
Software Debugging and Testing
using the Abstract Diagnosis Theory

Samaneh Navabpour Borzoo Bonakdarpour Sebastian Fischmeister
Department of Electrical and Computer Engineering

University of Waterloo
200 University Avenue West

Waterloo, Ontario, Canada N2L 3G1
{snavabpo, borzoo, sfischme}@ece.uwaterloo.ca

Abstract
In this paper, we present a notion ofobservabilityandcontrolla-
bility in the context of software testing and debugging. Our view
of observability is based on the ability of developers, testers, and
debuggers to trace back a data dependency chain and observe the
value of a variable by starting from a set of variables that are nat-
urally observable (e.g., input/output variables). Likewise, our view
of controllability enables one to modify and control the value of a
variable through a data dependency chain by starting from a set of
variables that can be modified (e.g., input variables). Consequently,
the problem that we study in this paper is to identify the minimum
number of variables that have to be made observable/controllable
in order for a tester or debugger to observe/control the value of an-
other set of variables of interest, given the source code. We show
that our problem is an instance of the well-knownabstract diag-
nosis problem, where the objective is to find the minimum number
of faulty components in a digital circuit, given the system descrip-
tion and value of input/output variables. We show that our problem
is NP-complete even if the length of data dependencies is at most
2. In order to cope with the inevitable exponential complexity, we
propose a mapping from the general problem, where the length of
data dependency chains is unknown a priori, tointeger linear pro-
gramming. Our method is fully implemented in a tool chain for
MISRA-C compliant source codes. Our experiments with several
real-world applications show that in average, a significant number
of debugging points can be reduced using our methods. This result
is our motivation to apply our approach in debugging and instru-
mentation of embedded software, where changes must be minimal
as they can perturb the timing constraints and resource consump-
tion. Another interesting application of our results is in data logging
of non-terminating embedded systems, where axillary data storage
devices are slow and have limited size.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging —Debugging aids, Dumps, Tracing

General Terms Algorithms, Performance, Theory

Keywords Software debugging, Testing, Diagnosis, Logging.

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

LCTES’11, April 11–14, 2011, Chicago, Illinois, USA.
Copyright c© 2011 ACM 978-1-4503-0555-6/11/04. . . $10.00

1. Introduction
Software testing and debugging involvesobservingandcontrolling
the software’s logical behaviour and resource consumption. Logical
behaviour is normally defined in terms of the value of variables
and the control flow of the program. Resource consumption is
defined by both the resources used at each point in the execution
and the amount and type of resources used by each code block.
Thus, observabilityand controllability of the state of variables
of a software system are the two main requirements to make the
software testable and debuggable.

Although there are different views towards observability [3, 8–
10, 18–20, 25], in general, observability is the ability to test var-
ious features of a software and observe its outcome to check if
it conforms to the software’s specification. Different views stand
for controllability as well [3, 8–10, 18–20, 25]. Roughly speaking,
controllability is the ability to reproduce a certain execution be-
haviour of the software. The traditional methods for achieving ob-
servability and controllability incorporate techniques which tamper
with the natural execution of the program. Examples include using
break points, interactive debugging, and adding additional output
statements. These methods are often unsuited (specially for embed-
ded software), because they cause changes in the timing behaviour
and resource consumption of the system. Hence, the observed out-
come of the software is produced by a mutated program which can
violate its correctness. The mutated program can cause problems
for controllability as well. For instance, a previously seen execu-
tion behaviour may be hard or impossible to reproduce. Thus, in
the context of software testing and debugging, it is highly desir-
able to achieve software observability and controllability with the
least changes in the software’s behaviour. In particular, in embed-
ded software, this property is indeed crucial.

This goal becomes even more challenging as the systems grow
in complexity, since the set of features to cover during the testing
and debugging phase increases as well. This can result in requir-
ing more points of observation and control (i.e.,instrumentation)
which increases the number of changes made to the program. For
instance, testers will require more“printf” statements to extract
data regarding a specific feature which causes more side effects in
the timing behaviour.

With this motivation, we treat the aforementioned problem by
first formalizing the notions of observability and controllability as
follows. Our view of observability is based on the ability of de-
velopers, testers, and debuggers to trace back a sequence of data
dependencies and observe the value of a variable by starting from a
set of variables that are naturally observable (e.g., input/output vari-
ables) or made observable. Controllability is the other side of the

coin. Our view of controllability enables one to modify and control
the value of a variable through a sequence of data dependencies
by starting from a set of variables that can be modified (e.g., in-
put variables). Thus, the problem that we study in this paper is as
follows:

Given the source code of a program, our objective is to iden-
tify the minimum number of variables that have to be made
observable/controllable in order for a tester or debugger to
observe/control the value of another set of variables of in-
terest.

We show that our problem is an instance of the well-knownab-
stract diagnosis problem[17]. Roughly speaking, in this problem,
given are the description of a digital circuit, the value of input/out-
put lines, a set of components, and a predicate describing what
components can potentially work abnormally. Now, if the given
input/output relation does not conform with the system descrip-
tion, the goal of the problem is to find the minimum number of
faulty components that cause the inconsistency. The general diag-
nosis problem is undecidable, as it is as hard as solving first-order
formulae. We formulate our observability/controllability problem
as a sub-problem of the diagnosis problem. In our formulation, our
objective is not to find which components violate the conformance
of input/output relation with the system description, but to find the
minimum number of components that can be used to observe/con-
trol the execution of software for testing and debugging.

Following our instantiation of the abstract diagnosis problem,
first, we show that our optimization problem is NP-complete even
if we assume that the length of data dependency chains is at most
2. In order to cope with the inevitable exponential complexity, we
propose a mapping from the general problem, where the length of
data dependency chains in unknown a prior, tointeger linear pro-
gramming(ILP). Although ILP is itself an NP-complete problem,
there exist numerous methods and tools that can solve integer pro-
grams with thousands of variables and constraints.

Our approach is fully implemented in a tool chain comprising
the following three phases:

1. Extracting data:We first extract the data dependency chains of
the variables of interest for diagnosing from the source code.

2. Transformation to ILP:Then, we transform the extracted data
dependencies and the respective optimization problem into an
integer linear program. This phase also involves translation to
the input language of our ILP solver.

3. Solving the optimization problem:We solve the corresponding
ILP problem of finding the minimum set of variables required
to diagnose our variables of interest.

Using our tool chain, we report the result of experiments with
several real-world applications. These applications range over
graph theoretic problems, encryption algorithms, arithmetic cal-
culations, and graphical format encoding. Our experiments target
two settings: (1) diagnosingall variables involved in a slice of the
source code, and (2) diagnosing ahand-selectedset of variables
typically used by a developer for debugging. Our experiments show
that while for the former our method reduces the number of vari-
ables to be made directly diagnosable significantly, for the latter the
percentage of reduction directly depends upon the structure of the
source code and the choice of variables of interest. Since solving
complex integer programs is time-consuming, our experimental ob-
servations motivate the idea of developing a simple metric in order
to intelligently predict whether applying the optimization is likely
to be worthwhile. To this end, we propose one such simple met-
ric in this paper and discuss its correlation with our optimization
problem. Another beneficial consequence of our optimization is in

reducing the execution time of instrumented code. Indeed, we show
that the overall execution time of the code instrumented optimally
is significantly better than the corresponding time with the original
instrumentation.

