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Fault-tolerance is a crucial property in many computer systems. Thus, mechanical
verification of algorithms associated with synthesis of fault-tolerant programs is desir-
able to ensure their correctness. In this thesis, we present the mechanized verification
of algorithms that automate the addition of fault-tolerance to a given fault-intolerant
program using the PVS theorem prover. By this verification, not only we prove the
correctness of the synthesis algorithms, but also we guarantee that any program syn-
thesized by these algorithms is correct by construction. Towards this end, we formally
define a framework for formal specification and verification of fault-tolerance that con-
sists of definitions of programs, specifications, faults, and levels of fault-tolerance in
an abstract way, so that they are independent of platform and architecture. We also
address the problem of formal verification of automatic synthesis of multitolerance,
where programs are subject to multiple classes of faults. The essence of the synthesis
algorithms involves fixpoint calculations. Hence, we also develop a reusable theory

for fixpoint calculations on finite sets in PVS.
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Chapter 1

Introduction

Automated logical reasoning about computer systems, widely known as formal
methods, has been successful in a number of domains. Proving properties of computer
instructions sets is perhaps the most established application of formal methods in the
resent years [1]. Another application of formal methods is in verification of critical
systems, where strong assurance is required to gain more confidence in correctness of
computer systems such as avionic and air traffic control systems.

For decades, mathematicians have worked on techniques for verifying that al-
gorithms have the properties they are expected to have. While traditional math-
ematical techniques are valuable in this context, they are prone to human errors.
Hence, many researchers have focused on computer-aided verification techniques to
build frameworks for automated logical reasoning about computer systems. Thus,
such computer-aided techniques for verification allow us to obtain more confidence
than manual proofs.

Automated proof systems fall into two broad categories [1]. The first can be seen
as an extension of testing where automated support is exploited to create tests that
include all possible cases, thus providing a proof of correctness. Model checkers fall in

this category. The second can be seen as a formalization of mathematics where logic



is used to characterize mathematical reasoning, and automated formal support is used
to aid the creation and checking of proofs. Theorem provers fall in this category. In
this thesis, we focus on using theorem proving techniques to reason about properties

of automatic synthesis of fault-tolerant programs.

1.1 Automated Reasoning About Fault-Tolerance

Fault-tolerance is the ability of programs to provide a desirable level of function-
ality in the presence of faults [2]. It is a necessity in most computer systems and,
hence, one needs strong assurance of fault-tolerance properties of a given system.
Mechanical verification of such systems is one way to get a strong form of assurance.
The related work in the literature has focused on verification of concrete fault-tolerant
programs. For example, Owre, Rushby, Shankar, and Henke [3] propose a concrete
mechanical verification for a fault-tolerant digital-flight control system. Mantel and
Gértner verify the correctness of a fault-tolerant broadcast protocol [4]. Qadeer and
Shankar [5] mechanically verify the self-stability property of Dijkstra’s mutual ex-
clusion token ring algorithm [6]. Kulkarni, Rushby, and Shankar [7] verify the same
algorithm by exploiting the theory of detectors and correctors [2].

While the verifications performed in [3-5,7] enable us to gain confidence in the
programs being verified, it is difficult to extend these verifications to other programs.
A more general approach, therefore, is to verify algorithms that generate fault-tolerant
programs.

With this motivation, in this thesis, we focus on the problem of verifying algo-
rithms that synthesize fault-tolerant programs. With such verification, we are guar-
anteed that all the programs generated by the synthesis algorithms indeed satisfy
their fault-tolerance requirements. Towards this end, we verify the transformation

algorithms presented by Kulkarni and Arora, in [8,9], and Kulkarni and Ebnenasir



in [10], using the PVS theorem prover. The algorithms in [8,9], focus on the problem
of transforming a given fault-intolerant program to a fault-tolerant program. The
algorithms in [10], focus on the problem of transforming a given fault-intolerant pro-
gram to a multitolerant program, where the program is subject to multiple classes
of faults. To verify these algorithms, we, first, model a framework for fault-tolerance
in PVS. This framework consists of definitions for programs, specifications, faults,
and levels of fault-tolerance. Then, we verify that the programs synthesized by the
algorithms are indeed fault-tolerant. By this verification, we ensure that any program
synthesized by these algorithms is also correct by construction and, hence, there is
no need to verify the individual synthesized programs.

We note that the algorithms in [8,9], are the basis for their extensions to deal with
simultaneous occurrence of multiple faults from different types [10] and for distributed
programs [11,12]. Thus, the verification of transformation algorithms in [8,9] is helpful
in verification of algorithms in [10-12]. Since fixpoint calculation is at the heart of
the synthesis algorithms, we also develop a theory for fixpoint calculations on finite
sets in PVS. This theory is reusable for other formalizations that involve fixpoint

calculations over finite sets as well.

1.2 Thesis Contributions

In this thesis, we concentrate on mechanical verification of automatic synthesis
of fault-tolerant and multitolerant program. The contributions of this thesis are as

follows:

e We provide a foundation and a formal framework for modeling fault-tolerance,
where programs are subject to a single class of faults, and multitolerance, where
programs are subject to multiple classes of faults. This framework is designed

abstractly in such a way that it is independent of specific programs and plat-



forms.

e We develop a theory in PVS for fixpoint calculations over finite sets. This

theory is expected to be reusable elsewhere.

e We verify the correctness of the synthesis algorithms in [8,9] for automatic
addition of fault-tolerance, so that not only we ensure their correctness, but also
we guarantee that any program synthesized by the algorithms is also correct by

construction.

e We verify the correctness of the synthesis algorithms in [10] for automatic ad-
dition of multitolerance, so that not only we ensure their correctness, but also
we guarantee that any program synthesized by the algorithms is also correct by

construction.

1.3 Organization of the Thesis

The organization of the thesis is as follows: in Chapter 2, first, we present an
introduction to PVS. Then, we provide the formal definitions of programs, specifica-
tions, faults, and fault-tolerance. Then, we formally state the problem of mechanical
verification of synthesis of fault-tolerant programs. In Chapter 3, we develop and
verify a theory for fixpoint calculations over finite sets. In Chapter 4, based on the
formal framework developed in Chapter 2 and the fixpoint calculation theory, we for-
malize and verify the synthesis algorithms proposed in [8] in PVS. In Chapter 5, first,
we state the transformation problem for synthesizing multitolerant programs. Then,
we present how we extend our formal framework, so that it can deal with simulta-
neous occurrence of faults from multiple classes. Based on the extended framework,
then, we mechanically verify the algorithms for synthesizing multitolerant programs.

In Chapter 6, we present the related work on the problem of program synthesis and



mechanical verification of fault-tolerance. In Chapter 7, we discuss about different
aspects of the problem of verification of synthesis of fault-tolerant programs and we
answer the questions have been raised on this work. Finally, we make concluding

remarks and discuss future work in Chapter 8.



Chapter 2

Modeling a Framework for
Fault-Tolerance and Problem

Statement

In this chapter, we describe how we develop a general framework to model
fault-tolerance . More specifically, we give formal definitions of elements of a fault-
tolerance framework that are programs, specifications, faults, and fault-tolerance.
Based on the definition of the above elements, we formalize the synthesis algorithms
in [8] in Chapter 4. Note that the definitions must be extendable, so that we can reuse
them as a basis to formalize the definitions regarding multiple classes of faults and
multitolerance in Chapter 5. In addition, we also discus how we model the definitions
in PVS in an abstract level, so that they are independent of any particular program
and platform.

In our framework, programs are specified in terms of their state space and their
transitions. The definition of specifications is adapted from Alpern and Schneider [13].

The definitions of faults and fault-tolerance are adapted from Arora and Gouda [14]

! Appendix A contains the formal specification of this framework.



and Kulkarni [2]. We give the definition of multitolerance and its related concepts in
Chapter 5 separately.

Before getting into details of formalization of fault-tolerance, we give an intro-
duction to the PVS theorem prover. More specifically, we introduce the terminology
that we effectively use throughout the thesis. The reader may skip Section 2.1, if
(s)he is familiar with PVS.

2.1 An Introduction to PVS

In this section we give a brief introduction to PVS and its syntax and seman-
tics from the PVS user manuals [15-17]. PVS (Prototyping and Verification System)
provides an integrated environment for the development and analysis of formal speci-
fication and supports a range of activities involved in creating, analyzing, modifying,
managing and documenting theories and proofs [16]. PVS runs on SUN 4 SPARC work-
stations using Solaris 2 or higher and PC systems running on Redhat Linux. PVS is
implemented in Common Lisp, but it is not necessary to know Lisp to effectively use

the system. The Emacs editors provide the interface to PVS.

2.1.1 The PVS Specification Language

The specification language of PVS is built on higher-order logics [17]. Thus,
functions can take functions as arguments and return them as values, and quantifi-
cations can be applied to function variables. There is a set of built-in types and
type-constructors, as well as the notion of subtypes. We effectively use the features
of higher-order definitions in formalizing our framework for fault-tolerance.

Specifications are logically organized into parameterized importable theories and
datatypes. In this thesis, every synthesis algorithm is modeled in a separate theory.

Also, we have two more theories for formalizing our general framework for fault-



tolerance and fixpoint calculations over finite sets. Now, we briefly review the elements
and concepts of PVS language that we use in developing our specifications.

Types. Semantically, there are four kinds of types in PVS [17]:

e Uninterpreted types support abstraction by providing a means of introducing
a type with a minimum of assumptions on the type and imposing almost no

constraints on an implementation of the specification.

e Interpreted types are primarily a means for type expressions. Integers, Booleans,

etc., are interpreted types.
e Dependent types may be defined in terms of an earlier defined type.

e Subtypes introduce a set of elements that is a subset of the set of elements in

the super type.

Our PVS specifications are founded on propositional logic, set theory, and theory
of infinite sequences. These are built-in theories along a rich set of lemmas and

theorems in the PVS prelude that assist us in proving our theorems

2.1.2 The PVS Typechecker

The PVS typechecker analyzes theories for semantic consistency and adds se-
mantic information to the internal representation built by the parser [16]. The type
system of PVS is not algorithmically decidable; i.e., theorem proving may be required
to establish the type-consistency of a PVS specification. Hence, in order to decide on
type checking, PVS needs assistance from the developer. The proof obligations that
need to be proved are called Type-Correctness Conditions (TCCs).

In many cases, when a PVS specification contains similar definitions, the type-
checker may generate same proof obligations. Judgments provide a means for con-

trolling this by allowing the developer to prove a proof obligation once and reuse



the formal proof to discharge the same TCCs. This kind of judgements are called
constant judgements. There exists another kind of judgments, subtype judgements,
which is useful for discharging TCCs generated for subtypes. In this thesis, since we

have no subtypes in our specifications, we only state and prove constant judgements.

2.1.3 The PVS Theorem Prover

PVS provides an interactive proof checker (prover) with the ability to store and
replay proofs. PVS can be instructed to perform a single proof, or to rerun all the
proofs in a given theory, all the proofs of all the lemmas used in a proof, or all the
proofs in an entire specification. The prover maintains a proof tree, and it is the goal
of the user to construct a proof tree which is complete, in the sense that all of the
leaves are recognized as true. Each node of the proof tree is a proof goal that follows
its offspring nodes by means of a proof step.

The PVS proof checker employs a sequent calculus. Each proof goal of proof tree
is a sequent. Each sequent consists of a sequence of formulas called antecedents and
a sequence of formulas called consequents. The intuitive interpretation of a sequent

is that the conjunctions of the antecedents implies the disjunctions of the consequents:

(A1 A A2 N A3) - (Bl V By V B3)

Now, we briefly describe some of the terminology that we use throughout this

thesis for verification of our theorems:

e Since our specifications effectively contains recursive definitions, induction is our

basic tool to reason about the properties of the recursive definitions.

e Skolemization is the way to remove universal quantifiers from consequents and

existential quantifiers from antecedents.



e Instantiation is the way to remove existential quantifiers from consequents and

universal quantifiers from antecedents. For instance, if we are to prove:

(Vz: f(z)=2+1)= (f(p) =p+1)

for some constant p, all we need to do is instantiating = with p.

e Case analysis of the current sequent splits the conjunctions in the consequent

and the disjunctions in the antecedent to separate subgoals. For instance,

(A= BAC) = (A= B)A (A= O).

e The rule of extensionality converts a set equivalence to a propositional equiva-

lence. For instance,

ACB = Vz:(A(z) = B(z)).

e We use propositional and arithmetic simplifications to simplify the sequent con-

taining solvable propositional and arithmetic formulas.

e The GRIND strategy performs skolemization and instantiation, propositional
simplification, rewriting using lemmas as rewrite rules, definition expansion,
explicit case analysis according to the case structure in the goal, and performs

many of these steps repeatedly until no further simplification is possible [15].

e The GROUND command invokes propositional simplification followed by arith-
metic simplification and it is useful in obtaining simplified forms of the cases

arising from propositional simplification [15].

2.2 Program

A program p is a finite set of transitions in its state space. In a program-specific
approach a state of a program p is obtained by assigning each variable of p a value

from its domain. However, as we do not deal with a specific program, in our formal

10



specification, we model the notion of state by an UNINTERPRETED TYPE in PVS (cf.
Section 2.1.1).

Likewise, a transition is modeled as a pair of states, which is also defined as an
uninterpreted type. The programs of our interest are finite-state programs. Hence,
we assume that the number of states and transitions are finite. We model this by two
AsSsUMPTIONS in PVS to express that the types state and transition are finite. The
state space of p, denoted by S, is the set of all possible states of p. In PVS, we model
the state space by the fullset of the type state. We define the following JUDGEMENT
to avoid getting repetitive type-checking proof obligations from the PVS type-checker
(cf. Section 2.1.2):

Judgement 2.1: S, is a finite set.

Proof: We discharge the judgement by considering the assumption that the type
state is finite and applying the built-in finite_full lemma in the PVS prelude. In
finite_full lemma, it is proved that the fullset of a finite type is a finite set.

The type Action denotes finite sets of transitions. We model program, p, by a
subset of S, x S,. This actually means p can be any constant subset of S, x .S, and,
hence, a program can be any set of transitions in its state space. A state predicate of
pis a subset of S,. In PVS, we model a state predicate, StatePred, by a finite set over
states. This abstraction in definitions of program and state predicate is necessary to
ensure that the verifications are correct for any program synthesized by the algorithms
verified in chapters 4 and 5.

A state predicate S is closed in the program p if and only if for all transitions

(s0,81) in p, if s9 € S then s; € S. Hence, we define closure as follows:

closed (S,p) = (Vso, 51 | (S0,81)EP: (s0€S = s1€9)).

A sequence of states, (s, $1,...), is a computation of p if and only if any pair

11



of two consecutive states is a transition in p. We formalize this by a DEPENDENT

TYPE as follows:

Computation(Z) : TY PE = {c : sequence[state] | (Vi |i > 0: (¢;,cin1) € Z)}

where sequence[state] : N — state and Z is any finite set from type of Action. A
computation prefix is a sequence of states, where the first j steps are transitions in

the given program:

prefiz(Z,j) : TY PE = {c: sequence[state] | (Vi |i < j: (¢, ciy1) € Z)}

Obviously, a computation prefix is a finite sequence of states. We deliberately
model computation prefixes by infinite sequences of which only a finite part is used.
This is due to the fact that using finite sequences in PVS is not very convenient and
the type checker generates several proof obligations whenever finite sequences are
used.

The projection of program p on state predicate S consists of transitions of p that
start in S and end in S, denoted as p|S. Similar to the notion of program, we model

projection of p on S by a finite set of transitions:

p| S : Action = {(sg,s1) | (S0,81) €Ep A (S0,81) € S}

2.3 Specification

A specification is a set of infinite sequence of states that is suffix closed and fusion

closed. Suffix closure of a set of infinite state sequences means that if a state sequence

12



o is in that set then so are all the suffixes of o. Fusion closure of a set of infinite state
sequences means that if state sequences («, z,7) and (8, z,d) are in that set then so
are the state sequences («,z,d) and (f,z,7), where o and [ are finite prefixes of
state sequences, v and J are suffixes of state sequences, and z is a program state.

Following Alpern and Schueider [13], the specification consists of the safety spec-
ification and the liveness specification. Since the specification is suffixed closed and
fusion closed, it is always possible to specify the safety specification as a set of bad
transitions [2]. Thus, for program p, we model its safety specification by an arbi-
trary subset of S, x S,. Hence, we model the safety specification by a finite set of
transitions, called spec. We explain the liveness issue in Section 2.4.

Given program p, state predicate S, and specification spec, we say that p satisfies
its specification from S if and only if (1) S is closed in p, and (2) every computation of
p that starts in a state in S, does not contain a transition in spec. If p does not satisfy
its specification from S, we say p violates its specification. If p satisfies specification
from S and S#{}, we say that S is an invariant of p. In PVS, we model an invariant

by an arbitrary state predicate.

2.4 Faults and Fault-Tolerance

The faults that a program is subject to are systematically represented by a finite
set of transitions. A class of fault f for program p is a subset of S, x S,. As faults have
an arbitrary nature, in our formalization, we do not assume any relation between p
and f. Thus, they may be disjoint, equal, or they may intersect. A computation of
program p in the presence of faults f is an infinite sequence of states where either a
transitions of p or a transition of f is taken at every step. Hence, a program in the
presence of faults is the union of program transitions and fault transitions. Likewise,

we model computation of program in the presence of faults as ¢ : Computation(p U f).

13



We say that a state predicate T is an f-span (read as fault-span) of p from S
if and only if the following two conditions are satisfied: (1) S C T, and (2) T is

closed in p U f. Thus, in PVS, we model fault-span as follows:

FaultSpan(T,S,p U f)=((S € T) A (closed(T,p U f))).

Observe that for all computations of p that start at states where S is true, 7T is
a boundary in the state space of p up to which (but not beyond which) the state of
p may be perturbed by the transitions in f. Hence, we define the different levels of
fault-tolerance based on the behavior of the fault-tolerant program in its fault-span.

We say that p is failsafe f-tolerant (read as fault-tolerant) to spec from S if and
only if two conditions hold: (1) p satisfies spec from S, and (2) there exists 7" such
that T is an f-span of p from S, and no prefix of a computation of p U f that
starts in 7' contains a transition in spec. Intuitively, this type of fault-tolerance is
only concerned about satisfying the safety specification. Failsafe fault-tolerance is
essential for safety-critical systems such as nuclear reactors, high temperature boilers
and etc.

We say p is nonmasking f-tolerant to spec from S if and only if the following
conditions hold: (1) p satisfies spec from S, and (2) there exists T such that 7 is an
f-span of p from S, and every computation of p U f that starts from a state in 7T
contains a state of S, since a nonmasking fault-tolerant program need not satisfy the
safety specification in the presence of faults. Intuitively, this type of fault-tolerance
allows the system to violate the safety specification while it is recovering to the normal
behavior. This type of fault-tolerance is usually used in computer networks that can
tolerate communication failures for a limited time.

We say that p is masking f-tolerant (read as fault-tolerant) to spec from S if and

only if the following conditions hold: (1) p satisfies spec from S, and (2) there exists T

14



such that 7" is an f-span of p from S, no prefix of a computation of p U f that starts
in T has a transition in spec, and every computation of p U f that starts from a state
in T contains a state of S. Intuitively, in this type of fault-tolerance a computation
of program in the presence of faults never violates the safety specification and once
the state of the program is perturbed by faults, it eventually recovers to its normal
behavior.

In [8], the liveness specification is modeled implicitly. Specifically, for failsafe
fault-tolerance, the requirement is that the fault-tolerant program does not deadlock
in the absence of faults. And, for masking fault-tolerance, the requirement is that the
fault-tolerant program does not deadlock even in the presence of faults. A program
deadlocks in a state if and only if at that state there is no program transition to take.
Formally, a program deadlocks in state sq if and only if Vs; | s; € S : (sg,51) ¢ p,
where p is the set of program transitions and S is the program invariant.

