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Abstract. Fault-tolerance is a crucial property in many systems. Thus,
mechanical verification of algorithms associated with synthesis of fault-
tolerant programs is desirable to ensure their correctness. In this paper,
we present the mechanized verification of algorithms that automate the
addition of fault-tolerance to a given fault-intolerant program using the
PVS theorem prover. By this verification, not only we prove the correct-
ness of the synthesis algorithms, but also we guarantee that any program
synthesized by these algorithms is correct by construction. Towards this
end, we formally define a uniform framework for formal specification and
verification of fault-tolerance that consists of abstract definitions for pro-
grams, specifications, faults, and levels of fault-tolerance, so that they are
independent of platform and architecture. The essence of synthesis algo-
rithms involves fixpoint calculations. Hence, we also develop a reusable
library for fixpoint calculations on finite sets in PVS.

Keywords: Fault-tolerance, PVS, Program synthesis, Program transforma-
tion, Mechanical verification, Theorem proving, Addition of fault-tolerance

1 Introduction

Fault-tolerance is a necessity in most computer systems and, hence, one needs
strong assurance of fault-tolerance properties of a given system. Mechanical ver-
ification of such systems is one way to get a strong form of assurance. The re-
lated work in the literature has focused on verification of concrete fault-tolerant
programs. For example, Owre et al [1] present a survey on formal verification
of a fault-tolerant digital-flight control system. Mantel and Gértner verify the
correctness of a fault-tolerant broadcast protocol [2]. Qadeer and Shankar [3] me-
chanically verify the self-stability property of Dijkstra’s mutual exclusion token
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grant from Michigan State University.



2 Sandeep S. Kulkarni, Borzoo Bonakdarpour, and Ali Ebnenasir

ring algorithm [4]. Kulkarni, Rushby, and Shankar [5] verify the same algorithm
by exploiting the theory of detectors and correctors [6].

While the verifications performed in [1-3, 5] enable us to gain confidence
in the programs being verified, it is difficult to extend these verifications to
other programs. A more general approach, therefore, is to verify algorithms that
generate fault-tolerant programs.

With this motivation, in this paper, we focus on the problem of verifying
algorithms that synthesize fault-tolerant programs. With such verification, we
are guaranteed that all the programs generated by the synthesis algorithms in-
deed satisfy their fault-tolerance requirements. Towards this end, we verify the
transformation algorithms presented by Kulkarni and Arora [7,8] using the PVS
theorem prover. The algorithms in [7,8], focus on the problem of transforming a
given fault-intolerant program to a fault-tolerant program. To verify these algo-
rithms, first, we model a framework for fault-tolerance in PVS. This framework
consists of definitions for programs, specifications, faults, and levels of fault-
tolerance. Then, we verify that the programs synthesized by the algorithms are
indeed fault-tolerant. By this verification, we ensure that any program synthe-
sized by these algorithms is also correct by construction and, hence, there is no
need to verify the individual synthesized programs.

We note that the algorithms in [7,8], are the basis for their extensions to deal
with simultaneous occurrence of multiple faults from different types [9] and for
synthesizing distributed programs [10,11]. Thus, the specification and verifica-
tion of transformation algorithms in [7,8] is reusable in developing specification
and verification of algorithms in [9-11]. Since fixpoint calculation is at the heart
of the synthesis algorithms, we also develop a library for fixpoint calculations
on finite sets in PVS. This library is reusable for other purposes that involves
fixpoint calculations as well 2.

Contributions of the paper. The contributions of this paper are as follows:
(1) We verify the correctness of the synthesis algorithms in [7,8]. Thus, not only
we ensure their correctness but also we guarantee that any program synthesized
by the algorithms is also correct by construction. (2) We provide a foundation
for formal specification and verification of later research work that are extensions
of [7,8]. (3) We develop a reusable library in PVS for fixpoint calculations on
finite sets.

Organization of the paper. The organization of the paper is as follows:
We provide the formal definitions of programs, specifications, faults, and fault-
tolerance in Section 2. Using these definitions, we formally state the problem of
mechanical verification of synthesis of fault-tolerant programs in Section 3. In
Section 4, first, we develop a theory for fixpoint calculations on finite sets. Then,
based on the definitions in Section 2 and our fixpoint calculation library, we
formally specify the synthesis algorithms proposed in [7,8] in PVS. In Section 5,
we present the verification of algorithms. Finally, we make concluding remarks
and discuss future work in Section 7.

? The URL http://uww.cse.msu.edu/ borzoo/pvs contains the PVS specifications
and formal proofs.
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2 Modeling a Fault-Tolerance Framework

In this section, we give formal definitions for programs, specifications, faults, and
fault-tolerance. The programs are specified in terms of their state space and their
transitions. The definition of specifications is adapted from Alpern and Schneider
[12]. The definitions of faults and fault-tolerance are adapted from Arora and
Gouda [13] and Kulkarni [6]. We also discuss how we model the definitions in
PVS in an abstract way, so that they are independent of any particular program.
We note that in describing this model, due to space limitation, we omit the proofs
of certain simple judgements and lemmas.

2.1 Program

A program p is a finite set of transitions in its state space. In our framework,
the notion of state is abstract. Hence, in PVS, we model state by an UNINTER-
PRETED TYPE 3. Likewise, a transition is modeled as an ordered pair of states,
which is also an uninterpreted type. We also assume that the number of states
and transitions are finite. The state space of p, S, is the set of all possible states
of p. In PVS, we model the state space by the finite fullset over states. We de-
fine the following JUDGEMENT to avoid getting repetitive type-checking proof
obligations from the PVS type-checker:

Judgement 2.1: S, has type of finite set.