Organization. The rest of the paper is organized as follows. After
discussing related work in Section 2, in Section 3, we present
our notions of observability and controllability and discuss their
relevance to software testing and debugging. Section 4 is dedicated
to formally present our problem and its complexity analysis. Then,
in Section 5, we present a transformation from our problem to ILP.
Our implementation method and tool chain are described in Section
6. We analyze the results of our experiments in Section 7. Finally,
we make concluding remarks and discuss future work in Section 8.

2. Related Work
As mentioned in the introduction our formulation of the problem
is an instance of the abstract diagnosis theory [17]. The diagnosis
theory has been extensively studied in many contexts. In [7], Fijany
and Vatan propose two methods for solving the diagnosis problem.
In particular, they present transformations from a sub-problem of
the diagnosis problem to the integer linear programming and sat-
isfiability problems. Our transformation to integer programming in
this paper is more general, as we consider data dependency chains
of arbitrary length. Moreover, in [7], the authors do not present ex-
perimental results and analysis. On the other hand, our method is
fully implemented in a tool chain and we present a rigorous analy-
sis of applying the theory on real-world applications.

On the same line of research, Abreu and van Gemund [1] pro-
pose an approximation algorithm to solve the minimumhitting set
problem. This problem is in spirit very close to an instance of the
diagnosis problem. The main difference between our work and [1]
is that we consider data dependencies of arbitrary length. Thus, our
problem is equivalent to a generalnestedhitting set problem. More-
over, we transform our problem to ILP whereas in [1], the authors
directly solve the hitting set problem.

Ball and Larus [2] propose algorithms for monitoring code to
profile and trace programs: profiling counts the number of times
each basic block in a program executes. Instruction tracing records
the sequence of basic blocks traversed in a program execution.
Their algorithms take the control-flow graph of a given program
as input and finds optimal instrumentation points for tracing and
profiling. On the contrary, in our work, we directly deal with source
code and actual variables. Ball and Larus also mention that vertex
profiling (which is closer to our work) is a hard problem and their
focus is on edge profiling.

Fujiwara [10] defines observability and controllability for hard-
ware. He considers observability as the propagation of the value
of all the signal lines to output lines. Respectively, controllability
is enforcing a specific value onto a signal line. He notes that if
observability and controllability are unsatisfied, additional outputs
and inputs must be added to the circuit. This addition is tightly cou-
pled with the position of the line and type of circuit. Moreover, this
work does not address how to choose the best point to add pins. In
addition, each time the pin counts change, one needs to re-evaluate
the observability/controllability of the lines.

Freedman [8], Voas, and Miller [25] view observability and con-
trollability from the perspective of black box testing. They consider
a function to be observable, if all the internal state information af-
fecting the output are accessible as input or output during debug-
ging and testing. They present the following metric to evaluate ob-
servability:DDR = Cardinality of input

Cardinality of output, whereDDR should be close

to 1 to have observability. Their method affects the temporal be-
haviour of the software and may expose sensitive information.

In the context of distributed systems, the approach in [20, 21]
defines a system behaviour to be observable, only if it can be
uniquely defined by a set of parameters/conditions. The goal in this
work is using deterministic instrumentation with minimal overhead
to achieve observability. The shortcoming of this work is that the
authors do not present a technique to find the instrumentation
with minimal overhead. In addition, the instrumentation should
remain in the deployed software to avoid probe effects. Thus, Thane
considers a behaviour controllable with respect to a set of variables
only when the set is controllable at all times. The author also
proposes a real-time kernel to achieve offline controllability.

Schutz [18, 19] addresses observability and controllability for
time triggered (TT) and event triggered (ET) systems. The author’s
method however, does not avoid instrumentation in the design
phase and, hence, uses dedicated hardware to prevent probe effects.
Schutz argues that TT systems offer alternative flexibility compared
to ET systems when handling probe effects caused by enforced
observability. Respectively, Schutz shows that unlike ET systems,
TT systems have less probe effects in controllability since there is
no missing information concerning their behaviour and, hence, an
additional approach is needed to collect information.

The approach proposed in [6, 15, 16, 23, 24] is in spirit similar
to our approach, but in a different setting. The author analyzes the
data flow design of a system and define observability and control-
lability based on the amount of information lost from the input to
the output of the system. Their calculations are based on bit-level
information theory. This method estimates controllability of a flow
based on the bits available at the inputs of the module from the
inputs of the software via the flow. Respectively, they estimate ob-
servability as the bits available at the outputs of the software from
the outputs of the module via the flow. We believe a bit-level in-
formation theoretic approach is unsuited for analysis of real-world
large applications, because (1) the proposed technique ignores the
type of operations constructing the data flow while it has an ef-
fect on observing and controlling data, (2) lost bits or corrupted
propagated bits throughout a flow may lead us to inconsistent ob-
servations, and (3) although the amount of information propagated
throughout a flow is of major importance, the bit count is an im-
proper factor of measurement.

3. Observability and Controllability as a
Diagnosis Problem

The diagnosis problem[17] was first introduced in the context of
automatic identification of faulty components of logic circuits in
a highly abstract fashion. Intuitively, the diagnosis problem is as
follows: Given a system description and a reading of its input/out-
put lines, which may conflict with the description, determine the
minimum number of (faulty) components of the system that cause
the conflict between the description and the reading of input/out-
put. In other words, the input/output relation does not conform with
the system description due to existence of faulty components. For-
mally, let SD be a system description andIO be the input/output
reading of the system, both in terms of a finite set of first-order for-
mulae. LetC be a set of components represented by a set of con-
stants. Finally, let¬AB(c) denote the fact that componentc ∈ C
is behaving correctly. A diagnosis for(SD , C, IO) is a minimal set
D ⊆ C such that:

SD ∧ IO ∧
V

c∈D
AB(c) ∧

V

c∈C−D
¬AB(c)

is satisfiable. Obviously, this satisfiability question is undecidable,
as it is as hard as determining satisfiability of a first-order formula.

Our instance of the diagnosis problem in this paper is inspired
by Fujiwara’s [10] definition to addressobservabilityandcontrol-
lability1. Our view is specifically suitable for sequential embedded
software where an external entity intends to diagnose the value of
a variable directly or indirectly using the value of a set of other
variables according to the system descriptionSD . We instantiate
the abstract diagnosis problem as follows. We interpret the setC
of components as a set of variables. In our context,SD is a set of
instructions in some programming language. In order to diagnose
the value of a variablev using the value of another variablev′, v
must depend onv′. In other words, there must exist a functionF
that connects the value ofv with the value ofv′; i.e., v = F (v′).
Thus, we consider the following types of data dependency:

1. Direct Dependency: We say that the value ofv directly depends
on the value ofv′ iff v = F (v′, V), whereF is an arbitrary
function andV is the remaining set ofF ’s arguments.