In order to ensure that the synthesis algorithms for adding nonmasking and
masking fault-tolerance to a given fault-intolerant program maintains the liveness
specification, we assume that the number of occurrences of faults in a computation is
finite. We express this assumption by an axiom in our PVS specification. Note that
throughout the specification of all algorithms in this thesis, this is the only axiom
used in formalizing fault-tolerance.

Axiom 2.2 : The number of occurrences of faults in a computation is finite. Formally,

Vpi¥e(pU £): (3n|n>0: (Y |52 n: (cjrern) € p)).

Based on Axiom 2.2, we can infer that in any computation of program in the
presence of faults, there exists a suffix of computation, which does not contain fault
transitions. The lemma is helpful in the verification of addition of nonmasking and
masking fault-tolerance in Chapter 4.

Lemma 2.3: In any computation of any program in the presence of faults, there

exists a suffix of the computation that is fault-free. Formally,
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Vp: ¥e(pU £) : 3(7) : ¥(n) : (suf fia; (), suf fiz;(Shusa) € p
where suf fiz;(c) is an infinite computation that starts from the jth state in c.
Proof. The proof is based on Axiom 2.2. After elimination of quantifiers by skolem-
ization and expansion of definition of suffix, we need to prove:

V(n|n>3j): (cn,cnt1) € p == Ym: (Cmtj, Cmtjt1) € P
After removing the universal quantifier in the consequent, we manually instantiate n
with j +m. Then, a propositional simplification discharges the theorem.
Discussion. Throughout this chapter, we modeled all the elements of our formal
framework abstractly. For instance, states and transitions are modeled as uninter-
preted types, and program, faults, and the safety specification are modeled by ar-
bitrary sets of transitions. Also, state predicate and, thus, program invariant are
modeled by arbitrary subsets of the state space. This abstract modeling gives us the
freedom to claim that any programs synthesized by the algorithms in chapters 4 and
b are correct by construction and, hence, there is no need to verify the synthesized

programs individually.

2.5 Problem Statement

In this section, we recall (from [8]) the problem of automatic synthesis of fault-
tolerance and we formally state the problem of mechanical verification of synthesis of
fault-tolerant programs. As described earlier in this chapter, the fault-intolerant pro-
gram is specified in terms of its state space .S, its transitions, p, and its invariant, S.
The specification provides a set of bad transitions (that should not occur in program
computation). The faults, f, are specified in terms of a finite set of transitions. Like-
wise, the fault-tolerant program is specified in terms of its state space S, its set of
transitions, p/, its invariant, S’, its specification, spec, and the type of fault-tolerance

it provides.
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Now, we explain what it means for a fault-tolerant program p’ to be derived from
p. Note that this derivation is based on that p is obtained by adding fault-tolerance
alone to p. Hence, we should be able to prove that in the absence of faults p' has
the same behavior as p. Specifically, p’ should satisfy spec from S’ by simply using
that p satisfies spec from S. To ensure this, we consider the relation between (1) the

invariants S and S’, and (2) the transitions p and p'.

e If S’ contains states that are not in S then, in the absence of faults, p’ will
include computations that start outside S and hence, p’ contains new behaviors

in the absence of faults. Therefore, we require that S’ C S.

e Regarding the transitions of p and p’, we focus only on the transitions of p’|S’
and p|S’. If p'|S" contains a transition that is not in p|S’, p' can use this
transition in a new computation in the absence of faults and, hence, we require

that p'|S" C p|S".

Based on the above two requirements we state the transformation problem is as follows
(this definition will be instantiated in the obvious way depending upon the level of
tolerance):

The Transformation Problem

Given p, S, spec, and f such that p satisfies spec from S.

Identify p' and S’ such that:
e S'CS
e (p'|5)C(p|S
e p' is f-tolerant to spec from S’

In order to define soundness and completeness in the context of the transformation
problem, we define the corresponding decision problem (Likewise, this definition will

be instantiated in the obvious way depending upon the level of tolerance):
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The Decision Problem
Given p, S, spec, and f such that p satisfies spec from S.

Does there exist p’ and S’ such that:
e S'CS
e (P[S)C(p|S)
e p' is f-tolerant to spec from S’?

Soundness. An algorithm for the transformation problem is sound if and only if
for any given input, its output, namely p' and S’, satisfies the transformation problem.

Completeness. An algorithm for the transformation problem is complete if
and only if for any given input, if the answer to the decision problem is ” yes” then
algorithm always finds program p’ and state predicate S’.

In Chapter 4, our goal is to mechanically verify that the proposed algorithms
in [8] are indeed sound and complete using the PVS theorem prover. More specifically,
based on the definitions in this chapter, we show that the algorithms in [8] satisfy the
transformation problem. Also, we verify that the algorithms for adding failsafe and
nonmasking fault-tolerance are complete.

In Chapter 5, we redefine the transformation problem for synthesis of multitol-
erant programs separately. Based on the new definition, we present a new problem

statement for mechanical verification of automatic synthesis of multitolerance.
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Chapter 3

A Theory for Fixpoint Calculations

on Finite Sets

In this chapter, we present a theory for calculation of fixpoint of formulas over

! This theory is essential in the verification of the synthesis algorithms

finite sets
in chapters 4 and 5. For instance, the essence of adding failsafe and masking fault-
tolerance to a given fault-intolerant program is recalculation of the invariant of the
fault-intolerant program which in turn involves calculating the fixpoint of a formula.
More specifically, we calculate fixpoint of a given formula to (i) calculate the set of
states from where safety may be violated by faults alone; (ii) remove the set of states
from where closure of fault-span is violated by fault transitions, and (iii) remove
deadlock states that occur in a given state predicate.

The p—calculus theory of the PVS prelude contains general definitions of the
standard fixpoint calculation, however, it is not convenient to use that theory in
the context of our problem. This is due to the fact that this library focuses on

infinite sets and is not specialized to account for the properties of functions used in

synthesis of fault-tolerant programs. By contrast, we find that by customizing the

! Appendix B contains the formal specification of this theory.
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theory to the properties of functions used in synthesis of fault-tolerant programs, we
can simplify the verification of the synthesis algorithms. Hence, in this chapter, we
develop a theory for fixpoint calculations on finite sets. We also state and verify
their properties. This library is expected to be reusable for other formalizations that
involve fixpoint calculations on finite sets as well. Based on the definitions in this
chapter, we model the synthesis algorithms for addition of fault-tolerance in chapters
4 and 5. Then, using the properties of smallest and largest fixpoints, verified in this
chapter, we verify the correctness of the algorithms.

A fixpoint of a function f : X — X is any value 2y € X such that f(z¢) = z¢. In
other words, further application of f does not change its value. For instance, fixpoint
of f(z) =x? — 2z — 11is zyp = 1. A function may have more than one fixpoint. For
example, every zy in the domain of f(z) = z is a fixpoint.

The least upper bound of fixpoints is called the smallest fixpoint and the greatest
lower bound of fixpoints is called the largest fixpoint. In our context, the functions
whose fixpoint is calculated demonstrate certain characteristics. Hence, as described
above, we focus on customizing the fixpoint theory based on these characteristics.

In the context of finite sets, domain and range of f, X, are both finite sets of
finite sets. Throughout this chapter, the variables i, j, £k range over natural numbers.
The variable z is any finite set of any uninterpreted type and variable b is any member
of z.

The organization of this chapter is as follows: in Section 3.1, we present how to
formalize and verify the properties of the largest fixpoint calculation. We describe

the the same issues for the smallest fixpoint calculation in Section 3.2.
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3.1 Calculating the Largest Fixpoint

As mentioned before, a function may have several fixpoints. The greatest lower
bound is fixpoints is called the largest fixrpoint. We recall that we study the concept
of fixpoint calculations in the context of finite sets. In Section 3.1.1, we describe how
we formalize the calculation of the largest fixpoint by the PVS specification language.

Then, in Section 3.1.2 we verify the properties of the largest fixpoint.

3.1.1 Specification of the Largest Fixpoint Calculation

One type of functions used in synthesis of fault-tolerance is a decreasing function
for which the largest fixpoint is calculated. Given is an #nitial finite set x and a
function g that calculates a subset of z. The fixpoint calculation procedure removes
the states in g(z) from z and repeats this removal recursively until g(z) becomes
the empty set. This function may resemble a certain property. For example, it may
calculate the set of deadlock states of a given state predicate. We formalize the
procedure of calculating the largest fixpoint of a formula by first defining the type

DecFunc for decreasing functions such as g such that:

g:{A: finiteset} — {B: finiteset | B C A}.

In other words, for all finite sets z, g(z) C z (cf. Figure 3.1).
With such a decreasing function, we define Dec(i, z)(g) to formalize the recursive
behavior of the largest fixpoint calculation. Dec(i,x)(g) keeps removing the elements

of the initial set, x, that the function g of type DecFunc returns at every step:

Dec(i —1,2)(g) — g(Dec(i — 1,x)(g)) if i # 0;

T ifz=0

Dec(i,z)(g) =
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Figure 3.2: Largest fixpoint calculation.

Finally, we define the largest fixpoint as follows (cf. Figure 3.2):

LgFiz(z)(g) = {b| Vk : b € Dec(k,z)(g))}

Our goal is to prove the following properties of the largest fixpoint based on the above

definitions:

o g(LgFiz(z)(g)) =0
o LgFix(x)(g) = LgFiz(LgFiz(z)(g))(g)

Intuitively, the first above property means that further applications of Dec func-
tion does not change the value of the largest fixpoint. The second property means
that LgFix is indeed the largest fixpoint . We prove the above properties in theorems
3.7 and 3.8 in Section 3.1.2.
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Remark. The above definition of fixpoint, as compared to definition of the least
fixpoint in A—calculus [18] and p—calculus, is somewhat non-traditional. We find
that this definition assists in verification of the synthesis algorithms. For example,
we apply this fixpoint calculation for removing deadlock states where g(z) denotes
the deadlock states in set z. After calculating the largest fixpoint, we need to show
that no deadlock states remain in the set . Thus, we should show:

g(LgFixz(z)) = 0.

Moreover, if g(LgFiz(z)) = 0 then Vi : Dec(i, LgFiz(z)) = LgFiz(z).

3.1.2 Verification of the Properties of the Largest Fixpoint

In this section, first, we develop and prove a chain of lemmas. We use these
lemmas to prove the properties of the largest fixpoint of a formula in theorems 3.7
and 3.8. We effectively use the mentioned theorems to verify the soundness and
completeness of the synthesis algorithms in chapters 4 and 5.

Lemma 3.1: Any application of Dec function decreases the size of the initial set
until it becomes the largest fixpoint. Formally,

(4 < k) = (Dec(k, X)(g) € Dec(j, X)(g))

Proof. The INDUCT-AND-SIMPLIFY strategy discharges the lemma. 0

Lemma 3.2: Until the fixpoint is achieved, the cardinality of Dec(j + 1,z) is less
than or equal to |z| — j — 1. Formally,

Vj: ((9(Dec(j,z)(9)) #0) = [(Dec(j+1,z)(g)| < |z[—j—1))
Proof. We prove this lemma by induction on j. In the base case, j = 0, after
eliminating the quantifiers and expanding the definitions, we need to show if g(z) is
nonempty then |z — g(x)| < |z| — 1. We prove this by using two predefined lemmas
in the PVS prelude:

card_diff_subse: Vy, z : finiteset : ((y C z) = (|z —y| = |2| — |y|)), and
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nonempty_card: Vy : finiteset : (y # 0 < |y| > 0).
After instantiations, using the facts g(z) C = and g(x) # (), the GRIND strategy dis-
charges the base case. For induction step, after eliminating quantifiers, and expanding
definitions, we need to prove
(9(Dec(j +1,2)(g)) #0 A |Dec(j + 1,2)(g)| < |z| —j —1) =
(IDec(j +1+1,2)(9)| < |z[ = (G +1) —1).

We discharge the induction step in the same way that we proved the base case.

Lemma 3.3: If the fixpoint is reached by step j then in any subsequent steps, fixpoint
will be maintained. Formally,
Vi : ((9(Dec(j, z)(9)) = 0) = (Vk | k > j : g(Dec(k,z)(g)) = 0))
Proof. After skolemization to remove the universal quantifier, we place induction on
k. The base case, k = j = 0, is trivially true. In the induction step, we need to prove:
(9(Dec(k,z)(g)) = 0) = (g9(Dec(k + 1,2)(g)) = 0).
By expanding the definition of Dec in the consequent,
Dec(k + 1,z)(g) = Dec(k,x)(g) — g(Dec(k,z)(g)), and considering the antecedent
we infer that g(Dec(k,x)(g)) = 0, therefore g(Dec(k + 1,z)(g9)) = g(Dec(k,z)(g)),

which is equal to the empty set. 0

Lemma 3.4: There exists a step ¢ such that subsequent applications of g returns the
empty set. Formally,

di:(Vn|n>1i:g(Dec(n,z)(g)) =0)
Proof. First, we instantiate ¢ with |x|. Then, after skolemization, we need to prove
g(Dec(n,z)(g)) = 0. Using Lemma 3.2 and instantiating j with |z|, we need to show
two subgoals:
Subgoal 1: |Dec(|z| + 1,z)(g)| > |x| — |z| — 1, which is trivially true.
Subgoal 2: (g(Dec(|z|,z)(9)) = 0) = (9(Dec(n,z)(g)) = 0). From Lemma 3.3,
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we know Vj : (g(Dec(j,z)(g)) = 0) = (Vk | k > j : g(Dec(k,z)(g)) = 0). After
automatic instantiations, we need to prove:
(VE | k > |z| : g(Dec(k, z)(g)) = 0) = (9(Dec(n,z)(g)) = 0).

Manual instantiation of £ with n discharges the lemma. 0

Lemma 3.5: There exists a step j where fixpoint is achieved. Formally,

37 (Vk | k= j: ((Dec(k, z)(g) = Dec(j,z)(g9)) A (9(Dec(k,z)(g)) = 0)))
Proof. Proof of the second conjunct is exactly the same as proof of Lemma 3.4, so
we proceed with the proof of the first conjunct. From Lemma 3.4, we know that the
existence of j such that V& | k > j : g(Dec(k,x)(g)) = 0. Using Lemma 3.4 and after
skolemization, we place induction on k. In the base case, k = j = 0, we need to show
Dec(0,z)(g) = Dec(j,x)(g), which is trivially true. In induction step, we need to
prove:

Vi|i>j:((Dec(i,z)(g) = Dec(j,z)(g) A g(Dec(i, z)(g)) = 0) =
(Dec(i+1,)(g) = Dec(j, z)(g)))
We prove this by applying the rule of extensionality and expanding Dec(i + 1, x)(g),
which is equal to Dec(i,z)(g9) — g(Dec(i,z)(g9)). As g(Dec(i,z)(g)) = 0,

Dec(i+ 1,z)(g) = Dec(i, z)(g) = Dec(j,z)(g) and the proof is complete. O

Lemma 3.6: For some value j, Dec(j, z) will reach a fixpoint, and at this step value
of Dec(j, ) is equal to the largest fixpoint. Formally,

37 : (g(Dec(j, z)(g)) =0 A (Dec(j, z)(9) = LgFiz(z)(yg)))
Proof. Similar to proof of Lemma 3.5, the proof of the first conjunct is the same
as proof of Lemma 3.4. To prove the second conjunct, first, we apply the rule of
extensionality to convert the set equalities to boolean equalities. Then, a propositional
split generates two subgoals:

Subgoal 1: Vb € LgFiz(z)(g) : b € Dec(j,x)(g). First, we expand the definition of
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LgFix = {b|Vk : b € Dec(k,z)(g)} in the antecedent. Then, instantiating & with j
proves the subgoal.
Subgoal 2: V(b € Dec(j,2)(g)) : b € LgFiz(x)(g)-
To verify this subgoal, after expanding the definition of LgFix and eliminating the
universal quantifier by skolemization, we need to show:
Vb € Dec(j,z)(g) : b € Dec(k,z)(g).
Using Lemma 3.5, we know:
Vi|i>j:(Dec(i,z)(g) = Dec(j,z)(9) A g(Dec(i,z)(g)) = 0).
We instantiate ¢ with k£ and by propositional simplification through the GROUND

command, we prove this subgoal. n

Theorem 3.7: Application of function g on the largest fixpoint of a finite set returns
the empty set. Formally, g(LgFiz(z)(g)) =0

Proof. Using Lemma 3.6, the GRIND strategy completes the proof. 0

Theorem 3.8: The largest fixpoint of the largest fixpoint of a function is equal to

the largest fixpoint. Formally,

LgFix(z)(g) = LgFiz(LgFiz(z)(g))(g)

Proof. By applying the rule of extensionality we convert the set equality to a boolean
equality. Now we need to prove two subgoals:

Subgoal 1: Vb : (b € LgFiz(LgFiz(z)(g9))(9) = b € LgFix(z)(g)). After elimi-
nating the universal quantifier, we expand the definition of the first LgF'iz in the
antecedent, which turns to Vk : b € Dec(k, LgFiz(x)(g))(g). Then after manual in-
stantiation of £ with 0, the GRIND strategy discharges the subgoal.

Subgoal 2: We need to show Vb : (b € LgFiz(z)(g) = b € LgFiz(LgFiz(x)(9))(g))-

We expand the definition of the first LgF'iz in the consequent. Now we need to prove:
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Vb: (b€ LgFix(z)(g) = Yk : b € Dec(k, LgFiz(x)(g))(g))-

We proceed by induction on k. In the base step, £ = 0, we need to show:

Vb : (b € LgFiz(z)(9) = b € Dec(0,LgFiz(x)(g))(g)). We prove this by
expanding the definition of Dec(0, LgFiz(z)(g))(g), which is equal to LgFiz(x)(g).
At induction step, we need to show:

Vb ((b e LgFix(z)(g) AVj:(be Dec(j, LgFiz(x)(9))(9)) =

b€ Dec(j +1, LgFiz(z)(9))(9)))
After  eliminating the  quantifiers, we expand the definition of
Dec(j + 1,...) = Dec(j,...) — g(Dec(j,...)) in the consequent. From Lemma
3.3, we know:

Vi: (g(Dec(i,z)(9)) =0 = Vk | k > i: g(Dec(k,x)(g)) = 0).

We proceed using this lemma and we instantiate set  with LgFiz(z)(g) and i with
0. This generates another two subgoals:
Subgoal 2.1: Vk : ((g(Dec(k, LgFiz(x)(g))(9)) = 0) =

(9(Dec(j, LFiz(z)(9))(g)) = ).
Instantiating k£ with j and rewriting the definitions discharges the subgoal.
Subgoal 2.2: g(Dec(0, LgFiz(z)(g9))(g))) = 0. Towards this end, we expand the
definition of Dec(0, LgFiz(z)(g))(g), which is equal to LgFiz(z)(g). From Theorem

3.7, we know that g(LgFiz(x)(g)) = 0. Proving this subgoal, completes the proof. o

3.2 Calculating the Smallest Fixpoint

As mentioned earlier in this chapter, the least upper bound of fixpoints is called
the largest fixpoint. In Section 3.2.1, we describe how we formalize the calculation
of the largest fixpoint by the PVS specification language. Then, in Section 3.2.2 we

verify the properties of the largest fixpoint.
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Figure 3.3: The relationship between r, z, and z U r(x).

3.2.1 Specification of the Smallest Fixpoint Calculation

The second type of fixpoint used in fault-tolerance synthesis is an increasing
function for which the smallest fixpoint is calculated. Given is an initial finite set
z and a function r that calculates a finite set disjoint from z. Calculation of the
smallest fixpoint involves adding the state in 7(z) to x recursively until r(x) becomes
the empty set. The function r may resemble a certain property. For instance, it may
calculate the set of state that are reachable from z. We formalize the procedure of
calculating the smallest fixpoint of a formula by first defining the type IncFunc for

the increasing functions such as r such that:

r:{A: finiteset} — {B: finiteset | AN B = 0}.

