Abstract Model Repair

George Chatzieleftheriou®, Borzoo Bonakdarpour?, Scott A. Smolka?, and
Panagiotis Katsaros!

! Department of Informatics, Aristotle University of Thessaloniki
54124 Thessaloniki, Greece
2 School of Computer Science, University of Waterloo
200 University Avenue West Waterloo N2L3G1, Canada
3 Department of Computer Science, Stony Brook University
Stony Brook, NY 11794-4400, USA

Abstract. Given a Kripke structure M and CTL formula ¢, where
M [~ ¢, the problem of Model Repair is to obtain a new model M’
such that M’ |= . Moreover, the changes made to M to derive M’
should be minimal with respect to all such M’. As in model checking,
state explosion can make it virtually impossible to carry out model re-
pair on models with infinite or even large state spaces. In this paper, we
present a framework for model repair that uses abstraction refinement to
tackle state explosion. Our model-repair framework is based on Kripke
Structures, a 3-valued semantics for CTL, and Kripke Modal Transition
Systems (KMTSs), and features an abstract-model-repair algorithm for
KMTSs. Application to an Automatic Door Opener system is used to
illustrate the practical utility of abstract model repair.

Keywords: Model Repair, Model Checking, Abstraction Refinement

1 Introduction

Given a model M and temporal-logic formula ¢, model checking is the problem of
determining if M = ¢. When this is not the case, a model checker will typically
provide a counterexample in the form of an execution path along which ¢ is
violated. The user should then process the counterexample manually to correct
the model.

An extended version of the model-checking problem is that of model repair:
given a model M and temporal-logic formula ¢, where M [~ ¢, obtain a new
model M’ such that M’ = ¢. The problem of Model Repair was introduced for
the first time in the context of Kripke structures and the CTL temporal logic
in [4].

State explosion is a well known problem in automated formal methods, such
as model checking and model repair, which limits their applicability to systems
having large or even infinite state spaces. Different techniques have been devel-
oped to cope with this problem. In the case of model checking, abstraction is
used to create a smaller, more abstract version M of the initial concrete model

M, and model checking is performed on this smaller model. For this technique
to work as advertised, it should be the case that M = ¢ iff M = .

Motivated by the success of abstraction-based model checking, we present
in this paper a new framework for Model Repair that uses abstraction refine-
ment to tackle state explosion. The resulting Abstract Model Repair (AMR)
methodology makes it possible to repair models with large state spaces, and to
speed-up the repair process through the use of smaller abstract models. The
major contributions of our work are as follows:

— We provide an AMR framework that uses Kripke structures (KSs) for the
concrete model, Kripke Modal Transition Systems (KMTSs) for the abstract
model, and a 3-valued semantics for interpreting CTL over KMTSs. An
abstract KMTS model is refined whenever the 3-valued CTL model-checking
problem returns a value of undefined. Repair is initiated on the KMTS when
a value of false is returned.

— We strengthen the Model Repair problem by additionally taking into account
the following minimality criterion (refer to the definition of Model Repair
above): the changes made to M to derive M’ should be minimal with respect
to all M’ satisfying ¢. To handle the minimality constraint, we define a metric
space over KSs that quantifies the structural differences between KSs.

— A key feature of our Abstract Model Repair framework is a repair algorithm
for KMTSs, which takes into account the minimality criterion.

— We illustrate the utility of our approach by applying it to the repair of an
Automatic Door Opener system [1].

The rest of this paper is organized as follows. Sections 2 and 3 introduce KS,
KMTSs, and the concepts of abstraction and refinement for a 3-valued semantics
for CTL. Section 4 defines a metric space for KSs and gives the problem state-
ment for Model Repair. Section 5 presents our framework for Abstract Model
Repair, while Section 6 highlights our model-repair algorithm for KMTSs. Sec-
tion 7 considers related work, while Section 8 offers our concluding remarks.