2. Indirect Dependency: We say thatv indirectly depends onv′′

iff there exists a variablev′, such that (1)v directly depends
onv′, and (2)v′ directly depends onv′′.

Data dependencies can be easily extracted fromSD . For exam-
ple, consider the following program as an instance ofSD :

(l1) g := x + z + y;
(l2) if g > 100 then
(l3) c := d / e;
(l4) else
(l5) c := f * g;
(l6) m := x % y;
(l7) b := d - f;
(l8) a := b + c;

It is straightforward to see that the value of variablea directly
depends on the value ofb andc and indirectly ond andg. Observe
that the notion of dependency is not necessarily interpreted by left
to right assignments in a program. For example, in the above code,
the value of variabled directly depends on the value ofb andf. On
the contrary, one cannot extract the value ofx from m andy, as the
inverse of the modulo operator is not a function.

In our framework, we interpret¬AB(c) as variablec is imme-
diately diagnosable(i.e.,c can be directly observed or controlled).
For instance, in programming languages, the value of constants,
literals, and input arguments are known a priori and, hence, are im-
mediately diagnosable. Thus,AB(c) means that variablec is not
immediately diagnosable, but it may be diagnosed through other
variables. To formalize this concept, we define what it means for a
variable to bediagnosablebased on the notion of data dependen-
cies. Roughly speaking, a variable is diagnosable if its value can be
traced back to a set of immediately diagnosable variables.

DEFINITION 1 (Diagnosable Variable).Let V be a set of imme-
diately diagnosable variables. We say that a variablev1, such
that AB(v1), is diagnosable iff there exists an acyclic se-
quenceσ of data dependencies:σ = 〈v1, d1, v2〉, 〈v2, d2, v3〉,
. . . , 〈vn−1, dn−1, vn〉, 〈vn, dn, vn+1〉 such thatvn+1 ∈ V .

In the remainder of this work, we refer to any dependency sequence
enabling variable diagnosis as adiagnosis chain. Finally, in our
instance of the diagnosis problem, we assume that the predicateIO

always holds.
As mentioned earlier, our instance of program diagnosis is cus-

tomized to address variableobservabilityand controllability. In-
tuitively, a variable is controllable if its value can be defined or

1 Throughout the paper, when we refer to ‘diagnosis’, we mean ‘observabil-
ity/controllability’.

Legend

Variable vertex

Context vertex

l2-l5

c

l8

b

l7

a

c1 c2

fd

yx

l3 l5

l1

e g

z

Figure 1. A simple diagnosis graph.

modified (i.e., controlled) by an external entity through a diagnosis
chain. For instance, if the external entity modifies the value of an
immediately diagnosable variablev, then it can potentially modify
the value of variables that can be traced back tov. Such an external
entity can be the developer, tester, debugger, or the environment in
which the program is running. Likewise, a variable is observable if
its value can be read through a diagnosis chain.

DEFINITION 2 (Controlability).A variablev is controllable iff
v is diagnosable and an external entity can modify the value ofv
by using an immediately controllable variablev′ and a diagnosis
chain that ends withv′.

DEFINITION 3 (Observability).A variablev is observable iff v
is diagnosable and an external entity can read the value ofv by
using an immediately observable variablev′ and a diagnosis chain
that ends withv′.

In order to analyze observability and controllability in a more
systematic fashion, we introduce the notion of diagnosis graphs. A
diagnosis graphis a data structure that encodes data dependencies
for a given variable. For instance, with respect to variablea in the
above program, all statements butl6 are of interest. In other words,
theprogram slice[4] of the above program with respect to variable
a is the setLa = {l1, l2, l3, l4, l5, l7, l8}. A special case
of constructing slices is for conditional statements (e.g., if-then-
else and case analysis). For example, in the above program, since
we cannot anticipate which branch will be executed at runtime, we
have to consider both branches to compute dependencies. Thus, for
variablec, we take both statementsl3 andl5 into account; i.e.,
Lc = {l2, l3, l4, l5}.

Formally, letv be a variable,Lv be a program slice with respect
to v, and Vars be the set of all variables involved inLv. We
construct the diagnosis directed graphG as follows.

• (Vertices)V = C ∪ U , whereC = {cl | l ∈ Lv} and
U = {uv | v ∈ Vars}. We call the setC context vertices(i.e.,
one vertex for each instruction inLv) and the setU variable
vertices(one vertex for each variable involved inLv).

Legend

Variable vertex

Context vertex

x

a b c d

y

Figure 2. A diagnosis graph.

• (Arcs)A = {(u, c) | u ∈ U ∧ c ∈ C ∧ variablev is affected
within contextc} ∪ {(c, u) | u ∈ U ∧ c ∈ C ∧ variablev
affects contextc}.

OBSERVATION 1. Diagnosis graphs are acyclic and bipartite.

The diagnosis graph of the above program with respect to vari-
ablea is shown in Figure 1. Although our construction of diagnosis
graph is with respect to one variable, it is trivial to merge several
diagnosis graphs.

4. Statement of Problem and Its Complexity
Analysis

The notion of diagnosis graph presented in Section 3 can be used
to determine several properties of programs in the context of test-
ing and debugging. One such property is whether a debugger has
enough information to efficiently observe the value of a set of vari-
ables of interest. Another application is in creating data logs. For
instance, since it is inefficient to store the value ofall variables of
a non-terminating program (e.g., in embedded applications), it is
desirable to store the value of a subset of variables (ideally mini-
mum) and somehow determine the value of other variables using
the logged variables. Such a property is highly valuable in em-
bedded systems as they do not have the luxury of large external
mas storage devices. Thus, the problem boils down to the follow-
ing question:

Given a diagnosis graph and a set of immediately diagnos-
able variables, determine whether a variable is diagnos-
able.

Another side of the coin is to identify a set of variables that can
make another set of variables diagnosable. To better understand
the problem, consider the diagnosis graph in Figure 1. One can
observe the value ofa by making, for instance, variables{c, d,
f} immediately observable.

A valid question in this context is that if a set of variables is to
be diagnosed, why not make all of them immediately diagnosable.
While this is certainly a solution, it may not be efficient or feasible.
Consider again the graph in Figure 1. Let us imagine that we are
restricted by the fact that variables{a, b, c, g} cannot be made
immediately observable (e.g., for security reasons). Now, in order
to diagnose variablea, two candidates are{d, e, f} and {d, f,
x, y, z}. Obviously, for the purpose of, for instance, logging, the
reasonable choice is the set{d, e, f}.

Figure 2 shows another example where choice of variables for
diagnosis matters. For instance, in order to makea, b, andc di-
agnosable, it suffices to makex andy immediately diagnosable.
Thus, it is desirable to identify the minimum number of immedi-
ately diagnosable variables to make a set of variables of interest
diagnosable.

Legend

Variable vertex

Context vertex

v{b,d}v{a,b}

cb cc cdca

v{b,c} v{a,d} v{b}

va vb vc vd

Figure 3. An example of mapping HSP to DGP.

It is well-known in the literature that the diagnosis problem is
a typical covering problem [1, 7, 17]. In fact, many instances of
the diagnosis problem is in spirit close to thehitting set problem
[12] (a generalization of the vertex cover problem). We now show
that this is indeed the case with respect to our formulation. We also
show that a simplified version of our problem is also NP-complete.