In other words, for all finite sets x x Nr(z) = 0 (cf. Figure 3.3).
With such an increasing function, we define Inc(i,z)(r) to formalize the
recursive behavior of the smallest fixpoint calculation. Inc(i,z)(r) starts adding

elements to the initial set, x, that the function r of type IncFunc returns at every step:

Inc(i — 1, z)(r)Ur(Inc(i — 1,x)(r)) if i #£0;
Inc(i,z)(r) = ( )(r) Ur(Inc( )(r)) 'f.fo
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Figure 3.4: Smallest fixpoint calculation.

Finally, we define the smallest fixpoint as follows (cf. Figure 3.4):

SmFix(z)(r)={b |3 k:b € Inc(k,z)(r)}

Our goal is to prove the following properties of the smallest fixpoint based on the

above definitions:
o r(SmFix(z)(r)) =0
o SmFiz(z)(r) = SmFiz(SmFix(z)(r))(r)

Intuitively, the first property means that SmFix is indeed the smallest fixpoint.
The second property means that further applications of of Inc function does not
change the value of the smallest fixpoint. These properties are stated in theorems
3.15 and 3.16.

Remark. The above definition of fixpoint, as compared to definition of the least
fixpoint in A—calculus and p—calculus, is somewhat non-traditional. We find that
this definition assists in verification of the synthesis algorithms. For instance, we
apply the smallest fixpoint for calculating the reachable states of an initial set from
where the safety specification may be directly violated, where 7(z) denotes the reverse
reachable states of set x. After calculating the smallest fixpoint, we need to show that
the smallest fixpoint contains all the states from where the safety specification can

be violated in one or more steps of computation.
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3.2.2 Verification of the Properties of the Smallest Fixpoint

In this section, similar to the largest fixpoint calculation, we develop and prove
a chain of lemmas to verify the properties of smallest fixpoint in theorems 3.15
and 3.16. We effectively use the mentioned theorems to verify the soundness and
completeness of the synthesis algorithms in chapters 4 and 5. The proof of the
mentioned lemmas and theorems 3.15 and 3.16 are very similar to the corresponding

lemmas and theorems in Section 3.1.2.

Lemma 3.9: Any application of Inc function decreases the size of the initial set
until it becomes the smallest fixpoint. Formally,
(k < j) = (Inc(k,z)(r) C Inc(j, z)(r))

Proof. The INDUCT_AND_SIMLIFY discharges the lemma. 0

Lemma 3.10: Until the fixpoint is achieved, the cardinality of I'nc(j,z) is less than
or equal to | fullset[T] | — |z| — j — 1). Formally,
Vi (r(Inc(j,z)(r) #0) = |Inc(j+1L,2)(r)] <| fullset[T] | —|z[—j—1)

Proof. The proof is similar to the proof of Lemma 3.2 in Section 3.1.2 0

Lemma 3.11: If the fixpoint is reached by step j then in any subsequent steps,
fixpoint will be maintained. Formally,
Vi ((r(ne(j,z)(r)) =0) = Vk | k > j : (r(Inc(k, z)(r)) = 0))

Proof. The proof is similar to the proof of Lemma 3.3 in Section 3.1.2. 0

Lemma 3.12: There exists a step ¢ such that subsequent applications of g returns
the empty set. Formally,
3j:(V(k | k= j): (r(Inc(k,z)(r)) =0)

Proof. The proof is similar to the proof of Lemma 3.4 in Section 3.1.2. 0
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Lemma 3.13: There exists a step 7 where fixpoint is achieved. Formally,
3j:(Vk | k=) (Inc(k,z)(r) = Inc(j,z)(r) A (r(Inc(k, z)(r)) = 0)))

Proof. The proof is similar to the proof of Lemma 3.5 in Section 3.1.2. 0

Lemma 3.14: For some value j, Inc(j, z) will reach a fixpoint, and at this step value
of Inc(j, ) is equal to the smallest fixpoint. Formally,
35 ((Une(f, z)(r) = SmFiz(z)(r)) A (r(Inc(j, z)(r)) = 0))

Proof. The proof is similar to the proof of Lemma 3.6 in Section 3.1.2. 0

Theorem 3.15: Application of function r on the largest fixpoint of a function returns
the empty set. Formally,
r(SmFiz(z)(r)) =0

Proof. The proof is similar to the proof of Theorem 3.7 in Section 3.1.2. 0

Theorem 3.16: The smallest fixpoint of the smallest fixpoint of a function is equal

to the smallest fixpoint. Formally,
SmFiz(z)(r) = SmFix(SmFiz(z)(r))(r)

Proof. The proof is similar to the proof of Theorem 3.8 in Section 3.1.2. 0
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Chapter 4

Specification and Verification of
Algorithms for Synthesis of

Fault-Tolerance

In this chapter, we describe the synthesis algorithms in [8] and explain how we
formalize and verify them in PVS !. As mentioned in Chapter 2, we are interested in
three levels of fault-tolerance: failsafe, nonmasking, and masking.

In this chapter, our focus is on the algorithms that synthesize fault-tolerant
programs in the high atomicity model that are subject to one and only one class of
faults. In this model, a program transition can read all variables as well as write all
variables in one atomic step. For this model, in [8], the authors propose deterministic
polynomial time algorithms to synthesize fault-tolerant programs for the three desired
levels of fault-tolerance described in Chapter 2.

We will also discuss about the verification of the nondeterministic synthesis al-
gorithm, in [8], for the programs in the low atomicity model where a program cannot

read or write all the variables in one atomic step.

! Appendices C to E contain the formal specification of the algorithms.
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In Section 4.1, we first describe, how to formalize and verify the algorithm for
synthesis of failsafe fault-tolerant programs. Then, in Section 4.2, we present formal
specification and verification of addition of nonmasking fault-tolerance. In Section
4.3, we describe how we mechanically verify the addition of masking fault-tolerance.
Finally, in Section 4.4, we argue why the verification of the nondeterministic algorithm
for synthesizing the programs in the low atomicity model is not quite a challenging
problem.

The essence of adding failsafe and masking fault-tolerance to a given fault-
intolerant program is recalculation of the invariant of fault-intolerant program which
in turn involves calculating the fixpoint of a formula. More specifically, we calculate
fixpoint of a given formula to (i) calculate the set of states from where safety may
be violated by faults alone; (ii) remove the set of states from where closure of fault-
span is violated by fault transitions, and (iii) remove deadlock states that occur in a
given state predicate. The mentioned fixpoint calculations are essential parts of re-
calculating the invariant and fault-span to obtain fault-tolerant programs. Once the
invariant is calculated the set of program transitions can be calculated in a straight-
forward manner. We effectively use the theory of fixpoint calculations developed in
Chapter 3 to formalize and verify the synthesis algorithms.

Throughout this chapter, the variables x, s, ¢, s; range over states. The variables
1, J, k, m range over natural numbers. The variable X ranges over StatePred and the
variable Z ranges over Action. As defined in Section 2.5, p and p’ are fault-intolerant
and fault-tolerant programs respectively, S and S’ are invariants of fault-intolerant
and fault-tolerant programs respectively, 7" is fault-span, f is the finite set of faults,

and spec is the finite set of bad transitions that represents the safety specification.
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4.1 Automatic Addition of Failsafe Fault-
Tolerance

In this section, we present formal specification and verification of the algorithm
for adding failsafe fault-tolerance proposed in [8]. Along the formal specification,
we also describe the intuition behind each step of the mentioned algorithm. As for
verification, we prove the correctness of both soundness and completeness of the

algorithm.

4.1.1 Specification of the Synthesis of Failsafe Fault-

Tolerance

Intuitively, the main feature of a failsafe program is it never violates the safety
specification. However, it may not recover to its normal behavior. The essence of
adding failsafe fault-tolerance to a given fault-intolerant program is to remove the
states from where safety may be violated by taking one or more fault transitions. We
reiterate the algorithm Add_failsafe (from [8,9]) in Figure 4.1. As we describe the
algorithm, we explain how to formalize it in PVS.

In order to construct ms, the set of states from where safety can be violated
by one or more fault transitions, first, we define msInit as the finite set of states
from where safety can be violated by taking a single fault transition. Note that

(S0, $1) € spec means (s, s1) directly violates the safety specification. Formally,

msInit : StatePred = {so | 351 : (S0,81) € f A (80,81) € spec}

Now, we define a function, RevReachStates, that calculates a state predicate from
where states of another finite set, rs, are reachable through a fault transition.

Formally,
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Add_failsafe(p, f : transitions, S : state predicate, spec : specification)
{
ms := smallest fizpoint(X = X U{so| (3 s :
(so,s1) € f) AN (s1 € X V(sg,s1) violates spec) };
mt = {(so0,51) : ((s1€ms) V (so,s1) violates spec) };
S’ := ConstructInvariant(S — ms, p—mt);
if (S’={}) declare no failsafe f-tolerant program p' exists;
else p' :=ConstructTransitions(p—mt, S”)

}

ConstructInvariant(S : state predicate, p : transitions)
// Returns the largest subset of S such that computations of p
within that subset are infinite
return largest fizpoint(X = (X NS)—{so| (Vs1:51€X : (s0,51) ¢ )}

ConstructTransitions(p : transitions, S : set of states)
{ return p—{(sp,s1) : s50€S A s1¢ S} }

Figure 4.1: The synthesis algorithm for adding failsafe fault-tolerance

RevReachStates(rs : StatePred) : StatePred =

{so |3 s1:51 €rsN(s0,51) € fAso&rs}

As mentioned earlier, we use the fixpoint theory developed in Chapter 3 to formalize
the synthesis algorithms. Obviously, RevReachStates identifies a finite set that is
disjoint from rs. Hence, RevReachStates has the type of IncFunc. The following
judgement helps the PVS type checker to discharge later proof obligations:
Judgement 4.1 : RevReachStates has type of IncFunc.

Proof. The GRIND strategy simply discharges the judgement. 0
We use the definition of smallest fixpoint, developed in Section 3.2.1, to define the

state predicate ms. Towards this end, we consider mslnit as the initial set, x, and

RevReachStates as the increasing function, 7:
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ms : StatePred = SmFixz(msInit)(RevReachStates)

Then, we define the finite set of transitions, mt, that must be removed from p. These
transitions are either transitions that may lead a computation to reach a state in

ms, or transitions that directly violate safety:

mt : Action = {(so, s1) | (s1 € msV (sg, s1) € spec)}

The algorithm Add_failsafe removes the set ms from the invariant of the fault-
intolerant program S. It also removes mt from p. This removal may create deadlock
states (cf. Section 2.4). The set of deadlock states in ds using program Z is defined

as follows:

DeadlockStates(Z)(ds : StatePred) : StatePred =
{so | so €ds:(Vs1|s1 €ds:(so,81) ¢ Z)}

Similar to RevReachStates, we define the following judgement to help the PVS type
checker to discharge proof obligations in the later theorems:
Judgement 4.2: DeadlockStates(Z) has type of DecFunc.

Proof. The GRIND strategy simply discharges the judgement. 0

We construct the invariant of the fault-tolerant program by removing the
deadlock states to ensure that computations of fault-tolerant program are infinite
(cf. Section 2.4). We define ConstructInvariant using the largest fixpoint of a finite

set X, that removes deadlock states of a given state predicate X:
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ConstructInvariant(X, Z) : StatePred = LgFixz(X)(DeadlockStates(Z))

We formally define define the invariant of fault-tolerant program as follows:

S' . StatePred = ConstructInvariant(S — ms, p — mt)

We construct the finite set of transitions of fault-tolerant program by removing the

transitions that violate the closure of S':

p': Action = p —mt — {(s0,51) | ((S0,51) € (p—mt)) A (so€S'As1 ¢ 5)}

Finally, we present the definitions that we use in verification of completeness of
the algorithm Add_failsafe. First, we define what it means for a program p" with

invariant S” to be failsafe:

IsFailsafe(S" : StatePred,p" : Action) : bool =
(S"#0) A closed(S",p") A
(57CS) AG|S"Cp| 5 A
(DeadlockStates(p")(S") = 0) A

Vi (Ve:prefiz(p" U f,j) |co € S" :Vk | k <j: (ck, cri1) & spec)

Similar to the definition of ms, we define the set of states from where safety may be

violated by taking a sequence of 7 fault transitions:

ms(i) : StatePred = Inc(i, msInit)(Rev ReachableStates)

Now, we define the set of computations that violate safety in a single step:
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sc={c(f)| (Vs |semsnit: ((co=s) N ((co,c1) € spec)))}

4.1.2 Verification of the Synthesis of Failsafe Fault-Tolerance

In order to verify the correctness of the algorithm Add_failsafe, we prove that
this algorithm is sound and complete. First, we present the proof of soundness and

then we describe how to verify the completeness.

Soundness

In order to verify the soundness of Add_failsafe, we prove that the synthesized
program p', satisfies the three conditions of the transformation problem stated in
Section 2.5. More specifically, in Theorems 4.4 and 4.5, we prove that the first two
conditions of the transformation problem hold. Then, in the remaining theorems,

we show that the program synthesized by Add_failsafe is indeed failsafe fault-tolerant.

Observation 4.3: S'Nms =)
Proof. After expanding the definitions of S’, ConstructInvariant, and LgFix, we
need to prove:

Vx : (Vk: x € Dec(k,S — ms)(DeadlockStates(p — mt)) = x ¢ ms).

By instantiating k£ with 0, propositional simplification discharges the observation.

Theorem 4.4: The first condition of the transformation problem (cf. Section 2.5)
holds. Formally,

S'CS
Proof. Our strategy to prove this theorem is based on the fact that S’ is

made out of S by removing some states. After expanding the definitions of $’,
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ConstructInvariant, and LgFiz, we need to prove:
Vk : (Vx : (x € Dec(k,S — ms)(DeadlockStates(p — mt)) = x € 5)).
Towards this end, first, we instantiate k& with zero. Then, after expanding the

definitions, we need to prove Vz : (x € S —ms => x € S), which is trivially true.

Theorem 4.5: The second condition of the transformation problem (cf. Section 2.5)
holds. Formally,
pI‘SI g p|SI

Proof. The GRIND strategy discharges the theorem. 0

Theorem 4.6: S’ is closed in p’. Formally,
closed(S',p')

Proof. The GRIND strategy discharges the theorem. 0

Lemma 4.7: Y(sg,s1) : ((S0,51) € f A s1 € ms) => 59 € ms
Proof. After expanding the definition of ms, we need to prove:

V(s0,51) : ((s0,81) € f AN s1 € SmFixz(msInit)(RevReachStates)) =

so € SmFizx(msInit)(RevReachStates).

We know that ms is the smallest fixpoint of msInit by adding new reverse reachable
states via fault transitions. Hence, recalculation of ms does not change its contents
(cf. Theorem 3.16). Thus, if s; is in ms, so should already be in ms as well. We
proceed by applying Theorem 3.16. After instantiating x with msInit, and r with
RevReachStates in Theorem 3.16, we expand the definition of the first SmFix in

SmFiz(SmFix(msInit)(RevReachStates))(RevReachStates) =

SmFix(msInit)(RevReachStates).

Then, we prove the lemma by one step manual calculation of Inc to show that if s;

is in Inc(SmFiz(...)) then sq is in it as well. O
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Remark. Note that Lemma 4.7 is one of the instances where formalization of the
fixpoint calculation in Chapter 3 is used. More specifically, using Theorem 3.16, we
could show that ms contains all the states that may lead a computation to a state
that violates safety and further calculation of ms does not change its contents. In

other words, ms is a smallest fixpoint.

Lemma 4.8: In the absence of faults, all computations of p — mt that start from a
state in S’ are infinite. Formally,

DeadlockStates(p — mt)(S") =0
Proof. First, we expand the definitions of S’ and ConstructInvariant. Then, we
need to prove:

Deadlock Dtates(p — mt)(LgFix(S — ms)(DeadlockStates(p — mt))) = 0.
Using Theorem 3.7, we instantiate x with LgFiz(S — ms), and ¢ with

DeadlockStates(p — mt) to complete the proof. O

Theorem 4.9: In the absence of faults, all computations of p’ that start from a state
in S” are infinite. Formally,
DeadlockStates(p')(S") = 0

Proof. In Lemma 4.8, we showed that all computations of p — mt that start from a
state in S’ are infinite. Now, we need to show that all computations of p — mt after
removing the transitions that violate the closure of S’ are still infinite. Obviously,
removal of such transitions does not have anything to do with deadlock states,
because the source of a transition that violates the closure must have been removed
during the removal of deadlock states. Hence, the mechanical verification only

involves a sequence of expansions and propositional simplifications. n
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Remark. Note that Theorem 4.9 is another instance where formalization of fixpoint
calculation in Chapter 3 is used. More specifically, DeadlockStates(p’)(S’) denotes
the deadlock states in S’ using program p’. We repeatedly remove these deadlock

states. Hence, once the fixpoint is reached, there are no deadlock states.

Lemma 4.10: In the presence of faults, no computation prefix of failsafe tolerant
program that starts from a state in S’, reaches a state in ms. Formally,

Vi (Ve:prefix(p' U f,j) |co € ST :VEk |k <j:c, ¢ ms)
Proof. After eliminating the universal quantifiers by skolemization, we proceed by
induction on k. In the base case, £k = 0, we need to prove:

cp € 8" = ¢y ¢ ms.
The base case can be discharged using Observation 4.3. In induction step, we need
to prove:

(Vn|n<j:(chcpr) €EPUS) =

(Vk |k <j:cp & ms= cpy1 & ms).

From Lemma 4.7, we know that if the terminus of a fault transition (sq, s1) is in ms,
then the source, sg, is in ms as well. This means that if sy is not in ms then s; is
not in ms either. We know that ¢, ¢ ms and, hence, by applying Lemma 4.7, we

can infer cx 1 ¢ ms. 0

Theorem 4.11: Any prefix of any computation of failsafe tolerant program in the

presence of faults that starts in S’ does not violate safety. Formally,
Vi:(Y(c:prefiz(p U f),j]co€S):Vk|k<j:(ck, cri1) ¢ spec)

Proof. In Lemma 4.10, we proved that no computation prefix of p’ U f that starts

from a state in S’ never reaches a state in ms. In addition, by definition, p' never

reaches a transition that is in spec. Thus, a computation prefix of p' U f that starts

from a state in S’ contains no transitions in spec. 0
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Theorem 4.12: For any synthesized failsafe program, there exists a fault-span.
Formally,
3T : FaultSpan(T,S',p' U f)

Proof. First, we instantiate T (the fault-span) with the state space. Then, after
expanding the definition of FaultSpan, we need to prove that S is a subset of the
state space and faults does not violate the closure of the state space. Obviously, S’
is a subset of state space. In addition, no transition can violate the closure of state
space even in the presence of faults. Thus, after the above mentioned instantiation,

the GRIND strategy discharges the theorem.

Completeness

As can be seen in Figure 4.1, algorithm Add_failsafe declares failure under two
conditions. The first type of failure occurs when all the states in .S are in ms as well.
In other words, safety can be violated from any state of the program. The second
type of failure occurs when all the states in S — ms are deadlock states. With this
intuition, to verify the completeness of Add_failsafe, we should show that if there
exists a program that satisfies the transformation problem then Add_failsafe never
declares failure. Let us assume this hypothetical program is p” with the invariant S”.
In theorems 4.16 and 4.19, we show that if p” exists, Add_failsafe will not declare

failure under neither of the mentioned conditions.