2 Kripke Modal Transition Systems

Let AP be a set of atomic propositions. Also, the set Lit of literals is given by:
Lit=AP U {-p:pe€ AP}
Definition 1. A Kripke Structure (KS) is a quadruple M = (S, Sy, R, L), where:

1. S is a finite set of states.

2. Sy C S is the set of initial states.

8. R C S x S is a transition relation that must be total; i.e., Vs € S, s’ € S
such that R(s,s’).

4. L : 8 — 2% js g state labeling function such that Vs € S, ¥p € AP,
pe Lis) & ¢ Lis).

Fig. 1: The Automatic Door Opener (ADO) System.

The fourth condition in Def. 1 ensures that an atomic proposition p € AP has
one and only one truth value at any state.

Ezample. We use the Automatic Door Opener system (ADO) of [1] as a running
example throughout the paper. The system, given as a KS in Fig 1, requires
a three-digit code (po,p1,p2) to open a door, allowing for a wrong digit to be
entered at most twice. Variable err counts the number of errors, and an alarm
is rung if its value exceeds two. For the purposes of our paper, we use a simpler
version of the ADO system, given as the KS M in Fig. 2a, where the set of
atomic propositions AP = {q}, ¢ = (open = true).

Definition 2. A Kripke Modal Transition System (KMTS) is a 5-tuple M
(Sa SO: Rmust7 Rmay7 L), where:

1. S is a finite set of states.

2. Sy C S is the set of initial states.

3. Ryust C Sx S and Riay C S xS are transition relations such that Roust €
Rynay-

4. LS — 2Lt s g state-labeling such that Vs € S, Vp € AP, § is labeled by at
most one of p and —p.

A KMTS has two types of transitions: must-transitions, which exhibit nec-
essary behavior, and may-transitions, which exhibit possible behavior. The “at
most one” condition in the fourth part of Def. 2 makes it possible for the truth
value of an atomic proposition at a given state to be unknown. This relaxation
of truth values in conjunction with the existence of may-transitions in a KMTS
constitutes a partial modeling formalism.

Verifying a CTL formula ¢ over a KMTS may result in an undefined answer
(L). We use the S-valued semantics [13] of a CTL formula ¢ at a state § of
KMTS M (denoted [(M, 3) =* ¢]). From the 3-valued semantics, it follows that

must-transitions (under-approximation) are used to check the truth of existential
CTL properties, while may-transitions (over-approximation) are used to check
the truth of universal CTL properties. This works inversely for checking the
refutation of CTL properties. When we get L from the 3-valued model checking
of a CTL formula ¢ on a KMTS, the result of model checking property ¢ on the
corresponding KS can be either true or false. In the rest of the paper, we use |=
instead of =2 in order to refer to 3-valued satisfaction relation.

3 Abstraction and Refinement for 3-Valued CTL

3.1 Abstraction

Abstraction is a state-space reduction technique that produces a smaller abstract
model from an initial concrete model, so that the models behave similarly. In
order for the result of verifying an abstract model to hold for its concrete model,
the abstract model should be produced with certain requirements [7,10].

Definition 3. Let M = (S, S, R, L) be a KS. For any pair of total functions
R=(x:S—=87:85—2%), where Vs € S, 3 € S, a(s) = if and only if
s €v(8), a KMTS M = (S, So, Ruusts Rmay, L) is defined as follows:

1. 3€ Sy iff Is € y(8) such that s € So

2. lit € L(3) only if Vs € 4(3) it holds that lit € L(s)

3. Rpust = {(51,52) | Vs1 € v($1) Ts2 € v(s2) such that R(s1,s2)}
4. Rpay = {(1,52) | 3s1 € v(1) Ts2 € v(s2) such that R(s1,s2)}

For a given KS and pair of abstraction and concretization functions, Def. 3
introduces a KMTS with a set S of abstract states. In our AMR framework, we
view the given KS as the concrete model and the derived KMTS as the abstract
model. A state of the abstract KMTS is initial if and only if at least one of its
concrete states is initial. An atomic proposition is true (or false) in an abstract
state, only if this atomic proposition is true (or false) in all of its concrete states.
Only if allows for the value of an atomic proposition to be unknown at a KMTS
state. Between two abstract states s71,55, there exists a must-transition if there
are transitions from all the concrete states of s to at least one concrete state
of §» (V3 — condition), while on the other side, there exists a may-transition if
there is a transition from at least one concrete state of 7 to at least one concrete
state of sy (33 — condition).

