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Abstract
In this paper, we present a notion alfservabilityand controlla-

1. Introduction
Software testing and debugging invohasservingandcontrolling

bility in the context of software testing and debugging. Our view the software’s logical behaviour and resource consumption. Logical
of observability is based on the ability of developers, testers, and behaviour is normally defined in terms of the value of variables
debuggers to trace back a data dependency chain and observe thend the control flow of the program. Resource consumption is
value of a variable by starting from a set of variables that are nat- defined by both the resources used at each point in the execution
urally observable (e.g., input/output variables). Likewise, our view and the amount and type of resources used by each code block.
of controllability enables one to modify and control the value of a Thus, observability and controllability of the state of variables
variable through a data dependency chain by starting from a set ofof a software system are the two main requirements to make the
variables that can be modified (e.g., input variables). Consequently, software testable and debuggable.

the problem that we study in this paper is to identify the minimum Although there are different views towards observability [3, 8—
number of variables that have to be made observable/controllable10, 18-20, 25], in general, observability is the ability to test var-
in order for a tester or debugger to observe/control the value of an- ious features of a software and observe its outcome to check if
other set of variables of interest, given the source code. We showit conforms to the software’s specification. Different views stand
that our problem is an instance of the well-knoafstract diag- for controllability as well [3, 8-10, 18-20, 25]. Roughly speaking,
nosis problemwhere the objective is to find the minimum number controllability is the ability to reproduce a certain execution be-
of faulty components in a digital circuit, given the system descrip- haviour of the software. The traditional methods for achieving ob-
tion and value of input/output variables. We show that our problem servability and controllability incorporate techniques which tamper
is NP-complete even if the length of data dependencies is at mostwith the natural execution of the program. Examples include using
2. In order to cope with the inevitable exponential complexity, we break points, interactive debugging, and adding additional output
propose a mapping from the general problem, where the length of statements. These methods are often unsuited (specially for embed-
data dependency chains is unknown a prioripteger linear pro- ded software), because they cause changes in the timing behaviour
gramming Our method is fully implemented in a tool chain for and resource consumption of the system. Hence, the observed out-
MISRA-C compliant source codes. Our experiments with several come of the software is produced by a mutated program which can
real-world applications show that in average, a significant number violate its correctness. The mutated program can cause problems
of debugging points can be reduced using our methods. This resultfor controllability as well. For instance, a previously seen execu-
is our motivation to apply our approach in debugging and instru- tion behaviour may be hard or impossible to reproduce. Thus, in
mentation of embedded software, where changes must be minimalthe context of software testing and debugging, it is highly desir-
as they can perturb the timing constraints and resource consump-able to achieve software observability and controllability with the
tion. Another interesting application of our results is in data logging least changes in the software’s behaviour. In particular, in embed-

of non-terminating embedded systems, where axillary data storageded software, this property is indeed crucial.

devices are slow and have limited size.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging —Debugging aids, Dumps, Tracing

General Terms  Algorithms, Performance, Theory
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This goal becomes even more challenging as the systems grow
in complexity, since the set of features to cover during the testing
and debugging phase increases as well. This can result in requir-
ing more points of observation and control (i.@strumentatioh
which increases the number of changes made to the program. For
instance, testers will require mofprintf” statements to extract
data regarding a specific feature which causes more side effects in
the timing behaviour.

With this motivation, we treat the aforementioned problem by
first formalizing the notions of observability and controllability as
follows. Our view of observability is based on the ability of de-
velopers, testers, and debuggers to trace back a sequence of data
dependencies and observe the value of a variable by starting from a
set of variables that are naturally observable (e.g., input/output vari-
ables) or made observable. Controllability is the other side of the



coin. Our view of controllability enables one to modify and control reducing the execution time of instrumented code. Indeed, we show
the value of a variable through a sequence of data dependencieghat the overall execution time of the code instrumented optimally
by starting from a set of variables that can be modified (e.g., in- is significantly better than the corresponding time with the original
put variables). Thus, the problem that we study in this paper is as instrumentation.

follows:

Given the source code of a program, our objective is to iden-
tify the minimum number of variables that have to be made
observable/controllable in order for a tester or debugger to

observe/control the value of another set of variables of in-
terest.