Lemma 4.13: For all states that are added to ms up to step i, there exists a
computation of only faults that violates safety. Formally,

Vi:(Vs|sems(i): (Te(f)|co=s:(3Ek: (ck,cri1) € spec)))
Proof. The proof idea for this lemma is using induction on 7. In base case, i = 0, we

should show that there exists a computation that violates safety in one step:
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Je(f)|co=s:(3k: (ck,cry1) € spec)
We prove the existence of such a computation by instantiating ¢ with sc (refer to
Section 4.1.1 for definition of sc). In induction step, we need to prove:
(Vs1: (s e€ms(j+1) A
Vs|sems(j): (Felf)|co=s:(Fk: (ck cry1) € spec)))) =
Je(f) | eo=s1:3k: (ck, cri1) € spec))
The induction step intuitively means that if there exists a computation that starts
from a state in ms and violates safety in j steps, there also exists a computation that
starts from ms and violates safety in j + 1 steps. To prove the induction step, we do
a case analysis on the step that s; has been added to ms:
Case I. s; € ms(j): This case is trivially true, because we already know that there
exists a computation that starts in ms(j) and violates safety.
Case Il. s; € ms(j+ 1) — ms(j): To prove this case, after expanding the definitions
of ms and Inc, we need to prove:
(s1 € RevReachableStates(Inc(j, msInit)(RevReachableStates)) N
Vs|sems(j):(3e(f)|co=s:(3k: (ckycrr1) € spec)) A
—(s1 € Inc(j, msInit)(RevReachableStates))) =—
de(f) | co=s1: (3 k: (e, cry1) € spec)
Now, we instantiate s with s; to eliminate the universal quantifier in the antecedent.
By removing the universal quantifier, the existential quantifier on ¢(f) can be removed
by skolemization. Now, we need to prove:
((sg € Inc(j, msInit)(RevReachableStates)) A ((s1,82) € f) N ¢y =352 A
((chs Chyr) € spec) A (s1 ¢ Inc(j, msInit)(RevReachableStates))) =
Je(f) | co=s1:(Fk: (e, cry1) € spec))
This implication intuitively means that if computation ¢ starts from s, and violates
safety in j steps, and (s1, s2) is a fault transition, then there should exist a computa-

tion that starts from s; and violates safety in j + 1 steps. To prove this implication,
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we instantiate ¢ with add(s, ') where add forms a computation such that ¢g = s
and suf fizi(c) = ¢. Obviously, ¢ is the computation that we are looking for. The
mechanical proof after instantiation of ¢ with add(s:, ) is only a chain of automatic

rewriting and propositional simplifications. 0

Lemma 4.14: For all states that are added to ms, there exists a computation of
only faults that violates safety. Formally,

Vs|sems: (Fe(f)|co=s:(3 k: (ck, cry1) € spec))
Proof. From Lemma 4.13 we know that for all 4, from any state in ms(7), there
exists a computation that eventually violates safety. Thus, to formally verify this
lemma, we only need to do a chain of automatic skolemization, definition expansion,

and instantiations. At the end, the GRIND strategy discharges the lemma. 0

Lemma 4.15: The invariant of any program that satisfies the transformation prob-
lem is a subset of S — ms. Formally,

vS" p" : (IsFailsafe(S",p") = (5" C S —ms))
Proof. After skolemization, expanding the definition of IsFuilsafe, and applying
Lemma 4.14, we need to prove:

(S"CS ANS"£0DA

Ve |z ems: (Te(f)|co=x:3k: (ck,cry1) € spec) A

Ve(p" U f) | co € 8" : V5 : (¢j,¢j41) ¢ spec) =
(S" C S —ms)

From the second and third conjuncts in the antecedent, we can infer that any state
in ms cannot be in S”, as p" is failsafe. In other words, S” N ms = (. Besides, S”
is nonempty. Hence, S” C S — ms. To mechanically prove the Lemma based on
the mentioned argument, it suffices to remove the quantifiers by skolemization and

perform automatic instantiation, rewriting, and propositional simplification. 0
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Theorem 4.16: If there exists a program that satisfies the transformation problem,
algorithm Add_failsafe does not declare failure under the condition that all states in
S are in ms as well. Formally,
38" p": (IsFailsafe(S",p") = (S —ms#0))

Proof. From Lemma 4.15 we know that S” is a subset of S — ms. In addition, p” is
failsafe and S” # (). Hence, S —ms cannot be empty as well. In order to mechanically
verify this theorem, first we remove the existential quantifier by skolemization. Then,
automatic, instantiations, rewriting, and propositional simplification discharges the

theorem. 0

Lemma 4.17: For all transitions in mt, there exists a computation of only faults
that starts with that transition and violates safety. Formally,
V(t,t0) | (t1,t2) €mt: (Fe(f) | co=1t1: (T k: (ckycrr1) € spec))

Proof. The transitions in mt are the ones that are either in spec or their terminus
are in ms. To mechanically verify this lemma, first, we perform a case analysis on the
type of transition. If it is in spec, any computation that starts with that transition
is the answer. As mentioned before, one reason that a transition is in mt is that
its terminus is in ms. Thus, by applying Lemma 4.14 we can discharge the lemma,
because for any computation that contains a state in ms, there exists a suffix that

violates safety. O

Lemma 4.18: Any failsafe program that satisfy the transformation problem is a
subset of p — mt. Formally,

VS" p": (IsFailsafe(S",p") = p"|S" Cp—mt)
Proof. The proof idea is similar to the proof of Lemma 4.15; we use the fact that

p" is failsafe and based on Lemma 4.17, we show that p” | S” must be a subset of
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p — mt. After skolemizing, expanding the definitions, and applying Lemma 4.17, we
need to prove:
(V(t1,t2) | (t1,t2) € mt: (T e(f) [ co=1t1: (T k: (ck,cri1) € spec)) A
@" 5" Cp|S") A
Ve(p" U f) | co € 8" : (Vj: (¢j,cj11) ¢ spec)) =
(p" | 5" C p—mt)

From the first and third conjuncts in the antecedent, we can infer that any transition
in mt cannot be in p”, as p” is failsafe. In other words, (p" | S”) N mt = 0.
Hence, p" | S” C p — mt. Based on this argument, to mechanically prove the
lemma, it suffices to remove the quantifiers by skolemization and perform automatic

instantiation, rewriting, and propositional simplification. 0

Theorem 4.19: If there exists a program that satisfies the transformation problem,
algorithm Add_failsafe does not declare failure under the condition that all the states
in S — ms are deadlock states. Formally,

3 8", p" | IsFailsafe(S",p") : (S" # 0)
Proof. From Theorem 4.16 we know that if there exists a failsafe program p”, then
S —ms is not equal to the empty set. Hence, it suffices to prove that if such a failsafe
program exists, then all the states in S — ms are not deadlock states. Towards this
end, first, we apply Lemma 4.18. Then, after simplifications we need to prove:

(S"CS—ms) A (p"]|S"Cp—mit) A

(S"#0) A closed(S",p") N (" |S"Cp|S")A
(DeadlockStates(p")(S") #0)) =
(S"#0).

After expanding the definitions of S, ConstructInvariant, and LgFix, we need to
prove:

(S"CS—ms) A (p"|S"Cp—mit) A
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(S" #0) A closed(S",p") A (p"|S"Cp|S") A
(DeadlockStates(p")(S") #0)) =
Vk : (Dec(k,S — ms)(DeadlockStates(p — mt)) # 0).
We proceed by placing induction on k. We discharge the base case, k = 0, using the
GRIND strategy. In the induction step, we need to prove:
(Dec(j, (S — ms)(DeadlockStates(p — mt)) # 0) A
("CS—ms) A (p"|S"Cp—mt) A
(S"#0) A closed(S",p") A (p"|S"Cp|S") A
(DeadlockStates(p")(S") # 0)) =
Dec(j + 1, (S — ms)(DeadlockStates(p — mt)) # 0
To prove the induction step, first, we expand the definition of Dec(j + 1,...) by one

step. Then, the GROUND strategy discharges the theorem. 0

4.2 Automatic Addition of Nonmasking Fault-
Tolerance

In this section, we present formal specification and verification of the algorithm
for adding nonmasking fault-tolerance proposed in [8]. Along the formal specification,
we also describe the intuition behind each step of the mentioned algorithm. As for
verification, we prove the correctness of both soundness and completeness of the

algorithm.

4.2.1 Specification of the Synthesis of Nonmasking Fault-

Tolerance

To synthesize a nonmasking fault-tolerant program p', we ensure that from any

state in the state space, p’ eventually recovers to a state in the invariant. However,

47



during this recovery, the safety specification may be violated temporarily (cf. Section
2.4). Thus, it suffices to add one step of recovery from every state in the state space

to the invariant. We reiterate the algorithm Add_nonmasking (from [8,9]) in Figure

4.2.

Add_nonmasking(p, f : transitions, S : state predicate, spec : specification)

{
S'i=S;
} p = (p|S) U {(s0,51) : 50¢S A s1€85}

Figure 4.2: The synthesis algorithm for adding nonmasking fault-tolerance

Modeling Add_nonmasking in PVS is straightforward. As safety may be
temporarily violated during the recovery, the algorithm does not change the invariant
of the fault-intolerant program in synthesizing the fault-tolerant program. Hence,

we define the invariant of nonmasking program as follows:

S’ : StatePred = S.

As mentioned earlier, the set of transitions for fault-tolerant program is the
original transitions of the program plus the transitions that add recovery to the
invariant in one step. In PVS, we define the set of transitions for fault-tolerant

program as follows:

p':Action=(p| S) U {(s0,51) | S0 ¢S N s1 €S}

48



4.2.2 Verification of the Synthesis of Nonmasking Fault-

Tolerance

In order to verify the correctness of algorithm Add_nonmasking, we prove that
this algorithm is sound and complete. First, we present the proof of soundness and

then we describe how to verify the completeness.

Soundness

In order to verify the soundness of Add_nonmasking, we need to prove two properties
to show that p’ is nonmasking fault-tolerant. First, we should show that the
fault-tolerant program satisfies spec in the absence of faults. Second, we should show
that in the presence of faults, if faults perturb the state of program, it eventually

recovers to 1ts invariant.

Theorem 4.20: The first condition of the transformation problem (cf. Section 2.5)
holds. Formally, S’ C S

Theorem 4.21: The second condition of the transformation problem (cf. Section
2.5) holds. Formally, p'|S’ C p|S’

Theorem 4.22: S’ is closed in p'. Formally, closed(S’, p’)

Proof. The GRIND strategy discharges the theorems 4.20, 4.21, and 4.22. 0

Lemma 4.23: In the absence of faults, any computation of nonmasking program
that starts from any state in the state space, eventually recovers to the invariant.
Formally,

Ve(p'): (3j|j>0:¢; €8
Proof. After eliminating the universal quantifier by skolemizing, we need to prove:

(Vn:(cn,cnp1) €p)) = (Fj|j>0:¢;€8).
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Now, if we manually instantiate n with 0 and j with 1, we should prove:
((co,c1) €p') = (€8
This implication is true, as any transition in p’ ends in S’. Thus, the GRIND strategy

simply discharges the lemma. 0

Theorem 4.24: In the presence of faults, any computation of nonmasking program
that starts from any state in the state space, eventually recovers to the invariant.
Formally,

Ve('Uf):(3j|i>0:¢;€8")
Proof. From Lemma 2.3 in Section 2.4 we know that the number of occurrences of
faults is finite and, hence, there exits a suffix of the computation that is fault-free.
Using this suffix, and by applying Lemma 4.23, we can show that the computation
will eventually recover to the invariant. Hence, after applying the mentioned lemmas,
we need to prove:

(Vn: (cnyCni1) EP UL A

Vm : (suf fiz;(C)m, suf fizji1(C)mi1) €P) =
Jili>0:¢ e s

where suf fiz;(c) is a fault-free suffix of computation ¢ that starts from the jth state
and suf fiz;(c)m is the mth state in that suffix. Now, we manually instantiate 7 with

j+ 1 and m with 0. Obviously, ¢;41 € S, as the transition that ends at ¢4 is in p'.

Theorem 4.25: For any synthesized nonmasking program, there exists a fault-span.
Formally,
AT : FaultSpan(T,S',p' U f)

Proof. The proof of this theorem is the same as proof of Theorem 4.12. n
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Completeness
Add_nonmasking always finds a solution to the transformation problem. In other
words, the answer to the decision problem is always yes. Therefore, the algorithm is

complete and there is no need to formally verify the completeness.

4.3 Automatic Addition of Masking Fault-
Tolerance

In this section, we present formal specification and verification of the algorithm
for adding masking fault-tolerance proposed in [8]. Along the formal specification,
we also describe the intuition behind each step of the algorithm. As for verification,

we prove that the algorithm is sound.

4.3.1 Specification of the Synthesis of Masking Fault-

Tolerance

In this section, we describe how we model the addition of masking fault-tolerance
to a given program p. First, we reiterate the algorithm Add_masking (from [8,9]) in
Figure 4.3.

As mentioned in Chapter 2, in addition of masking, the requirement for preserv-
ing the liveness properties of a program is that the fault-tolerant program does not
deadlock in the presence of faults and it should recover to the invariant after a finite
number of steps while preserving safety. As mentioned in Section 2.4, we assume
that the number of occurrences of faults in a computation is finite. Based on this
assumption, we proved that for any computation of program in the presence of faults,
there exists a suffix of the computation that is free from faults (cf. Lemma 2.3). We

use this lemma to show that a masking fault-tolerant program always recovers to its
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Add_masking(p, f : transitions, S : state predicate, spec : specification)
{
ms = smallest fixpoint(X = X U {so| (Is1 :
(s0,81) € f) AN (s1 € XV (s0,51) violates spec) };
mt = {(so,$1) : ((s1€ms) V (so,s1) violates spec) };
S := ConstructInvariant(S — ms, p—mt);
T := true—ms;
repeat
Ty, S, :=T1,51;
p1:=p|S2 U{(s0,51) : S0€&S2 N so€To N s1€Tr}—mt;
T := ConstructFaultSpan(7,—
{s : S} is not reachable from s in p; }, f);
S := ConstructInvariant(Ss A 11, p1);
if (Si={} v Ii={})
declare no masking f-tolerant program p' exists;
exit
until (T1 :TQ A Sl :SQ),

For each state s : s€T] :
Rank(s) = length of the shortest computation prefix of p;
that starts from s and ends in a state in Si;
P = {(s0,51) : ((S0,81) €EpP1) A (s0€S1 V Rank(sy)> Rank(s1))};
S = 5y;
T’ = T1
}

ConstructFaultSpan(7 : state predicate, f : transitions)
// Returns the largest subset of T' that is closed in f.

{

return largest fizpoint(X = (X NT)—
{so:(3s1:(s0,81) € f N s1¢X)})

Figure 4.3: The synthesis algorithm for adding masking fault-tolerance
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invariant.

As can be seen in Figure 4.3, the algorithm contains a loop that identifies the
invariant, program transitions, and fault-span of the masking fault-tolerant program.
Modeling the loop is actually the challenging part of formal specification and verifi-
cation of the algorithm.

We model Add_masking in three phases: (1) initialization, (2) identifying the loop
invariant, and (3) termination conditions. The initialization is straightforward and is
very similar to how we modeled previous algorithms. The loop invariant includes two
properties (1) the intermediate invariant, Sy, at the start of the loop is a subset of S,
the invariant of the fault-intolerant program, and (2) the intersection of ms and the
intermediate fault-span, 75, at the start of the loop is the empty set. Hence, first, we
show these properties for the initial guess of invariant and fault-span. Then, we show
that if these properties hold at the start of an iteration, they hold at the start of the
subsequent iteration as well. Modelling the termination condition is straightforward.
Now, we explain the three phases of formalization in details:

Initialization: Reasonably, our first estimate of the invariant of fault-tolerant
program, S’, is the invariant of its failsafe fault-tolerant version. This actually makes
sense because every masking tolerant is failsafe as well. Also, the first estimate of
the fault-span is the state space excluding the states from where the safety may be
violated, ms. To model the part of Add_masking before the loop, we define S;,;; and

Tinir as follows:

Sinit : StatePred = ConstructInvariant(S — ms, p — mt)

Tinit : StatePred = S, — ms

The loop invariant: Now, we model the repeat-until loop. Our initial estimate

of the fault-span has two flaws: (1) the fault-span is not necessarily closed under
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(p —mt) U f and (2) there does not necessarily exist a path from every state in the
fault-span to the invariant. To resolve the mentioned flaws, in each iteration of the
loop, the algorithm, recalculates the fault-span, invariant, and program transitions
until the fixpoint is reached. In other words, the algorithm ensures that for all states
in the fault-span, there exists a path that contains a state in the invariant, and the
fault-span is closed in program in the presence of faults. The value of the intermediate
invariant (respectively, fault-span) at the beginning of the loop is Sy (respectively, T5).
After the recalculation, let the new values of the invariant and fault-span be S; and
T, respectively. We define S; and T} in terms of (arbitrary predicates) S, and Ty as

follows:

1. We define an intermediate program p; as follows. We require that for a
transition (sg, s1) in p;, the following conditions are satisfied: (1) if so € S
then s; € So, (2) if s9 € Ty then s; € Tp. Moreover, p; does not contain
any transition in mt. As mentioned earlier, Sy and 75 are two arbitrary state
predicates that represent the intermediate invariant and fault-span respectively.

Formally,

Sy ¢ StatePred

T5 : StatePred

p1: Action = ((p | So) U T'S) — mt, where

TS : StatePred = {(so,51) | sSo € S2 N so € Ty N s1 € To}

2. To formally specify construction of 7}, first, we define the finite set of states

from where closure of T may be violated. Formally,

TNClose(X : StatePred) : StatePred =
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{80|E|81:80€X A (80,81)€f N 81¢X}.

Then, we define the finite set of states from where the intermediate invariant,

S, is reachable. Formally,

TReach : StatePred = {s | s € To N reachable(Sy, Tz, p1,s)} where
reachable(Sa, Ta, p1, §) : StatePred =

{s|Tecp1): ((co=5) N (se€Ty) N T j:c;€S)}.

Now, we define ConstructFaultspan as the largest subset of T'Reach that is

closed in f. Formally,

T, = ConstructFaultspan(T Reach), where

Construct Faultspan(X : StatePred) = LgFiz(X)(TNClose)

We remark that the definition of ConstructFaultspan is similar to the defi-
nition of ConstructInvariant (cf. Section 4.1.1). The major difference is in
ConstructInvariant, we removed deadlock states recursively until we reach a
fixpoint, but in Construct Faultspan, we remove the states from where closure

of fault-span may be violated.

. Since S; should be a subset of 77, we model the recalculation of invariant as

follows:

Si : StatePred = ConstructInvariant(Se N'T1)(p)
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Termination of the loop: We continue the loop until we achieve the largest fix-
point for S; and 7. Obviously, when the fixpoint is achieved the intermediate and
ultimate invariants (respectively fault-spans) are equal. We formalize the termina-
tion condition of the loop in the verification phase. More specifically, we prove that
provided (S; = S3) A (T1 = Tb) is true, p; is failsafe and provides potential recovery
from every state in the fault-span.

Finally, the algorithm removes the possible cycles from the fault-span. This
removal is essential, otherwise a computation may remain in a cycle and never recov-
ers to the invariant. We define the finite set of transitions of masking fault-tolerant

program, p’, as follows:

P = {(s0,51) | ((s0,51) € p1) A ((s9 € S1) V rank(sy) > rank(s1))}, where
rank(s) = min(length(s, p1, S1)), where

length(s,p, S) = {j |3 c(p) : (s =co A ¢; € 51)}

4.3.2 Verification of the Synthesis of Masking Fault-

Tolerance

To verify the correctness of algorithm Add_masking, we prove that it is sound.
Our proof idea is based on the three phases of our formalization in Section 4.3.1.
More specifically, we prove that when the state of the masking fault-tolerant program
is perturbed by faults, the program never violates safety and it eventually recovers to
the invariant. We also prove that after the loop terminates the program has all the
properties of a masking fault-tolerant program. Note that the proof idea and, in some
cases, the proof tree of significant number of lemmas and theorems in this section are
similar or exactly the same as lemmas and theorems we proved for Add_failsafe and
Add_nonmasking. We discuss the issue of proof reusability more in Chapter 7 and 8.