Definition 4. [8,11] Let M = (5, S0, R, L) be a concrete KS, and let M =
(S, S0, Rmust, Rmay, L) be an abstract KMTS. A relation H C S x S for M and

M is called a mixed simulation, when H (s, §) implies:

— L(3) C L(s) o
— ifr = (s,8') € R, then there exists some s’ € S such that rpq, = (8,5) €
Ry and (s',s') € H.

Mrefined

(a) The KS and initial KMTS. (b) The KS and refined KMTS.

Fig. 2: The KS and KMTSs for the ADO system.

— if st = (,§’) € R,ust, then there exists some s’ € S such that r =
(s,s') € R and (s',s') € H.

Abstraction function « in Def. 3 is a mixed simulation for KS M and KMTS M.

Theorem 1. [11] Let H C S XA,SA’ be a mized simulation from a KS M =
(S,80,R,L) to a KMTS M = (5,50, Rmust: Rmay, L). Then, for every CTL
formula ¢ and every (s,§) € H it holds that

[(M,3) F ¢l # L= [(M,s) F o] = [(M,3) |= 4]

Theorem 1 ensures that if a CTL formula ¢ has a definite truth value (true or
false) in the abstract KMTS then it has the same truth value in the concrete
KS.

Ezample. An abstract KMTS M is presented in Fig. 2a, where all the states
labeled by ¢ are grouped together, as are all states labeled by —q.

3.2 Refinement

When the answer to verifying a CTL formula ¢ on an abstract model using the
2-valued semantics is L, then a refinement step is needed to acquire a more
precise abstract model. A number of refinement frameworks specialized for 3-
valued model checking have been proposed [10,16]. The refinement technique
that we use in our framework is a two-step process: (1) identify a failure state in
the KMTS, and (2) produce a new abstract KMTS such that this failure state is
refined into several states. The cause of failure for a state s stems from an atomic
proposition having an undefined value in s, or from an outgoing may-transition
from s. In both cases, s is refined in a way that the cause of failure is eliminated.

Ezample Consider the case where the ADO system requires a mechanism for
opening the door from any state with a direct action. This could be an action
done by an expert if an immediate opening of a door is required. This property
can be expressed in CTL as the formula ¢ = AGFEX¢q. Observe that in M of
Fig. 2a, the absence of a must-transition from 3y to 81, where [(M,51) = ¢] =
true, in conjunction with the existence of a may-transition from §y to §;, thus
to a state where [(M,3;) |= q] = true, results in an undefined answer to the
model-checking question for M and . State §¢ is identified as the failure state,
and the may-transition from $y to $; as the cause of the failure. Consequently,
3o is refined into two states, $91 and Sps, such that the former has no transition
to §; and the latter has an outgoing must-transition to §;. As such, we eliminate
the may-transition which led to the undefined answer of model checking vare
over M. The refined KMTS M Refined together with the initial KS is shown in
Fig. 2b.

4 The Model Repair Problem

In this section, we give the problem statement for Model Repair and define a
metric space over Kripke structures to quantify their structural differences such
that the minimality of changes can be taken into account as a criterion for Model
Repair.

Let G be a function on the set of all functions F' : X — Y such that:

GF:X—=>Y)={(z,F(x)):z € X}

Let F: X — Y be a function defined over a set X. A restricting operator ([) for
the domain of function F' can be defined such that

Fix,={(z,F(x)):z€ X}
where X; C X. Finally, we let S¢ denote the complement of a set S.

Definition 5. Let Ky be the set of all KSs M’ = (S',S(, R', L") derived from
the KS M = (S, Sy, R, L), where S' = (SU Sy) — Sour for some Siy C S,
Sovur C S, R = (RU R]N) — Royr for some Ry C RC, Rour C R, L =
8" — 2LIT A distance function d can be defined over Ky; such that

|G(L [sns)AG(L' [sns')|
2

where AAB represents the symmetric difference (A — B) U (B — A).

d(M,M") = |SAS'| + |RAR'| +

For any two KSs defined over the same set of atomic propositions AP, function
d counts the number of differences |SAS’| in the state space of M, the number of
differences |RAR’| in their transition relation and the number of common states
with altered labeling.