Organization. The rest of the paper is organized as follows. After
discussing related work in Section 2, in Section 3, we present
our notions of observability and controllability and discuss their
relevance to software testing and debugging. Section 4 is dedicated
to formally present our problem and its complexity analysis. Then,
in Section 5, we present a transformation from our problem to ILP.
Our implementation method and tool chain are described in Section
6. We analyze the results of our experiments in Section 7. Finally,
we make concluding remarks and discuss future work in Section 8.

We show that our problem is an instance of the well-knalvh
stract diagnosis problerfl7]. Roughly speaking, in this problem,
given are the description of a digital circuit, the value of input/out-
put lines, a set of components, and a predicate describing what
components can potentially work abnormally. Now, if the given
input/output relation does not conform with the system descrip-
tion, the goal of the problem is to find the minimum number of
faulty components that cause the inconsistency. The general diag-z- Related Work
nosis problem is undecidable, as it is as hard as solving first-order As mentioned in the introduction our formulation of the problem
formulae. We formulate our observability/controllability problem is an instance of the abstract diagnosis theory [17]. The diagnosis
as a sub-problem of the diagnosis problem. In our formulation, our theory has been extensively studied in many contexts. In [7], Fijany
objective is not to find which components violate the conformance and Vatan propose two methods for solving the diagnosis problem.
of input/output relation with the system description, but to find the In particular, they present transformations from a sub-problem of
minimum number of components that can be used to observe/con-the diagnosis problem to the integer linear programming and sat-
trol the execution of software for testing and debugging. isfiability problems. Our transformation to integer programming in

Following our instantiation of the abstract diagnosis problem, this paper is more general, as we consider data dependency chains
first, we show that our optimization problem is NP-complete even of arhitrary length. Moreover, in [7], the authors do not present ex-
if we assume that the length of data dependency chains is at mosterimental results and analysis. On the other hand, our method is
2. In order to cope with the inevitable exponential complexity, we fully implemented in a tool chain and we present a rigorous analy-
propose a mapping from the general problem, where the length of sis of applying the theory on real-world applications.
data dependency chains in unknown a prioiinteger linear pro- On the same line of research, Abreu and van Gemund [1] pro-
gramming(ILP). Although ILP is itself an NP-complete problem, pose an approximation algorithm to solve the minimhitting set
there exist numerous methods and tools that can solve integer proproblem This problem is in spirit very close to an instance of the
grams with thousands of variables and constraints. diagnosis problem. The main difference between our work and [1]

Our approach is fully implemented in a tool chain comprising s that we consider data dependencies of arbitrary length. Thus, our
the following three phases: problem is equivalent to a generastechitting set problem. More-
over, we transform our problem to ILP whereas in [1], the authors
directly solve the hitting set problem.

Ball and Larus [2] propose algorithms for monitoring code to
Transformation to ILP: Then, we transform the extracted data profile andtrace programs: profiling counts the number of times
dependencies and the respective optimization problem into aneach basic block in a program executes. Instruction tracing records
integer linear program. This phase also involves translation to the sequence of basic blocks traversed in a program execution.

1. Extracting data:We first extract the data dependency chains of
the variables of interest for diagnosing from the source code.

2.

the input language of our ILP solver.

. Solving the optimization problenwe solve the corresponding
ILP problem of finding the minimum set of variables required

Their algorithms take the control-flow graph of a given program
as input and finds optimal instrumentation points for tracing and
profiling. On the contrary, in our work, we directly deal with source
code and actual variables. Ball and Larus also mention that vertex

to diagnose our variables of interest. o T - h
9 profiling (which is closer to our work) is a hard problem and their