Instance (DGP). A diagnosis graphG of diameter 2, whereC and
U are the set of context and variable vertices respectively andA
is the set of arcs ofG, a setV ⊆ U , and a positive integerK ≤ |U |.

Question. Does there exist a setV ′ ⊆ U , such that|V ′| ≤ K
and all variables inV are diagnosable if all variables inV ′ are
immediately diagnosable.

We now show that the above decision problem is NP-complete
using a reduction from thehitting set problem(HSP) [12]. This
problem is as follows: Given a collectionS of subsets of a finite
setS and positive integerN ≤ |S|, is there a subsetS′ ⊆ S with
|S′| ≤ K such thatS′ contains at least one element from each
subset inS?

THEOREM 1. DGP is NP-complete.

Proof. Since showing membership to NP is straightforward, we
only show that the problem is NP-hard. We map the hitting set
problem to our problem as follows. LetS, S, andN be an instance
of HSP. We map this instance to an instance of DGP as follows:

• (Variable vertices)For each sets ∈ S, we add a variable vertex
vs to U . In addition, for each elementx ∈ S, we add a variable
vertexvx to U .

• (Context vertices) For each elementx ∈ S, we add a context
vertexcx to C.

• (Arcs) For each elementx ∈ S that is in sets ∈ S, we add arc
(vs, cx). And, for eachx ∈ S, we add arc(cx, vx).

• We let V = {vs | s ∈ S} (i.e., the set of variables to be
diagnosed) andK = N .

Observe that the diameter of the graph constructed by our map-
ping is 2. To illustrate our mapping, consider the example, where
S = {a, b, c, d} andS = {{a, b}, {b, c}, {a, d}, {b, d}, {b}}. The
result of our mapping is shown in Figure 3.

We now show that the answer to HSP is affirmative if and only
if the answer to DGP is also affirmative:

• (⇒) Let the answer to HSP be the setS′ ⊆ S. Our claim
is that in the instance of DGP, the setV ′ = {vx | x ∈ S′}
is the answer to DGP (i.e., the set of immediately diagnosable
variables). To this end, first, notice that|V ′| = |S′| and, hence,

|V ′| ≤ K, asK = N in our mapping and|S′| ≤ N . Now,
since every sets ∈ S is covered by at least one element inS′,
it implies thatV ′ makes all variables inV diagnosable.

• (⇐) Let the answer to DGP be the setV ′ ⊆ V . Our claim
is that in the instance of HSP, the setS′ = {x | vx ∈ V ′} is
the answer to HSP (i.e., the hitting set). To this end, first, notice
that |S′| = |V ′| and, hence,|S′| ≤ N , asN = K in our
mapping and|V ′| ≤ K. Now, since every variablevs ∈ V
is made diagnosable by at least one variable vertex inV ′, it
implies elements ofS′ hit all sets inS. �

Note that our result in Theorem 1 is for diagnosis graphs of
diameter 2. If the diameter of a diagnosis graph is unknown (i.e., the
depth of diagnosis chains), we conjecture that another exponential
blow-up is involved in solving the problem. In fact, our problem
will be similar to anestedversion of the hitting set problem and it
appears that the problem is not in NP.

5. Mapping to Integer Linear Programming
In order to cope with the worst-case exponential complexity of
our instance of the diagnosis problem, in this section, we map
our problem toInteger Linear Programming(ILP). ILP is a well-
studied optimization problem and there exist numerous efficient
techniques for it. The problem is of the form:

8

<

:

Minimize c.x

Subject to A.x ≥ b

whereA (a rationalm×n matrix),c (a rationaln-vector), andb (a
rationalm-vector) are given, and,x is ann-vector of integers to be
determined. In other words, we try to find the minimum of a linear
function over a feasible set defined by a finite number of linear
constraints. It can be shown that a problem with linear equalities
or <= linear inequalities can always be put in the above form,
implying that this formulation is more general than it might look.
ILP is known to be NP-complete, but as mentioned earlier there
exist many efficient techniques and tools that solve ILP.

We now describe how we map our instance of the diagnosis
problem described in Sections 3 and 4 to ILP. Although in our im-
plementation, we start from the source code, here for the sake of
clarity, we start our mapping from a given diagnosis graph. LetG
be a diagnosis graph with the setC of context vertices, the setU
of variable vertices, and the setA of arcs. Our goal is to make
the setV of vertices diagnosable and we are looking for the min-
imum number of variable vertices that must become immediately
diagnosable. In order to make variables ofV diagnosable, one has
to consider all diagnosis chains that start from the variables inV .
Now, letv be a variable vertex inV whose outgoing arcs reach con-
text vertices{c1 · · · cn}. Obviously,v can be diagnosed through
any of the context vertices, sayci, where1 ≤ i ≤ n. Thus, in
our mapping, we represent each context vertexc with a binary in-
teger variablexc; i.e., the value ofxc is 1 if and only if v can be
diagnosed throughc. Otherwise,xc is equal to0. Thus, for each
variablev ∈ V whose reachable context vertices are{c1 · · · cn},
we add the following constraint to our integer program:

n
X

i=1

xci
≥ 1

xci
∈ {0, 1} (1)

Intuitively, this constraint means that variablev is diagnosed by at
least one of the context vertices that it can reach in the diagnosis

Slices
ILP Binary Integer

Programming
LLVM

Generator

MATLAB

Data

pass
dependency

Desired variables

Source code Optimization
Result

program
Integer

(Phase 3)(Phase 2)(Phase 1)

Program

Figure 4. Data flow in the tool chain.

graph. For example, for Figure 3, we have the following constraints
according to inequality 1:

xca
+ xcb

≥ 1, xcb
+ xcc

≥ 1,
xca

+ xcd
≥ 1, xcb

+ xcd
≥ 1, xcb

≥ 1

Now, if a variable vertexv is diagnosed through a context vertex
c, then all variable vertices{v1 · · · vm} that are reachable fromc
by one step must be diagnosable as well (following our notion of
diagnosis chains). In order to encode this in our integer program,
for each context vertexc, in addition to integer variablexc, we
add another integer variablex′

c, whose value is the negation ofxc.
Thus, for each context vertex, we add the following constraint to
our integer program:

xc + x
′
c = 1 (2)

We now encode the fact that if a context vertexc is chosen in the
solution to the integer program (i.e.,xc = 1), then all its variable
vertices must be diagnosable. To this end, if context vertexc is
associated with variable vertices{v1 · · · vm}, we add two integer
variablexvi

andx′
vi

, for all 1 ≤ i ≤ m, to our integer program.
Moreover, we add the following constraints:

x
′
c + xvi

≥ 1 (3)

x
′
c − x

′
vi

≥ −1 (4)

xvi
+ x

′
vi

= 1 (5)

xvi
∈ {0, 1}

Intuitively, Constraint 3 means that if a context vertex is not chosen
by the solution, then its associated variable vertices may or may not
appear in the solution. And, constraint 4 ensures that Constraint
3 is consistent with that fact thatx′

vi
is the negation ofxvi

. For
example, we have the following constraints for the graph in Figure
3 for context vertexca:

x′
ca

+ xva
≥ 1, x′

ca
− x′

va
≥ −1

We keep repeating this procedure for each new reachable level
of context vertices of the diagnosis graph and generate constraints
3-5 until we reach the vertices of the graph whose outdegree is0.
Such vertices do exist in a diagnosis graph according to Observa-
tion 1. Once we reach a vertex whose outdegree is0, we generate
no constraints. This is because such vertices must be considered as
both a context vertex and a variable vertex (i.e., the variable can
be made diagnosable only if it is made immediately diagnosable).
Thus, the value of their corresponding integer variable is either0
or 1 independent of other variables.