Proposition 1. The ordered pair (Kyr,d) is a metric space.

Refinement

Initial Abstraction Abstract
Concrete Model
Model (KS) (KMTS)
M M

(CTL) Property ¢

Abstract
Model

Checking
(M. 8) E o3

Repaired
Abstract Model
(KMTS)
A

Mg, fined

Abstract
Model
Repair

Undefined

Minimally Changed (M.s) E ¢

Repaired Concrete
Model (KS)

Mpepaired

Concretization

Fig. 3: Abstract Model Repair Framework.

Definition 6. Given a KS M and a CTL formula ¢ where M = p, the Model
Repair problem is to find a KS M', such that M’ = ¢ and d(M, M") is minimal
with respect to all such M’.

The Model Repair problem aims at modifying a KS such that the KS satisfies
a CTL formula that it originally does not. We focus on repair with minimal
changes to the original KS.

5 Abstract Model Repair Framework and Algorithm

Our AMR framework integrates 3-valued model checking, model refinement, and
a new algorithm for ordering the basic repair operations to be performed on the
abstract model. The goal of this algorithm is to order the repair operations in
such a way that the number of corresponding structural changes applied to the
concrete model is minimized. The basis for this algorithm is a partial order over
the basic repair operations. This section describes the steps involved in our AMR,
framework, the basic repair operations, and the operations-ordering algorithm.

5.1 The Abstract Model Repair Process

The process steps shown in Fig. 3 rely on the KMTS abstraction of Def. 3. These
are the following:

Step 1. Given a KS M, a state s of M, and a CTL property ¢, let us call M
the KMTS obtained as in Def. 3.

Step 2. For state § = a(s) of M, we check whether (M,38) = ¢ by 3-valued
model checking.
Case 1. If the result is true, then, according to Theorem 1, (M, s) = ¢ and
there is no need for repair.
Case 2. If the result is undefined, M is refined to an M Refined and control
is transferred to Step 2.
Case 3. If the result is false, then, from Theorem 1, (M, s) & ¢ and the
repair process follows.
Step 3. The AbstractRepair algorithm is called for the KMTS M (or MRefined
if refinement occurred), the state § and the property .
Case 1. AbstractRepair returns an M’ for which (M’,3) = .
Case 2. AbstractRepair fails to find an M’ for which the property holds.
Step 4. If AbstractRepair returns an M’, then the process ends with a set of
KSs, resulting from the concretization of M’, whose structural distance d
from the original KS M is minimized.

5.2 Basic Repair Operations
We decompose the repair process of the KMTS into seven basic repair operations:

AddMust. Adding a must-transition

AddMay. Adding a may-transition

RemoveMust. Removing an existing must-transition
RemoveMay. Removing an existing may-transition
ChangeLabel. Changing the labeling of a KMTS state
AddState. Adding a new KMTS state

RemoveState. Removing a disconnected KMTS state

Definition 7 (AddMust). For a given KMTS M = (5'7§0,Rmust,Rmay,L)

and 7, = (31, 82) € Rpust with 31,53, € S, AddMust(M,#,) is a KMTS M’ =

(87,5, Rlyyusts Riays L) such that S = S, S = So, Rlyusy = Bonust U {Fn
ay = Rmay U {in} and L’ = L.

Fig. 4 shows how the basic repair operation AddMust modifies a given KMTS.

Definition 8. Let M be a KS, M be a KMTS derived as in Def. 3, and M =
AddMust(M,+,) for some 7, = (§1,§22 ¢ Ryust with 81,32 € S. The set of

KSs, derived from the concretization of M', whose structural distance d from M
s minimized is given by:

Kpin ={M' = (8",S,, R, L") | S"=8,8,=8),R =RUR,,L' =L} (1)
where

R, = {rn, = (s1,82) | for every s1 € ¥(81) such that As € v(82) with (s1,s) € R,
and only one s3 € y(82)}.

