
Optimal Instrumentation of Data-flow in
Concurrent Data Structures

Samaneh Navabpour1, Borzoo Bonakdarpour2, and Sebastian Fischmeister1

1 Department of Electrical and Computer Engineering
University of Waterloo

200 University Avenue West
Waterloo, Ontario, Canada, N2L 3G1

Email: {snavabpo,sfischme}@uwaterloo.ca

2 School of Computer Science
University of Waterloo

200 University Avenue West
Waterloo, Ontario, Canada, N2L 3G1

Email: borzoo@cs.uwaterloo.ca

Abstract. In this paper, we propose an automated technique for opti-
mal instrumentation of multi-threaded programs for debugging and test-
ing of concurrent data structures. We define a notion of observability
that enables debuggers to trace back and locate errors through data-
flow instrumentation. Observability in a concurrent program enables a
debugger to extract the value of a set of desired variables through in-
strumenting another (possibly smaller) set of variables. We formulate an
optimization problem that aims at minimizing the size of the latter set.
In order to cope with the exponential complexity of the problem, we
present a SAT-based solution. Our approach is fully implemented and
experimental results on popular concurrent data structures (e.g., linked
lists and red-black trees) show significant performance improvement in
optimally-instrumented programs using our method as compared to ad-
hoc over-instrumented programs.

Keywords: Debugging, testing, multi-thread, concurrent programs, in-
strumentation, optimization.

1 Introduction

Debugging is a systematic process of finding and reducing the number of defects
in a computer program. Program debugging is a continual de facto step in the
software development process and often requires significant human and comput-
ing resources. The debugging process ranges over a variety of techniques such as
traditional or breakpoint-style debuggers, event monitoring systems, and static
analysis for which different aspects and tools are employed. Examples include
interactive debugging, control- and data-flow analysis, log files, memory dumps,

and profiling. Incorporating these techniques mostly requires adding extra in-
structions to the program under scrutiny, called instrumentation.

The main problems associated with instrumenting (and, hence, debugging)
programs are increased complexity, the probe effect, and non-repeatability. The
probe effect refers to the problem that any attempt to observe the behavior
of a system may change its behavior. Furthermore, such problems are ampli-
fied significantly in the context of concurrent programs. This is due to the fact
that instrumenting these programs complicates their inherent non-deterministic
nature, causing different executions for the same data and more unpredictable
context switches.

Moreover, although there have been significant advances in the multi-core
technology, it is currently unclear to what extent software products can be multi-
threaded to take advantage of these new chips. Thus, in the presence of challenges
in developing, testing, and maintaining scalable multi-threaded programs, having
access to effective debugging tools for concurrent programs is highly beneficial.
This benefit is even more crucial in the context of concurrent embedded safety-
critical applications, where deviation of a mutated program from its specification
may result in catastrophic consequences.

In [12], we proposed a notion of observability as the ability to test various
features of a sequential program by observing the program’s outcome to check if
it conforms to the software’s specification. The traditional methods for achiev-
ing observability incorporate ad-hoc instrumentation techniques [20, 21, 18] that
cause the observed outcome of the software to be produced by a mutated pro-
gram which can violate its correctness. Our approach to contain such probe
effects in [12] is to introduce minimal instrumentation to sequential programs
under debugging.

With this motivation, in this paper, we extend the concept of observability
to the context of concurrent programs. Our contributions in this paper are as
follows:

– We formally define the notion of observability for concurrent programs. This
notion has a different nature as compared to sequential programs due to the
existence of shared variables and interleaving scenarios. Roughly speaking,
observability in a concurrent program enables a debugger to extract the value
of a set of desired variables through instrumenting another set of variables.
We call the latter the set of naturally observable variables.

– We formulate an optimization problem to tackle under and over-
instrumentation defects. In other words, given a multi-threaded program and
a set of desired variables, our goal is to identify the minimum set of natu-
rally observable variables (that will be instrumented for debugging) through
which one can extract the value of all desired variables.

– Since the complexity of our optimization problem is exponential, we encode
the problem as a propositional satisfiability problem to leverage powerful
SAT-solvers to solve our problem.

– Our method is fully implemented in a tool chain. We use LLVM [7] and the
method presented in [11] to extract program data-flow dependencies. This is

2

achieved by implementing a new pass over LLVM that takes the source code
and a set of desired variables as input and generates the full set of data-flow
dependencies as output. Using the extracted dependencies, we automatically
generate a SAT model which is the input to the SMT-solver Yices [1]. The
solution to the SAT model is the set of variables that need to be instrumented
(the naturally observable variables).

– We conduct experiments on two popular concurrent data structures: linked
lists and red-black trees. We consider different implementations of these
data structures with respect to different liveness criteria and synchroniza-
tion primitives, such as lock-based, software transactional memory (STM),
lock-free, and obstruction-free implementations. Our experiments show that
our method effectively optimizes instrumentation instructions, resulting in
significant performance improvement (in some cases up to 50 times), as com-
pared to ad-hoc over-instrumented programs.

Organization. The rest of the paper is organized as follows. In Section 2, we
present the preliminary concepts on control-flow graphs and data-flow dependen-
cies. Section 3 is dedicated to define our notion of observability in concurrent
programs and the statement of our optimization problem to reduce instrumen-
tation. We describe our approach to solve the optimization problem in Section
4. Section 5 presents the results of our experiments. Related work is discussed
in Section 6. Finally, we make concluding remarks and discuss future work in
Section 7.