We model program, p, by a subset of S;, X Sp,. A state predicate of p is a subset
of Sp. In PVS, we model a state predicate, StatePred, as a finite set over states.
The type Action denotes finite sets of transitions. A state predicate S is closed in
the program p iff for all transitions (sg, 1) in p, if so € S then s; € S. Hence, we
define closure as follows: closed(S, p) = (Vso, s1 | (s0,51) €D : (s0€S = 51 €5)).
A sequence of states, (so, s1,...), is a computation of p iff any pair of two consec-
utive states is a transition in p. We formalize this by a DEPENDENT TYPE* as
follows:

Computation(p) : TY PE =
{c : sequence[state] | (Vi |i > 0: (c;,ciy1) €D)}

where sequence[state] : N — state and p is any finite set of type Action. A com-
putation prefix is a finite sequence of states, where the first j steps are transitions
in the given program:

prefiz(p,j) : TYPE = {c: sequence[state] | (Vi | i < j: (¢i,civ1) € D)}

3 Uninterpreted types support abstraction by providing a means of introducing a type
with a minimum of assumptions on the type and imposing almost no constraints on
an implementation of the specification [14].

* In PVS specification language, a type may be defined in terms of an earlier defined

type [14].
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We deliberately model computation prefixes by infinite sequences of which
only a finite part is used. This is due to the fact that using finite sequences in PVS
is not very convenient and the type checker generates several proof obligations
whenever finite sequences are used.

The projection of program p on state predicate S consists of transitions of p
that start in S and end in S, denoted as p | S. Similar to the notion of program,
we model projection of p on S by a finite set of transitions: p | S = {(so, s1) |
(s0,81) €p A (80,81 € S)}.

2.2 Specification

The specification consists of a safety specification and a liveness specification. The
safety specification is specified as a set of bad transitions. Thus, for program p,
its safety specification is a subset of S, x Sp. Hence, we can model the safety
specification by a finite set of transitions, called spec. We explain the liveness
issue in Section 2.3.

Given program p, state predicate S, and specification spec, we say that p
satisfies its specification from S iff (1) S is closed in p, and (2) every computation
of p that starts in a state where S is true, does not contain a transition in spec.
If p does not satisfy its specification from S, we say p violates its specification.
If p satisfies specification from S and S#{}, we say that S is an invariant of p.
Since we do not deal with a specific program, in PVS, we model an invariant by
an arbitrary state predicate that is closed in p.

2.3 Faults and Fault-Tolerance

The faults that a program is subject to are systematically represented by a
finite set of transitions. A class of fault f for program p is a subset of S, x Sp. A
computation of program p in presence of faults f is an infinite sequence of states
where either a transition of p or a transition of f occurs at every step. Hence, we
model computation of program in presence of faults as ¢ : Computation(p U f).

We say that a state predicate T is an f-span (read as fault-span) of p from S
iff the following two conditions are satisfied: (1) S = T, and (2) T is closed in
p U f. Thus, we model fault-span in PVS as follows: FaultSpan(T,S,p U f) =
((SCT) A (closed(T,p U f))). Observe that for all computations of p that start
at states where S is true, T is a boundary in the state space of p up to which
(but not beyond which) the state of p may be perturbed by the transitions in f.
Hence, we define the different levels of fault-tolerance based on the behavior of
the fault-tolerant program in its fault-span.

We say that p is failsafe f-tolerant (read as fault-tolerant) to its specification
from S iff two conditions hold: (1) p satisfies its specification from S, and (2) there
exists T such that T is an f-span of p from S, and no prefix of a computation
of p U f that starts in T has a transition in spec.

We say that p is masking f-tolerant (read as fault-tolerant) to its specification
from S iff the following conditions hold: (1) p satisfies its specification from S,
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and (2) there exists T' such that T' is an f-span of p from S, no prefix of a
computation of p U f that starts in T has a transition in spec, and every
computation of p U f that starts from a state in T contains a state of S.

In [7,8], the liveness specification is modeled implicitly. Specifically, for fail-
safe fault-tolerance, the requirement is that the fault-tolerant program does not
deadlock in the absence of faults. And, for masking fault-tolerance, the require-
ment is that the fault-tolerant program does not deadlock even in the presence
of faults. A program deadlocks in state so iff Vs1 | s1 € S : (s0,81) ¢ .

There is an additional type of tolerance in [7,8], nonmasking, where after the
occurrence of faults, eventually the program recovers to its invariant. However,
the safety specification may be violated during recovery. We omit the discussion
of nonmasking tolerance, as the algorithm for this case is straightforward; it
suffices to add one step recovery from all states reached in the presence of faults.
However, in [15], the author presents formal specification and verification of
synthesis of nonmasking fault-tolerance.

3 Problem Statement

In this section, we recall (from [7,8]) the problem of automatic synthesis of fault-
tolerance. As described in Section 2, the fault-intolerant program p is specified
in terms of its state space Sy, its transitions, p, and its invariant, S. The spec-
ification provides a set of bad transitions (that should not occur in program
computation). The faults, f, are specified in terms of a finite set of transitions.
Likewise, the fault-tolerant program p' is specified in terms of its state space S,
its set of transitions, say p', its invariant, S’, its specification, spec, and the type
of fault-tolerance it provides.

The transformation problem is as follows (this definition will be instantiated
in the obvious way depending upon the level of tolerance):
The Transformation Problem
Given p, S, spec, and f such that p satisfies spec from S.
Identify p' and S’ such that:

s'cS

®'S") C (plS")

p' is f-tolerant to spec from S’
We now explain the reasons behind the first two conditions briefly:

— If S’ contains states that are not in S then, in the absence of faults, p'
will include computations that start outside S and hence, p' contains new
behaviors in the absence of faults. Therefore, we require that S’ C S.

— Regarding the transitions of p and p', we focus only on the transitions of
p'|S" and p|S'. If p'|S’ contains a transition that is not in p|S’, p’ can use
this transition in a new computation in the absence of faults and hence, we
require that p'|S’ C p|S'.



6 Sandeep S. Kulkarni, Borzoo Bonakdarpour, and Ali Ebnenasir

Soundness. An algorithm for the transformation problem is sound iff for any
given input, its output, namely p’ and S’, satisfies the transformation problem.

