
Challenges and Demands on Automated

Software Revision (extended abstract)

Borzoo Bonakdarpour and Sandeep S. Kulkarni

Department of Computer Science and Engineering

Michigan State University

East Lansing, MI 48824, USA

Email: {borzoo,sandeep}@cse.msu.edu

1 Motivation

In the past three decades, automated program verification has undoubtedly been
one of the most successful contributions of formal methods to software devel-
opment. However, when verification of a program against a logical specification
discovers bugs in the program, manual manipulation of the program is needed in
order to repair it. Thus, in the face of existence of numerous unverified and un-
certified legacy software in virtually any organization, tools that enable engineers
to automatically verify and subsequently fix existing programs are highly desir-
able. In addition, since requirements of software systems often evolve during the
software life cycle, the issue of incomplete specification has become a customary
fact in many design and development teams. Thus, automated techniques that
revise existing programs according to new specifications are of great assistance
to designers, developers, and maintenance engineers. As a result, incorporating
program synthesis techniques where an algorithm generates a program, that is
correct-by-construction, seems to be a necessity.

The notion of manual program repair described above turns out to be even
more complex when programs are integrated with large collections of sensors and
actuators in hostile physical environments in the so-called cyber-physical systems.
When such systems are safety/mission-critical (e.g., in avionics systems), it is
essential that the system reacts to physical events such as faults, delays, signals,
attacks, etc, so that the system specification is not violated. In fact, since it
is impossible to anticipate all possible such physical events at design time, it is
highly desirable to have automated techniques that revise programs with respect
to newly identified physical events according to the system specification. Thus,
one can observe that while formal software verification plays an important role
in ensuring the correctness of systems, it is equally important to address the
following fundamental question:

In the face of constant evolution of existing computing systems and their
physical environment, how should we revise them according to their spec-
ification and how should we cure their vulnerabilities (e.g., failures, time
unpredictability, insecurity, etc) in an incremental and automated fashion?



2 Borzoo Bonakdarpour and Sandeep S. Kulkarni

2 Current Results

The notion of program revision (repair) was independently introduced by
Bonakdarpour, Ebnenasir, and Kulkarni [Fmics’06, Opodis’05] and Jobstmann,
Griesmayer, and Bloem [Cav’05]. In our work, we have focused on developing a
theory of automated program revision from different perspectives such as time-
predictability, fault-tolerance, and distribution. The main focus of this theory
is to identify instances where sound and complete automated revision of pro-
grams can be achieved in polynomial-time, and, where it is hard in some class
of complexity. Complexity analysis identifies cases where program revision is
(1) likely to be successful via developing efficient algorithms and heuristics, or
(2) unlikely to have an impact. Completeness of a revision algorithm is impor-
tant in the sense that if the algorithm fails to revise a program with respect to
a property, it implies that the program in its current form is not fixable and,
hence, a more comprehensive approach (e.g., synthesis from specification) must
be applied. Thus far, the theory has been established in the following contexts:

1. We concentrated on automatic addition of untimed (respectively, real-time)
Unity properties to programs in the form of a finite state automata (respec-
tively, timed automata) such that revised programs continue to satisfy uni-
versally quantified properties of the original program [Fmics’06, Opodis’05].

2. We have extended the basic theory by considering systems where programs
are subject to a set of uncontrollable faults [Sss’06]. We considered synthe-
sizing three levels of fault-tolerance, namely failsafe, nonmasking, and mask-
ing, based on satisfaction of safety and liveness properties in the presence of
faults. For failsafe and masking fault-tolerance, we considered two additional
levels, namely soft and hard, based on satisfaction of timing constraints in
the presence of faults. In our case studies, besides the factual benefits of
automated addition of fault-tolerance, we observed that our synthesis meth-
ods can be potentially used to determine incompleteness of specification as
well. We also introduced the notion of bounded-time phased recovery [Fm’08]
where simple recovery to the program’s normal behavior is necessary, but
not sufficient. For such programs, it is necessary to accomplish recovery in a
sequence of phases, each ensuring certain constraints.

3. In order to make synthesis algorithms efficient so that they can be used in
tools in practice, we have developed a set of symbolic heuristics for automatic
synthesis of fault-tolerant distributed untimed programs [Icdcs’07]. Our ex-
perimental results on synthesis of classic fault-tolerant distributed problems
showed that synthesis for these problems is feasible for state space of size
1030 and beyond. The tool Sycraft (SYmboliC synthesizeR and Adder of
Fault-Tolerance) implements the aforementioned heuristics.

The correctness of a selection of our synthesis algorithms is verified by the
theorem prover PVS [Afm’06, Lopstr’04]. This verification essentially shows
that any program synthesized by our algorithms is indeed correct-by-construction.



Challenges and Demands on Automated Software Revision 3

3 Related Work

Our formulation of the revision problem is in spirit close to controller synthe-
sis, where program and fault transitions may be modeled as controllable and
uncontrollable actions, and game theory, where program and fault transitions
may be modeled in terms of two players. In controller synthesis (respectively,
game theory) the objective is to restrict a plant (respectively, an adversary)
at each state through synthesizing a controller (respectively, a wining strategy)
such that the behavior of the entire system always meets some safety and/or
reachability conditions. Note, however, that there are several distinctions. First,
in addition to safety and reachability constraints, our notion of fault-tolerance
is also concerned with adding new recovery behaviors to the given program as
well, which is normally not a concern in controller synthesis and game theory.
Secondly, we model distributed systems by imposing read-write restrictions over
variables of each process in a shared-memory model. Finally, rather than ad-
dressing any arbitrary specification, we concentrate on properties typically used
in specifying systems.

4 Future Research Directions

A grand challenge in dealing with formal analysis of cyber-physical systems is to
develop abstractions, models of computation, formal frameworks, and efficient
automated techniques to specify and reason about such systems.
Formal specification of cyber-physical systems. This direction includes
(1) structural specification, which models how components work and how they
are interconnected, and (2) behavioral specification, which models how each
component responds to an internal or external event.
Bridging the gap between specification and implementation. Another
direction is to explore mechanisms for ensuring that implementation of cyber-
physical systems refines their specification. To this end, one may generalize our
existing synthesis/revision algorithms and tools to bridge the gap between for-
mal specification and implementation of multi-tolerant hybrid cyber-physical sys-
tems.
Establishing interfaces between components operating in different con-

texts. As recognized by the research community, cyber-physical systems must
be reliable, secure, safe, efficient, distributed, and operate in real-time. We plan
to study how to express and reason about multiple (and often conflicting) con-
cerns by considering the state of knowledge of agents in a distributed system
using epistemic logic.
Making the developed methods scalable. The main challenge in de-
veloping verification and synthesis algorithms is scalability. Thus, we plan to
accommodate model checking techniques in the context of program synthesis so
that synthesis tools can be exploited by engineers and designers in practice.