Now, we describe the three phases of the verification in more details.
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Properties of initial values for the invariant and fault-span: As
mentioned earlier, in the first phase of verification, we show that the initial values of
the invariant and fault-span satisfy the loop invariant. More specifically, we prove
this in Observation 4.26, and theorems 4.27 and 4.28. Their proofs are similar to
proofs of Observation 4.3 and Theorem 4.4 for Add_failsafe. Note that many of the
proofs developed for the verification of Add_failsafe are directly applicable to prove

the lemmas and theorems in this section

Observation 4.26: There exists no state in the initial fault-span from where the
safety may be violated. Formally,

Tinit N ms = 0
Theorem 4.27: Initially, the invariant is a subset of the fault-span. Formally,

Sinit C Tinit
Theorem 4.28: The initial invariant is stronger than the invariant of the fault-
tolerant program (the first condition of the transformation problem). Formally,

Sinit € S

We remark that we do not state a theorem for the second condition of the transfor-
mation problem in the initialization part, because the algorithm does not modify the

set, of program transitions before the loop.

Properties of the loop invariant: We prove that the synthesized masking
fault-tolerant program satisfies the transformation problem by stating and proving
a series of theorems and intermediate lemmas. Note that, in the first iteration Ss
(respectively T3) is equal to Si,; (respectively Tin;;). Hence, in the first iteration,
the loop invariant is satisfied. Moreover, at the beginning of each iteration S

(respectively T7) is assigned to Sy (respectively T,). Hence, we can assume that Sy
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and 75 satisfy the loop invariant at the beginning of each iteration.

So as to show the loop invariant, first, we show that if Sy and 75 (the inter-
mediate invariant and fault-span) satisfy the loop invariant then so do S; and T}
(cf. Theorem 4.29). Then, we state and prove additional theorems about S; and 7.
Proofs of Theorems 4.29-4.32 are similar to the proofs of corresponding theorems in
the verification of failsafe. Hence, we omit these proofs. Note that, we effectively
reuse the proofs developed for verification of Add_failsafe in the following theorems.
Theorem 4.29: (To,Nms=0)= (1 Nms=0)) A ((Se CS)= (51 C9))
Theorem 4.30: The invariant is always a subset of the fault-span. Formally,

51 CT
Theorem 4.31 : If the intermediate program and invariant satisfy the second con-
dition of the transformation problem, so do the program and S;. Formally,

(P1]S2Cp|S2)=(pr]|S1Cp|Sh)

Theorem 4.32: The recalculated invariant contains no deadlock states. Formally,

DeadlockStates(p1)(S1) = 0
Theorem 4.33: The recalculated fault-span is closed in f. Formally,

closed(Ty, f)

Proof: The proof is similar to the proof of Lemma 4.8. We know:

T, = ConstructFaultSpan(...) = LgFix(...).

Using Theorem 3.7, in the definition of LgFiz, we instantiate X with T'Reach, and

g with TNClose to complete the proof. 0

Remark. Note that Theorem 4.33 is another instance where formalization of fixpoint
calculation in Chapter 3 is used. More specifically, closed(T}, f) denotes wether the
state predicate T7 is closed in f. We repeatedly remove the states from where the

closure of T7 may be violated. Hence, once the fixpoint is reached, there are no such
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states.

Properties at the termination of the loop: As mentioned in Section 4.3.1,
we formalize the termination condition in the verification phase; i.e, we prove that
provided (S; = S3) A (T1 = Tb) is true, p; is failsafe and provides potential recovery

from every state in fault-span.

Theorem 4.34: Upon the loop termination, the invariant is closed in the program.
Formally,

(S1 = Ss) = closed(Sy, p1)
Proof: Based on the fact that Sy is closed in p; by construction, when S7; = Sy, p1
is closed in S; as well. Thus, to formally prove the theorem, we replace S; by S, to

complete the proof. O

Theorem 4.35: Any prefix of any computation of the masking fault-tolerant program
in the presence of faults does not violate safety. Formally,
(S1=95) AN (T1=T))=
Vi:(Ve:prefiz(pm U f,5) | co €Ty :Vk |k <j:(ck,cry1) ¢ spec)

Proof: Proof is similar to the proof of Theorem 4.11. 0

Theorem 4.36: (T} = T5) = closed(T1,p1 U f)
Proof: Based on the fact that 75 is closed in p; by construction, when 7} = 15, T} is
closed in p; as well. From Theorem 4.33, we also know that 7} is closed in f. Thus,

using Theorem 4.33 and by replacing T} by 75, we complete the proof. n

Theorem 4.37: After termination of the loop, for any state in fault-span, 77, there

exists a computation of p; that starts from that state and reaches the invariant, S;.
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Formally,

((S1=52) N (T =T3)) = (Vs | s € Ty : reachable(S1, T1,p1, s))
Proof: First, we apply Lemma 2.3 to show that there exists a suffix for every com-
putation of p; U f that contains no transition in f. After replacing 77 and S; by T5
and S in the consequent, we need to prove:

Vs | s € Ty : reachable(Sa, T, p1, ).
After expanding the definitions of T}, ConstructFaultSpan, and LgFix respectively,
we need to prove:

VEk : (s € Dec(k, T Reach)(TClose)) = reachable(Sy, Tz, p1, S)

After instantiating £ with 0, the GRIND strategy discharges the theorem. n

Theorem 4.38: For any synthesized nonmasking program, there exists a fault-span.
Formally,

(Ty =T) = 3T : FaultSpan(T, S1,p1 U f)
Proof: From Theorem 4.30, we know that S; is a subset of T;. Also, from Theorem
4.36, we know that if 77 = Ty is true, then the fault-span is closed in program in the
presence of faults. Thus, for mechanical verification, it suffices to, first, instantiate

T with T}, and then, apply theorems 4.30 and 4.36. 0

4.4 Adding Fault-Tolerance in the Low Atomicity

Model

The three algorithms described earlier in this chapter use the notion of program
state in an abstract level. In practice, the state of a program is obtained by assigning
each variable a value from its domain. In the context of synthesis of real-world

programs, variables of a program and restrictions on reading and writing them matter.
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For example, if a program has two integer variables z and y, [x = 3,y = 10] identifies
a state of this program. In this manner, a predicate over the states of a program
forms a set of states, so-called a state predicates. For example, x > 5 Ay < 20 is a
state predicate.

To synthesize distributed programs, where processes of a program run on a dis-
tributed system, one should consider the read-write restrictions of variables, as it is
usually impossible to read or write all the program variables in an atomic step. There
has been a lot of work on synthesis of distributed programs in the literature and we
briefly discuss the issue of program synthesis in Chapter 6.

In [8], the authors prove that the problem of synthesizing a masking fault-tolerant
program is NP-Complete in the size of state space and, hence, there is no polynomial
time algorithm to synthesize a masking tolerant program unless P = NP. Fur-
thermore, the authors present a nondeterministic algorithm that guesses a solution,
namely the fault-tolerant program p/, invariant S’, and the fault-span 7”. Then, the
algorithm verifies wether p’ is fault-tolerant from S’ and 7" is a boundary up to which
p' can be perturbed in the presence of faults. In other words, the nondeterministic
algorithm verifies if the guessed solution satisfies the transformation problem. In [19],
Kulkarni and Ebnenasir show that the problem of adding failsafe fault-tolerance in
the low atomicity model is also NP-Complete in the size of state space. However,
identifying the complexity of adding nonmasking fault-tolerance in the low atomicity
model is still an open problem.

Formal verification of a nondeterministic algorithm is not quite a challenging
problem. Once the solution is guessed, the algorithm itself verifies the solutions.
Therefore, we do not include the formal specification and verification of the synthesis

algorithm in the low atomicity model in this thesis.
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Chapter 5

Specification and Verification of
Automatic Synthesis of

Multitolerance

In Chapter 4, we presented specification and verification of algorithms associated
with synthesis of fault-tolerant programs that are subject to a single class of faults.
Real world systems are often subject to multiple classes of faults and, hence, they need
to provide appropriate level of fault-tolerance to each class of faults. In other words,
in synthesizing multitolerant programs, we are looking for the answer to the following
questions: How a program could handle the occurrence of faults from different classes
at the same time? And how would a synthesis algorithm provide a level of fault-
tolerance for each class?

In this Chapter, first, we introduce the concerns and definitions regarding multi-
tolerance in Section 5.1. In Section 5.2, we formally state the problem of mechanical
verification of automatic synthesis of multitolerant programs. In Section 5.3, first,
we present how to modify the definitions in chapters 2 and 4, so that they become

appropriate for modeling the synthesis of multitolerance . Then, we present for-
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mal specification and verification of nonmasking-masking multitolerance. Finally, in
Section 5.4, we present formal specification and verification of failsafe-masking mul-
titolerance!.

The time complexity of addition of failsafe-masking and nonmasking-masking
multitolerance are polynomial. However, the problem of addition of failsafe-
nonmasking is NP-Complete and, hence, there exists no polynomial time algorithm
to solve this problem unless P=NP. In [10], the authors propose a nondeterministic
algorithm, but we are not interested in verification of that algorithm, as the algorithm
verifies the guessed solution by itself.

Remark. We remark that in this chapter, we effectively reuse the specification
and formal proofs of the framework and algorithms developed in chapters 2 and 4.
This is one of the instances that our manual proof reusability shows hope for devel-
oping automated proofs (proof strategies) for future verifications of extensions of the

algorithms in [8,10].

5.1 Faults, Fault-tolerance, and Multitolerance

The notion of multitolerance was first introduced by Arora and Kulkarni [20].
The definitions of program, specification, faults, and fault-tolerance remains the same
(cf. Chapter 2). Now, we define what it means when a program is multitolerant.

In Section 2.4, we gave the definition of different levels of fault-tolerance for a
single class of faults. Now, we consider the case where faults from multiple classes,
say f; and fo, may occur in a given program computation.

There exist several possible choices in deciding the level of fault-tolerance that
should be provided in the presence of multiple fault-classes. In [10], Kulkarni and

Ebnenasir propose to require that the fault-tolerance provided for the class where f;

L Appendix F contains the formal specification of the algorithms for synthesizing multitolerant
programs.
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and fy occur simultaneously should be equal to the minimum level of fault-tolerance
provided when either f; or fy occurs. For example, if masking fault-tolerance is to
be provided to f; and failsafe fault-tolerance is to be provided to f5, then failsafe
fault-tolerance should be provided for the case f; and f; occur simultaneously. We
reiterate the following table from [10] that illustrates the minimum level of fault-
tolerance provided for different combinations of levels of fault-tolerance provided to

individual classes of faults:

Level of Fault-Tolerance Failsafe Nonmasking | Masking
Failsafe Failsafe No-Tolerance Failsafe
Nonmasking No-Tolerance | Nonmasking | Nonmasking
Masking failsafe Nonmasking Masking

In order to simplify modeling of different classes of faults, we consider the union
of all the classes of faults that failsafe (respectively nonmasking and masking) is to
be provided, denoted by fraiisare (respectively fronmasking and frasking). NOw, given a
fault-intolerant program p, its invariant S, its specification spec, and sets of distinct
classes of faults fraisafe, fronmasking, and fmasking, We define what it means for a
synthesized program p’, with invariant S’, to be multitolerant by considering how p’
behaves when (i) no faults occur; (ii) only one class of faults occur, and (iii) multiple
classes of faults occur. Kulkarni and Ebnenasir, in [10], define a multitolerant program
as follows:

Definition. Program p' is multitolerant to ftaisafe, frnonmasking, and frmasking

from S’ for spec iff the following conditions hold:
1. p' satisfies spec from S’ in the absence of faults.

2. p' is masking fiesking-tolerant form S for spec.
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3. p' is failsafe (fraisafe U frnasking)-tolerant form S’ for spec.

4. p' is nonmasking (fronmasking U fmasking)-tolerant form S’ for spec.

5.2 The Problem of Mechanical Verification of Au-
tomatic Synthesis of Multitolerance

In this section, we present the problem of mechanical verification of automatic
synthesis of multitolerance. Based on the definition of a multitolerant program in
Section 5.1, Kulkarni and Ebnenasir identify the requirements of the problem syn-
thesizing a multitolerant program p'. The general idea of algorithms for synthesizing
multitolerance proposed in [10] is based on the synthesis of fault-tolerance for sin-
gle class of faults [8]. Similar to the algorithms in [8] the requirements are (1) the
synthesis algorithms should not introduce any new behavior to the fault-intolerant
program, and (2) the synthesis algorithms should simply add multitolerance. The
formal definition of the transformation problem and soundness are as follows:

The Transformation Problem
Given p, S, spec, fraitsafes frnonmasking, and fmasking such that p satisfies spec from S.
Identify p' and S’ such that:

S'CS

@[S C|s)

p' is multitolerant to frqisafe, fronmaskings aNd fmasking from S’ for spec
Soundness. An algorithm for the transformation problem is sound if and only if for
any given input, its output, namely p’ and S’, solves the transformation problem.

In this chapter, our goal is to mechanically verify that the proposed algorithms
in [10] for adding failsafe-masking and nonmasking-masking multitolerance are indeed

sound by the PVS theorem prover. In other words, based on the definitions in this
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chapter, we show that the algorithms in [10] satisfy the transformation problem.

5.3 Specification and Verification of Synthesis of
Nonmasking-Masking Multitolerance

In this section, we present description, formal specification and verification of
the synthesis algorithm for addition of nonmasking-masking multitolerance to fault-
intolerant programs that are subject to two types of faults fronmasking and frmasking-

First, we reiterate the algorithm Add_Nonmasking_Masking from [10] in Figure 5.1.

Add_Nonmasking_Masking(p: transitions, fronmasking, fmasking: fault,
S: state predicate, spec: safety specification)
{

p1, Sla Tmasking = Add_Masking(p, fmaskinga S, SPGC);

if (S’={}) declare no multitolerant program p’ exists;
return (0, 0;

pla T = Add_NonmaSkmg(pl, fnonmasking U fmaslcinga Tmaskinga spec);

return p’, S’;

}

Figure 5.1: The synthesis algorithm for adding nonmasking-masking multitolerance

In order to formalize the algorithm Add Nonamsking Masking (and

Add_Failsafe_Masking in Section 5.4), first, we define fraiisate, frnonmasking, a0d frmasking
from the type of Action. Then, we define fronmasking masking 304 ffaitsafe masking a5

follows:

fnonmasking_masking : Action = fmasking U fnonmasking

ffailsafe_masking : Action = fmasking U ffailsafe

Our formalization for the fault-tolerance framework developed in Chapter 2 is

appropriate for the case that we deal with only one class of faults. However, in
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modeling synthesis of multitolerance, as we have different classes of faults, we need to
redefine some of the definitions, so that they accept the type of fault. For example,

in Section 4.1.1, we modeled RevReachableSet as follows:

RevReachStates(rs : StatePred) : StatePred =

{so |3 s1:51€rsN(s0,51) € fAso ¢&rs}

The problem with this definition is it only represents the set that can reach rs
by taking a transition in f, which is the single class of faults. To formalize the
algorithms for synthesizing multitolerance, we need to redefine RevReachableSet, so
that it accepts different classes of faults. With this introduction, we redefine msinit,

RevReachableSet, and ms as follows:

msInit(anyFault : Action) : StatePred =
{so |3 s1 : (s0,81) € anyFault N (so,s1) € spec}
RevReachStates(anyFault : Action)(rs : StatePred) : StatePred =
{so|ds1:5€rs N (50,51) € anyFault N sy ¢ rs}
ms(anyFault : Action) : StatePred =

SmFix(msInit(anyFault))(RevReachStates(anyFault : Action))

All the other definitions given in chapters 2 and 4 should also be converted in the
same way, so that they are not restricted to only one class of faults. We refer the
reader to the appendices for formal specification of new definitions.

Now, having the elements of multitolerance framework, we can formalize the
algorithm Add_Nonamsking_Masking. Note that most of the definitions we developed
in chapters 2 and 4 appear with a parameter for the type of faults. We proceed as

follows: Using the algorithm Add_masking, we synthesize a masking f,qsking-tolerant
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program p;, with invariant S, and fault-span T5,qsking:

S'": StatePred = add_masking.S1(fmasking)
Tnasking : StatePred = add_nonmasking.S' (T ( fmasking))

p1 = Action = add_masking.pi(fmasking)

We note that add_masking is the name of the theory developed in Chapter 4 for
the algorithm Add_masking in PVS. Since program p; is masking f,qsking-tolerant,
it provides recovery to its invariant S’, from any state in (Tyesking — S'), While
preserving safety. Thus, in the presence of f,onmasking masking, if P1 is perturbed to
(Trmasking — S'), then p; satisfies the requirements of nonmasking fault-tolerance.
However, if fnonmasking masking Derturbs p; to a state that is not in Tj,44king, then
recovery should be added from those states. Towards this end, the algorithms ensures
that one step recovery is possible. Thus, using the algorithm Add_nonamsking, we

add one step recovery from states that are not in Tj,4sine to the states in 1o qeping:

p' : Action = add_nonmasking.p'(Tasking, P1(fmasking))

I __
T = Tmasking

As mentioned in Section 4.2.1, addition of one step recovery is independent of the
type of faults. Hence, to simplify the verification of Add_Nonmasking_Masking, we
formalize the multitolerant program by pi (fmasking) and 1ot pi (frnonmasking.masking)-

In order to verify the soundness of Add_Nonmasking_Masking, we prove a chain
of lemmas and theorems. Note that, as the fault-span of nonmasking-masking
multitolerant program and masking fault-tolerant program are equal, we do not
restate and reprove the lemmas and theorems that verify the properties of safety

of fault-span in the presence of only frasking. Note that, in most of the following
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theorems, we assume that the termination condition of the repeat-until loop in

Add_masking is satisfied.

Theorem 5.1: The first condition of the transformation problem (cf. Section 5.2)
holds. Formally,
(52 €8)=(5C9)

Proof. The proof is the same as proof of Theorem 4.30. 0

Theorem 5.2: The second condition of the transformation problem (cf. Section 5.2)
holds. Formally,
@ 1S2Cp|S2) =@ |5 CSplS)

Proof. The proof is the same as proof of Theorem 4.31. n

Theorem 5.3: In the presence of f,onmasking masking faults, any computation of
nonmasking-masking multitolerant program that starts from any state in the state
space, eventually recovers to the invariant. Formally,

Ve(p' U fronmasking.masking) : (375> 0:¢; € 5')

Proof. The proof is the same as proof of Theorem 4.24. 0

Theorem 5.4: The invariant of the nonmasking-masking multitolerant program is a
subset of the fault-span. Formally, S" C T’
Theorem 5.5: (add_-masking.T\(fmasking) = T2) = closed(T",p' U fmasking)
Theorem 5.6: Upon the loop termination, the invariant is closed in the program.
Formally,

(add_-masking.Si(fmasking) = S2) = closed(S’,p')
Theorem 5.7: For any synthesized nonmasking-masking program, there exists a

fault-span. Formally, 3 T : FaultSpan(T,S’,p' U fronmasking masking)

69



Theorem 5.8: After termination of the loop, for any state in fault-span, 7", there
exists a computation of p’ that starts from a state in 7" — S’ and reaches the invariant,
S1. Formally,
((S1(fmasking) = S2) A (T1(fmasking) = T2)) =
Vs | s €T :reachable(S', T, p', s)
Proof. The proof of theorems 5.4 to 5.8 are the same as proof of the corresponding

theorems for the algorithm add_masking in Section 4.3.2. 0

5.4 Specification and Verification of Synthesis of
Failsafe-Masking Multitolerance

In this section, we present description, formal specification and verification of the
synthesis algorithm for addition of failsafe-masking multitolerance to fault-intolerant
programs that are subject to two classes of faults freisafe and frasking. First, we

reiterate the algorithm Add_Failsafe_Masking from [10] in Figure 5.2.