;ﬁm@@;ﬁ“ ;ﬁ@ll@;ﬁ*

i) \ Al

(a) May-transition exists (b) May-transition doesn’t exist

Fig.4: AddMust: Adding a new must-transition

Def. 8 implies that when the AbstractRepair algorithm applies AddMust on
the abstract KMTS M , then a set of KSs are retrieved from the concretization
of M'. The same holds for the other basic repair operations for which their
definition is omitted for the sake of brevity. Consequently when AbstractRepair
finds a repaired KMTS, one or more KSs can be obtained for which property ¢
holds.

Proposition 2. For all M' € K, it holds that 1 < d(M,M’) < |S].

From Prop. 2, we conclude that a lower and upper bound exists for the distance
between M and any M’ € K,,;,.

Minimality Of Changes Ordering For Basic Repair Operations Based
on the upper bound given by Prop. 2 and the corresponding results for the
other basic repair operations, we introduce the ordering shown in Fig. 5. We use
this ordering in the AbstractRepair algorithm to heuristically select at each step

Fig. 5: Minimality of changes ordering of the set of basic operations

Algorithm 1 AbstractRepair

Input: M = (5'7 So, Rmust, Riay, f/), 5€ 8, a CTL property ¢ for which (M,§) ¥ &,
and a set of constraints C' = {(8c1, Pc1), (8c2, Pc2), ---s (Scn, Pen)} where §c; € S and
¢ei is a CTL formula.

Output: M’ = (5, S}, Riust, Rinay, L') and (M, 3) = ¢ or FAILURE.

¢ Gpos := PositiveNormal Form(¢)

if ¢pos is L then

return FAILURE
else if ¢p0s € LIT then

return AbstractRepairATOMjc(M, 3, Ppos, C)
else if ¢pos is @1 A ¢p2 then

return AbstractRepair anp (M, 3, Ppos, C)
else if ¢pos is ¢1 V ¢p2 then

return AbstractRepaiTOR(M, 3, Ppos, C)

: else if ¢p0s is OPER¢, then

11: return AbstractRepairopER(M, 3, Ppos, C)

12: where OPER € {AX, EX, AU, EU, AF, EF, AG, EG}

—
o ©

the basic repair operation that generates the KSs with the least changes. The
alternative to check at each step all possible repaired KSs in order to identify
the proper basic repair operation, would cancel the benefits of using abstraction.
The reason is that such a check inevitably depends on the size of the KS.

6 The Abstract Model Repair Algorithm

The AbstractRepair algorithm used in Step 3 of our repair process is a recursive,
CTL syntax-directed algorithm. The repair of an abstract KMTS is accomplished
by successive calls of primitive repair functions that handle atomic formulas,
logical connectives and CTL operators.

The main routine of AbstractRepair is presented in Algorithm 1. A set of
constraints C' = {(8¢c1, 1), (8c25 De2), -y (8ens Pen)t which is initially empty is
passed as an argument in the successive recursive calls of AbstractRepair. If C' is
not empty, then for the KMTS M’ returned from AbstractRepair, it holds that
(M " 8¢i) E ¢ei for all (844, de;) € C. C is used for handling conjunctive formulas
of the form ¢ = ¢1 A ¢o for some state 5. In this case, AbstractRepair is called
for the KMTS M and property ¢ with C' = {(3, ¢2)}. The same is repeated for
property ¢o with C' = {(5, ¢1)} and the two results are combined appropriately.

For any CTL formula ¢ and KMTS state §, AbstractRepair either outputs a
KMTS M’ for which (M’,3) = ¢ or else returns FAILURE if such a model cannot,
be found. This is the case when the algorithm handles conjunctive formulas and
a KMTS that simultaneously satisfies all conjuncts cannot be found.