Finally, we specify our objective function. LetV ′′ = {v1 · · · vk}
be the set of variable vertices that we allow to become immedi-
ately diagnosable. ObviouslyV ′′ can be equal toU , the set of all
variable vertices. As mentioned in Section 4, our goal is to find the

minimum number of variables that must become immediately diag-
nosable. Hence, our integer program optimization is the following:

Minimize

k
X

i=1

xvi
(6)

For example, in our example in Section 3, the optimization criterion
is to minimizexd + xe + xf + xx + xy + xz.

6. Implementation and Tool Chain
In this section, we present a detailed representation of our tool
chain. Our tool chain consists of three main phases as depicted in
Figure 4:

1. Extracting data:We first extract the data dependency chains of
the variables of interest for diagnosis from the source code.

2. Transformation to ILP:Next, we transform the extracted data
dependencies and the respective optimization problem into an
integer linear program as described in Section 5. This phase also
involves translation to the input language of our ILP solver.

3. Solving the optimization problem:We solve the corresponding
ILP for finding the minimum set of variables required to be-
come immediately diagnosable.

In the following, we describe each phase in detail.

6.1 Extracting data

As mentioned earlier, one input to our problem is the set of data
dependency chains with respect to our variables of interest. Thus,
we need to extract all the statements in the source code that af-
fect the value of the variables of interest. This extraction is known
as program slicing[4, 22]. We apply the technique in [5] to ex-
tract program slices from the single-static assignment (SSA) of the
source code, as it requires less computation resources.

In terms of the corresponding tool, we leverage LLVM [13]
to extract program slices. LLVM is a collection of modular and
reusable compiler and tool chain technologies. We choose LLVM
among other options such as GCC, because of its ability to convert
programs into SSA. In addition, LLVM is well-established and
well-documented with a rich API, which simplifies the process of
implementing new analysis and transformation passes.

Consequently, we implement a newdata dependency passover
the LLVM framework (see Phase 1 in Figure 4). First, thedata
dependency passaccepts the source code and the set of desired
variables for diagnosis as input. We note that the source code is
customized to be MISRA-C [14] compliant while only having an-
alyzable use of pointers. Secondly, it converts all the memory vari-
ables into registers, since LLVM only considers register variables
in its SSA conversion. Then, thedata dependency passincorpo-
rates the dominator tree passes and thedef-useanduse-defAPI’s
of LLVM to extract the data dependency chains. Finally,data de-
pendency passslices the program into its SSA form, so that only

the SSA statements affecting the values of desired variables are ex-
tracted into an output file.

6.2 Transformation into Integer Linear Programming

Once we have the program slices as LLVM output, we perform
another phase of processing to transform the slices into an integer
program. To this end, we develop a transformer (see Phase 2 in
Figure 4), calledILP Generator. This generator takes program
slices as input and converts them to the input format of the ILP
solver. The transformation follows our method described in Section
5. However, in our implementation, we do not start from a diagnosis
graph. In fact, our transformation starts directly from program
slices.

First, ILP Parser takes program slices and converts each SSA
statement to a unique variable set. It considers the list of all sets
as the vector of variables in the ILP model. Then, it analyzes the
dependency of each set with the other sets extracted from program
slices. In other words, for the variables of a set to be diagnosed, the
parser finds all the sets whose variables must become diagnosable
as well. This is similar to the role of context vertices in diagnosis
graphs in Section 5. The completion of this phase results in iden-
tifying the set of all constraints and variables of the ILP model.
Then, the ILP generator computes the objective function based on
the variables used by the statements in program slices of the LLVM
output (see also objective function 6 in Section 5). Finally, ILP gen-
erator puts the ILP model into an output file and feeds it into the
ILP solver.

6.3 Solving the Optimization Problem

This is the last phase of our tool chain (see Phase 3 in Figure
4). Our choice of ILP solver is the binary integer programming
toolbox of MATLAB. As described in Section 5, all variables in our
integer program are binary and MATLAB’s library suffices for our
purpose. In our tool chain, the ILP input is in MATLAB’s format.
MATLAB’s solution to the given ILP problem is the set of variables
that need to be immediately diagnosable.

7. Experimental Results
In this section, we describe the results of our experiment on using
our tool chain in order to evaluate our method based on the factor
of instrumentation point reduction. By instrumentation point, we
mean instructions that are added to the source code in order to
observe or control the value of a set of desired variables. Examples
of such instrumentation include logging instructions such asprintf
andfprintf.

In Subsection 7.1, we analyze the effectiveness of our method
on a set of real-world applications by studying the reduction in in-
strumentation points. We present evidence in Subsection 7.2 that in
order to handle our case studies, we have not reached the bound-
aries of capabilities of ILP solvers. Then, in Subsection 7.3, we
look into the effect of optimizing instrumentation points on exe-
cution time of instrumented code. Finally, in Subsection 7.4, we
present a metric for diagnosis graphs that can assist in predicting
the effectiveness of our optimization method on a source code for
a given set of desired variables to be diagnosed.

7.1 Effectiveness of Our Optimization Method

To conduct our experiments, we used MiBench [11] as the set of
programs to run our method. MiBench is a free, commercially
representative embedded benchmark suite. We choose MiBench
because of its high diversity in programs and benchmarks. The
programs differ in size, property, and behaviour and provide us
with a wide range of source codes that we can use to study the
effectiveness of our method. MiBench has six main categories

 10

 20

 30

 40

 50

 60

 70

qsort
CRC32

dijkstra

blowfish

rsynth

stringsearch

bitcount

TIFF
FFT

sha
JPEG

In
st

ru
m

en
ta

tio
n

Im
pr

ov
em

en
t P

er
ce

nt
ag

e

Case Study

all variables
selected variables

Figure 5. Results of experiments on effectiveness of optimization
of instrumentation points.

of programs: automative, consumer, office, network, security, and
telecomm. We randomly choose the following programs for our
experiments:

• bitcount andqsort from automative,

• JPEG andTIFF from consumer,

• dijkstra from network,

• rsynth andstringsearch from office,

• blowfish andsha from security, and

• CRC32 andFFT from telecomm.