Add_Failsafe_Masking(p: transitions, frisafe, fmasking: fault, S: state predicate,
spec: safety specification,)
{

ms = {50 : 381,82, «eeSp ! (V_] : 0§_]<7’L : (sjas(j—{—l)) € (ffailsafe U fmasking)) A
(8(n-1), 5n) Violates spec };

mt = {(so0, 51) : ((s1€mMS) V (s0,51) violates spec) };

P, S,a Tmasking = Add—MaSking(p - mt, fmaskinga S—ms, mt);

if (S={}) declare no multitolerant program p’' exists;

return 0, 0;
pl, T = Add—FGilsafe(pl, ffailsafe U fmasking; Tmasking_msa mt);
return p', S’;

Figure 5.2: The synthesis algorithm for adding failsafe-masking multitolerance.

The essence of the algorithm is as follows: first, it identifies the fault-span, such

that no computation of the multitolerant program, p’, violates safety in the presence
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of fraitsafe masking- Towards this end, the algorithm identifies the states from where

safety may be violated when faults in ff4sq femasking OCCUr:

ms : StatePred = ms(f aitsafemasking)

mt : Action = mt(ffailsafe_masking)

Then, the algorithm ensures that the multitolerant program can recover to its

invariant, S’, when the state of the program is perturbed by frasking:

Tmasking : StatePred = Tl(fmasking)
p1 : Action = add-masking.pi(fmasking)
S': StatePred = add_masking.S1( fmasking)

Finally, if faults ffeiisafe masking Perturbs the state of the program to a state s,
where s ¢ T,qsking then the algorithm should ensure that the safety is maintained.

Towards this end, we add failsafe fj4iisafemasking-tolerance to p; from (Tasking —mMs):
T' : StatePred = ConstructInvariant(Tyqsking — ms, p1 — mt)
p' : Action = p; — mit—

{(s0,51) | ((s0,81) € (pr —mt)) A (s0,€T') A (51 ¢ T")}

In order to verify the soundness of Add_Failsafe_Masking, we prove the following

lemmas and theorems:

Theorem 5.10: The first condition of the transformation problem (cf. Section 5.2)
holds. Formally, (S; C S) = (5" C 5)
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Theorem 5.11: The second condition of the transformation problem (cf. Section

5.2) holds. Formally, (p' | Se Cp|S)= (p' | S"Cp| S

Theorem 5.12: Upon the loop termination, the invariant is closed in the program.

Formally,
(S'=8;) = closed(S',p')

Lemma 5.13: In the presence of faults, no computation prefix of failsafe-masking
multitolerant program that starts from a state in S’, reaches a state in ms. Formally,
(Ionms=0) = Vj:(Ve:prefiz(p'U fraitsafemasking: J)
(coeS) = Vk|k<j:c, ¢ ms)

Theorem 5.14: Any prefix of any computation of failsafe-masking multitolerant
program in the presence of faults that starts in S’ does not violate safety. Formally,
(T2 Nms = Q) = v] : (VC : prefix(p, U ffailsafe_masking: .7) :

(coeS') = Vk|k<j:(cgcpsr) ¢ spec)

Lemma 5.15: All computations of p — mt that start from a state in 7" are infinite.

Formally, DeadlockStates(p; — mt)(T") = ()

Theorem 5.16: All computations of p’ that start from a state in 7”7 are infinite.

Formally, DeadlockStates(p')(T") = ()

Theorem 5.17: After termination of the loop, for any state in the fault-span, 77,
there exists a computation of p; that starts from a state in 7" — S’ and reaches the

invariant, S;. Formally,

((SI = 52) A (Tl(fmasking) = TQ)) =
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Vs | s €T :reachable(S', T p',s)

Theorem 5.18: For any synthesized failsafe-masking program, there exists a

fault-span. Formally, 3 T : FaultSpan(T,S’,p" U frtaiisafemasking)

Proof. Formal proof of lemmas and theorems 5.10 to 5.18 are similar to the corre-
sponding lemmas and theorems in sections 4.1.2 and 4.3.2. There are minor differences
such as the symbols and the occasions that we expand definitions. For instance, in
Section 4.1.2, we proved that no computation that starts from a state in the invari-
ant of failsafe fault-tolerant program S’, violates safety. In Lemma 5.13 and Theorem
5.14, we prove the same thing, but for a different state predicate, the fault-span T',

and different set of faults, frqisafe masking-
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Chapter 6

Related Work

In this chapter, we focus on the previous work on verification of fault-tolerance
properties of programs, circuits, and architectures. In Section 6.1, we briefly present
the challenges in problem of program synthesis and transformation. In Section 6.2,
we introduce the previous work on formal verification of fault-tolerant architectures,
processors, and circuits. Then, in Section 6.3, we present related work on mechanical
verification of fault-tolerance properties of programs, algorithms, and software related
systems.

Throughout this thesis, our approach for verification of correctness of the algo-
rithms in [8,10] is by using theorem proving. Model checking is also shown to be an
effective tool in verification of behavior of fault-tolerant finite state systems [21-26].
Model checking is widely used in verification of properties of domain specific fault-
tolerant controllers and embedded systems. This approach is not quite related to our
approach in verification. Hence, we do not get into the details of this context. In
Chapter 7 we argue why we chose to use theorem proving techniques to address the

problem of verification of the synthesis algorithms.
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6.1 Challenges in Automatic Synthesis of Pro-
grams

In this section, we present a review of related work on the problem of automatic
synthesis of reactive systems prior to [8]. As mentioned in Chapter 1, automatic
synthesis of programs is an algorithmic approach for generating a new program from
its specification or from another program. This problem is well studies through
different approaches. In [27, 28], the authors present a survey on the problem
of automatic synthesis of reactive systems. More specifically, in [27], three main

approaches are presented. We now briefly introduce these approaches:

Model-Theoretic Approach

This approach is based on the extraction of a finite model from a given temporal logic!
specification. A temporal logic specification consists of safety and liveness specifica-
tions in terms of temporal operators. Model-theoretic approach mostly addresses
synthesis of closed reactive systems where there is no interaction between the system
and its environment.

Several different algorithms have been presented in the literature for synthesis
of reactive systems from their temporal logic specification. The initial work was pre-
sented by Emerson and Clark [30]. They present an algorithm for synthesis of reactive
programs form CT L (Computational Tree Logic) specification. In their formalization,
the safety specification is represented by invariance formulas; i.e., for all paths of ex-
ecution, nothing bad happens. They represent the liveness properties of a program
by eventually formulas; i.e., for all paths of execution the eventually formulas hold.
The synthesis method is based on a decision procedure that verifies the satisfiability

of a CTL temporal logics specification.

"'We refer the reader to [29] for a survey on temporal logics.
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Mana and Wolper [31,32] present, a similar algorithm for synthesizing distributed
processes that can communicate by message passing. In their approach, the program
specification is given as a PLTL (Propositional Linear Temporal Logics) formula.

In [33,34], Attie and Emerson present algorithmic methods, for synthesis of dis-
tributed and concurrent programs from CTL* specification. In a more recent work,
Arora, Attie, and Emerson [35] present an algorithm for synthesizing fault-tolerant
program from CTL specification. Their algorithm consists of two phases. The
first phase is basically performing the synthesis algorithm by Emerson and Clarke.

In the second phase, they generate a fault-tolerant version of the synthesized program.

Automata-Theoretic Approach

As mentioned before, model-theoretic approaches address synthesis of closed reac-
tive systems. By contrast, automata-theoretic approaches address synthesis of open
reactive systems where a program has interactions with its environment.

In the automata-theoretic approach, the input of the synthesis algorithm is a
tree automaton [36] that represents the specification of the system. The synthesis of
an open reactive system involves converting its temporal logic specification to a tree
automaton and, then, checking non-emptiness of the tree automaton; i.e., checking
whether the language accepted by the tree automaton is empty or not [37-40].

In [37,38], Pnueli and Rosner show that the synthesis algorithm that generates
a deterministic finite automaton that satisfies LTL specification has a doubly expo-
nential complexity in the size of specification. In [39], Kupferman and Vardi show
that the problem of synthesizing an open reactive distributed system is undecidable,

if we have no assumptions about the system architecture.

Calculational Approach

In many cases, it is always desirable to add a property to programs rather than
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synthesizing a new program from new specification. This desire motivated researchers
to design algorithms that can add a particular property to programs in addition to
their old properties. In other words, in later approaches we would like to reuse the
program and its invariant to calculate a new program and its new invariant.

In [41], Arora presents a new foundation for fault-tolerance. Using his formal
framework, one can represent any kind of programs, faults, specifications, and fault-
tolerance. In Chapter 2, we developed the formal specification of our framework based
on Arora’s definitions in [41].

We described the synthesis algorithms developed by Kulkarni and Arora [8] in
details in Chapter 4. We also described the algorithms for automatic synthesis of
multitolerance [10] in details in Chapter 5. The authors in both [8] and [10], use
a calculational approach to generate new program. As mentioned before, in their
method the synthesized program is correct by construction and there is no need to
verify the individual programs. Furthermore, since their synthesis algorithms begin
with an existing fault-intolerant program, the derived fault-tolerant program reuses
the fault-intolerant version. Another advantage of their approach is, having the set
of bad transitions, program, and its invariant, the algorithm can synthesize the fault-
tolerant program. In other words, synthesis is possible without having the entire
specification.

The issue of complexity is a serious barrier to implement the algorithms in [30,
32-35,37-40]. In contrast, the time complexity of algorithms in [8,10] show hope
on practical implementability. More specifically, the time complexity of addition of
fault-tolerance for single class of faults in the high atomicity model is polynomial and
addition of failsafe and masking fault-tolerance in the low atomicity model are NP-
Complete in the size of state space [8,19]. The problem of addition of multitolerance,
in general, is NP-Complete. However, the time complexity of additions of failsafe-

masking and nonmasking-masking multitolerance are still polynomial. Moreover,

77



In [19], Kulkarni and Ebnenasir identify the polynomial time boundary of the addition
of failsafe fault-tolerance in the low atomicity model. In [11], Kulkarni and Ebnenasir
focus on the problem of enhancing the addition of fault-tolerance of a nonmasking
fault-tolerant program to masking.

To implement the synthesis algorithms, Kulkarni, Arora, and Chippada [42] de-
velop a set of heuristics to synthesize a canonical version of the Byzantine agreement
problem. Based on these heuristics, Ebnenasir and Kulkarni [12] has developed a tool
for automatic synthesis of fault-tolerant programs.

We refer the reader to [27] to investigate more on the described approaches and

detailed comparison.

6.2 Formal Verification of Fault-Tolerant Archi-
tectures

Hardware vendors are, perhaps, the largest community that use formal methods
to model and verify their products. Researchers in this community focus on processes
that show equivalence relations between a design and a specification. Simulation
helps to gain more confidence, but logic correctness is a more reliable way to verify
hardware. In this research area, proving the properties of computer instruction sets
is perhaps the most established application of formal methods.

Fault-tolerance is usually a crucial part of safety-critical embedded systems.
Thus, verification of fault-tolerance properties of hardware in embedded systems is
well-studied and there has been enormous number papers and theses published in this
area of research. In this section, we present the previous work on formal verification
of fault-tolerant architectures, circuits, and processors.

Formal verification of fault-tolerant circuits. Kljaich, Smith, and Wojcik

[43] focus on verification of logical correctness of fault-tolerance properties of digital
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systems. More specifically, they use theorem proving together with an extended Petri
net representation to validate fault tolerance. Normal Petri net is an abstract machine
that rests between Turing machines and finite state machines, in terms of decision
power and modeling. FEzecution of a Petri net models nondeterministic dynamic
behavior and is represented by firing transitions. The extended Petri net theory in [43]
avoids the nondeterministic behavior and gives functional capability to the firing of
transitions. The authors, first, give an examples of a typical 2-bit ALU to show
the modeling capability of their extension to Petri net model. Then, based on their
design for the 2-bit ALU, they present a fault-tolerant processor (FTP) that tolerates
one or more failures. Fault-tolerance is achieved using redundant modules. Using
automated reasoning implemented by PROLOG, the authors show that for possible
arrangements of instructions sets, how many redundant modules are required to meet
the fault-tolerance specification of the CPU.

Formal verification of synchronized fault-tolerant circuits. Verification
of fault-tolerant clock synchronization circuits has been a challenging problem in the
literature of hardware verification. Miner and Johnson [44] present an optimization
of their previous work on formal development of a fault-tolerant synchronization cir-
cuit. The authors argue that in the previous work researchers in the formal methods
community had been focused on how to verify hardware using particular verification
systems and not on type of reasoning support that we need. They represent circuits
as systems of stream equations, where each stream corresponds to a signal within
the circuit. The signals are annotated with invariants which can be established using
proof by co-induction. Miner and Johnson, exploit the invariants to verify that their
formally designed circuit satisfies the localized design refinements. More specifically,
first, they introduce a design hierarchy with different levels of abstraction. Then,
they use PVS as their verification tool to prove the properties of their design.

NASA SPIDER project. NASA’s most recent project on fault-tolerant ar-
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chitectures is the formally-verified fault-tolerant architecture, Scalable Processor-
Independent Design for Electromagnetic Resilience (SPIDER) [45]. SPIDER is a
family of fault-tolerant, reconfigurable architectures that provide mechanisms for in-
tegrating inter-dependent applications of differing criticalities. SPIDER comes with
three protocols: Consistency Protocol, Diagnosis Protocol, and Synchronization Pro-
tocol. The first two protocols provide a fault-tolerant broadcast communication archi-
tecture. More specifically, the Consistency Protocol takes care of a reliable message
broadcast in the presence of malicious faults, using the Byzantine Agreement prob-
lem. The Diagnosis Protocol distributes local information about the health status of
nodes across the network. In [46], Miner and Geser present mechanical verification of
the first two protocols. They present formal proofs in PVS that given the dynamic
maximum fault assumption and a sane health status classification, the Consistency
Protocol agreement, and the Diagnosis Protocol provides a sane classification of faulty
nodes.

Abstractions for hardware verification. Melham [47] proposes four ab-
stractions for formalizing and verifying hardware. He argues that such abstractions
decreases the complexity and size of specification and verification. His argument
is based on the fact that specifying hardware in detail and proving that the speci-
fication satisfies the requirements through formula equivalence provokes the design
hierarchy. Melham suggests a satisfaction relation based on the idea of abstraction,
rather than equivalence, is the key to make large designs tractable. He introduces

four abstractions:

1. Structural abstraction—the suppression of information about a device’s internal
structure. The idea of structural abstraction is that the specification of a de-
vice should not reflect its internal construction, but its externally observable

behavior.

2. Behavioral abstraction concerns specification that only partially define a de-
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vice’s behavior.
3. Data abstraction is well known from programming languages theory.
4. Temporal abstraction views a device by sequential time-dependent behavior.

Based on [47], fault-tolerance properties of hardware can be specified in structural and
behavioral levels of abstraction. Examples in [47] present very top level properties of

every hardware design that can be applied to specification of many systems.

6.3 Mechanical Verification of Fault-Tolerance
Properties of Programs

In this section, we present the related work on formal verification of programs
and algorithms that provide fault-tolerance for software systems. The related work
in this section has a closer theme to our work in this thesis. In Section 6.3.1, we
present related work on formal verification of fault-tolerant embedded and real-time
digital systems. In Section 6.3.2, we introduce previous work on mechanical verifi-
cation of algorithms that provide fault-tolerance for mutual exclusion and message
passing problems. Finally, in Section 6.3.3, we present recent research work on defin-
ing abstractions for fault-tolerant computing regardless of algorithm, protocol, and

hardware platform.

6.3.1 Formal Verification of Fault-Tolerant Embedded Digi-

tal Systems.

Embedded systems mostly serve in digital controllers. In many cases, such con-
trollers are in charge of monitoring safety-critical systems that need greatest assur-

ance. For example, catastrophic failure of digital flight-control systems for passenger
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aircraft must be ”extremely improbable” [3]. Many researchers has focused on verifica-
tion of fault-tolerant digital flight control systems in the past two decades and there
has been great advances in specification and verification techniques of such systems
in the literature [3,48-52]. Clock synchronization and message passing are two major
concerns in such systems. Components across distributed digital embedded systems
miss clock signals due to transient and Byzantine faults. These faults can easily lead
the entire system to an unsynchronized and out of order state. Hence, verification of
fault-tolerant clock synchronization has being paid great attention from researchers
and verification engineers. Message passing is another serious issue in embedded
systems. Hence, fault-tolerant message passing and message broadcast protocols are
also well-studied [3,46]. Verification tools vary from early theorem provers such as
the Boyer-Moor theorem prover and EHDM to modern ones such as PVS, HOL, and
ACL2. However, most attempts address formal proof techniques for a particular
fault-tolerant protocols or algorithms.

Although verification of fault-tolerant embedded systems rely on specific charac-
teristics of different systems, there has been attempts to abstract the concepts that
are common among such systems. For instance, in [49], Rushby introduces and ab-
straction for mechanical verification of fault-tolerant time-triggered algorithms. His
approach provides a methodology that can ease the formal specification and assurance
of critical fault-tolerant systems. Mantel and Gértner [4] argue that modular reason-
ing about fault-tolerant systems can simplify the verification process in practice. They
exercise their idea on the problem of reliable message broadcast in point-to-point net-

works in the presence of failures of processes.

6.3.2 Formal Verification of Fault-Tolerant Algorithms

Dijkstra’s self-stabilizing token ring algorithm. A self-stabilizing algo-

rithm is one that guarantees that the system behavior eventually recovers to a safe
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subset of states regardless of the initial state. Obviously, self-stabilization is a type
of fault-tolerance. In [6], Dijkstra introduced his well-known self-stabilizing mutual
exclusion algorithm (also known as token ring algorithm) in 1974. At the time, he
assumed the algorithm is trivially correct and left the proof as an exercise for the
reader. However, 12 years later, Dijkstra published a belated proof of correctness
of the algorithm in [53], which was not quite trivial! In the algorithm, there are N
Processes for N > 1 numbered 0 to N — 1 arranged in a unidirectional ring where
each process can observe its own state and that of its predecessor. Each process 7
maintains a counter v(7) of values from 0 to M — 1, where N < M. Process 0 is a
distinguished process that is enabled when v(0) = v(N — 1), and when enabled, it
can make a transition by incrementing its counter modulo M. A nonzero process i is
enabled when v(i) # v(i — 1), and when enabled, it can update its counter value so
that v(i) = v(i — 1). It can be shown that despite a centralized controller the system
can self-stabilize from an arbitrary initial state to a stable behavior where exactly one
process is enabled at any state. This algorithm is useful as a solution for distributed
mutual exclusion problem; i.e., the enabled process (in other words, the one that has
the token) can enter its critical section. Qadeer and Shankar [5], exercise mechanical
verification of self-stability property of Dijkstra’s algorithm using PVS. First, they
formalize the algorithm using the PVS specification language. Then, based on Dijk-
stra’s informal proof sketch they present how to mechanically verify the self-stability
property of the algorithm. However, they do not present any sort of abstraction or

general design. Hence, there formal proof cannot be easily applied elsewhere.

6.3.3 Formal Verification of Abstractions for Fault-Tolerance

In previous sections in this chapter, we presented related work on mechanical
verification of specific fault-tolerant circuits, protocols, algorithms, digital embedded

systems, and microprocessors. In this section, we introduce the related work that
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attack the problem of verification of fault-tolerant systems by introducing abstractions
for programs, faults, and distributed systems. Defining such abstractions make the
process of verification less complex and more easy to prove.