6.1 Primitive Functions

For a simple atomic formula, AbstractRepair aronrrc updates the label of the
input state with the given atomic proposition. While conjunctive formulas are

10

Algorithm 2 AbstractRepair ag

Input: M = (3, S'O,Rmust,Rmay,ﬁ), 5 € S, a CTL property ¢ = AGé; for which
(M, 3) b~ ¢, and a set of constraints C' = {(31, ¢e1), (82, ¢e2), v, (Sen, Pen)} Where
Sei € S and ¢ei is a CTL formula.
Output: M’ = (5, S}, Riust, Rinay, L') and (M, 3) = ¢ or FAILURE.
1: if (M, 3) £ ¢1 then
2 RET := AbstractRepair(M, 3, ¢1,0)
3 if RET == FAILURE then
4 return FAILURE
5 else
6: M’ := RET
7
8
9
10

: else .
. M'=M
: M" = M’
: for all reachable states §; through may-transitions from § such that (M’, Sk) o
do
11: RET := AbstractRepair(M’, Sk, $1,C)
12: if RET == FAILURE then

13: BREAK
14: elsg
15: M’ := RET

16: if M'|}=¢ && M’ =C then

17: return M’

18: else

19: M’ == M"

20: for all #may := [8,51,..., 8, 8% for which (M, 38) ¥~ ¢1, (M’,3;) = ¢1 and
A3j € Fmay such that (M’,3;) = ¢1 and §; € Premay(si) do

21: P = (84, 8k), M’ := RemoveMay(M’',)
22: if 5; is a dead-end state then

23 o = (84, 8:), M := AddMay(M’,7,,)
24: if M’ =C then

25: return M’

26: else

27: return FAILURE

handled by the algorithm with the use of constraints, disjunctive formulas are
handled by repairing any of the disjuncts.

Algorithm 2 describes the primitive function AbstractRepairac which is
called when ¢ = AG¢1. When Abstract Repair 4¢ is called with state § as argu-
ment, it recursively calls AbstractRepair for all states that are reachable from §
through successive may-transitions and do not satisfy ¢;. If the found KMTS M’
does not violate any constraint in C, then (M 1'8) E ¢ and AbstractRepairac
returns the found solution. If a KMTS does not satisfy all the constraints in C,
then AbstractRepair s tries to repair the input KMTS by removing all may-
transitions through which the state violating ¢, is reached.

AbstractRepairgx presented in Algorithm 3 is the primitive function for
handling properties of the form FEX¢; for some state §. Initially, this function

11

Algorithm 3 AbstractRepairgx

Input: M = (S’, §07Rmu5t,Rmay,I:), s € S, a CTL property ¢ = EX¢; for which
(M, 3) b~ ¢, and a set of constraints C' = {(3c1, ¢e1), (82, $e2), v, (Sen, Pen)} Where
Sei € M and ¢ei is a CTL formula.
Output: M’ = (5,5}, Riust, Rinay, L') and (M, 3) = ¢ or FAILURE.
if there exists §; € S such that (M,§1) E ¢1 then
for all §; € S such that (M, 3;) = ¢1 do
o = (8,8;), M := AddMust(M,#,)
if M’ = C then
return M’
else
for all §; € Postmust(5) do
RET := AbstractRepair(M, 8i,01,C)
if RET # FAILURE then
10: M’ := RET
11: return M’
12: M’ := AddState(M,3}), in := (3,8)), M’ := AddMust(M',7,)
13: if 35} is a dead-end state then
14: = (81,8)), M’ := AddMay(M',)
15: RET := AbstractRepair(M', 3}, ¢1,C)
16: if RET # FAILURE then

©

17: M':= RET

18: return M’

19: else

20: return FAILURE

21: return FAILURE

tries to repair the KMTS by adding a must-transition from § to a state that
satisfies property ¢;. If the obtained KMTS does not satisfy all constraints in
C, then AbstractRepair is recursively called for an immediate successor of §
through a must-transition, such that ¢, is not satisfied. If a constraint in C' is
still violated, then (i) a new state is added, (ii) AbstractRepair is called for the
new state and (iii) a must-transition from § to the new state is added.

6.2 Well-definedness and Soundness

AbstractRepair is well-defined, in the sense that all possible cases are handled
and each algorithm step is deterministically defined. This feature distinguishes
our approach from related concrete model repair solutions which entail nonde-
terministic behavior [19, 5].

Theorem 2 (Soundness). LetAM be a KMTS and ¢ a CTL formula for which
(M, 3) = ¢ for some state s of M. If AbstractRepair(M,3,$) returns a KMTS
M, then (M',3) = ¢.