2 Preliminaries

In this section, we present the preliminary concepts. In particular, in order to
capture data-flow dependencies caused by interleaving executions in concurrent
programs, we first define the notion of Concurrent Control Flow Graphs (CCFG)
[8] in Subsection 2.1. Then, in Subsection 2.2, we elaborate on the notion of data
dependencies as a means to trace the data-flow.

2.1 Concurrent Control-flow Graphs

Intuitively, a concurrent control-flow graph is a control-flow graph which incor-
porates constructs to model concurrency. We use a cobegin/coend construct to
express concurrent execution of threads. The cobegin/coend construct contains
two or more blocks of code, which may in turn contain other cobegin/coend
constructs.

Definition 1. A Concurrent Control Flow Graph (CCFG) is a directed graph
G = 〈N,A, n0〉 such that:

– N is the set of nodes in G. Each node is a basic block. Without loss of
generality, we assume that each basic block contains only one instruction.

3

cobegin

thr1(5);

thr2();

coend

(L0) print f,d,x;

thr1(y){
(L1) g := x+z+y;

(L2) if g > 100 then

(L3) c := d/18;

(L4) else

(L5) c := f*g;

(L6) m := x%y;

(L7) e := g*9;

(L8) b := d-f;

(L9) a := (b+c)/(x*e);

(L10) x := b+1;

}

thr2(){
(L1) e := s*1000;

}

(a) Two threads run-
ning concurrently.

x := b+1

cobegin

e := s*100g:=x+z+y

coend

Exit

c := d/18 c := f*g

a := (b+c)/(x*e)

print f, d, x

Thread entry

Thread exit

Entry

m := x%y

e := g*9

b := d−f

(b) CCFG

a

c
e

d
f g s

z y x

b

L9thr1

L8thr1 L3thr1|L5thr1

L7thr1

L1thr2

L1thr1

(c) Observability graph.

Fig. 1. A C program and its concurrent control-flow graph.

– n0 is the initial node with indegree 0, which represents the initial basic block
of G.

– A is a set of arcs (n,m), where n,m ∈ N . An arc (n,m) exists in A, iff
the execution of basic block n in a thread thr encoded in G immediately leads
to the execution of basic block m in thread thr. ut

For the sake of clarity, we distinguish different types of basic blocks in a
CCFG. These types include Entry , Exit , Cobegin, Coend , Compute, ThreadEntry ,
and ThreadExit . Arcs that involve any type of basic block except for Compute
are trivially added to a CCFG. Arcs which involve Compute basic blocks are
specified in Definition 1. Figure 1(a) shows an example, where the program con-
sists of two threads thr1 and thr2 running concurrently. We consider variables
with the same name in different threads as shared variables. For instance, vari-
able e is a shared variable. The CCFG of the program in Figure 1(a) is shown
in Figure 1(b).

Notation: Let π = n1, n2, . . . , nk be a sequence of nodes of a CCFG G and thr
be a thread encoded in G. By thr(π), we denote the sequence of nodes where
the nodes of all threads except for thr are removed from π.

Definition 2. Let G = 〈N,A, n0〉 be a CCFG. An execution path π of G be-
tween two nodes m and m′ in N is a sequence n1, n2, . . . , nk, such that:

1. n1 = m and nk = m′,

4

2. for all threads thr of G, we have: (i) thr(π) = x1, x2, . . . , xj is a total order,
and (ii) for all i, where 1 ≤ i ≤ j − 1, (xi, xi+1) ∈ A, and

3. the causal relation between nodes in π is a partial order. ut

Intuitively, in Definition 2, Condition 2 requires that the order of basic blocks
of the same thread in π must follow the isolated sequential execution of that
thread. Moreover, Condition 3 expresses that the order of basic blocks of a set
of concurrent threads in π must be in an ordered interleaving fashion.

Notation: To distinguish instructions of different threads, we denote an instruc-
tion of a thread thr by line numberthr. When the thread name is irrelevant or
clear from the context, we omit it.

For example, an execution path of the CCFG in Figure 1(b) is L1thr1, L2thr1,
L3thr1, L6thr1, L1thr2, L7thr1, L8thr1, L9thr1, L10thr1, L0.

2.2 Data-flow Dependencies in Concurrent Programs

Given the value of a set of variables, one normally has to trace back the program’s
data-flow to reach the source of errors.

Definition 3. We say that the value of a variable v depends on the value of
variable v′ iff v = F (v′, V), where F is an arbitrary function and V is the
remaining set of F ’s arguments called parameters [2]. ut

In a source code, any instruction that updates the value of a variable creates a
dependency. For instance, in function thr1, in Figure 1(a), instruction L9 creates
a dependency between variable a and variables b, x, e, and c. We represent a
dependency by a tuple 〈v, n, v′〉, where n is an instruction (i.e., a node in the
corresponding CCFG) and v is a variable whose value can be extracted from
variable v′ via instruction n. In this case, we say that instruction n defines the
value of variable v. In our example, we have 〈a, L9thr1, b〉 and 〈a, L9thr1, c〉.

Some data dependencies are resolved based upon runtime circumstances, e.g.,
in conditional statements. For instance, in thr1, the value of variable c at line L9
is defined by either L3 or L5. As a result, it is incorrect to have the dependency
〈c, L3thr1, d〉, as we cannot determine whether this dependency indeed holds at
run time. Thus, in order to compute data dependencies statically, we consider
a conservative set of instructions that can define the value of a variable at run
time. Hence, we require a representation that conveys that c depends on variable
d or on variables f and g.