Our goal is to mechanically verify that the proposed algorithms in [7,8] are
indeed sound. In other words, based on the definitions in Section 2, we show
that the algorithms in [7, 8] satisfy the transformation problem.

4 Description and Specification of Synthesis Algorithms

In this section, we describe the synthesis algorithms in [7,8] and explain how we
formally specify them in PVS. As mentioned in Section 2, we are interested in two
levels of fault-tolerance: failsafe and masking. The essence of adding failsafe and
masking fault-tolerance to a given fault-intolerant program is recalculation of the
invariant of the fault-intolerant program which in turn involves calculating the
fixpoint of a formula. More specifically, we calculate fixpoint of a given formula
to (i) calculate the set of states from where safety may be violated by faults
alone; (ii) remove the set of states from where closure of fault-span is violated
by fault transitions, and (iii) remove deadlock states that occur in a given set of
states.

The p—-calculus theory of the PVS prelude contains general definitions of the
standard fixpoint calculation, however, it is not convenient to use that theory
in the context of our problem. This is due to the fact that this library focuses
on infinite sets and is not specialized to account for the properties of functions
used in the synthesis of fault-tolerant programs. By contrast, we find that by
customizing the theory to the properties of functions used in the synthesis of
fault-tolerant programs, we can simplify the verification of the synthesis algo-
rithms. Hence, in Section 4.1, we develop a theory for fixpoint calculations on
finite sets and we verify it in Section 5.1. This theory is expected to be reusable
for other formalizations that involve fixpoint calculations on finite sets. Based
on the definitions in Section 4.1, we model the synthesis algorithms for addition
of failsafe and masking tolerance in sections 4.2 and 4.3 respectively.

4.1 Specification of Fixpoint Calculation for Finite Sets

In this section, we describe how we formally specify fixpoint calculation for
finite sets in PVS. A fixpoint of a function f : X — X is any value 29 € X such
that f(zo) = zo. In other words, further application of f does not change its
value. A function may have more than one fixpoint. The least upper bound of
fixpoints is called the smallest fixpoint and the greatest lower bound of fixpoints
is called the largest fixpoint. In our context, the functions whose fixpoint is
calculated demonstrate certain characteristics. Hence, as described above, we
focus on customizing the fixpoint theory based on these characteristics.

In the context of finite sets, domain and range of f, X, are both finite sets of
finite sets. Throughout this section and in Section 5.1, the variables i, j, k range
over natural numbers. The variable z is any finite set of any uninterpreted type.
Variable b is any member of such finite set.
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One type of functions used in synthesis of fault-tolerance is a decreasing
function for which the largest fixpoint is calculated. Towards this end, we start
from an initial set and at each step of calculation, we remove a subset of the
initial set that has a certain property. Thus, the type DecFunc is the type of
functions g, such that g : {A : finiteset} — {B : finiteset | B C A}. In other
words, for all finite sets z, g(z) C = (cf. Figure 1-a). With such a decreasing
function, we define Dec(i, z)(g) to formalize the recursive behavior of the largest
fixpoint calculation. Dec(i, z)(g) keeps removing the elements of the initial set,
z, that the function g of type DecFunc returns at every step:

Dett) = P10 a0t L 1

Finally, we define the largest fixpoint as follows (cf. Figure 1-b):
LgFia(x)(g) = {b| Vk : b € Dec(k,z)(g))}

Our goal is to prove the following property of largest fixpoint based on our def-
initions:

9(LgFiz(z)(g)) =0

Full set Full set

(@) (b)

SmFix(x)

Inc(i+1, x)

(c) (d)

Fig. 1. (a) Relationship between g, x, and = — g(z).(b) Largest fixpoint calculation.
(c) Relationship between r, z, and z U r(z). (d) Smallest fixpoint calculation

Remark. The above definition of fixpoint is somewhat non-traditional. We
find that this definition assists in verification of the synthesis algorithms. For
example, we apply this fixpoint calculation for removing deadlock states where
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g(z) denotes the deadlock states in set z. After calculating the largest fix-
point, we need to show that no deadlock states remain in the set z. Thus,
we should show that g(LgFiz(z)) = (. Moreover, if g(LgFiz(z)) = 0 then
Vi : Dec(i, LgFix(x)) = LgFix(z).

The second type of fixpoint used in synthesis of fault-tolerance is an in-
creasing function for which the smallest fixpoint is calculated. Towards this end,
we start from an initial set and at each step, we add a set that is disjoint
from the initial set. Thus, the type IncFunc is the type of functions r such that
r:{A: finiteset} — {B : finiteset | AN B = (}. In other words, for all finite
sets z, zNr(z) = @ (cf. Figure 1-¢). With such an increasing function, we define
Inc(i,z)(r) to formalize the recursive behavior of the smallest fixpoint calcula-
tion. Inc(i, z)(r) keeps adding elements to the initial set, z, that the function r
of type IncFunc returns at every step:

Inei,z)(r) = {inc(z —1,z)(r) Ur(Inc(i — 1,z)(r)) ﬁz i 85

Finally, we define the smallest fixpoint as follows (cf. Figure 1-d):
SmFiz(x)(r) ={b| 3k :b € Inc(k,z)(r)}

Our goal is to prove the following property of smallest fixpoint:

r(SmFiz(z)(r)) =0

4.2 Specification of the Synthesis of Failsafe Tolerance

The essence of adding failsafe tolerance is to remove the states from where safety
may be violated by one or more fault transitions. We reiterate the algorithm
Add_failsafe (from [7,8]) in Figure 2.

Throughout this section and Sections 4.3, 5.2 and 5.3, the variables z, s, sg, 51
range over states. The variables 4, j, k,m range over natural numbers. The vari-
able X ranges over StatePred and the variable Z ranges over Action. As defined
in Section 3, p and p’' are respectively fault-intolerant and fault-tolerant pro-
grams, S and S’ are respectively invariants of fault-intolerant and fault-tolerant
programs, 7' is fault-span, f is the finite set of faults, and spec is the finite set
of bad transitions that represents the safety specification.

