

[KPV06] O. Kupferman, N. Piterman, and M. Y. Vardi. Safraless compositional syn-

thesis. In International Conference on Computer Aided Verification (CAV),

pages 31–44, 2006.

[KRS99] S. S. Kulkarni, J. Rushby, and N. Shankar. A case-study in component-based

mechanical verification of fault-tolerant programs. In Internationa Workshop

on Self-Stabilization (WSS), pages 33–40, June 1999.

[Kul99] S. S. Kulkarni. Component-based design of fault-tolerance. PhD thesis, Ohio

State University, 1999.

[Lee06] E. A. Lee. Cyber-physical systems - are computing foundations adequate?

In Position Paper for NSF Workshop On Cyber-Physical Systems: Research

Motivation, Techniques and Roadmap, October 2006.

[LL92] S. Lafortune and F. Lin. On tolerable and desirable behaviors in supervisory

control of discrete event systems. Discrete Event Dynamic Systems: Theory

and Applications, 1(1):61–92, 1992.

[LMM00] F. Liberato, R. G. Melhem, and D. Mossé. Tolerance to multiple transient

faults for aperiodic tasks in hard real-time systems. IEEE Transations on

Computers, 49(9):906–914, 2000.

[LPY97] K. G. Larsen, P.Pattersson, and W. Yi. UPPAAL in a nutshell. International

Journal on Software Tools for Technology Transfer, 1(1-2):134–152, 1997.

[LSP82] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM

Transactions on Programming Languages and Systems (TOPLAS), 4(3):382–

401, 1982.

[LSW03] M. Leucker, R. Somla, and M. Weber. Parallel model checking for LTL, CTL*,

and Lµ
2 . In International Workshop on Parallel and Distributed Model Checking

(PDMC), 2003.

[LTL90] H.-T. Liaw, J.-H. Tsiah, and C.-S. Lin. Efficient automatic diagnosis of digital

circuits. In Computer-Aided Design (ICCAD), pages 464–467, 1990.

283

[LW90] F. Lin and W. M. Wonham. Decentralized control and coordination of discrete-

event systems with partial observation. IEEE Transactions On Automatic

Control, 35(12), December 1990.

[Mat87] F. Mattern. Algorithms for distributed termination detection. Journal of

Distributed Computing, 2(3):161–175, 1987.

[MCB89] J. C. Madre, O. Coudert, and J. P. Billon. Automating the diagnosis and the

rectification of design error with priam. In Computer-Aided Design (ICCAD),

pages 30–33, 1989.

[McM93] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[MMG03] D. Mossé, R. G. Melhem, and S. Ghosh. A nonpreemptive real-time scheduler

with recovery from transient faults and its implementation. IEEE Transactions

on Software Engineering, 29(8):752–767, 2003.

[MNP06] O. Maler, D. Nickovic, and A. Pnueli. From MITL to timed automata. In

Formal Modeling and Analysis of Timed Systems (FORMATS), pages 274–

289, 2006.

[MW80] Z. Manna and R. Waldinger. A deductive approach to program synthesis. ACM

Transactions on Programming Languages and Systems (TOPLAS), 2(1):90–

121, 1980.

[MW84] Z. Manna and P. Wolper. Synthesis of communicating processes from tem-

poral logic specifications. ACM Transactions on Programming Languages and

Systems (TOPLAS), 6(1):68–93, 1984.

[MW92] Z. Manna and R. Waldinger. Fundamentals of deductive program synthesis.

IEEE Transactions on Software Engineering, 18(8):674–704, 1992.

[PM98] M. Pandya and M. Malek. Minimum achievable utilization for fault-tolerant

processing of periodic tasks. IEEE Transations on Computers, 47(10):1102–

1112, 1998.

[PPS06] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of reactive(1) designs. In

284

Verification, Model Checking, and Abstract Interpretation (VMCAI), pages

364–380, 2006.

[PR89a] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Principles

of Programming Languages (POPL), pages 179–190, 1989.

[PR89b] A. Pnueli and R. Rosner. On the synthesis of an asynchronous reactive mod-

ule. In International Colloqium on Automata, Languages, and Programming

(ICALP), pages 652–671, 1989.

[PRS94] D. Paik, S.M. Reddy, and S. Sahni. Deleting vertices to bound path length.