Figure 5 shows the percentage of reduction in the number of in-
strumentation points for each case study under two scenarios. Be-
fore we elaborate on the results, we recall that our goal in this paper
is to optimize a given instrumentation scheme. In other words, our
technique does not start with a null set of instrumentation points.
It rather optimizes a user-specified mandatory instrumentation re-
quirement. Thus, if the given instrumentation scheme is not effi-
cient and already imposes a significant overhead, our method can
reduce this overhead based on the program structure. In this con-
text, absolute values of results in this section (e.g., execution time
of the uninstrumented programs) are not relevant to the idea of the
paper. What is indeed relevant is the relative optimization.

7.1.1 Scenario A: Optimization with Respect to a Subset of
Variables

In the first scenario (marked by ‘selected variables’ in Figure 5), in
each MiBench program, we use our intuition to set the instrumen-
tation points (i.e., desired variables for diagnosis). Similar to any
debugger, we pin down all the variables we would typically suspect
as faulty when the output of the program is erroneous. Then, at
each instruction point defining each of these suspicious variables,
we insert an instrumentation instruction which logs the value of
the variable. To clarify our procedure, consider the following code
from theqsort largeprogram in MiBench:

1 s t r u c t my3DVer texSt ruc t {
2 i n t x , y , z ;
3 double d i s t a n c e ;
4 } ;
5

6 i n t compare (c o n s t vo id ∗elem1 , c o n s t vo id ∗elem2)
7 {
8 double d i s t a n c e 1 , d i s t a n c e 2 ;

9

10 d i s t a n c e 1 =
11 (∗ ((s t r u c t my3DVer texSt ruc t ∗) elem1)) . d i s t a n c e ;
12 d i s t a n c e 2 =
13 (∗ ((s t r u c t my3DVer texSt ruc t ∗) elem2)) . d i s t a n c e ;
14

15 re turn (d i s t a n c e 1> d i s t a n c e 2) ? 1
16 : ((d i s t a n c e 1 == d i s t a n c e 2) ? 0 :−1);
17 }
18

19

20 i n t
21 main (i n t argc , char ∗argv []) {
22 s t r u c t my3DVer texSt ruc t a r r a y [MAXARRAY] ;
23 FILE ∗ fp ;
24 i n t i , coun t =0;
25 i n t x , y , z ;
26

27 i f (argc<2) {
28 f p r i n t f (s t d e r r , ” Usage : q s o r t l a r g e <f i l e >\n”) ;
29 e x i t (−1);
30 }
31 e l s e {
32 fp = fopen (a rgv [1] , ” r ”) ;
33

34 whi le ((f s c a n f (fp , ”%d” , &x) == 1) && (f s c a n f (fp , ”%d”
35 , &y) == 1) && (f s c a n f (fp , ”%d” , &z) == 1)
36 && (coun t < MAXARRAY)) {
37 a r r a y [coun t] . x = x ;
38 a r r a y [coun t] . y = y ;
39 a r r a y [coun t] . z = z ;
40 a r r a y [coun t] . d i s t a n c e = s q r t (pow (x , 2) +
41 pow (y , 2) + pow (z , 2)) ;
42 coun t ++;
43 }
44 }
45 q s o r t (a r ray , count ,s i z e o f (s t r u c t my3DVer texSt ruc t)
46 , compare) ;
47

48 f o r (i =0; i<coun t ; i ++)
49 p r i n t f (”%d %d %d \n” , a r r a y [i] . x ,
50 a r r a y [i] . y , a r r a y [i] . z) ;
51 re turn 0 ;
52 }

Listing 1. qsort large

In this code, the main variables taking part in the output are:x,
y, z, distance, distance1, distance2, fp, argc, andmy3DVertexStruct.
Thus, we add instrumentation points, at lines 37, 38, 39, 40, 10, 12,
32, 27, and 45 to log each variable respectively. For instance, we do
not instrumentcount, since it only controls access to the array ele-
ments and its value is not considered in the output ofqsort large.
Likewise, we use the same procedure in instrumenting our other
case studies. As can be seen in Figure 5,qsort shows an improve-
ment of 11.11%. Our experiments show that the number of instru-
mentation points dropped from 9 to 8. The deleted instrumentation
point was on line 40 for loggingdistance. This result is quite ob-
vious, sincedistancehas a data dependency withx, y, andz. Since
x, y, andz are log they become immediately diagnosable, creat-
ing a resolvable data dependency withdistance. This results indis-
tancebecoming observable as well, eliminating the need for it to
be logged.

On the contrary, we see considerable improvement in the reduc-
tion of instrumentation points inJPEG, TIFF, andFFT. The case
studies show reduction of 42%, 41%, and 40.27% in instrumenta-
tion points, respectively. For instance, inJPEG, our optimization
reduces instrumentation points to an average of 10 in each C file
and achieves a 42% reduction in total. Likewise, inFFT, the orig-
inal 72 instrumentation points are dropped to 40, gaining 40.27%
improvement.

The aforementioned results on percentage of reduction of in-
strumentation clearly shows the effectiveness of our method. For

instance, if our method is applied to a reactive embedded system
where there exists only a limited auxiliary storage for logging pur-
poses, 40% reduction in the size of the data log can be significantly
beneficial.

7.1.2 Scenario B: Optimization with Respect to all Variables

Our second scenario (marked by ‘all variables’ in Figure 5) is
based on instrumenting all the variables in the program slice of the
output variables. For instance, consideringqsort, we loggedcount
as well, since its value takes part in creating the output and, hence,
it appears in the program slice. As can be seen, in this scenario,
we achieve even more reduction. For instance, we achieve a 60%
reduction insha when logging all variables, while we achieved
27.27% reduction by choosing only a subset of variables based on
our debugging intuition.

On average, our method achieves a 30.5% reduction in instru-
mentation points for the MiBench programs studied in this section.
Hence, as argued earlier, if we can reduce instrumentation points
of long-running programs close to 30%, it is worthwhile optimiz-
ing programs that create large data logs and require great amount
of costly resources, such as the black box recorders in aircrafts. On
the other hand, by reducing the instrumentation points in embed-
ded systems by 30%, we reduce the debugger interference with the
original source code to reduce debugging side-affects in the natural
behaviour of the system.

As can be seen in Figure 5, the reduction in the instrumen-
tation points fluctuates from one program to another. Thus, one
needs to analyze the experimental results by relating each reduction
to the program’s structural and behavioural properties. To clarify
our analysis process, consider our example ofqsort. Based on our
study, we conclude that the small number of dependencies among
the variables in the source code is the reason behind small im-
provement in reduction of instrumentations. For instance,x, y and
z are not data dependent and, hence, none can become diagnos-
able through the other. On the contrary, consider programsJPEG,
TIFF, andFFT. All three show considerable instrumentation re-
duction. In general, the results from our studies show that there are
three main factors causing the reduction:

1. Large number of common variables used and updated by differ-
ent functions in different C files,

2. Large number of functions that their input arguments are devel-
oped by a set of other functions in different C files, and

3. The size of the input source code.

To generalize the results from our analysis, we draw the follow-
ing set of factors as causes of fluctuations:

1. The data flow of the program which in turn defines the data
dependencies among variables in the source code.

2. The control flow of the program.

3. The size (i.e., number of variables and instructions) and struc-
ture (i.e., functions and modules) of the program.

4. The set of variables of interest.

Although the proposed properties affect the effectiveness of our
method, at this point, we do not claim that the presented set is
closed. Extracting the complete set of factors and formalization of
the relation between the reduction of instrumentation points and the
above factors still need further research.