In order to resolve this issue, we combine dependencies that define the same
variable into one dependency as follows. When a variable v is defined via in-
structions n1 and n2, where 〈v, n1, v1〉 and 〈v, n2, v2〉 are in two separate and
mutually exclusive conditional branches, we combine instructions n1 and n2 into
one instruction n′ = n1 | n2. Hence, we replace dependencies 〈v, n1, v1〉 and
〈v, n2, v2〉 with 〈v, n′, v1〉 and 〈v, n′, v2〉. This implies that v depends on v1 when

5

cobegin

thr2();

coend

cobegin

thr1(5);

coend

Fig. 2. Two threads running sequentially.

one of the two instructions n1 or n2 execute. The same concept applies for the
dependency between v and v2. In our example, for dependency 〈c, L3thr1, d〉, we
have 〈c, L3thr1 | L5thr1, d〉. In other words, c may depend on d if L3thr1 or L5thr1
execute. In this case, parameters of L3thr1 | L5thr1 is the set {d, g, f}.

During program execution, the value of a variable depends on variables
used/defined by a sequence of instructions leading to the instruction that defines
the variable. For instance, the value of variable a defined by L9thr1 indirectly de-
pends on: (1) variables d and f used by instruction L8thr1 which defines b, (2)
variables d, f, and g used by L3thr1 | L5thr1 which define c, (3) variable g used
by instruction L7thr1 which defines e, and (4) variables x, z, and y used by L1thr1
which defines g.
In order to capture the effect of execution paths on the value of a variable, we
introduce the notion of dependency chains.

Definition 4. Let G be a CCGF and v be a variable. A dependency chain for
v is a sequence σ = 〈v1, n1, v2〉〈v2, n2, v3〉 . . . 〈vk−1, nk−1, vk〉 of dependencies
where:

– v1 = v, and
– the sequence nk, nk−1, . . . , n2, n1 is an execution path of G between basic

blocks n1 and nk [2]. ut

Clearly, determining data dependencies relies on the structure of the source
code. For example, in the source code of Figure 1(a) dependency chains σ1 =
〈a, L9thr1, e〉〈e, L1thr2, s〉 and σ2 = 〈a, L9thr1, e〉〈e, L7thr1, g〉 are both possible.
This is caused by the fact that threads thr1 and thr2 run concurrently. However,
if we change the structure as shown in Figure 2, then dependency σ1 is invalid
while σ2 is still valid. Dependency σ1 is invalid because in all execution paths,
L7thr1 executes after L1thr2, hence the value of a never depends on the value of
e defined by L1thr2.

Typically, one does not need to enumerate all dependency chains of a variable
in order to extract the value of that variable. In other words, we only need to
identify a subset of all dependency chains that is maximal.

Definition 5. Let Sv be a set of dependency chains for a variable v. We say that
Sv is a maximal dependency set for v iff for all dependency chains σ ∈ Sv,
there does not exist a dependency chain σ′, where σσ′ ∈ Sv. ut

6

For example, Sa = {〈a, L9thr1, b〉, 〈a, L9thr1, b〉〈b, L8thr1, d〉, 〈a, L9thr1, x〉,
〈a, L9thr1, e〉} is not a maximal dependency chain of a, as the dependency chain
〈a, L9thr1, b〉 is a prefix of the dependency chain 〈a, L9thr1, b〉〈b, L8thr1, d〉. To
convert Sa into a maximal dependency set, we must either remove 〈a, L9thr1, b〉
or 〈a, L9thr1, b〉〈b, L8thr1, d〉 from Sa.

Finally, we introduce the notion of a program slice [11]. Intuitively, a pro-
gram slice for a variable v is a maximal dependency chain set that covers all
dependency chains that start with v.

Definition 6. Let Sv be a maximal set of dependency chains for a variable v.
We say that Sv is the program slice for v iff there does not exist a dependency
chain σ for v, such that σσ′ is not in Sv for some σ′. ut

For example, the program slice for variable a includes all dependency chains
for a built from instructions L9thr1, L8thr1, L7thr1, L5thr1, L3thr1, L1thr1, and
L1thr2.

3 Observability in Concurrent Programs

In this section, we establish the notion of observability in concurrent systems as a
means for debugging concurrent programs. In the context of program debugging,
outputs often provide us with insufficient information to locate bugs that lead
to erroneous behaviour. This is due to the fact that output values depend on
internal variables, execution paths, and interleavings that are potentially not
unique for each buggy scenario. Normally, we can only observe input and output
variables.

Definition 7. A value of a variable v is naturally observable iff the value is
an output or input of the system. ut

For example, in Figure 1(a), variables d,f,x, and y are naturally observable since
they are outputs and input, respectively. Note that instrumented variables are
considered as program outputs and, hence, naturally observable variables as well.

We now use the notion of program slices in Definition 6 to define what it
means for a variable to be observable. Intuitively, a variable is observable if there
exists a sub-slice of the variable, where each dependency chain in the sub-slice
ends with a variable that is naturally observable.

Definition 8. A sub-slice S ′ of a slice S is a set of dependency chains, where
each chain in S ′ is a prefix of a chain in S. ut

To motivate the idea of observability, notice that given the value of naturally
observable variables d, f, x, and y in our running example, we cannot extract
the value of a using a’s program slice. To extract the values of a, we require the
values of b, c, e, and x. Variable a does not have a dependency with the value
of x printed on line L0, since a uses the value of x before it is redefined at line

7

L10 and printed on L0. On the other hand, a has dependencies with d and f via
variables b and c at lines L8, L5, and L3. Moreover, d and f can only lead to
extracting the value of b and c at lines L8 and L3. Hence, the value of c is still
unknown at L9 since we can not predict if c will be defined via line L3 or L5 at
runtime. As a result, we cannot guarantee determining the value of c at line L9
without having the value of g. In addition, based on thr1’s code, it is clear that
d, f, and y can not be used to extract values of e and x at line L9. Hence, the
values of x, e, and c are still required for extracting the value of a. Therefore,
no sub-slice of a provides enough information to extract a’s value.