IEEE Transations on Computers, 43(9):1091–1096, 1994.

[PRS98] D. Paik, S. M. Reddy, and S. Sahni. Vertex splitting in dags and applications

to partial scan designs and lossy circuits. International Journal of Foundations

of Computer Science, 9(4):377–398, 1998.

[PYC94] I. N. Hajj P.-Y. Chung, Y.-M. Wang. Logic design error diagnosis and cor-

rection. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

2:320332, 1994.

[RAB+95] R. Ranjan, A. Aziz, R. Brayton, B. Plessier, and C. Pixley. Efficient BDD

algorithms for FSM synthesis and verification. In IEEE/ACM International

Workshop on Logic Synthesis, 1995.

[RLL03] K. Rudie, S. Lafortune, and F. Lin. Minimal communication in a distributed

discrete-event systems. IEEE Transactions On Automatic Control, 48(6), June

2003.

[Roh04] K. R. Rohloff. Computations on distributed discrete-event systems. PhD thesis,

University of Michigan, 2004.

[Rus02] J. Rushby. An overview of formal verification for the time-triggered ar-

chitecture. In Formal Techniques in Real-Time and Fault-Tolerant Systems

(FTRTFT), pages 83–105, 2002.

[RW89] P. J. Ramadge and W. M. Wonham. The control of discrete event systems.

Proceedings of the IEEE, 77(1):81–98, 1989.

285

[RW92] K. Rudie and W. M. Wonham. Think globally, act locally: Decentralized

supervisory control. IEEE Transactions On Automatic Control, 37(11):1692–

1708, 1992.

[SD97] U. Stern and D. L. Dill. Parallelizing the murϕ verifier. In Computer Aided

Verification (CAV), pages 256–278, 1997.

[SLMR05] J. A. Stankovic, I. Lee, A. K. Mok, and .R Rajkumar. Opportunities and

obligations for physical computing systems. IEEE Computers, 38(11):23–31,

2005.

[SLTB+06] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat. Combina-

torial sketching for finite programs. ACM SIGPLAN Notices, 41(11):404–415,

2006.

[Som] F. Somenzi. CUDD: Colorado University Decision Diagram Package.

http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html.

[SS83] R. D. Schlichting and F. B. Schneider. Fail-stop processors: An approach to

designing fault-tolerant computing systems. ACM Transactions on Computers,

1(3):222–238, 1983.

[SS99] H. Säıdi and N. Shankar. Abstract and model check while you prove. In

Computer-Aided Verification (CAV), pages 443–454, 1999.

[TG99] O Theel and F. Gartner. An exercise in proving convergence through transfer

functions. In Workshop on Self-Stabilizing Systems (SSS), pages 41–47, 1999.

[THB95] S. Tasiran, R. Hojati, and R. K. Brayton. Language containment of non-

deterministic omega-automata. In Correct Hardware Design and Verification

Methods (CHARME), pages 261–277, 1995.

[Tho90] W. Thomas. Handbook of Theoretical Computer Science, volume B, chapter 4:

Automata on Infinite Objects, pages 133–192. Elsevier Science Publishers B.

V., Amsterdam, 1990.

[Tho95] W. Thomas. On the synthesis of strategies in infinite games. In Theoretical

Aspects of Computer Science (STACS), pages 1–13, 1995.

286

http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html

[Tho02] W. Thomas. Infinite games and verification (extended abstract of a tutorial).

In International Conference on Computer Aided Verification (CAV), pages

58–64, 2002.

[Tri02] S. Tripakis. Fault diagnosis for timed automata. In Formal Techniques in

Real-Time and Fault-Tolerant Systems (FTRTFT), pages 205–224, 2002.

[vdMW05] R. van der Meyden and T. Wilke. Synthesis of distributed systems from

knowledge-based specifications. In Concurrency Theory (CONCUR), pages

562–562, 2005.

[VW86] M.Y. Vardi and P. Wolper. Automata theoretic techniques for modal logic of

programs. Journal of Computer and System Sciences, 32:183–221, 1986.

[WHT03] N. Wallmeier, P. Hütten, and W. Thomas. Symbolic synthesis of finite-state

controllers for request-response specifications. In Implementation and Appli-

cation of Automata (CIAA), pages 11–22, 2003.

[yic] Yices: An SMT Solver. http://yices.csl.sri.com.