Proof. The proof is done by structural induction over ¢.

12

S0z S0z
(Step 1) AbstractRepair (Step 3) AbstractRepairgy

S02 So2
(Step 2) AbstractRepair,g (Step 4) AddMust

(a) Application of AbstractRepair. (b) The repaired KMTS and KS.

Fig. 6: Repair of ADO system using abstraction.

Theorem 2 shows that AbstractRepair is sound in the sense that if it returns a
KMTS M’, then M’ satisfies property ¢. In that case, from Def. 8 it follows that
one or more KSs are obtained for which property ¢ holds true.

6.3 Application

We present the application of AbstractRepair to the ADO system from Section 2.
After the first two steps of our repair process, AbstractRepair is called for the
KMTS MRefined that is shown in Fig. 2b, the state Sp; and the CTL property
¢ =AGEXq.

AbstractRepair calls Abstract Repair o¢ with arguments M Refined, S01 and
AGEXq. The AbstractRepairac algorithm at line 2 triggers a recursive call
of AbstractRepair with the same arguments. Eventually, AbstractRepairgx is
called with arguments MRefmed, S01 and FXgq, that in turn calls AddMust at
line 3, thus adding a must-transition from $g; to §1. AbstractRepair terminates
by returning a KMTS M’ that satisfies ¢ = AGEX¢q. The repaired KS M’ is
the single element in the set of KSs derived by the concretization of M’. The
execution steps of AbstractRepair and the obtained repaired KMTS and KS are
shown in Fig. 6a and Fig. 6b respectively.

Although the ADO is not a system with a large state space, it is shown
that the repair process is accelerated by the proposed use of abstraction. If on
the other hand model repair was applied directly to the concrete model, adding
transitions to the state labeled with open would have to take place for all states
with a different labeling. The number of these states is seven but in a system
with a large state space this number can be significantly higher. Direct repair of
such a model without using abstraction is impractical.

13

7 Related Work

To the best of our knowledge this is the first work that suggests the use of
abstraction as a means to counter the state space explosion in the search for a
solution to the Model Repair problem. In [18], abstract interpretation is used in
program synthesis, a problem related to Model Repair but much different.

A first attempt for introducing the Model Repair problem in the context of
CTL has been done in [4], where a repair algorithm with high computational
cost is presented based on the Al techniques of abductive reasoning and theory
revision. A formal algorithm for Model Repair in the context of KSs and CTL
is presented in [19]. The authors acknowledge that the repair process strongly
depends on the size of the model, while they do not implement explicitly in
their algorithm how the constraints can be used to handle conjunctive formulas.
An effort for making repair applicable to large KSs, is done by the authors of
[6]. They use “table systems”, a concise representation of KSs, implemented in
the NuSMV model checker. A certain limitation for their approach is that ta-
ble systems cannot represent any KS. In [20], tree-like local model updates are
introduced with the aim of making repair process applicable to large scale do-
mains, but their approach is limited to the universal fragment of CTL formulas.
For better handling of the constraints in the repair process and thus, ensuring
completeness of it, the use of constraint automata for ACTL formulas [14] and
the use of protected models for an extension of CTL [5] have been proposed.
Both methods are not directly applied to formulas of full CTL. An extension
of the Model Repair problem in the context of Labeled Transition Systems has
been examined in [9].

The Model Repair problem has been addressed in [2] in the context of prob-
abilistic systems. A slightly different problem, that of Model Revision, has been
studied for UNITY properties in [3] and for CTL in [12]. Finally, the program re-
pair problem that does not consider KSs as the repair model, has been examined
in prior work [17,15].

8 Conclusions

In this paper, we have shown how abstraction can be used to fight state explosion
in Model Repair. Our model-repair framework is based on Kripke Structures, a 3-
valued semantics for CTL, and Kripke Modal Transition Systems, and features
an abstract-model-repair algorithm for KMTSs. To demonstrate its practical
utility, we applied our framework to an Automatic Door Opener system.