We now formally define the constraints that need to be satisfied to extract
the value of a variable in concurrent programs.

Definition 9. A sub-slice S is complete iff

1. for each dependency 〈v, n, v′〉 in a dependency chain of S, there exists a
dependency 〈v, n, v′′〉 in at least one dependency chain of S, for each variable
v′′ in n’s parameter set.

2. for every dependency prefix 〈v, nthr , sv〉〈sv ,mthr , v
′〉 in S, if there exists an-

other thread thr ′ running concurrently with thr that contains an instruction
of the form:

(L) sv := F (v′′);
i.e., sv is a shared variable also defined by thr ′, then there must exist a

dependency chain σ′ ∈ S that contains 〈sv , Lthr′ , v
′′〉. ut

For example, the sub-slice Sa = {〈a, L9thr1, b〉, 〈a, L9thr1, x〉, 〈a, L9thr1, e〉} is not
complete, since it violates both Conditions 1 and 2 of Definition 9. To satisfy
Condition 1, we add dependency 〈a, L9thr1, c〉 to Sa and to satisfy Condition
2, we add dependency 〈a, L1thr2, e〉 to Sa, as e is defined by thr2 which runs
concurrently with thr1.

Definition 10. A variable v is observable iff there exists a complete sub-slice
Sv where:

– every dependency chain σ ∈ Sv ends in a naturally observable variable, and
– every shared variable sv in S is naturally observable.

We call Sv an observable sub-slice. ut

To clarify the need for Condition 2 in Definition 10, consider Figure 1(a).
In order to observe the value of variable a, we require the value of variable e.
Variable e is updated by both lines L7thr1 and L1thr2. Since thr1 and thr2 run
concurrently, we can not predict which of the two lines L7thr1 or L1thr2 is last
to update e. Hence, we need to explicitly extract the time at which both lines
execute, so one can determine which instruction defines the value of e used at
line L9thr1. As a result, we need to explicitly make e naturally observable at both
lines L7thr1 and L1thr2 to be capable of observing the time at which the instruc-
tions execute and consequently extract which instruction was the last to define e.

8

Problem Statement. As mentioned earlier, in addition to inputs and out-
puts, we consider instrumented variables as naturally observable variables, as
their value can be explicitly observed. When program development is divided
among multiple development groups, the program may suffer from under- or
over-instrumentation defects caused by developers due to lack of knowledge
about other developments.

Our goal is to optimize data-flow instrumentation in concurrent programs to
tackle over- and under-instrumentation defects. Informally, given a set of desired
variables required for debugging, our goal is to find the minimum set of variable
in the program that should be made naturally observable (i.e., instrumented), so
that the set of desired variables become observable. Formally, we aim at solving
the following optimization problem:

Given a concurrent program and a set V of desired variables to
be made observable, decide whether there exists a set of vari-
ables V ′, where |V ′| ≤ k for some positive integer k, such that
by making variables in V ′ naturally observable, there exists an
observable sub-slice Sv for all v ∈ V .

4 Approach

In this section, we propose our approach to solve the optimization problem, in-
troduced in Section 3. Our method consists of three steps: (1) extracting program
slices of variables required to be observed (i.e., desired variables), (2) building
a graph representation of slices, and (3) transforming the optimization problem
using the graph built in Step 2 into a satisfiability decision problem. These steps
are discussed in Subsections 4.1, 4.2, and 4.3, respectively.

4.1 Extracting Program Slices

Given a concurrent program and a set V of desired variables, we first extract the
program slices of V from the Static Single Assignment (SSA) [4] representation
of the program by leveraging the slicing algorithm proposed in [11]. Our slicing
approach takes the following steps for all v ∈ V :

1. We find the threads, say thr , that execute instructions defining v. Then, we
extract the dependency chains of v by only using instructions of thr ; i.e.,
we do not expand the chains over different threads. We use a reachability
algorithm [14] to extract these chains.

2. For every chain σ found in Step 1, we extract the last variable v′ of σ. We
check if v′ is defined by an instruction of a thread, say thr ′, which does not
run concurrently with thr . If so, we find dependency chains of v′ in thr ′ using
the method in Step 1. Subsequently, we append the newly extracted chains
to σ and create a new set of chains which we add to the set of dependency
chains of v. We repeat this step until no new chains are created.

9

3. For every chain σ identified in Steps 1 and 2, we extract the instructions, say
L, in σ which use a shared variable sv . Next, we extract the threads, say thr ,
that execute instruction L. Then, we check if sv is defined by instructions
executed by a different thread, say thr ′, that runs concurrently with thr . If
so, we find the instructions, say L′ , that define sv in thr ′. We subsequently
check if data dependency is possible from the sv used in L to sv defined in L′ .
To this end, we perform a lightweight static analysis to take synchronization
issues into account. For instance, if L and L′ are both protected with the
same lock (e.g., a mutex or transaction), then data dependency between L
and L′ can be eliminated. If a dependency is possible, we apply Steps 1 and
2 to extract the corresponding dependency chains for sv in thr ′. Then, we
append sv ’s dependency chains to σ and create a new set of chains which we
add to the set of dependency chains of v. We repeat this step until no new
chains are created.