[YqRzH85] S. Yong-qiang, L. Ru-zhan, and B. Hua. Program synthesis based on boyer-

moore theorem proving techniques. In ACM annual conference on Computer

Science, pages 348–355, 1985.

287

http://yices.csl.sri.com

Appendices

288

289

Appendix A

Summary of Notation

Z≥0 nonnegative integers

R≥0 nonnegative reals

V set of discrete variables

X set of clock variables

Φ(X) set of all clock constraints over X

σ state

(s, ν) state specified by location s and clock valuation ν

(σ0, σ1) transition

(s0, ν0)→ (s1, ν1) transition specified by locations and clock valuations

(s, δ) delay transition at location s for duration δ

S state predicate or fault-span

T transition predicate

T s set of immediate transitions in T

T d set of delay transitions in T

F set of fault transitions

Vχ set of discrete variables of process/program χ

Xχ set of clock variables of process/program χ

Rχ set of variables that process/program χ can read

Wχ set of variables that process/program χ can write

Tχ transition predicate of process/program χ

Sχ state space of process/program χ

P program

290

T C traffic controller program

BA Byzantine agreement program

BAFS Byzantine agreement program with fail-stop faults

T R token ring program

AS altitude switch program

IF infuse program

ΠP set of processes of program P

InvP initial states of program P

σ computation

L Unity property

B transition predicate that characterizes a set of safety Unity properties

SPEC specification

SPEC e existing specification

SPEC n new specification

SPEC bt set of bad immediate transitions

SPEC bt safety specification characterized by SPEC bt

SPEC br timing dependent safety specification

|= refines

|=I satisfies from I

ρ clock region

r region

(s, ρ) region specified by location s and clock region ρ

7→ leads-to

7→≤ bounded leads-to/bounded response

D detection predicate

W witness predicate

C correction predicate

D detector

C δ-corrector

\ variable abstrator

• fusion operator

⊕ exclusive-or operator

291

[] transition insertion or non-determinist execution operator

|| simultaneous statements operator

⊲ S-computation

�♦Q always eventually Q

292

	Title
	LIST OF TABLES
	LIST OF FIGURES
	I Background
	1 Introduction
	1.1 Challenges in Automated Program Synthesis
	1.2 Thesis
	1.3 Contributions
	1.4 Outline of the Dissertation

	2 Preliminary Concepts
	2.1 Programs
	2.1.1 Timed Guarded Commands
	2.1.2 Example (Real-Time Traffic Controller)
	2.1.3 Example (Distributed Byzantine Agreement)

	2.2 Specifications
	2.2.1 Example

	2.3 Region Graphs

	II Revising Programs in Closed Systems
	3 The Revision Problem in Closed Systems
	3.1 Basic Concepts
	3.2 Problem Statement

	4 Revising Untimed Centralized Programs
	4.1 Adding a Single Progress and Multiple Safety Properties
	4.1.1 Example: Readers-Writers Program

	4.2 Adding Multiple Progress Properties
	4.3 Adding a Single Leads-to Property with Maximum Non-determinism

	5 Revising Distributed Programs
	5.1 Adding UNITY Safety Properties to Distributed Programs
	5.2 Adding UNITY Progress Properties to Distributed Programs
	5.3 A Symbolic Heuristic for Adding Leads-To Properties

	6 Revising Real-Time Programs
	6.1 Adding a Single Bounded-Time Leads-to Property
	6.1.1 Example: Real-Time Resource Allocation

	6.2 Revising Real-Time UNITY Programs with Maximum Non-determinism
	6.3 Adding Interval-Bounded Leads-to Properties

	III Revising Programs in Open Systems
	7 The Revision Problem in Open Systems
	7.1 Basic Concepts
	7.1.1 The Type of Specifications in Part III
	7.1.2 Example

	7.2 Fault Model and Fault-Tolerance
	7.2.1 Fault Model
	7.2.2 Levels of Fault-Tolerance
	7.2.3 Example

	7.3 Problem Statement

	8 Synthesizing Real-Time Fault-Tolerant Programs
	8.1 Case Study: Altitude Switch
	8.2 Adding Nonmasking Fault-Tolerance
	8.2.1 Adding Bounded-Time Recovery in the Presence of Faults
	8.2.2 Adding Nonmasking Fault-Tolerance Using Bounded-Time Recovery