Abstractions for fault-tolerant distributed systems. In [54], Pike et al
present four kinds of abstractions for the design and analysis of fault-tolerant dis-
tributed systems. More specifically, they introduce (i) Message Abstractions to ad-
dress the correctness of individual messages sent and received; (ii) Fault Abstractions
to address the kinds of faults possible as well as their effect in the system; (iii) Fault-
Masking Abstractions to address the kinds of local computations processes make to
mask faults, and (iv) Communication Abstractions to address the kinds of data com-
municated and the properties required for communication to succeed in the presence
of faults. The authors formalize the abstractions in PVS.

Abstractions for modeling faults, programs, and specifications. As men-
tioned in Section 6.2, in [47], Melham introduces four abstraction for hardware veri-
fication. Likewise, we need to introduce different levels of abstractions to make the
specification and verification of fault-tolerant systems less complex. Moreover, using
such abstractions, it is more likely that we can reuse formal proofs and develop proof
strategies. In [7,55,56], the authors introduce abstractions for modeling faults, pro-
grams, specifications, and component-based design of fault-tolerant programs. In [7],
Kulkarni, Rushby, and Shankar present a case-study in component-based mechani-
cal verification of Dijkstra’s self-stabilizing mutual exclusion algorithm. The authors
demonstrate that decomposition of a fault-tolerant program to its components is use-
ful to make the verification less complex and develop reusable formal proofs. More
specifically, they decompose a fault-tolerant program to a fault-intolerant program
and fault-tolerance components that are detectors and correctors. This decomposi-
tion facilitates the verification of a given property by focusing on the component that

is responsible for satisfying it. In this sense, verification of the entire fault-tolerant
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program reduces to verification of the component that is in charge of satisfying a
certain property. As an exercise, the authors, first, implement the theory of detectors
and correctors [2] in PVS. Then, they verify the correctness of Dijkstra’s token ring
algorithm using the mentioned theory. Kulkarni et al verify the same algorithm that
Qadeer and Shankar prove its correctness in [5], but their approach (decomposition
of program into its components) is more general and abstract in the sense that their
formal proofs techniques are reusable to verify other fault-tolerant program. Briefly,
in [5], the authors verify three major concerns. First, they formally prove that in
the absence of faults, the fault-tolerant program has the same behavior as the fault-
intolerant program. Then, they verify the corrector; i.e., if faults perturb the state
of program, at the resulting state, recovery to an ideal state of the fault-intolerant
program is possible. Finally, they verify that there is no interference between fault-

intolerant program and the corrector.
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Chapter 7

Discussion

In this chapter, we discuss about different aspects of this thesis and try to answer
the questions that have been raised about the verification of synthesis algorithms
proposed in [8,10].

Theorem proving vs. model checking. The first issue that we would like to
address is why we used theorem proving techniques to verify the synthesis algorithms.
Model checking is also widely used to verify the fault-tolerance properties of many
safety-critical embedded systems. However, model checking can only be used for
systems that have finite and known size of state space. In our case, although the
state space of the programs that the synthesis algorithms deal with are finite, the size
of state space may vary. Therefore, model checking does not seem to be the right
technique for verification of the synthesis algorithms.

The synthesis method. In Chapter 6, we presented related work on challenges
in the problem of program synthesis and mechanical verification of fault-tolerant
systems. In [30,32,33,35], the authors propose algorithms that synthesize a program
from its temporal logic specification. In the previous work prior to [8], the input to
synthesis algorithms is either an automaton or temporal logics specification and any

modification in the specification requires synthesizing the new program from scratch.
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By contrast, the algorithms in [8,10] reuse the fault-intolerant program to synthesize
the fault-tolerant version. This reusability helps to improve the time complexity to
some extent. Thus, the algorithms proposed in [8,10] seem to be suitable candidates
for practical implementation purposes. As an extension of the algorithms in [8], in [42],
the authors introduce a set of heuristics for synthesizing distributed fault-tolerant
programs in polynomial time. Based on the heuristics, Ebnenasir and Kulkarni have
developed a tool for synthesizing fault-tolerant programs [12]. Therefore, by formal
verification of the algorithms in [8,10], we gain more confidence on their practical
implementations as well.

Advantages of mechanical verification of algorithms for the synthesis
of fault-tolerant algorithms. Fault-tolerant systems are often in need of strong
assurance. Mechanical verification is a reliable way to ensure that the fault-tolerance
requirements of a system are met. We find that verification of algorithms for synthesis
of fault-tolerance is a systematic and abstract way for formal verification of fault-
tolerance.

High level of abstraction. The algorithms presented in [8,10] make no assump-
tions about the system, except that they have finite state space. This high level of
abstraction enables the algorithms to be applicable to synthesize both finite state
hardware and software systems. Our focus on formal verification of such abstract
algorithms makes it possible to extend our work to verify other algorithms in [11,42]
that are extensions of algorithms in [8] for any system regardless of the platform and
architecture. In addition, having the formal specification and verification developed
in this thesis, we can easily verify the extensions of the algorithms by reusing the
specification developed in this thesis.

Correctness of synthesized programs. Another advantage of verifying a synthesis
algorithm rather than individual fault-tolerant programs is to guarantee that any

synthesized program by the algorithm is correct by construction. Thus, we are not
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required to verify individual synthesized programs.

Reusability of formal proofs. Although most of the related work on formal veri-
fication of fault-tolerance provide confidence in correctness of their concerns, reusing
the formal proof of one, in verification of others is not quite convenient. Manual
reusability of formal proofs is the first step to develop proof strategies. As an illus-
tration, in Section 4.3.2, we showed how we manually reused the formal proofs of
Add_failsafe to verify the soundness of Add_masking.

The issue of completeness. A synthesis algorithm is complete iff for any
given program p with the invariant S, if there exists a solution p’ with invariant S’
that satisfies the transformation problem then the algorithm always finds program
p' and state predicate S’. In Section 4.1.2, we have shown that the algorithm for
adding failsafe fault-tolerance in complete. However, in this thesis, we did not spent
a great deal of attention on verification of the completeness of the algorithms due
to two reasons. First, in order to show the correctness of an algorithm, we are
mostly interested in verification of the soundness of the algorithm. In our context,
we need to prove that the program synthesized by the algorithm is fault-tolerant
indeed; i.e., the synthesized program satisfies the transformation problem. Second,
in the low atomicity model, proving the completeness of a deterministic polynomial
time synthesis algorithm is irrelevant in the sense that the problem of adding fault-
tolerance to distributed programs is known to be NP-Complete [8,19]. In other words,
we have to apply heuristics [11,42] to synthesize distributed fault-tolerant programs
in polynomial time. As a result of applying such heuristics, we lose the completeness
of the synthesis algorithms; i.e., if the heuristics are not applicable then the synthesis
algorithm fails to synthesize a fault-tolerant distributed program although there may
exist a fault-tolerant program that satisfies the requirements of the transformation
problem.

Lessons learned. Formalization and verification of the synthesis algorithms
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and fixpoint theory presented in chapters 2 to 5 were not our first and last attempts.
In fact, we tried several other ways to model the problem, but they were either not
abstract enough or they were too complicated to handle. We summarize the lessons

we learned as follows:

e Sometimes it is very tempting to prove the easy-looking theorems before actually
verifying them manually. This temptation may lead the developer to spend a
lot of time to prove an incorrect theorem. Basically, if you cannot do a proof

by hand you cannot do it automatically.

e In many cases a failed proof teaches more than a successful proof, because
the developer gains a better understanding of the problem and formalization

through a failed proof.

e Improper formal specification usually leads us to state wrong or difficult theo-
rems. For instance, our first attempt to formalize the largest fixpoint calculation
was based on an inductive definition on the finite set itself rather the steps of
fixpoint calculation. Here is our first attempt to model the largest fixpoint

calculation for removing deadlock states from a given state predicate X:

Dec (X: StatePred) : RECURSIVE StatePred =
LET ds = DeadlockStates(X) IN
IF ds = {} THEN X

ELSE Dec (X - ds)
ENDIF
MEASURE [X|

This formalization is probably the simplest way to model a recursive function

on a finite set, but using the induction schemes for finite sets in PVS is not quite
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convenient and proof of very simple theorems turn to huge proof trees. On the
other hand, by defining the recursive function based on the steps of fixpoint
calculation rather than the finite set itself and using induction on the number
of steps, which is an integer, theorems become much easier to prove. Hence, a

simple formalization does not necessarily lead the developer to easier proofs.

The development of the fixpoint theory was inspired by several implementations
of specific fixpoint calculations. In fact, we did not develop the fixpoint theory
before developing the synthesis algorithms! In many cases, several implemen-
tations of special cases of a problem leads the developer to develop a general

theory once and instantiate it to verify the special cases.
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Chapter 8

Conclusion and Future Work

In this thesis, we focused on the problem of verifying transformation algorithms
that generate fault-tolerant programs that are correct by construction using PVS.
We considered the programs that are subject to a single class or multiple classes of
faults. For the case that a program is subject to a single class of faults we consid-
ered three types of fault-tolerance that are, failsafe, nonmasking, and masking. We
verified soundness and completeness of synthesis algorithms for adding failsafe and
nonmasking fault-tolerance. For addition of masking fault-tolerance, we only con-
sidered verification of the soundness. For the synthesis algorithms associated with
addition of multitolerance, we verified the soundness of addition of failsafe-masking
and nonmasking-masking.

The theory for fixpoint calculations on finite sets. The essence of adding
failsafe and masking fault-tolerance as well as failsafe-masking, and nonmasking-
masking multitolerance is calculating the new invariant of program, which in turn
involves calculating the fixpoint of a formula. We developed a theory for fixpoint
calculation on finite sets that is customized for specification and verification of fault-
tolerance. More specifically, we introduced the formalization of smallest fixpoint

calculation to calculate reachability of a set of sates. Moreover, we presented the
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formalization of largest fixpoint calculation to calculate the set deadlock states of a
given state predicate. The theory developed in Chapter 3 is expected to be reusable
for other formalizations that involve fixpoint calculations.

Mechanized verification of fault-tolerance and multitolerance. For the
case that programs are subject to a single class of faults, we considered verification of
addition of three levels of fault-tolerance. More specifically, first, we developed a for-
mal framework for modeling fault-tolerance in PVS. This framework introduces formal
definitions for programs, specifications, faults, and fault-tolerance. Then, using the
framework, we formally proved that in the presence of faults, any synthesized program
by the Add_failsafe algorithm never violates safety and in the absence of faults, the
program maintains its specification. For the Add_nonmasking algorithm, we showed
that the nonmasking fault-tolerant program provides recovery to the normal behavior
when the state of the program is perturbed by faults, and in the absence of faults it
maintains its specification. Finally, we verified that a masking fault-tolerant program
provides safe recovery when the state of the program is perturbed by faults, and in
the absence of faults it maintains its specification. In other words, we mechanically
verified that the algorithms for addition of fault-tolerance in [8] are sound. We also
addressed formal verification of completeness of failsafe. More specifically, we proved
if there exists a failsafe program that satisfies the transformation problem (cf. Section
2.5), then the algorithm Add_failsafe never declares failure.

For the case that programs are subject to multiple classes of faults, we consid-
ered verification of addition of two types of multitolerance. More specifically, first,
we extended our formal framework for fault-tolerance, so that our formal defini-
tions can deal with multiple classes of faults. Then, using the extended framework,
we formally proved that in the presence of faults, any synthesized program by the
Add_Failsafe_Masking algorithm (i) never violates safety when the state of the pro-

gram is perturbed in the presence of the class of faults that failsafe fault-tolerance is to
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be provided; (ii) provides safe recovery when the state of the program is perturbed in
the presence of the class of faults that masking fault-tolerance is to be provided; (iii)
provides failsafe fault-tolerance if faults from both types occur, and (iv) maintains its
specification in the absence of faults. For the Add_Nonmasking_Masking algorithm,
we showed that the nonmasking-masking multitolerant program (i) provides safe re-
covery to the normal behavior when the state of the program is perturbed by class
of faults that masking fault-tolerance is to be provided; (ii) provides recovery to its
invariant when the state of the program is perturbed by class of faults that nonmask-
ing fault-tolerance is to be provided; (iii) provides nonmasking fault-tolerance if faults
from both types occur, and (iv) maintains its specification in the absence of faults.
In other words, we mechanically verified that the algorithms for addition of multitol-
erance in [10] are all sound. Verification of multitolerance is one of the instances that
we simply reused both formal specification and proofs of the framework developed in
Chapter 2 and the algorithms developed in Chapter 4. We expect this reusability for
verification of other extensions of the algorithms [11,42].

The algorithms verified in this thesis synthesize programs in the high atom-
icity model, where a process can read and write all variables in an atomic step.
In [8], the authors have presented a non-deterministic algorithm for synthesizing
fault-tolerant distributed programs. Moreover, in [10], the authors have introduced
a non-deterministic algorithm for synthesizing failsafe-nonmasking multitolerant pro-
grams. The non-deterministic algorithms in both cases, first, guess a solutions and
then verifies a solution by itself. Formal verification of such an algorithm that verifies
its output by itself does not have any interesting point and, hence, we did not include
them in this thesis.

Soundness vs. completeness. In this thesis, we concentrated more on verifi-
cation of soundness of algorithms rather than their completeness due to two reasons.

First, in order to show the correctness of an algorithm, we are mostly interested in
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verification of the soundness of the algorithm. In our context, we need to prove that
programs synthesized by an algorithm are fault-tolerant indeed. Second, proving the
completeness of a non-deterministic polynomial time synthesis algorithm is irrelevant
for the problem of adding fault-tolerance in the sense that they are known to be NP-
Complete. In order to deal with NP-Complete problems in addition of fault-tolerance,
several heuristics have been proposed [11,42]. As a result of applying such heuristics,
we lose the completeness of the synthesis algorithms. Therefore, we have to only
concentrate on verifying the soundness of such heuristics unless P = N P.

Advantages of verification of synthesis algorithms. Since we focus on
verification of the transformation algorithms, we note that our results ensure that
the programs synthesized using these algorithms indeed satisfy their required fault-
tolerance properties. Thus, our approach is more general than verifying a particular
fault-tolerant program.

In a broader context, the verification of the algorithms considered in this thesis
will assist us in verifying several other transformations. For example, the algorithms
in [8,9] have also been used to synthesize fault-tolerant distributed programs. As
an illustration, we note that the algorithms in [11,12,42] that are extensions of the
algorithms in [8, 9] have been used to synthesize solutions for several fault-tolerant
programs including, Byzantine agreement, consensus, token ring, and alternating bit
protocol. Thus, the theories developed in this thesis are directly applicable to verify
the transformation algorithms in [11,12,42] as well.

Future work. As a future work, one may consider mechanical verification of
heuristics developed in [42] to synthesize fault-tolerant distributed programs. Also,
formal verification of the algorithms proposed in [11] for enhancing the synthesis of
masking fault-tolerant distributed programs through their nonmasking version is also
an interesting problem.

Our experience shows that significant number of proofs were reused. For instance,
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we manually reused proofs of failsafe fault-tolerance to verify the soundness of the
algorithm for synthesizing masking fault-tolerant programs. We also, reused formal
proofs of soundness of addition of failsafe, nonmasking, and masking fault-tolerance
to verify the algorithms for addition of multitolerance. We expect to reuse many
of the theorems and proofs in future verifications as well. Therefore, a future work
is developing automated proofs, called proof strategies, based on our experience in

reusability of formal proofs.
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Appendix A

Formal Specification of the

Fault-Tolerance Framework

FT [state: TYPE]: THEORY

BEGIN

ASSUMING

ST_isfinite: ASSUMPTION is_finite_type [state]
TR_s_finite: ASSUMPTION is_finite_type[[state, state]]

IMPORTING sets [state]
IMPORTING sets_lemmas [state]
IMPORTING finite_sets [state]
IMPORTING sequences [state]
IMPORTING finite_fp [state]

IMPORTING min_nat
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ENDASSUMING

Transition: TYPE = [state, state]

Action: TYPE = finite_set [Transition]

Computation(Z: Action): TYPE =

{A: sequence[state] | V (n: nat): ((A(n), A(n+1)) € 2)}
prefix(Z: Action, j: nat): TYPE =

{c: sequence | V ((i: nat | i < 5)): ((e(i), c(i+1)) € Z)}

full state: JUDGEMENT fullset [state] HAS_TYPE finite_set
StateSpace: finite_set = fullset [state]

S: StatePred

T: StatePred

p: Action
f: Action
sf: Action

S, Sp, S1: VAR state
X, Y: VAR StatePred
Z: VAR Action

i, j, k: VAR nat

g: VAR DecFunc

r: VAR IncFunc

closed?(S: StatePred, P: Action): bool =
V (so, s1): ((((sg, s1) € P) A (s0€S)) D (s1€8))
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proj(p: Action, S: StatePred): Action =

{80, S1 | ((80, 81) Ep) A (S()ES) A (81 GS)}

fault span? (7", S: StatePred, p: Action): bool =

(V s0: (s0€S5) D (s0€T)) A closed?(T, (pU f))

axl: AXIOM closed?(S, p)

ax3: AXIOM
V (¢: Computation((Z U f))):

(3 (j: nat): (V ((n: nat | n > ): ((c(n), c(n+1))€Z)))

axh: AXIOM nonempty? (S)

ms_init (anyFault: Action): StatePred =

{so | 3 (s1): ((s0, s1) € anyFault) A ((so, s1) €sf)}

reverse_reachable_states (anyFault: Action) (rs: StatePred): StatePred =

{80 |
3 (s1):

((s1 €18) A ((s0, s1) € anyFault) A = (sp € 1))}

rs_if: JUDGEMENT reverse_reachable states(anyFault: Action) HAS_TYPE

IncFunc

deadlock_states(p: Action) (ds: StatePred): StatePred =

{s0 |
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(so €ds) A (V (s1): (s1€ds) D = ((s0, s1) €Ep))}

ax6: AXIOM empty?(deadlock_states(p) (S))

dl_.df: JUDGEMENT deadlock_states(p: Action) HAS_TYPE DecFunc

ms (anyFault: Action): StatePred =

nu_fix (ms_init (anyFault) ) (reverse_reachable_states (anyFault) )

ms(2) (anyFault: Action) : StatePred =

nu_inc(z, ms_init(anyFault)) (reverse_reachable_states(anyFault))

mt (anyFault: Action): Action =

{s0, 51 | ((s; € ms(anyFault)) V ((so, s1) €sf)}

ConstructInvariant (X : StatePred, Z: Action): StatePred =

mu_fix (X)) (deadlock_states(Z))
finite_fault: THEOREM
V (¢: Computation((Z U f))):
3 (j: nat):

(V (n: nat): ((suffix(c, j)(n), suffix(c, j)(n+1)) € Z))

END FT
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Appendix B

Formal Specification of the

Fixpoint Theory

finite fp[T': TYPE]: THEORY
BEGIN
ASSUMING

IMPORTING sets[7]
IMPORTING sets_lemmas[7]
IMPORTING finite_sets[T']
IMPORTING mucalculus [7]
T_is_finite: ASSUMPTION is_finite_type[T]

ENDASSUMING

StatePred: TYPE = finite set[7']
IncFunc: TYPE = [A: StatePred — {B: StatePred | disjoint?(A, B)}]
DecFunc: TYPE = [A: StatePred — {B: StatePred | (B C A)}]

StateSpace: finite_set = fullset [7]
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s: VAR T

i, j, k: VAR nat
X: VAR StatePred
g: VAR DecFunc

r: VAR IncFunc

fullset_finite: JUDGEMENT fullset[7] HAS_TYPE finite_set

nu_inc(s: nat, X: StatePred) (r: IncFunc): RECURSIVE StatePred =
IF § = 0 THEN X ELSE (nu.inc(i —1, X)(r)Ur(nu-nc(i —1, X)(r))) EN-
DIF