In order to construct ms, the set of states from where safety can be vio-
lated by one or more fault transitions, first, we define msInit as the finite set of
states from where safety can be violated by a single fault transition. Note that
(s0, 81) € spec means violation of the safety specification. Formally,

msInit : StatePred = {so | A s1 : (s0,51) € f A (s0,51) € spec}

Now, we define a function, RevReachStates, that calculates a state predicate from
where states of another finite set, s, are reachable by fault transition. Formally,
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Add_failsafe(p, f : transitions, S : state predicate, spec : specification)

{
ms := smallestfizpoint(X = X U {so | (3s1:
(so,s1) € f) A (s1 € X V (s0,s1) violates spec) };
mt := {(s0,s1) : ((s1€ms) V (so,s1) violates spec) };
S’ := ConstructInvariant(S — ms, p—mt);
if (S"={}) declare no failsafe f-tolerant program p’ exists;
else p’ :=ConstructTransitions(p—mt, S")
}

ConstructInvariant(S : state predicate, p : transitions)
// Returns the largest subset of S such that computations of p
within that subset are infinite
return largest fizpoint(X = (X NS)—{so | (Vs1:s1€X :(s0,51) € p)}

ConstructTransitions(p : transitions, S : set of states)
{ return p—{(s0,s1) : S0€S A s1 ¢S} }

Fig. 2. The synthesis algorithm for adding failsafe tolerance

RevReachStates(rs : StatePred) : StatePred =
{s0 |3 s1:81 €rsA(so,51) € fAsg&rs}

The following judgement helps the PVS type checker in discharging later proof
obligations:
Judgement 4.1 : RevReachStates has type of IncFunc.

We use the definition of smallest fixpoint in Section 4.1 to define the state pred-
icate ms. Towards this end, we instantiate the initial set with msInit, and the r
function with RevReachStates:

ms : StatePred = SmFiz(msInit)(RevReachStates)

Then, we define the finite set of transitions, mt, that must be removed from p.
These transitions are either transitions that may lead a computation to reach a
state in ms or transitions that directly violate safety:

mt : Action = {(so,s1) | (s1 € ms V (s9, 1) € spec)}

The algorithm Add_failsafe removes the set ms from the invariant of the fault-
intolerant program S. However, this removal may create deadlock states. The set
of deadlock states in ds of program Z is denoted as follows:

DeadlockStates(Z)(ds : StatePred) : StatePred =
{so|so€ds:(Vs1|s1€ds:(s0,81) ¢ Z)}

Judgement 4.2: DeadlockStates(Z) has type of DecFunc.
We construct the invariant of the fault-tolerant program by removing the
deadlock states to ensure that computations of fault-tolerant program are infinite
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(cf. Section 2.3). In general, we define ConstructInvariant using largest fixpoint

of a finite set X, that removes deadlock states of a given state predicate X:
ConstructInvariant(X, Z) : StatePred = LgFix(X)(DeadlockStates(Z))

The formal definition of the invariant of fault-tolerant program is as follows:

S' : StatePred = ConstructInvariant(S — ms,p — mt)

Finally, we construct the finite set of transitions of fault-tolerant program by
removing the transitions that violate the closure of S’:

p' : Action = p—mt—{(s0, 81) | ((50,51) € (p—mt)) A (s0 € S'As1 ¢ S")}

4.3 Specification of the Synthesis of Masking Tolerance

In this section, we describe how we formally specify the addition of masking
fault-tolerance to a given program p. We reiterate the algorithm Add_masking
(from [7,8]) in Figure 3. Note that we extensively reuse the formal definitions
developed in Section 4.2 to model Add_masking.

Add_masking(p, f : transitions, S : state predicate, spec : specification)
{
ms = smallest fizpoint(X = X U{so | (3s1:
(s0,81) € f) A (81 € X V (s0,s1) violates spec) };
mt := {(s0,s1) : ((s1Ems) V (so,s1) violates spec) };
S1 := ConstructInvariant(S — ms, p—mt);
T := true—ms;
repeat
T2, S2 := T1, Sq;
p1 = p‘Sz ] {(So, 51) :80¢€S2 A so€Ty A 81 ETQ}—mt;
Ty := ConstructFaultSpan(T> — {s : S1 is not reachable from s in p1 }, f);
S1 := ConstructInvariant(S2 A T4, p1);
if (S1={} v h={})
declare no masking f-tolerant program p’ exists;
exit
until (T1 =T N S1 :Sg);
For each state s : s€Th :
Rank(s) = length of the shortest computation prefix of p1
that starts from s and ends in a state in Si;
p', := {(s0,51) : ((50,81) €Ep1) A(soE€S1 V Rank(sg)>Rank(s1))};
S’ :=81;
T =Ty
}
ConstructFaultSpan(T : state predicate, f : transitions)
// Returns the largest subset of T that is closed in f.
{
return largestfizpoint(X = (X NT) — {so : (Is1: (s0,81) Ef AN s1¢€X)})
}

Fig. 3. The synthesis algorithm for adding masking tolerance
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As mentioned in Section 2, in addition of masking fault-tolerance, the require-
ment for preserving the liveness properties of a program is that the fault-tolerant
program does not deadlock even in the presence of faults and it should recover
to the invariant after a finite number of steps while preserving safety. Hence, we
assume that the number of occurrences of faults in a computation is finite by an
axiom in our PVS specification. This is the only axiom used in our work.
Axiom 4.3 :Vp:Ve(pU f): @ n|n>0:(Vj|j>n:(c,cj+1) €D)).

The main difficulty in formalizing Add_masking algorithm is modeling the
repeat-until loop (cf. Figure 3).We model the algorithm in three phases: ini-
tialization, identifying the loop invariant, and termination conditions. This loop
invariant includes two properties (1) the intermediate invariant at the start of
the loop is a subset of S, the invariant of the fault-intolerant program, and (2)
the intersection of ms and the intermediate fault-span at the start of the loop
is the empty set. Hence, in Section 5.3, to verify the algorithm, first, we show
these properties for the initial guess of invariant and fault-span. Then, we show
that if these properties hold at the start of an iteration, they hold at the start
of the subsequent iteration as well.