4. Finally, we test whether each dependency chain σ found for v is indeed
possible by checking if there exists an execution path in the CCFG of the
program that creates σ. If not, we discard σ from the set.

4.2 Building Observability Graph

Let v be a desired variable and Sv be the program slice for v ∈ V . In order
to find the minimum number of variables for instrumentation in a systematic
fashion, we build the observability graph [12] that encodes program slice Sv. Let
VSv be the set of all variables involved in Sv and ISv be the set of all instructions
involved in Sv. We construct the observability graph G = 〈VG , AG〉 as follows.

– (Vertices) VG = CG ∪ UG , where CG = {ci | i ∈ ISv} and UG = {uv | v ∈
VSv}. We call the set CG , context vertices (i.e., one vertex for each instruction
in ISv) and the set UG , variable vertices (i.e., one vertex for each variable in
VSv).

– (Arcs) AG = {(u, c) | u ∈ UG ∧ c ∈ CG ∧ the value of variable u is defined
by context c} ∪ {(c, u) | u ∈ UG ∧ c ∈ CG ∧ variable u is used by context
c}.

For example, the observability graph3 of variable a is presented in Figure 1(c).
For instance, context vertex L9thr1 shows dependency of a to variables (directly)
b, c, e and (indirectly) x. Also, Figure 1(c) shows that shared variable e affects
the value of a through instruction L1thr2 as well. We emphasize that although
our construction of an observability graph is with respect to one variable, it is
trivial to merge several graphs for multiple desired variables.

In the context of an observability graph, notice that a variable vertex v is
observable if there exists a context vertex c, such that (1) (v, c) is an arc in the
graph, and (2) all variable vertices, say v′, are observable, where (c, v′) is an arc

3 For simplicity, this graph is constructed from the original source code and not from
its SSA mode.

10

in the graph. Thus, our objective is to find the minimum number of variable
vertices of the graph whose instrumentation makes the root vertex of the graph
observable.

4.3 SAT-Based Optimization

In [12], we prove that the optimization problem for observability graphs of se-
quential programs is NP-complete. Thus, in the context of concurrent programs,
the problem involves two exponential blow-ups: one for computing program slices
[11] (and, hence, an observability graph), and (2) solving the optimization prob-
lem. In order to cope with the second exponential blow-up, in [12], we leverage
a mapping to integer linear programming (ILP). In this Subsection, we intro-
duce a more efficient method by transforming our optimization problem into the
propositional satisfiability problem (SAT)4.

Let G = 〈VG , AG〉 be an observability graph and V ′ ⊆ VG represents the set
of desired variables. We include the following variables:

– X = {xv | v ∈ VG}: each variable vertex v is mapped to a Boolean variable
xv, where xv = true if v is observable and false otherwise.

– Z = {zv | v ∈ VG}: each variable vertex v is mapped to a Boolean variable
zv, where zv = true if v is instrumented and false otherwise.

– Q = {qc | c ∈ (CG ∪ CH)}: each context vertex c is mapped to a Boolean
variable qc, where qc = true if all variables used by c are observable and
false otherwise. In addition, CH = {cv | v ∈ VG} contains context vertices
for each variable v ∈ VG representing hypothetical instructions that would
instrument v; i.e., such instrumentations do not exist in the original code
and will only be added to the code if v is chosen to be instrumented. Each
context vertex c ∈ CH is mapped to a Boolean variable qc: the value of
qc = true if c is added to the code to instrument the corresponding variable
and false otherwise.

– Y = {yz | z ∈ Z}: for each variable z ∈ Z, we include an integer variable yz
for our optimization objective.

Constraints on variable vertices. Obviously, every desired variable must
be observable. Hence, we add the following constraint for each v ∈ V ′:

xv ⇐⇒ true.

Moreover, each variable xv ∈ X is true if and only if the value of the variable v
is observable via the context vertex that defines v or by instrumenting v:

xv ⇐⇒ (qcv ∨ qc′v),

4 Our experiments show that the SAT-based method in this paper is considerably
faster than the ILP-based method in [12].

11

where cv is the context vertex that defines v and c′v is the instruction that
instruments v. Finally, we require that yz ∈ Y , where z ∈ Z, has value 1 when
z = true and has value 0 otherwise:

(yz = 1) ⇐⇒ z and (yz = 0) ⇐⇒ ¬z.

Constraints on context vertices. The value of a variable qc ∈ Q, where
c ∈ CG , must be true if and only if all the variables used by c are observable:

qc ⇐⇒
∧
v∈Vc

xv,

where Vc = {u | (c, u) ∈ AG}. On the other hand, if cv ∈ CH , then qc must be
true if and only if when v is instrumented; i.e., when zv = true.

qcv ⇐⇒ zv

In this expression, when zv = true an instruction is added to the code to instru-
ment v.
Optimization objective. Following the optimization criterion presented in
Section 3, we require that the number of variables to be instrumented is not
greater than K: ∑

y∈Y
y ≤ K,

for some positive integer K specified by the user5.

5 Experiments

Our goal in this section is twofold: (1) to demonstrate the effectiveness of our
method through measuring the number of instrumentations removed from an
over-instrumented program after applying our method, and (2) to evaluate the
impact of our approach by studying the performance (i.e., execution time) of op-
timally instrumented programs as compared to their over-instrumented versions.
We note that in the over-instrumented versions, any instruction that can change
the state of concurrent data structures is instrumented for debugging purposes.