Using our tool chain, we report the result of experiments with focus is on edge profiling.
several real-world applications. These applications range over Fujiwara[10] defines observability and controllability for hard-
graph theoretic problems, encryption algorithms, arithmetic cal- ware. He considers observability as the propagation of the value
culations, and graphical format encoding. Our experiments target of all the signal lines to output lines. Respectively, controllability
two settings: (1) diagnosinall variables involved in a slice of the  is enforcing a specific value onto a signal line. He notes that if
source code, and (2) diagnosindhand-selectedet of variables observability and controllability are unsatisfied, additional outputs
typically used by a developer for debugging. Our experiments show and inputs must be added to the circuit. This addition is tightly cou-
that while for the former our method reduces the number of vari- pled with the position of the line and type of circuit. Moreover, this
ables to be made directly diagnosable significantly, for the latter the work does not address how to choose the best point to add pins. In
percentage of reduction directly depends upon the structure of theaddition, each time the pin counts change, one needs to re-evaluate
source code and the choice of variables of interest. Since solvingthe observability/controllability of the lines.
complex integer programs is time-consuming, our experimental ob- ~ Freedman [8], Voas, and Miller [25] view observability and con-
servations motivate the idea of developing a simple metric in order trollability from the perspective of black box testing. They consider
to intelligently predict whether applying the optimization is likely — a function to be observable, if all the internal state information af-
to be worthwhile. To this end, we propose one such simple met- fecting the output are accessible as input or output during debug-
ric in this paper and discuss its correlation with our optimization ging and testing. They present the following metric to evaluate ob-

s A F : Fan ity e __ Cardinality of input
problem. Another beneficial consequence of our optimization is in servability: DDR = Cardinality of output where DDR should be close



to 1 to have observability. Their method affects the temporal be- Our instance of the diagnosis problem in this paper is inspired
haviour of the software and may expose sensitive information. by Fujiwara’s [10] definition to addressbservabilityandcontrol-

In the context of distributed systems, the approach in [20, 21] lability®. Our view is specifically suitable for sequential embedded
defines a system behaviour to be observable, only if it can be software where an external entity intends to diagnose the value of
uniquely defined by a set of parameters/conditions. The goal in this a variable directly or indirectly using the value of a set of other
work is using deterministic instrumentation with minimal overhead variables according to the system descript. We instantiate
to achieve observability. The shortcoming of this work is that the the abstract diagnosis problem as follows. We interpret th€'set
authors do not present a technique to find the instrumentation of components as a set of variables. In our contéxt,is a set of
with minimal overhead. In addition, the instrumentation should instructions in some programming language. In order to diagnose
remain in the deployed software to avoid probe effects. Thus, Thanethe value of a variable using the value of another variabté, v
considers a behaviour controllable with respect to a set of variablesmust depend on’. In other words, there must exist a functidh
only when the set is controllable at all times. The author also that connects the value ofwith the value ofv’; i.e.,v = F(v').
proposes a real-time kernel to achieve offline controllability. Thus, we consider the following types of data dependency:

Schutz [18, 19] addresses observability and controllability for
time triggered (TT) and event triggered (ET) systems. The author's ) . .
method however, does not avoid instrumentation in the design ~ ©On the value ob’ iff w :_E(v’,V),vyhereF is an arbitrary
phase and, hence, uses dedicated hardware to prevent pratie.effe ~ fUnction andv is the remaining set of s arguments.

Schutz argues that TT systems offer alternative flexibility compared 2. Indirect Dependencywe say that indirectly depends on”’
to ET systems when handling probe effects caused by enforced iff there exists a variable’, such that (1) directly depends
observability. Respectively, Schutz shows that unlike ET systems,  onv’, and (2)v’ directly depends on”.

TT systems have less probe effects in controllability since there is
no missing information concerning their behaviour and, hence, an
additional approach is needed to collect information.

The approach proposed in [6, 15, 16, 23, 24] is in spirit similar
to our approach, but in a different setting. The author analyzes the ~ (11) & := x + z + y;
data flow design of a system and define observability and control- (12) if g > 100 then