Initialization: To model the part of Add_masking before the loop, we define
Sinit and Tj,;: as follows:

Sinit : StatePred = ConstructInvariant(S — ms,p — mt)
Tinit = StatePred = Sp, —ms

The loop invariant: Now, we model the repeat-until loop. The value of the
intermediate invariant (respectively, fault-span) at the start of the loop is Ss
(respectively, T5). We recalculate the invariant and fault-span in the loop. Let
the new values be S; and T} respectively. Now, we define S; and 77 in terms of
(arbitrary predicates) Sy and T.

1. We define an intermediate program p; as follows. We require that for a tran-
sition (sg, $1) in p1, the following conditions are satisfied: (1) if s € S» then
s1 € Sa, (2) if 59 € T» then sy € T». Moreover, p; does not contain any
transition in mt. Formally

Sy : StatePred

T, : StatePred

p1 2 Action = (p | S2 UTS) — mt, where

TS : StatePred = {(s0,51) | S0 ¢ S2 A so €Ty A s1 € To}

2. To formally specify construction of 71, we first define the finite set of states
from where closure of 7> may be violated. Formally,

TNClose(X : StatePred) : StatePred =
{So | ds1:80 € X A (80,81) Ef A 81 ¢X}
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Then, we define the finite set of states from where Sy is reachable. Formally,

T Reach : StatePred = {s | s € Ty A reachable(S2,T»,p1,s)} where
reachable(Ss, Ts, p1, s) : StatePred =
Elc(pl) : ((S S T2) A (S = Co) A Tj: ¢j € 82)

We now define ConstructFaultspan as the largest subset of T'Reach that is
closed in f. Formally,

T, = ConstructFaultspan(T Reach), where

ConstructFaultspan(X : StatePred) = LgFix(X)(T N Close)

3. Since S is a subset of T7, we model the recalculation of invariant as follows:

S1 : StatePred = ConstructInvariant(Se NT1)(p1)

Termination of the loop: We formalize the termination condition of the
loop in the verification phase. More specifically, we prove that provided (S; =
S2) A (Th = Tb) is true, p; is failsafe and provides potential recovery from every
state in fault-span.

5 Verification of the Synthesis Algorithms

In this section, we verify the soundness of the synthesis algorithms based on the
formal specification in Section 4.

5.1 Verification of the Fixpoint Theory

In order to verify the soundness of the synthesis algorithms, we first prove the
properties of fixpoint calculations (cf. Section 4.1) in theorems 5.6 and 5.7. Before
proving those theorems we present a series of intermediate lemmas as follows:
Lemma 5.1: Until the fixpoint is achieved, the cardinality of Dec(j + 1, x) is
less than or equal to |z| — j — 1. Formally,

Vj:((g(Dec(j,z)(9) #0) = [(Dec(j +1,7)(9)| < |z|—j—1))
Proof. We prove this lemma by induction on j. In the base case, j = 0, after
eliminating the quantifiers and expanding the definitions, we need to show if
g(x) is nonempty then |z — g(z)| < |z| — 1. We prove this by using two pre-
defined lemmas in PVS: Vy,z : finiteset : ((y C 2) = (|]z — y| = |2| — |y])),
and Vy : finiteset : (y # § <= |y| > 0). After instantiations, using the
facts g(z) C = and g(x) # 0, the GRIND® strategy discharges the base case.
For induction step, after eliminating quantifiers, and expanding definitions, we
need to prove (g(Dec(j + 1,2)(g) # 0 A [Dec(j +L,)(g)] < Jo| —j — 1) =

% The GRIND strategy performs skolemization and instantiation, propositional simpli-
fication, rewriting using lemmas as rewrite rules, definition expansion, explicit case
analysis according to the case structure in the goal, and does many of these steps
repeatedly until no further simplification is possible [16].
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(|IDec(j +1+1,2)(9)| < |z| — (§ +1) — 1). We discharge the induction step this
in the same way we proved the base case. 0

Lemma 5.2: If the fixpoint is reached by step j then in any subsequent steps,
fixpoint will be maintained. Formally,
Vj : ((9(Dec(j, z)(9)) = 0) = (Vk | k > j : g(Dec(k, z)(g)) = 0))

Proof. After skolemization to remove the universal quantifier, we place in-
duction on k. The base case, k = j = 0, is trivially true. In the induction
step, we need to prove (g(Dec(k,z)(g9)) = 0) = (g9(Dec(k + 1,z)(g)) = 0).
By expanding the definition of Dec in the deducing part, Dec(k + 1,z)(g) =
Dec(k,z)(g) — g(Dec(k, z)(g)), and considering the assuming part we infer that
g(Dec(k,xz)(g)) = 0, therefore g(Dec(k + 1,2)(g)) = g(Dec(k,z)(g)), which is
equal to the empty set. 0

Lemma 5.3: There exists a step ¢ such that subsequent applications of g returns
the empty set. Formally,

Ji: (Yn|n>i:g(Dec(n,z)(g)) =0)
Proof. First, we instantiate ¢ with |z|. Then, after skolemization, we need to
prove g(Dec(n,z)(g)) = 0. Using Lemma 5.1 and instantiating j with |z|, we
need to show two subgoals:
Subgoal 1: |Dec(|z| + 1,2)(g)| > |z| — |z| — 1, which is trivially true.
Subgoal 2: (g(Dec(|z|,z)(g)) = 0) = (9(Dec(n,z)(g)) = 0). From Lemma
5.2, we know Vj : (g9(Dec(j,z)(9)) = 0) = (Vk | k > j : g(Dec(k,z)(g)) = 0).
After automatic instantiations, we need to prove (Vk | k > |z| : g(Dec(k,z)(g)) =
0) = (g(Dec(n,x)(g)) = 0). Manual instantiation of k with n discharges the
lemma. O