Our approach is implemented in a tool chain consisting three phases:

1. First, we implement a new pass over LLVM [7] that takes a program’s source
code and the set of desired variables as input. The pass extracts program
slices using the method described in 4.1 and the static single assignment
(SSA) mode of the program code. We currently do not handle alias and
pointer data structures.

5 To find the smallest K one can solve the SAT formula multiple times, each time
with a smaller K until the formula is not satisfiable.

12

2. Given the extracted program slices, we transform the respective optimization
problem into a SAT formula in the input language of our SAT-solver using
the method described in Section 4.3.

3. We solve the generated SAT model using the Yices SMT-solver [1]. The
solution presents the set of variables that need to be instrumented in the
source code (set of naturally observable variables).

This section is organized as follows. In Subsection 5.1, we discuss the pa-
rameters of our experiments. In Subsection 5.2, we analyze the results of our
experiments.

5.1 Experimental Setup

Our two case studies are concurrent implementations of linked-lists and red-black
trees. We use regular arrays to eliminate possible pointer analysis. In both test
cases, insert, delete, and search operations can run concurrently, where a thread
inserts data elements (i.e., producer) and a thread deletes data elements (i.e., a
consumer). In addition, we consider the following synchronization methods for
each case study:

1. Lock-based. These algorithms employ blocking data structures (e.g.,
semaphores and mutexes) to enforce linearizable insertion and deletion. In
particular, we use our mutex-based implementation of concurrent linked lists
and the algorithm in [5] for concurrent red-black trees (with 656 lines of code
and 57 desired variables).

2. Non-blocking. This group of solutions ensures that threads competing
for a shared resource do not have their execution indefinitely postponed by
mutual exclusion. We use the following implementation for our experiments:

– We use the lock-free algorithm in [6] for concurrent linked lists (with
1180 lines of code and 85 desired variables) implemented by the CAS
(compare-and-swap) operation. Lock-free algorithms ensure that if the
program threads run sufficiently long at least one of the threads makes
progress.

– We use the obstruction-free algorithm in [3] for concurrent linked lists
(with 797 lines of code and 71 desired variables) implemented by virtual
locks and the CAS operation. Obstruction-free algorithms guarantee that
at any point, a single thread executed in isolation (i.e., with all obstruct-
ing threads suspended) for a bounded number of steps will complete its
operation.

– Algorithms based on software transactional memory (STM) hide syn-
chronization issues from the programmer; i.e., the programming language
provides the programmer with atomic constructs in which reading and
writing shared variables take place. In particular, we use our own STM-
based implementation of concurrent linked lists and the algorithm in
[5] for concurrent red-black trees (with 730 lines of code and 56 desired
variables).

13

Application Concurrency Count Mean Median SEM CI-95 Min Max

1 Linked-list Nested-locks 5 14.13 14.01 0.22 0.30 13.65 14.94
2 Linked-list Lock-free [6] 5 5526.37 5529.79 6.53 9.06 5502.49 5539.07
3 Linked-list Obstruction-free [3] 5 2686.26 2683.78 8.01 11.10 2663.26 2707.92
4 Linked-list STM 5 257.13 258.05 1.14 1.58 252.72 258.90
5 Red-black tree Nested-locks [5] 20 3.95 3.95 0.00 0.00 3.95 3.95
6 Red-Black tree STM [5] 10 4.46 4.46 0.00 0.00 4.46 4.46

Table 1. Detailed numbers for the instrumented version with I/O delay= 100µs and
number of insert operations = 200.

The set of desired variables in our experiments include the data contained
in the linked-list/red-black tree at any point of execution and the temporary
variables used in search, addition, and deletion operations. Thus, instrumenting
all these variables is likely to result in over-instrumentation.

Parameters that affect the execution time of experiments are: (1) number
of producer and consumer threads, (2) number of insert and delete operations,
(3) type of data elements (e.g., long, short, int), (4) time consumed by each in-
strumentation instruction, (5) number of shared variables, and (6) structure of
the source code (i.e., synchronization method). In our experiments, we keep the
number of producer and consumer threads, type of data elements, and number
of shared variables as constants. The rest are obviously variables in our exper-
iments. In particular, we incorporate different numbers of insert operations to
study the impact of our optimization on long running programs. Different du-
rations of the instrumentation instruction show the impact of our method for
different instrumentation technologies. For instance, printf() statements nor-
mally take 80µs, whereas EEPROM data logs take 1ms. All experiments in
this section are run on workstations ranging from a Core2Duo to a Core I3
quad-core machines with sufficient memory. Each test series is completed on the
same machine, hence, the execution-time measurements from one test series are
comparable.

We measure the execution time using the well-accepted utility time. Since
individual measurements can be inaccurate (due to context switches or I/O
operations between the program and time), we repeated each experiment several
times and carried out solid statistical analysis. We have collected sufficient data
to have representative and robust results. While we cannot provide the key
metrics for all individual data points, Table 1 shows the results for the data series
with the least number of values—it is the series where several configurations take
more than an hour to complete. In Table 1, SEM and CI-95 abbreviate Standard
Error of the Mean and 95% Confidence Interval, respectively. We also performed
the following consistency checks on the data: measurements must be positive
and growing with respect to the number of insert operations and the amount of
I/O delay.