Based on the presented results, we are now able to explain the
reason of the increase of instrumentation reduction when consid-
ering the logging of all the variables in the program slice. When
we consider all the variables in a program slice, we are consider-
ing more variables in our analysis. Each variable introduces a new

set of data dependencies which we can use to our benefit. These
new data dependencies increase the possibility of diagnosing vari-
ables via other variables. In other words, the possibility that vari-
ables share common variables for their diagnosis increases. That is
why we see an increase in the reduction. As forsha, the signifi-
cant increase in the reduction shows that there is a large number of
variables which take part in diagnosis of the output that are sim-
ply overseen by the debugger. This can be for various reasons, such
as the layout of the source code. Hence, when all the variables are
logged, all the variables affecting the output and their data depen-
dencies are included in the analysis, which in turn introduces new
data dependency chains, resulting in reducing the number of vari-
ables needed to become immediately diagnosable.

7.2 Complexity of the Integer Program

When it comes to dealing with problems with exponential com-
plexity, a valid concern is the scalability issue. Our experiments
show that in the context of our case studies, our method has not
yet reached the boundaries of capabilities of current ILP solvers.
For example, in case ofJPEG, where the source code has 3105
lines of C code, the corresponding integer program has 220 binary
variables and 65968 constraints. The approximate time to solve the
integer program on a MacBook Pro with 2.26 GHz Intel Core 2
Duo and 2GM RAM is 5 minutes using MATLAB. Hence, scala-
bility by itself is not an obstacle in optimizing instrumentation of
real-world applications in the size of our case studies.

7.3 The Effect of Instrumentation Optimization in Execution
Time

An important consequence of optimized instrumentation is better
execution time of instrumented code. In order to validate this claim,
we conduct three experiments to measure execution time ofFFT,
dijkstra, andJPEG in two settings:

1. Running the programs with instrumenting the hand-selected
variables in the program slice,

2. Running the program with the reduced set of instrumentation
points identified using our method.

Our instrumentation involves a fast I/O interaction: writing the
value of variables on the hard-disk. The results from this experi-
ment are presented in Figure 6. ForFFT, the result shows a 69.25%
decrease of execution time after our method reduces the number of
instrumentations. As for the other programs, our method decreases
the average execution time ofJPEG by 31.5% anddijkstra by 34%.
A counter intuitive observation in this context is inJPEG. Since
JPEG has the best optimization, one may conjecture that it must
show the highest decrease in execution time. However, this is not
the case. Our analysis shows that the number of instrumentation
points are not the only factor in the overhead caused by instrumen-
tation. It also depends upon the location of the instrumentation and
the type of variable being instrumented. For instance, deletion of an
instrumentation inside a loop causes more reduction in the execu-
tion time compared to deletion of an instrumentation point which
gets executed only once. Based on the above analysis, we conclude
that the set of instrumentations deleted fromFFT is smaller that of
JPEG, but they execute more often. Hence, their deletion causes a
larger decrease in the execution time ofFFT as compared toJPEG.

As mentioned earlier, our instrumentation in this section in-
volves writing the value of variables on a hard-disk. Given this
assumption and the drastic decrease in execution time when op-
timized instrumented code is used, it follows that our method is
expected to be highly beneficial in the context of embedded soft-
ware where data logging involves interaction with typically slow
I/O such as E2PROMs.

 0

 2

 4

 6

 8

 10

 12

dijkstra

FFT
JPEG

E
xe

cu
tio

n
tim

e
(s

)

Case Study

original instrumentation
optimized instrumentation

Figure 6. Comparison of execution time between instrumented
and optimized instrumented code.

 10

 20

 30

 40

 50

 60

 70

qsort
CRC32

dijkstra

blowfish

rsynth

stringsearch

bitcount

TIFF
FFT

sha
JPEG

Im
pr

ov
em

en
t/G

ra
ph

 d
en

si
ty

Case Study

all variables
selected variables

graph density

Figure 7. Results of experiments with respect to diagnosis graph
density.

7.4 A Graph Theoretic Metric for Characterizing
Effectiveness of Optimization

Although in Subsection 7.2, we argued that solving the ILP prob-
lem is not yet a stumbling block, it is highly desirable to have ac-
cess to simple metrics that can characterize the chances that apply-
ing our method is effective before solving the ILP problem. One
such metric can be characterized by density of diagnosis graph of
source code. Let|V | be the size of vertices and|A| be the size of
arcs of a diagnosis graph. Obviously, the more arcs are distributed
among vertices in a diagnosis graph, the more data dependencies
exist. Thus, our simple characterization metric, calledgraph den-
sity is the following:

|V |+|A|
|V |

As can be seen in Figure 7, in general with the increase in the
graph density, our method achieves more reduction in instrumen-
tation points. To understand the relation between the behaviour of
the instrumentation reduction and graph density, we calculated the
correlation coefficientof the instrumentation reduction of bothall
variablesandselected variablesagainstgraph density. For the case

of all variables, the correlation coefficient is0.81 and for the case
of selected variablesit is 0.51. Althoughgraph densityis a simple
metric, the obtained correlation coefficients is evidently high. In
other words, whengraph densityis large in value, it shows that the
number of arcs in the diagnosis graph of the corresponding program
slice is considerably more than the variable vertices. This implies
that variable vertices take part in multiple paths in the graph, orig-
inating from the variables of interest and, hence, diagnosis of such
variables can possibly lead to the diagnoses of multiple variables.

We note that similar to any other predication metrics, our metric
may suffer from outliers as well. Consider the case ofselected
variablesfor sha andall variables for FFT. In the case ofFFT,
graph density decreases while the reduction in the instrumentation
points increases and as forsha, graph density increases while the
reduction in instrumentation points decreases. Our analysis shows
that this abnormality is due to whether a variable that appears in
multiple diagnosis chains is in fact reachable from a variable of
interest. In other words, when a variable takes part in multiple data
dependency chains, it does not necessarily mean that this variable
is diagnosable, making variables residing in the data chains become
undiagnosable as well. Recall that the existence of a diagnosis
chain between two variables is only one of the properties that
needs to be satisfied to make one variable diagnosable via the
other. Another vital condition is the diagnosability of the data chain
dependency. Thus, if the data chain between the variables is not
diagnosable, converting one of the variables into a diagnosable
one does not serve the purpose. Consequently, the reduction in the
instrumentation points depends not only on the number of variables
taking part in multiple diagnosis chains, but also on the portion of
the chains that are diagnosable. From these two conditions,FFT
and sha only satisfy the former. That is why their graph density
does not conform with their instrumentation improvement.

8. Conclusion and Future Work
In this paper, we focused on applying theabstract diagnosis the-
ory to software debugging and testing. We formulated debugging
and testing based on our interpretation ofobservabilityand con-
trollability . Our view of observability/controllability is based on
the ability of developers, testers, and debuggers to trace back a data
dependency chain and observe/control the value of a variable by
starting from a set of variables that are naturally observable/con-
trollable (e.g., input/output variables). Consequently, the problem
that we studied in this paper is to identify the minimum number of
variables that have to be made directly observable/controllable in
order for a tester or debugger to observe/control the value of an-
other set of variables of interest, given the source code. We showed
that our optimization problem is NP-complete even if the length of
data dependencies is at most 2.