Lemma 5.4: There exists a step j where fixpoint is achieved. Formally,

3j : (Vk | k> j: ((Dec(k,z)(g) = Dec(j,z)(g)) A (9(Dec(k,z)(g)) =1)))
Proof. Proof of the second conjunct is exactly the same as proof of Lemma, 5.3,
so we proceed with the proof of the first conjunct. From Lemma 5.3, we know
that the existence of j such that Vk | k > j : g(Dec(k,)(g)) = 0. Using Lemma
5.3 and after skolemization, we place induction on k. In the base case, k = j = 0,
we need to show Dec(0,z)(g) = Dec(j,x)(g), which is trivially true. In induction
step, we need to prove:

Vi|i>j:((Dec(i,z)(g) = Dec(j,z)(g) A g(Dec(i,z)(g)) = 0) =

(Dec(i+1,z)(g) = Dec(j, z)(g)))

We prove this by applying the rule of extensionality and expanding Dec(i +
1,2)(g), which is equal to Dec(i,x)(g9) — g(Dec(i,2)(g)). As g(Dec(i,x)(g)) = 0,
Dec(i + 1,z)(g) = Dec(i,z)(g9) = Dec(j,2)(g) and the proof is complete. 0

Lemma 5.5: For some value j, Dec(j, ) will reach a fixpoint, and at this step
value of Dec(j, ) will be the largest fixpoint. Formally,

3j : (9(Dec(j,z)(g)) =0 A (Dec(j,z)(g) = LgFiz(z)(g)))
Proof. Similar to proof of Lemma 5.4, the proof of the first conjunct is the same
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as proof of Lemma 5.3. To prove the second conjunct, first, we apply the rule of
extensionality to convert the set equalities to boolean equalities. A propositional
split generates two subgoals:

Subgoal 1: Vb € LgFiz(z)(g) : b € Dec(j,z)(g). First, we expand the definition
of LgFix = {b | Vk : b € Dec(k,z)(g)} in the assuming part. Then, instantiating
k with j proves the subgoal.

Subgoal 2: V(b € Dec(j,z)(g)) : b € LgFiz(z)(g).

To verify this subgoal, after expanding the definition of LgFix and eliminating
the universal quantifier by skolemization, we need to show Vb € Dec(j,z)(9) :
b € Dec(k,z)(g). Using Lemma 5.4, we know that

Vi|i>j:(Dec(i,z)(g) = Dec(j,z)(g) A g(Dec(i,z)(g)) =0).

We instantiate ¢ with k and by propositional simplification through the GROUND®
command, we prove this subgoal. 0

Theorem 5.6: Application of function g on the largest fixpoint of a finite set
returns the empty set. Formally, g(LgFiz(z)(g)) = 0
Proof. Using Lemma 5.5, the GRIND strategy completes the proof. 0

Similar to largest fixpoint calculation, we prove the following theorems for
verification of smallest fixpoint calculation:

Theorem 5.7: r(SmFiz(z)(r)) =0

In order to prove Theorem 5.7, we present a series of intermediate lemmas. These
lemmas and their proofs as well as proof of Theorem 5.7 are similar to the ones
we presented for largest fixpoint. Therefore, for brevity, we skip the details.

5.2 Verification of the Synthesis of Failsafe Tolerance

In order to verify the soundness of Add._failsafe algorithm, we now prove that
the synthesized program, p', satisfies the three conditions of the transformation
problem stated in Section 3. More specifically, in Theorems 5.9 and 5.10, we
prove the correctness of the first two conditions of the transformation problem.
Then, in the remaining theorems, we show that the program synthesized by
Add_failsafe is indeed failsafe fault-tolerant.

Observation 5.8: S'Nms =0

Proof. After expanding the definition of S’, ConstructInvariant, and LgFiz,
we need to prove: Vz : (Vk : x € Dec(k, S — ms)(DeadlockStates(p — mt)) =
z ¢ ms). By instantiating k with 0, propositional simplification discharges the
observation. 0

% The GROUND command invokes propositional simplification followed by arithmetic
simplification and it is useful in obtaining simplified forms of the cases arising from
propositional simplification [16].
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Theorem 5.9: S’ C S

Proof. Our strategy to prove this theorem is based on the fact that S’ is
made out of S by removing some states. After expanding the definition of S’,
ConstructInvariant, and LgFix, we need to prove:

Vk: (Vx : (x € Dec(k,S — ms)(DeadlockStates(p — mt)) = © € S)).
Towards this end, first, we instantiate k with zero. Then, after expanding the
definitions, we need to prove Vz : (z € S — ms = x € S), which is trivially
true. 0O

Theorem 5.10: p'|S’ C p|S’

Theorem 5.11: S’ is closed in p'. Formally, closed(S’,p")

Lemma 5.12: Y(sg,s1) : ((S0,51) € f A s1 € ms) = sg € ms

Proof. The GRIND strategy discharges this lemma and theorems 5.10 and 5.11.

Lemma 5.13: DeadlockStates(p — mt)(S') = 0
Proof. First, we expand the definitions of S’ and ConstructInvariant. Then,
we need to prove: DeadlockDtates(p—mt)(LgFiz(S —ms)(DeadlockStates(p—

mt))) = 0.
Using Theorem 5.6, we instantiate x with LgFixz(S — ms), and g with
DeadlockStates(p — mt) to complete the proof. 0

Theorem 5.14: All computations of p' that start from a state in S’ must be
infinite. Formally, DeadlockStates(p')(S') = ()

Proof. In Lemma 5.13, we showed that all computations of p — mt that start
from a state in S’ are infinite. Now we need to show that all the computations
of p — mt after removing the transitions that violate the closure of S’ are still
infinite. Obviously, removal of such transitions does not have anything to do with
deadlock states, because the source of a transition that violates the closure must
have been removed during the removal of deadlock states. Hence, the verification
is only a sequence of expansions and propositional simplifications. 0

Remark. Note that Theorem 5.14 is one of the instances where formalization
of the fixpoint in Section 4.1 is used. More specifically, DeadlockStates(p')(S’)
denotes the deadlock states in S’ using program p'. We repeatedly remove these
deadlock states. Hence, once the fixpoint is reached, there are no deadlock states.