As future work, we plan to apply our method to case studies with larger
state spaces, and investigate how abstract model repair can be used in different
contexts and domains.

Acknowledgments We thank the anonymous reviewers for their valuable com-

ments. Research supported in part by NSF Grants CCF-0926190 and CCF-
1018459, and AFOSR Grant FA0550-09-1-0481 . Researchers from Greece were

14

supported by the GSRT/COOPERATION/TRACER Project (09SYN-72-942).
The second author’s research is supported in part by Canada’s NSERC DG
357121-2008, ORF RE03-045, ORE RE04-036, and ORF-RE04-039.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

C. Baier and J.-P. Katoen. Principles of Model Checking (Representation and Mind
Series). The MIT Press, 2008.

E. Bartocci, R. Grosu, P. Katsaros, C. R. Ramakrishnan, and S. A. Smolka. Model
repair for probabilistic systems. In TACAS’11, pages 326-340, Berlin, Heidelberg,
2011. Springer-Verlag.

B. Bonakdarpour, A. Ebnenasir, and S. S. Kulkarni. Complexity results in revising
UNITY programs. ACM Trans. Auton. Adapt. Syst., 4:5:1-5:28, February 2009.
F. Buccafurri, T. Eiter, G. Gottlob, and N. Leone. Enhancing model checking in
verification by Al techniques. Artif. Intell., 112:57-104, August 1999.

M. Carrillo and D. Rosenblueth. Nondeterministic update of CTL models by
preserving satisfaction through protections. In ATVA, volume 6996 of LNCS,
pages 60-74. Springer Berlin / Heidelberg, 2011.

M. Carrillo and D. A. Rosenblueth. A method for CTL model update, representing
Kripke Structures as table systems. IJPAM, 52:401-431, January 2009.

E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction.
ACM Trans. Program. Lang. Syst., 16:1512-1542, September 1994.

D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems.
ACM Trans. Program. Lang. Syst., 19:253-291, March 1997.

M. de Menezes, S. do Lago Pereira, and L. de Barros. System design modification
with actions. In SBIA 2010, volume 6404 of LNCS, pages 31-40. Springer, 2011.
P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-based model checking
using modal transition systems. In CONCUR 01, pages 426-440. Springer, 2001.
P. Godefroid and R. Jagadeesan. Automatic abstraction using generalized model
checking. In CAV ’02, pages 137-150, London, UK, UK, 2002. Springer-Verlag.
P. T. Guerra and R. Wassermann. Revision of CTL models. In IBERAMIA’10,
pages 153-162, Berlin, Heidelberg, 2010. Springer-Verlag.

M. Huth, R. Jagadeesan, and D. A. Schmidt. Modal transition systems: A foun-
dation for three-valued program analysis. In ESOP ‘01, pages 155-169, London,
UK, 2001. Springer-Verlag.

M. Kelly, F. Pu, Y. Zhang, and Y. Zhou. ACTL local model update with con-
straints. In KES’10, pages 135-144, Berlin, Heidelberg, 2010. Springer-Verlag.

R. Samanta, J. V. Deshmukh, and E. A. Emerson. Automatic generation of local
repairs for boolean programs. In FMCAD 08, pages 27:1-27:10, Piscataway, NJ,
USA, 2008. IEEE Press.

S. Shoham and O. Grumberg. Monotonic abstraction-refinement for CTL. In
TACAS 04, pages 546-560. Springer, 2004.

S. Staber, B. Jobstmann, and R. Bloem. Finding and fixing faults. In CHARME
’05, volume 3725 of LNCS, pages 35-49. Springer Berlin / Heidelberg, 2005.

M. Vechev, E. Yahav, and G. Yorsh. Abstraction-guided synthesis of synchroniza-
tion. In POPL ’10, pages 327-338, New York, NY, USA, 2010. ACM.

Y. Zhang and Y. Ding. CTL model update for system modifications. J. Artif. Int.
Res., 31:113-155, January 2008.

Y. Zhang, M. Kelly, and Y. Zhou. Foundations of tree-like local model updates.
In ECAI ’10, pages 615-620, Amsterdam, The Netherlands, 2010. IOS Press.

15