	8.3 Adding Soft and Hard-Failsafe Fault-Tolerance
	8.3.1 Adding Soft-Failsafe Fault-Tolerance
	8.3.2 Adding Hard-Failsafe Fault-Tolerance with One Bounded Response Property

	8.4 Adding Soft and Hard-Masking Fault-Tolerance
	8.4.1 Adding Soft-Masking Fault-Tolerance
	8.4.2 Adding Hard-Masking Fault-Tolerance

	9 Synthesizing Bounded-Time Phased Recovery
	9.1 Bounded-Time Phased Recovery
	9.2 Complexity of Synthesizing Bounded-Time 2-Phase Recovery
	9.3 A Sufficient Condition for a Polynomial-Time Solution
	9.3.1 Example (cont'd)

	10 Disassembling Real-Time Fault-Tolerant Programs
	10.1 Basic Concepts and Assumptions
	10.2 Detectors and Their Role in Hard-Masking Programs
	10.2.1 Detectors
	10.2.2 Containment of Detectors in Real-Time Programs
	10.2.3 Example (cont'd)
	10.2.4 The Necessity of Existence of Detectors in Hard-Masking Programs

	10.3 -Correctors and Their Role in Hard-Masking Programs
	10.3.1 Weak and Strong -Correctors
	10.3.2 Containment of -Correctors in Real-Time Programs
	10.3.3 Example (cont'd)
	10.3.4 The Necessity of Existence of Strong -Correctors in Hard-Masking Programs
	10.3.5 The Necessity of Existence of Weak -Correctors in Hard-Masking Programs

	11 Symbolic Synthesis of Distributed Fault-Tolerant Programs
	11.1 The Symbolic Synthesis Algorithm
	11.2 Case Study 1: Byzantine Agreement
	11.3 Case Study 2: Exploiting Human Knowledge to Assist Synthesis Algorithms
	11.4 Case Study 3: Byzantine Agreement with Fail-Stop Faults
	11.5 Case Study 4: Token Ring
	11.5.1 The Effect of Multi-Step Recovery

	11.6 Case Study 5: Infuse

	12 The Tool SYCRAFT
	12.1 SYCRAFT Input Program Language and Grammar
	12.1.1 Program, Constant, and Variable Declaration
	12.1.2 Process Declaration and Structure
	12.1.3 Invariant, Safety Specification, and Prohibited Transitions Declaration
	12.1.4 Operator Precedence

	12.2 Internal Functionality
	12.3 Output Format
	12.4 Example 1: Never 7
	12.5 Example 2: Token Ring
	12.6 Example 3: Byzantine Agreement

	IV Distributed and Parallel Revision Techniques
	13 Distributed Synthesis of Centralized Fault-Tolerant Programs
	13.1 Parallel Construction of State Space
	13.2 Distributed Addition of Failsafe Fault-Tolerance
	13.3 Distributed Addition of Masking Fault-Tolerance

	14 Parallelizing Symbolic Deadlock Resolution
	14.1 The Deadlock Resolution Problem
	14.2 Parallel Symbolic Resolution of Deadlock States
	14.2.1 Parallel Addition of Safe Recovery
	14.2.2 Parallel State Elimination

	V Literature Survey and Conclusion
	15 Related Work
	15.1 Program Synthesis in Closed Systems
	15.1.1 Comprehensive Synthesis
	15.1.2 Program Repair and Correction

	15.2 Program Synthesis in Open Systems
	15.2.1 Automated Synthesis of Fault-Tolerance
	15.2.2 Controller Synthesis
	15.2.3 Game Theory

	15.3 Synthesis Tools
	15.4 Component-Based Analysis of Fault-Tolerant Programs

	16 Conclusion and Future Work
	16.1 Contributions
	16.2 Open Problems and Future Research Directions
	16.2.1 Open Problems Related to Complexity of Synthesis
	16.2.2 Open Problems on Improving the Performance of Existing Algorithms
	16.2.3 Extending the Boundaries of SYCRAFT

	16.3 Other Research Directions
	16.3.1 Synthesizing Fault-Tolerant Hybrid Systems
	16.3.2 Incorporating Machine Learning and Data Mining techniques
	16.3.3 Revising Fault-Tolerant Distributed Systems in Epistemic Logic

	APPENDICES
	A Summary of Notation