Lemma 5.15: In the presence of faults, no computation prefix of failsafe toler-
ant program that starts from a state in S’, reaches a state in ms. Formally,
Vj:(Ve:prefiz(p' U f,5) | co €S :Vk | k<j:cr ¢ ms)

Proof. After eliminating the universal quantifier on ¢(p' U f) by skolemiza-
tion, we proceed by induction on k. In the base case, k = 0, we need to prove
co € S' => ¢o ¢ ms. The base case can be discharged using Observation 5.8. In
induction step, we need to prove (Vn |n < j: (¢p,cnt1) €EPU ) = (Vk |k <
J:cr ¢ ms = cpy1 ¢ ms). From Lemma 5.12, we know that if the destination
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of a fault transition , (so, $1), is in ms, then the source, so, is in ms as well. This
means that if so is not in ms then s; is not in ms either. We know that ¢, ¢ ms
and, hence, based on Lemma 5.12, ci41 ¢ ms. 0O

Theorem 5.16: Any prefix of any computation of failsafe tolerant program in

the presence of faults that starts in S’ does not violate safety. Formally,
Vi:V(c:prefiz(p' Uf),j|co €S :Vk|lk <j:(ck,crr1) ¢ spec

Proof. In Lemma 5.15, we proved that no computation prefix of p’ U f that

starts from a state in S’ never reaches a state in ms. In addition, p’ does not

contain any transition that is in spec. Thus, a computation prefix of p’ U f that

starts from a state in S’ does not contain a transition in spec. O

5.3 Verification of the Synthesis of Masking Tolerance

We verify the algorithm Add_masking based on the three phases that we modeled
the algorithm in Section 4.3. More specifically, first, we show these properties for
the initial guess of invariant and fault-span. Then, we show that if these prop-
erties hold at the start of an iteration, they hold at the start of the subsequent
iteration as well:

Properties of initial values for the invariant and fault-span: Similar
to Observation 5.8 and Theorem 5.9, we can prove the following theorems; note
that these theorems show that the initial values of the invariant and fault-span
satisfy the loop invariant:

Observation 5.17: Tj,;: N'ms =
Theorem 5.18: S;ni: C Tinit
Theorem 5.19: S;,,;; C S

Properties of the loop invariant: Similar to the verification of Add_failsafe,
we prove that the synthesized masking tolerant program satisfies the transfor-
mation problem by stating and proving a series of theorems and intermediate
lemmas. First, we show the loop invariant, i.e., we show that if S» and T5 satisfy
the loop invariant then so do Sy and T (cf. Theorem 5.20). Then, we state and
prove additional theorems about S; and Ti. Proofs of Theorems 5.20-5.23 are
similar to the proofs of corresponding theorems in the verification of failsafe.
Hence, we omit these proofs.

Theorem 5.20: (ToNms=0) = (T1Nms=0)) A ((S2 CS)= (51 C9))
Theorem 5.21: S; C Ty

Theorem 5.22 : (p1|S2 C p|S2) = (p1]|S1 C p|S1)

Theorem 5.23: DeadlockStates(p;)(S1) = 0

Theorem 5.24: The recalculated fault-span is closed in f. Formally, closed(T, f)
Proof: The proof is similar to proof of Lemma 5.13. We know that
Ty = ConstructFaultSpan(...) = LgFiz(...). Using Theorem 5.6, in the defini-
tion of LgFix, we instantiate X with T Reach, and g with TN Close to complete
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the proof. 0O

Properties at the termination of the loop: As mentioned in Section 4.3,
we prove that provided (S1 = S2) A (Th = T>) is true, p; is failsafe and provides
potential recovery from every state in fault-span.

Theorem 5.25: (S; = Ss) = closed(Sy,p1)
Proof: Based on the fact that Ss is closed in p; by construction, when S; = Ss,
p1 is closed in S; as well. Hence, by replacing S; by S2, we complete the proof.

O

Theorem 5.26: Any prefix of any computation of the masking tolerant program
in the presence of faults does not violate safety. Formally, ((S1 = S2) A (Th =
Tz)) =

Vj:(Ve:prefix(pr U f,j) |co €Ty :Vk| k<j:(ck,cry1) ¢
spec)
Proof: Proof is similar to proof of Theorem 5.16. O

Theorem 5.27: (T} = T3) = closed(T1,p1 U f)

Proof: Based on the fact that T3 is closed in p; by construction, when T} = T5,
Ty is closed in p; as well. From Theorem 5.24, we also know that closed(T1, f).
Thus, using Theorem 5.24 and by replacing T; by 75, we complete the proof. 5

Theorem 5.28: After termination of the loop, for any state in fault-span, 77,
there exists a computation of p; that starts from that state and reaches the
invariant, S;. Formally,

((S1=952) A (Th =T»)) = (Vs | s € Th : reachable(S1,T1,p1,5))
Proof: First, we use Axiom 4.3 to show that there exists a suffix for every
computation of p; U f that contains no transition in f. After replacing Tj
and S; by T» and S in the deducing part, we need to prove Vs | s € Ty :
reachable(Sa, T, p1, ). By expanding the definitions of Ty, Construct FaultSpan,
and LgFiz respectively, we need to prove:

Vk : (s € Dec(k,TReach)(TClose)) => reachable(S2,T2,p1,8)
By instantiation of k with 0, the GRIND strategy discharges the theorem. 0