In order to cope with the inevitable exponential complexity, we
proposed a mapping from the general problem, where the length
of data dependency chains is unknown a priori, tointeger linear
programming(ILP). We implemented our method in a tool chain.
The tool chain works in three phases: it (1) takes MISRA-C [14]
compatible source code as input and generates program slices us-
ing LLVM [13], (2) takes the program slices and generates an in-
teger program that encodes our optimization problem, and (3) uses
MATLAB’s binary integer programming toolbox to solve the inte-
ger program. Our experiments with several real-world applications
show that we gain an average of 30% improvement in reducing
the number of variables that need to be observed/controlled. This
result is a strong motivation to apply our approach in debugging
and instrumentation of embedded software, where changes must be
minimal, as they can perturb the timing constraints and resource
consumption. Another interesting motivation for incorporating our
approach is in data logging of non-terminating embedded systems,

where the size of axillary data storage for logging is limited and
such devices are relatively slow.

Finally, we presented a metric for predicting whether our
method for optimizing instrumentation of a program to achieve
observability and controllability accomplishes reasonable reduc-
tion. We showed that this metric has a high correlation with two
settings under which we conducted our experiments.

For future work, there are several open problems. One impor-
tant problem is extending our formulation to the case where we
can handle pointer data structures. We are currently working on
developing prediction metrics better than the notion of graph den-
sity presented in Subsection 7.4. We believe that metrics that in-
corporate network flow or compute vertex disjoint paths are better
suited, as these concepts are based on path properties rather than
vertex properties. Having access to intelligent metrics is also de-
sirable to develop transformations that can generate programs that
can be instrumented more efficiently; i.e., generating programs that
preserve all observational properties but have better slices for our
optimization problem. Another interesting line of research is devel-
oping customized heuristics, approximation algorithms, and trans-
formations to solve our optimization problem. One such transfor-
mation can be from our optimization problem to the satisfiability
problem to employ SAT-solvers.

9. Acknowledgements
This research was supported in part by NSERC DG 357121-2008,
ORF RE03-045, ORE RE-04-036, and ISOP IS09-06-037.

References
[1] R. Abreu and A. J. C. van Gemund. A low-cost approximate minimal

hitting set algorithm and its application to model-based diagnosis. In
Abstraction, Reformulation, and Approximation (SARA), 2009.

[2] T. Ball amd and J. R Larus. Optimally profiling and tracing pro-
grams. ACM Transactions on Programming Languages and Systems
(TOPLAS), 16(4):1319–1360, 1994.

[3] Robert V. Binder. Design for Testability in Object-Oriented Systems.
Communications of the ACM, 37(9):87–101, 1994.

[4] David Binkley and Mark Harman. A Survey of Empirical Results on
Program Slicing. InAdvances in Computers, pages 105–178, 2003.

[5] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. Efficiently Computing Static Single Assignment
Form and the Control Dependence Graph.ACM Transactions on
Programming Languages and Systems, 13(4):451–490, 1991.

[6] Huy Vu Do, Chantal Robach, and Michel Delaunay. AutomaticTesta-
bility Analysis for Data-Flow Designs of Reactive Systems. In Pro-
ceedings of the First International Workshop on Testability Assess-
ment, pages 52–61, 2004.

[7] A. Fijany and F. Vatan. New high-performance algorithmic solution
for diagnosis problem. InIEEE Aerospace Conference (IEEEAC),
2005.

[8] Roy S. Freedman. Testability of Software Components.IEEE Trans-
actions on Software Engineering, 17(6):553–564, 1991.

[9] Hideo Fujiwara. Logic Testing and Design for Testability. Mas-
sachusetts Institute of Technology, Cambridge, MA, USA, 1985.

[10] Hideo Fujiwara. Computational Complexity of Controllability/Ob-
servability Problems for Combinational Circuits.IEEE Transactions
on Computers, 39(6):762–767, 1990.

[11] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown. MiBench: A free, commercially representative
embedded benchmark suite. InIEEE International Workshop on In
Workload Characterization (WWC), pages 3–14, 2001.

[12] R. M. Karp. Reducibility among combinatorial problems. InSympo-
sium on Complexity of Computer Computations, pages 85–103, 1972.

[13] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis and Transformation. InProceedings of
the International Symposium on Code Generation and Optimization:
Feedback directed and runtime Optimization, page 75, 2004.

[14] Gavin McCall.Misra-C: 2004. MIRA Limited, Warwickshire, United
Kingdom, 2004.

[15] Thanh Binh Nguyen, Michel Delaunay, and Chantal Robach. Testabil-
ity Analysis Applied to Embedded Data-flow Software. InProceed-
ings of the Third International Conference on Quality Software, page
351, Washington, DC, USA, 2003. IEEE Computer Society.

[16] Thanh Binh Nguyen, Michel Delaunay, and Chantal Robach. Testabil-
ity Analysis of Data-Flow Software.Electronic Notes in Theoretical
Computer Science, 116:213–225, 2005.

[17] R. Reiter. A theory of diagnosis from first principles.Artificial
Intelligence, 32(1):57–95, 1987.

[18] Werner Schutz. The Testability of Distributed Real-Time Systems.
Kluwer Academic Publishers, Norwell, MA, USA, 1993.

[19] Werner Schutz. Fundamental Issues in Testing Distributed Real-Time
Systems.Real-Time Systems, 7(2):129–157, 1994.

[20] Henrik Thane and Hans Hansson. Towards Systematic Testing of Dis-
tributed Real-Time Systems. InProceedings of the 20th IEEE Real-
Time Systems Symposium, pages 360–369, Washington, DC, USA,
1999. IEEE Computer Society.

[21] Henrik Thane, Daniel Sundmark, Joel Huselius, and Anders Petters-
son. Replay Debugging of Real-Time Systems Using Time Machines.
In Proceedings of the 17th International Symposium on Parallel and
Distributed Processing, page 8, Washington, DC, USA, 2003. IEEE
Computer Society.

[22] Frank Tip. A Survey of Program Slicing Techniques. Technical report,
IBM, Amsterdam, The Netherlands, The Netherlands, 1994.

[23] Yves Le Traon, Farid Ouabdesselam, and Chantal Robach. Analyzing
Testability on Data Flow Designs. InProceedings of the 11th Inter-
national Symposium on Software Reliability Engineering, page 162,
Washington, DC, USA, 2000. IEEE Computer Society.

[24] Yves Le Traon and Chantal Robach. Testability Measurements for
Data Flow Designs. InProceedings of the 4th International Sym-
posium on Software Metrics, page 91, Washington, DC, USA, 1997.
IEEE Computer Society.

[25] Jeffrey M. Voas and Keith W. Miller. Semantic Metrics forSoftware
Testability.Journal of Systems and Software, 20(3):207–216, 1993.