14

5.2 Results and Analysis

Reduction in number of instrumentations. We apply our method to over-
instrumented implementations to optimize the instrumentations of the source
code. Table 2 shows that our method achieves a 45% reduction on average across
our case studies. Although the set of desired variables is common among differ-
ent implementations, we observe different reductions in instrumentation, as the
amount of reduction depends on the structure of the code. For instance, we do
not require instrumentation in the atomic sections of STM-based algorithms,
since the changes are local to the threads and do not affect shared variables;
i.e., we only need to instrument the values committed into the shared variables
by the threads (experiments 4 and 6). On the other hand, in the lock-free and
obstruction-free implementations, we require more instrumentation due to lack of
synchronization and more possible interleaving scenarios that must be observed.
In nested-locks implementations, since the changes carried out in between the
locks directly affect shared variables, we need to instrument the code in between
the locks. Hence, it requires more instrumentation as compared to STM-based
algorithms, but less as compared to non-blocking algorithms, as they have less
interleaving scenarios.

Enhancement in performance. We now compare the performance of over-
instrumented test cases against the performance of their optimally instrumented
versions in terms of execution time. In the first set of experiments (see Figure
3(a)), we compare the performance of the case studies, where the I/O delay (time
consumption) of instrumentation instructions varies from 1µs to 1ms, while the
number of insert operations is constant (= 100). We have collected 1692 data
samples from these experiments for statistical soundness (discussed later). Ob-
viously, Figure 3(a) shows that the performance of optimally instrumented im-
plementations is significantly better than the over-instrumented versions. For
example, the performance of both red-black tree implementations improve with
a factor of two. The reason behind this small improvement is that our method
is forced to place 48% of the required instrumentation in loop structures to
make desired variables observable. Hence, the effect of the I/O delay of each
instrumentation on the performance is multiplied by the loop counts. On the
other hand, Figure 3(a) shows a 40 times performance improvement in lock-free

Application Concurrency Original Inst. Optimized Inst.

1 Linked-list Nested-locks 43 20
2 Linked-list Lock-free [6] 49 23
3 Linked-list Obstruction-free [3] 42 24
4 Linked-list STM 28 15
5 Red-black tree Nested-locks [5] 320 205
6 Red-black tree STM [5] 294 189

Table 2. Reduction in Instrumentation

15

I/O Delay of Instrumentation

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t F

ac
to

r

10

20

30

40

50

●
●

●

●

●

●
●

● ●

●●
● ● ● ● ● ● ●

200 400 600 800 1000

combined

● Linked−List Inst Nested−Locks
● Linked−List Inst Non−Blocking

Linked−List Inst Obstruction−Free
Linked−List Inst STM
Red−Black−Tree Inst Nested−Locks
Red−Black−Tree Inst STM

(a) Performance improvement vs. instru-
mentation instruction I/O delay with
constant number of insert operations (=
100)

Insert Operations

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t F

ac
to

r

10

20

30

40

50

60

70

●

●

●

●

●

●
●

●
●

●

●

● ● ● ● ● ● ●

200 400 600 800 1000

combined

● Linked−List Inst Nested−Locks
● Linked−List Inst Non−Blocking

Linked−List Inst Obstruction−Free
Linked−List Inst STM
Red−Black−Tree Inst Nested−Locks
Red−Black−Tree Inst STM

(b) Performance improvement vs. the
number of insert operations with con-
stant instrumentation I/O delay (=
100µs).

Fig. 3. Performance evaluation of instrumentation optimization.

and obstruction-free implementations, as the majority of the instrumentations
introduced by our method reside outside loop structures. In general, the im-
provement factor differs from one case study to another, since instrumentation
locations tightly depend upon the structure of the source code. In addition,
the results show that the improvement factor in performance is insensitive to
different durations for instrumentation instructions.

In the second set of experiments, we compare the execution time of the case
studies, where the number of concurrent insertions in the linked-list/red-black
tree varies from 1 to 1000 (see Figure 3(b)). We collected 966 data samples from
these experiments for statistical soundness. Obviously, Figure 3(a) shows that the
performance of the optimally instrumented implementations is better than over-
instrumented versions. The results show that we achieve a small improvement
in the performance of red-black tree implementations due to the same reason
discussed in the previous experiment. In addition, the results show that the
improvement in performance in each case study is insensitive to the number
of insertions, although the improvement factor differs from one case study to
another (as the improvement factor depends upon the source code structure).

6 Related Work

The work on designing effective runtime logs are the closest to our work. Lo-
gEnhancer [23] enhances log messages in a source code by automatically adding
causally-related information to messages. It uses static analysis to find data
that must be presented in the messages to identify the source of a failure. Our

16

work differs from LogEnhancer in two aspects: (1) we are only concerned with
the efficient extraction of causally-related data, and (2) we focus on concurrent
programs while LogEnhancer works on sequential programs.

The work in the context of testing concurrent programs focuses on two
aspects. The first aspect focuses on finding interleaving scenarios that cause
crashes. CHESS [10] is a stateless model checker that finds erroneous inter-
leaving scenarios by injecting preemptions into programs. CTrigger [16] finds
interleaving scenarios that violate correct access patterns of shared variables.
In [22], a technique is proposed for extracting interleaving scenarios that lead
to a Heisenbug in a multi-core architecture. The second aspect concentrates on
achieving deterministic replay of previously seen interleaving scenarios. These
approaches carry out logging either at software level [13, 15, 17] that imposes
considerable overhead or at hardware level [9, 19] that imposes less overhead but
their applicability is limited. Our work compliments the work in this area, since
our approach extracts the information required to find corruptions caused by
erroneous interleavings. Moreover, our method checks whether log messages are
sufficient for successful replay and path re-construction.