Finally, the fault-tolerant program, p’ is obtained by removing cycles in p;
that occur in states in T} — S;. Hence, we can easily extend the theorems 5.22-
5.27 to show that they hold for program p’ as well. Moreover, in Theorem 5.28,
the fact that the shortest path from a state in 7} to a state in S; is preserved, and
p' does not create deadlock states can be used to show that every computation of
p' eventually reaches a state in S;. For reasons of space, we omit the discussion
of these proofs.
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6 Discussion

Related work. In [17], Emerson and Clarke propose an algorithm that synthe-
sizes a program from its temporal logic specification. Since then, other algorithms
have been proposed in the literature [18-21]. In the previous work prior to [7],
the input to synthesis algorithms is either an automaton or temporal logics spec-
ification and any modification in the specification requires synthesizing the new
program from scratch. In contrast, the algorithms in [7] reuse the fault-intolerant
program to synthesize the fault-tolerant version. This reusability helps to im-
prove the time complexity to some extent. Thus, the algorithms proposed in [7]
seem to be suitable candidates for practical implementation purposes. In [22], the
authors introduce a set of heuristics for synthesizing distributed fault-tolerant
programs in polynomial time. Based on the heuristics, Ebnenasir and Kulkarni
have developed a tool for synthesizing fault-tolerant programs [11]. Therefore,
by formal verification of the algorithms in [7], we gain more confidence on their
practical implementations as well.

Advantages of mechanical verification of algorithms for the syn-
thesis of fault-tolerant algorithms. Fault-tolerant systems are often in need
of strong assurance. Mechanical verification is a reliable way to ensure that the
fault-tolerance requirements of a system are met. We find that verification of
algorithms for synthesis of fault-tolerance is a systematic and abstract way for
formal verification of fault-tolerance.

High level of abstraction. The algorithms presented in [7] make no assump-
tions about the properties of the system, except that they have finite state
space. This high level of abstraction enables the algorithms to be applicable
to synthesize both finite state hardware and software systems. Our focus on
formal verification of such abstract algorithms makes it possible to extend our
work to verify other algorithms that are based on the ones in [7] for any system
regardless of the platform and architecture. In addition, having the developed
specification and verification in this paper, we can easily verify the extensions of
the algorithms in [9,10,22] by reusing the specification developed in this paper.

Correctness of synthesized programs. Another advantage of verifying a syn-
thesis algorithm rather than individual fault-tolerant programs is to guarantee
that any synthesized program by the algorithm is correct by construction. This
advantage makes us free from verification of individual synthesized programs.

Reusability of formal proofs. Although most of the related work on formal
verification of fault-tolerance [1-3,5] provide confidence in correctness of their
concerns, reusing the formal proof of one, in verification of others is not quite
convenient. Manual reusability of formal proofs is the first step to develop proof
strategies. As an illustration, in Section 5.3, we showed how we manually reused
the formal proofs of Add_failsafe to verify the soundness of Add_masking.

The issue of completeness. A synthesis algorithm is complete iff for any
given program p with the invariant S, if there exists a solution p’ with invari-
ant S’ that satisfies the transformation problem then the algorithm always finds
program p’ and state predicate S'. In [15], we have shown that the algorithm for
adding failsafe fault-tolerance in complete. However, in this paper, we focused on
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verification of the soundness of the algorithms due to two reasons. First, in order
to show the correctness of an algorithm, we are mostly interested in verification
of the soundness of the algorithm. In our context, we need to prove that the
program synthesized by the algorithm is fault-tolerant indeed; i.e., the synthe-
sized program satisfies the requirements of the transformation problem. Second,
in the low atomicity model, proving the completeness of a deterministic polyno-
mial time synthesis algorithm is irrelevant in the sense that the problem of adding
fault-tolerance to distributed programs is known to be NP-Complete [7,23]. In
other words, we have to apply heuristics [10,22] to synthesize distributed fault-
tolerant programs in polynomial time. As a result of applying such heuristics, we
lose the completeness of the synthesis algorithms; i.e., if the heuristics are not
applicable then the synthesis algorithm fails to synthesize a fault-tolerant dis-
tributed program although there may exist a fault-tolerant program that satisfies
the requirements of the transformation problem.

7 Conclusion and Future Work

In this paper, we focused on the problem of verifying transformation algorithms
that generate fault-tolerant programs that are correct by construction. We con-
sidered two types of fault-tolerance properties, failsafe and masking. We would
like to note that we have also verified the algorithm for synthesizing nonmask-
ing fault-tolerant programs where the program recovers to states from where its
specification is satisfied although safety may be violated during recovery [15].

The algorithms verified in this paper synthesize programs in the high atom-
icity model, where a process can read and write all variables in an atomic step.
In [7,8], authors have presented a non-deterministic algorithm for designing dis-
tributed programs. We have also verified that algorithm using PVS [15].

Since we focus on verification of the transformation algorithms, we note that
our results ensure that the programs synthesized using these algorithms indeed
satisfy their required fault-tolerance properties. Thus, our approach is more gen-
eral than verifying a particular fault-tolerant program. Also, to verify the algo-
rithms that synthesize failsafe and masking fault-tolerant programs, we devel-
oped a fixpoint library for finite sets. This library is expected to be applicable
elsewhere.

In a broader context, the verification of the algorithms considered in this
paper will assist us in verifying several other transformations. For example, in
[9], the authors extend the algorithms in [7,8] to deal with multiple classes of
faults. The algorithms in [7,8] have also been used to synthesize fault-tolerant
distributed programs. As an illustration, we note that the algorithms in [10,11,
22] that are extensions of the algorithms in [7, 8] have been used to synthesize
solutions for several fault-tolerant programs including, Byzantine agreement,
consensus, token ring, and alternating bit protocol. Thus, the theories developed
in this paper are directly applicable to verify the transformation algorithms
in [9-11,22] as well.
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Our experience shows that significant number of proofs were reused. For in-

stance, we manually reused proofs of failsafe tolerance to verify the soundness
of synthesized masking tolerant programs. We expect to reuse many of the the-
orems and proofs in future verifications as well. Therefore, as a future work, one
can develop proof strategies based on our experience in reusability of proofs.
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