MEASURE (A (z: nat, y: StatePred): xz)

nu_fix(X : StatePred) (r: IncFunc): StatePred =
{s | 3 (k: nat): (s € nuinc(k, X)(r))}

mu_dec(i: nat, X: StatePred) (g: DecFunc): RECURSIVE StatePred =
IF 4 = 0 THEN X ELSE (mudec(i —1, X)(g)\ g(mudec(i—1, X)(g))) EN-
DIF

MEASURE (A (z: nat, y: StatePred): x)

mu_fix(X: StatePred) (¢: DecFunc): StatePred =
{s | V (k: nat): (s € mudec(k, X)(g9))}

sfpcal (fpSet: StatePred) (r: IncFunc): RECURSIVE StatePred =

IF nonempty? (r (fpSet)) THEN sfpcal ((r(fpSet) U fpSet)) (r) ELSE fpSet EN-

DIF
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MEASURE card(StateSpace) — card(fpSet)

Ifpcal (fpSet: StatePred) (¢9: DecFunc): RECURSIVE StatePred =
IF empty? (g(fpSet)) THEN fpSet ELSE lfpcal ((fpSet \ g(fpSet))) (¢9) ENDIF

MEASURE card (fpSet)

mul: LEMMA (j < k) D (mu.dec(k, X)(¢9) C mudec(j, X)(g9))

mu3: LEMMA
V (j: nat):
nonempty? (g (mu_dec(j, X)(g))) D
card (mu-dec(j +1, X)(¢)) < card(X)—j—1

mud: LEMMA
V (j: nat):
empty? (g (mu_dec(j, X)(g))) D
V ((k: nat | & > 7)): empty?(g(mu_dec(k, X)(g))))

mu6: LEMMA 3 (j: nat): V ((k: nat | & > 5)): empty?(g(mu_dec(k, X)(g)))
mu7: LEMMA
3 (y: nat):
V ((k: nat | & > j)):

mu_dec(k, X)(g) = mudec(j, X)(g) A empty?(g(mu_dec(k, X)(g)))

mu&: LEMMA

4 (j: nat):
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((mu_dec(j, X)(g) = mufix(X)(g)) A empty?(g(mu_dec(j, X)(g))))

mu9: THEOREM empty? (g (mu_fix(X) (¢g)))

mulO: THEOREM mu_fix(X) (¢) = mu_fix(mu_fix(X) (¢g)) (¢g)

nul: LEMMA (kK < j) D (nu-inc(k, X)(r) C nu.inc(j, X)(r))

nu2_3: LEMMA
(s € nuinc(j +1, X)(r)) D
((s € r(nu-nc(j, X)(r))) V
(3 ((k: nat | £ < 5)): (s €nudinc(k, X)(r))))

nu24: LEMMA
(s € nu_fix(X)(r)) D
(3 (4: nat):
(s € r(nuinc(j, X)(r))) V

(3 ((k: nat | & < 5)): (s €nuiinc(k, X)(r))))

nu3d: LEMMA
V (j: nat):

nonempty? (r (nu_inc(j, X)(r))) D

card (nu_inc(j + 1, X)(r)) <
card(fullset[T]) — card(X) — j — 1

nud: LEMMA

V (j: nat):
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empty? (r (nu_inc(j, X)(r))) D
vV (Ck: nat | £ > 7)): empty?(r(nu_inc(k, X)())))

nu6: LEMMA d (j: nat): V ((k: nat | & > 7)) : empty?(r(nu_inc(k, X)(r)))

nu7: LEMMA

3 (j: nat):

V ((k: nat | £ > j)):

nu_inc(k, X) () = nuinc(j, X)) A empty?(r(nu_inc(k, X)(r)))

nu®: LEMMA

3 (j: nat):

((nuiinc(j, X)(r) = nufix(X) (r)) A empty? (r(nu_inc(j, X)(r))))

nu9: THEOREM empty? (r (nu_fix(X) (r)))

nulQ: THEOREM nu_fix (nu_fix(X) (r)) (r) = nu_fix(X) (1)

END finite_fp
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Appendix C

Formal Specification of the
Synthesis of Failsafe

Fault-Tolerance

add_failsafe[state: TYPE]: THEORY

BEGIN
ASSUMING
ST_is_finite: ASSUMPTION is_finite_type [state]
TR_s_finite: ASSUMPTION is_finite_type[[state, state]]
IMPORTING FT [state]

ENDASSUMING

1, j: VAR nat

Sy, S1: VAR state
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Sp(anyFault: Action): StatePred =

ConstructInvariant ((S \ ms(anyFault)), (p\ mt(anyFault)))

pp(anyFault: Action): Action =
(p \ mt(anyFault))

{s0, s1| = sy Sp(anyFault) A — member(sy, Sp(anyFault))}

sc:
{c: Computation(f) |
V ((s: state | (s € ms_init(f)))):

() = 8) A ((c(0), ¢(1)) € sf)}

scl:
{c: Computation(f) |

YV ((t: Transition | (¢t € (pNsf)))): c(0) = t2}

is_failsafe? (Spp: StatePred, ppp: Action): bool =
nonempty? (Spp) A
closed? (Spp, ppp) A
(Spp € S) A
(proj(ppp, Spp) C proj(p, Spp)) A
empty? (deadlock_states (ppp) (Spp)) A
(V ((c: Computation((pppU f)) | (c(0) € Spp))):
V (j: nat): = ((c(j), c(j+1)) € sf))

add_failsafe fails?: bool = empty?(Sp(f))
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rs_disj: LEMMA

V (X: StatePred): disjoint? (X, reverse_reachable states(f) (X))

rs_.empty: LEMMA reverse_reachable_states(f) (emptyset) = emptyset

disj Sp_ms: THEOREM disjoint? (Sp(f), ms(f))

disj_Sp_sf: THEOREM disjoint? (Sp(f), ms_init(f))

ms_{ sf: LEMMA

V (s0, s1): ((s0, 81) € f) A ((50, 81) €sf) D (s0 € ms(f))

prop: LEMMA (ms_init(f) C ms(f))

disj_pp_sf: LEMMA disjoint? (pp(f), sf)

prop2: LEMMA
V (anyFault: Action):
(((so, s1) € anyFault) A (s; € ms(anyFault))) D

(so € ms(anyFault))

prop3: LEMMA
YV (sg, $1):
(((s0, s1) €sf) A ((s0, 1) € f)) D (s0 € ms(f))

prop4: LEMMA

V (j: nat):
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((so €ms(j +1)(f)) A = (so € ms(4)(f))) D
(3 () ((s0, s1) € f) A (s1€ms(f)(f))

fix3: THEOREM ConstructInvariant(Sp(f), (p\mt(f))) = Sp(f)

scond1: THEOREM (Sp(f) C S)

scond2: THEOREM (proj(pp(f), Sp(f)) C proj(p, Sp(f)))

scond2_1: COROLLARY (pp(f) C p)

scond3_1: LEMMA closed? (Sp(f), pp(f))

scond3_1_1: THEOREM
YV (j: nat):
V (c: prefix((pp(f)U f), 7):
(c(0) € Sp(f)) D (v ((k: nat | k < 5)): — (c(k) € ms(f)))

scond3_1_2: THEOREM
YV (j: nat):
V (c: prefix((pp(f)U f), 5)):
(c(0) € Sp(f)) >
(V ((k: nat | & < 7)): = ((c(k), c(k+1))est)

scond3_2: THEOREM
YV (c: Computation(pp(f))):
(c(0) € Sp(f)) D (¥ (j: nat): (c(5) € Sp(f)))
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scond3_3: THEOREM empty? (deadlock_states((p \ mt(f))) (Sp(f)))

scond3_3_1: THEOREM empty? (deadlock_states(pp(f)) (Sp(f)))

scond3_4: THEOREM
V (¢: Computation((pp(f) U f))):
(c(0) € Sp(f)) D (V (4: nat): = (c(4) € ms(f)))

scond3_5: THEOREM
V (c: Computation((pp(f) U f))):
(c(0) € Sp(f)) D Vv (j: nat): = ((c(j), c(j+1)) €sf))

scond3_6: THEOREM

3 (T: StatePred): fault_span?(T, Sp(f), (pp(f)U f))

ccondl: LEMMA
V ((s: state | (s€ms(i)(f)))):
(3 ((c: Computation(f) | ¢(0) = s)):
3 (k: nat): ((c(k), c(k+1)) € sf))

ccond2: LEMMA
V ((s: state | (s e€ms(f)))):
(3 ((e: Computation(f) | ¢(0) = s)):
3 (k: nat): ((c(k), c(k+1)) € sf))

ccond3: LEMMA
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V ((¢t: Transition | (¢ € mt(f)))):
3 ((c: Computation(f) | ¢(0) = t¢1)):
3 (k: nat): ((c(k), c(k+1)) € sf)

ccond4: THEOREM
V (Spp: StatePred, ppp: Action):

is_failsafe? (Spp, ppp) D (Spp C (S \ ms(f)))

ccondb: THEOREM
V (Spp: StatePred, ppp: Action):

is_failsafe? (Spp, ppp) D (proj(ppp, Spp) C (p \ mt(f)))

ccond6: LEMMA
(3 (Spp: StatePred, ppp: Action): is_failsafe? (Spp, ppp)) D
nonempty? ((S \ ms(f)))

completeness: THEOREM
(3 (Spp: StatePred, ppp: Action): is_failsafe? (Spp, ppp)) D

— add_failsafe_fails?

END add_failsafe
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Appendix D

Formal Specification of the
Synthesis of Nonmasking

Fault-tolerance

add_nonmasking [state: TYPE]: THEORY

BEGIN
ASSUMING
ST_is_finite: ASSUMPTION is_finite_type [state]
TR_s_finite: ASSUMPTION is_finite_type[[state, state]]
IMPORTING FT [state]

ENDASSUMING

Sy, S1: VAR state
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Sp(anyS: StatePred): StatePred = anyS

pp(anyS: StatePred, anyp: Action): Action =

(proj(anyp, anyS)U {so, s1 | = (so € anyS) A (s1 € anyS)})

scond1_1: LEMMA (Sp(S) C S)

scond1_2: LEMMA closed?(Sp(S), pp(S, p))

scond2: LEMMA (proj(pp(S, p), Sp(S)) C proj(p, Sp(S5)))

scond3: LEMMA

V (¢: Computation(pp(S, p))): 3 ((j: nat | j > 0)): (c(4) € Sp(9))
scond4: LEMMA
V (c: Computation((pp(S, p)U f))):

3 ((G: nat | 7 > 0)): (c(j) € Sp(5))

soundness: THEOREM

3 (T: StatePred): fault_span?(T’, Sp(S), (pp(S, p)U f))

END add_nonmasking
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Appendix E

Formal Specification of the
Synthesis of Masking

Fault-tolerance

add_masking [state: TYPE]: THEORY

BEGIN
ASSUMING
ST_is_finite: ASSUMPTION is_finite_type [state]
TR_s_finite: ASSUMPTION is_finite_type[[state, state]]
IMPORTING add_failsafe [state]

ENDASSUMING

S, Sy, S1: VAR state

Sy, Ty: StatePred
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mask ax: AXIOM (S; C Ty)
reachable? (S, T: StatePred, p: Action, s: state): bool =
3 (¢: Computation(p)) :

(seT) Ns=c0) AN (3 (: nat): (c(j) € 5))

S_init (anyFault: Action): StatePred =

ConstructInvariant ((S \ ms(anyFault)), (p \ mt(anyFault)))

T_init (anyFault: Action): StatePred = {s | = (s € ms(anyFault))}

TmS: Action =

{s0, s1 | (= (s0€82)) N ((so€T2) N (s1€T2))}

p1 (anyFault: Action) : Action = ((proj(p, S2)UTmS) \ mt(anyFault))

TmR (anyFault: Action): StatePred =

{s | (s €Ty) A reachable?(Sy, T, p;(anyFault), s)}

TcL(anyFault: Action) (X : StatePred): StatePred =
{S() |
3 (s1):

(so € X) A ((so, s1) € anyFault) A = (s; € X)}

ConstructFault_span (X : StatePred, anyFault: Action): StatePred =

mu_fix (X) (TcL (anyFault) )
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T: (anyFault: Action): StatePred =

ConstructFault_span (TmR (anyFault) , anyFault)

Si(anyFault: Action): StatePred =

ConstructInvariant ((Se N T (anyFault)), p; (anyFault))

T1.T2: LemmA (Ti(f) C T3)

S1.52: LEMMA (Si(f) C Sy)

S1_.T1: THEOREM VY (f: Action): (Si(f) CTi(f))

propl: LEMMA disjoint? (T, ms(f)) D disjoint? (77 (f), ms(f))

prop2: LEMMA V (f: Action): empty?(TcL(f) (T1(f)))

sfpl: LEMMA disjoint? (p; (f), sf)

prop: LEMMA V (f: Action): ConstructFault_span(T;(f), f) = T1(f)

scondl: LEMMA V (f: Action): closed?(Sy, pi(f))

scond2: LEMMA V (f: Action): closed? (T3, pi(f))

scond3_1: THEOREM (S CS) D (Si(f) CS)
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scond3_2: THEOREM
(proj(pi(f), S2) C proj(p, S2)) D
(proj(p1(f), Si(f)) € proj(p, Si(f)))

scond4: LEMMA V (f: Action): closed?(T7(f), f)

scond4_1: THEOREM V (f: Action): (S;(f) = S3) D closed?(S;(f), pi(f))

scond4_2: THEOREM

V (f: Action): (T1(f) = Ty) D closed?(T1(f), (pi(f)U )

scond7: LEMMA (T7(f) = Ty) D closed?(T,, f)

scond8: THEOREM
V (f: Action):
(S () = S) AN (T (f) =Ty)) D
(VY ((s: state | (se€Ti(f))):
reachable? (S1 (f), T1(f), pi(f), s)))

scond8_2: THEOREM
V (f: Action):
(S (f) = 8) N (T (f) =T5)) D
(VY ((s: state | (s e Ti(f))N):
reachable? (S1 (f), T1(f), pp(f), s)))

scond3_3: THEOREM

V (c: Computation((p1(f)U f))):
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(c(0) € Ti(f)) D VY (: nat): = (c(j) € ms(f)))

scond3_4: THEOREM
(T (f) =T3) D
(V (c: Computation((pi(f)U f))):
(c(0) € Ti(f)) D (VY (j: mnat): = ((c(y), c(j+1)) es)))

scond3_5: THEOREM

(Ty(f) = Ty) D (3 (T: StatePred): faultspan?(T, S;(f), p1(f)))

scond3_6: THEOREM empty? (deadlock states(p; (f)) (S1(f)))

scond3_8: LEMMA
(S1(f) = So NTi(f) =T) D
(V ((c: Computation((pp(f)U f)) | (c(0) € Ti(f)))):
3 ((j: nat | j > 0)): (c(j) € Si(f))

scond3_9: THEOREM
(S1(f) = So ANTI(f) =Ty) D
(V (j: nat):
V (c: prefix((pi(f)U f), 7))
(c(0) € Ti(f)) O
V (Ck: nat | & < 5)): = (c(k) € ms(f))))

scond3_10: THEOREM
(S1(f) = S ANTi(f) =T,) D

(VY (j: nat):
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V (c: prefix((pp(f) U f), 7)):
(c(0) € T1(f)) >
(V (Ck: nat | & < 5)): = ((c(k), e(k+1))€sh)))

END add_masking

119



Appendix F

Formal Specification of the

Synthesis of Multitolerance

add_multift [state: TYPE]: THEORY

BEGIN

ASSUMING
ST_isfinite: ASSUMPTION is_finite_type [state]
TR_s_finite: ASSUMPTION is_finite_type[[state, state]]
IMPORTING add_failsafe [state]
IMPORTING add_nonmasking [state]
IMPORTING add_masking [state]

ENDASSUMING

1, j: VAR nat

Sp, S1: VAR state
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Z: VAR Action

f failsafe: Action

f nonmasking: Action

f masking: Action

f nonmasking masking: Action = (f_masking U f_nonmasking)

f failsafe_masking: Action = (f_masking U f failsafe)

ax4d: AXIOM

V (¢: Computation((Z Uf nonmasking))) :

(3 (G: nat): (V¥ ((n: nat | n > 7)): ((e(n), c(n+1)) € Z)))

Spl: StatePred = add_masking.S; (f_ masking)

Tpl: StatePred = add_nonmasking.Sp (7} (f_ masking))

ppl: Action = add_nonmasking.pp(Tpl, p;(f masking))

ms: StatePred = FT.ms(f failsafe_masking)

mt: Action = FT.mt(f failsafe_ masking)
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T_masking: StatePred = 7Tj(f_masking)

p1: Action = add_masking.p; (f_-masking)

Sp2: StatePred = add_masking.S; (f masking)

Tp2: StatePred = ConstructInvariant ((T_masking \ ms), (p; \ mt))

pp2: Action =
(p1 - mt)-
(s0, s1)| ((s0, s1) e (pl — mt)) AND ((s0 € Tp2) AND NOT (sl € Tp2))
finite_fault_nonmasking: THEOREM
V (c: Computation((Z U fnonmasking masking))) :
3 (j: nat):

(V (n: nat): ((suffix(c, j)(n), suffix(c, j)(n+1)) € Z))

scond3: LEMMA

V (c: Computation(ppl)): 3 ((j: nat | j > 0)): (c(j) € Tpl)

scond4: LEMMA
V (c: Computation((ppl U f_nonmasking masking))) :
3 ((: nat | 7 > 0)): (c(j) € Tpl)

scond1_1: THEOREM (S, CS) D (Spl C S)

scond1l_3_2: THEOREM

(proj(ppl, Ss) C proj(p, S2)) D (proj(ppl, Spl) C proj(p, Spl))
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scondl_3_.5: THEOREM (Spl C Tpl)

scond1_3_3: LEMMA

(add_masking. T} (f masking) = T3) D closed?(Tpl, (ppl U f masking))
scond1_3.4: LEMMA (add_masking.S; (f_masking) = S3) D closed?(Spl, ppl)
scond1_8: THEOREM

((S; (fmasking) = S3) A (77 (f_masking) = T73)) D

(V ((s: state | (s € Tpl))): reachable?(Spl, Tpl, ppl, s))

scondl_3_6: THEOREM

3 (T: StatePred): fault_span?(7’, Spl, (ppl U f nonmasking masking))

scond2_1: THEOREM (S; C S) D (Sp2 C S)

scond2_3_2: THEOREM

(proj(pp2, Ss) C proj(p, S2)) D (proj(pp2, Sp2) C proj(p, Sp2))

scond2_3_.3: THEOREM (Sp2 = S3) D closed?(Sp2, pp2)

scond2_3_.5: THEOREM (Sp2 C Tp2)

scond2_3_1_1: THEOREM

disjoint? (7T, ms) D

(VY (j: nat):
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V (c: prefix((pp2 U f_failsafe_ masking), 5)):
(c(0) € Sp2) D (Vv ((k: nat | & < 5)): = (c(k) € ms)))

scond2_3_.1_2: THEOREM
disjoint? (T, ms) D
(V (j: nat):
V (c: prefix((pp2 U f_failsafe_masking), 7)) :
(c(0) € Sp2) D
(V ((k: nat | & < 5)): = ((c(k), c(k+1)) esh))

scond2_3_.3_1: THEOREM empty? (deadlock_states((p; \ mt)) (Tp2))

scond2_3.3.2: THEOREM empty?(deadlock_states(pp2) (Tp2))

scond2_8: THEOREM

((Sp2 = S9) A (Tp2 = T3)) D

(V ((s: state | (s € Tp2))): reachable?(Sp2, Tp2, pp2, s))

scond2_3_6: THEOREM

3 (T: StatePred): fault_span?(7’, Sp2, (pp2U f failsafe masking))

END add_multift
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