7 Conclusion and Future Work

In this paper, we introduced an automated technique to optimize instrumen-
tation of multi-threaded programs to achieve software observability. Intuitively,
observability in a concurrent program enables a debugger to extract the value of
a set of desired variables through instrumenting another (possibly smaller) set
of variables, called naturally observable. Thus, our optimization method iden-
tifies the minimum set of naturally observable variables whose instrumentation
makes the value of desired variables extractable. Since our optimization problem
is NP-complete, we encoded the problem as a propositional satisfiability problem
(SAT) to leverage powerful SAT-solvers to tackle our problem.

In our tool chain, we used LLVM and a slicing algorithm to extract program
data-flow dependencies. This is achieved by implementing a new pass over LLVM
that takes the source code and a set of desired variables as input and generates
the full set of data-flow dependencies as output through which we generate a
SAT formula. The solution to the SAT problem is the set of variables that need
to be instrumented. Our experimental results on concurrent linked lists and red-
black trees using different concurrency techniques show significant gains (up to
50 times) in performance of optimally-instrumented programs using our method
as compared to ad-hoc over-instrumented programs.

For future work, we are considering two main research directions: (1) tech-
niques for solving the optimization problem more efficiently, and (2) extend-
ing the concept of observability to other domains. For the former, we are cur-
rently working on using lightweight model checking as well as developing our
own heuristics to compute slices in concurrent programs more efficiently while
taking inter-thread synchronizations into account. These techniques potentially
result in obtaining less complex SAT models. For the latter, we are considering

17

methods that address pointer data structures as well. Another direction is to
devise probabilistic methods that make desired variables observable with certain
probabilities.

8 Acknowledgement

This research was supported in part by NSERC DG 357121-2008, ORF RE03-
045, ORE RE04-036, ORF-RE04-039, ISOP IS09-06-037, APCPJ 386797-09, and
CFI 20314 with CMC.

References

1. Yices: An SMT Solver. http://yices.csl.sri.com.
2. P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge University

Press, New York, USA, 2008.
3. H. Attiya and E. Hillel. Built-In Coloring for Highly-Concurrent Doubly-Linked

Lists . Distributed Computing, 4167:31–45, 2006.
4. R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently

Computing Static Single Assignment Form and the Control Dependence Graph.
ACM Transactions on Programming Languages and Systems, 13(4):451–490, 1991.

5. K. Fraser and T. Harris. Concurrent programming without locks. ACM Trans.
Comput. Syst., 25(2), 2007.

6. T. L. Harris. A pragmatic implementation of non-blocking linked-lists. In DISC,
pages 300–314, 2001.

7. C. Lattner and V. Adve. Llvm: A compilation framework for lifelong program
analysis and transformation. In CGO, pages 75–, 2004.

8. J. Lee, S. P. Midkiff, and D. A. Padua. A constant propagation algorithm for explic-
itly parallel programs. International Journal of Parallel Programming, 26(5):563–
589, 1998.

9. P. Montesinos, M. Hicks, S. T. King, and J. Torrellas. Capo: A Software-Hardware
Interface for Practical Deterministic Multiprocessor Replay. In ASPLOS, pages
73–84, 2009.

10. M. Musuvathi and S. Qadeer. Iterative Context Bounding for Systematic Testing
of Multithreaded Programs. In PLDI, pages 446–455, 2007.

11. M. G. Nanda and S. Ramesh. Slicing concurrent programs. In ISSTA, pages
180–190, 2000.

12. S. Navabpour, B. Bonakdarpour, and S. Fischmeister. Software debugging and
testing using the abstract diagnosis theory. In LCTES, pages 111–120, 2011.

13. R. H. B. Netzer and M. H. Weaver. Optimal Tracing and Incremental Reexecution
for Debugging Long-Running Programs. In PLDI, pages 313–325, 1994.

14. K. J. Ottenstein and L. M. Ottenstein. The program dependence graph in a
software development environment. In SDE, pages 177–184, 1984.

15. D. Z. Pan and M. A. Linton. Supporting Reverse Execution for Parallel Programs.
In SIGPLAN and SIGOPS Workshop on Parallel and Distributed Debugging, pages
124–129, 1988.

16. S. Park, S. Lu, and Y. Zhou. Ctrigger: Exposing Atomicity Violation Bugs from
Their Hiding Place. In ASPLOS, pages 25–36, 2009.

18

17. M. Ronsse, K. D. Bosschere, M. Christiaens, J. C. D. Kergonneaux, and D. Kranzl-
muller. Record/Replay for Nondeterministic Program Executions. Communication
of the ACM, 46(9):62–67, 2003.

18. Ulrich Schmid. Monitoring of Distributed Real-Time Systems. Real-Time Systems,
7(1):33–56, 1994.

19. S. M. Srinivasan, S. Kandula, C. R. Andrews, and Y. Zhou. Flashback: A
Lightweight Extension For Rollback and Deterministic Replay for Software De-
bugging. In USENIX, pages 29–44, 2004.

20. Henrik Thane and Hans Hansson. Towards Systematic Testing of Distributed
Real-Time Systems. In RTSS, pages 360–369, 1999.

21. Henrik Thane, Daniel Sundmark, Joel Huselius, and Anders Pettersson. Replay
Debugging of Real-Time Systems Using Time Machines. In IPDPS, page 8, 2003.

22. D. Weeratunge, Xiangyu Zhang, and Suresh Jagannathan. Analyzing Multicore
Dumps to Facilitate Concurrency Bug Reproduction. In ASPLOS, pages 155–166,
2010.

23. D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage. Improving Software Diagnos-
ability via Log Enhancement. In ASPLOS, pages 3–14, 2011.

19