1. Direct DependencyWe say that the value efdirectly depends

Data dependencies can be easily extracted fsémFor exam-
ple, consider the following program as an instancé bf

lability based on the amount of information lost from the input to (13) o c:=d/e;
the output of the system. Their calculations are based on bit-level 833 se £ x
c := g;

information theory. This method estimates controllability of a flow )
based on the bits available at the inputs of the module from the (16) m :=x % y;

inputs of the software via the flow. Respectively, they estimate ob- (A7) b :=d - £;

servability as the bits available at the outputs of the software from (18) a :=b + c;

the outputs of the module via the flow. We believe a bit-level in- . . . .
formation theoretic approach is unsuited for analysis of real-world 't IS Straightforward to see that the value of variaklelirectly

large applications, because (1) the proposed technique ignores th&€Pends on the value dfandc and indirectly oni andg. Observe
type of operations constructing the data flow while it has an ef- that the notion of dependency is not necessarily interpreted by left

fect on observing and controlling data, (2) lost bits or corrupted !0 rght assignments in a program. For example, in the above code,

propagated bits throughout a flow may lead us to inconsistent ob- tne value of variable directly depehnds oln thd; valueh)gmdf. ?hn
servations, and (3) although the amount of information propagated € contrary, one cannot extract the valuecdfomm andy, as the

throughout a flow is of major importance, the bit count is an im- nverse of the modulo operator is not a function. .
proper factor of measurement. In our framework, we interpret A B(c) as variablec is imme-

diately diagnosabléi.e., c can be directly observed or controlled).
For instance, in programming languages, the value of constants,
3. Observability and Controllability asa Iiterdals, elaln((jj input ar%tjmer;]ts are( k)nown a prri]ori and, E;ence, are im-
; ; mediately diagnosable. Thud,B(c) means that variable is not
Diagnosis Problem immediately diagnosable, but it may be diagnosed through other
The diagnosis problenfl7] was first introduced in the context of  variables. To formalize this concept, we define what it means for a
automatic identification of faulty components of logic circuits in  variable to bediagnosablebased on the notion of data dependen-
a highly abstract fashion. Intuitively, the diagnosis problem is as cies. Roughly speaking, a variable is diagnosable if its value can be
follows: Given a system description and a reading of its input/out- traced back to a set of immediately diagnosable variables.
put lines, which may conflict with the description, determine the ) . )
minimum number of (faulty) components of the system that cause DEFINITION 1 (Diagnosable VariableLet V' be a set of imme-
the conflict between the description and the reading of input/out- diately diagnosable variables. We say that a variable such
put. In other words, the input/output relation does not conform with that AB(v1), is diagnosable iff there exists an acyclic se-
the system description due to existence of faulty components. For-duences of data dependenciest = (v, d1,v2), (v2,d2, vs),
mally, let SD be a system description ard be the inputioutput -+ (Un—1,dn—1,n), (Un, dn, vny1) SUCh thato, 1 € V.
reading of the system, both in terms of a finite set of first-order for- |, the remainder of this work, we refer to any dependency sequence
mulae. LetC' be a set of components represented by a set of con- gnapjing variable diagnosis asdiagnosis chainFinally, in our
stants. Finally, let-AB(c) denote the fact that component C instance of the diagnosis problem, we assume that the prediate
is behaving correctly. A diagnosis f66D, C, 10) is a minimal set always holds.
D < C such that: As mentioned earlier, our instance of program diagnosis is cus-
tomized to address variabt@bservabilityand controllability. In-
SD N 10 A Neep AB(e) A Neee—p ~AB(c) tuitively, a variable is controllable if its value can be defined or

is satisfiable. Obviously, this satisfiability question is undecidable, ! Throughoutthe paper, when we refer to ‘diagnosis’, we mebseovabil-
as itis as hard as determining satisfiability of a first-order formula. ity/controllability’.



L egend a b c d

QO Variable vertex
Legend

@ Context vertex

(O Variable vertex

@ Context vertex

X y

Figure 2. A diagnosis graph.

e (Arcs)A = {(u,c) |lu € U A c € C A variablev is affected
within contextc} U {(c,u) |u € U A ¢ € C A variablev
affects context}.

OBSERVATION 1. Diagnosis graphs are acyclic and bipartite.

The diagnosis graph of the above program with respect to vari-
ablea is shown in Figure 1. Although our construction of diagnosis
graph is with respect to one variable, it is trivial to merge several
Figure 1. A simple diagnosis graph. diagnosis graphs.

4, Statement of Problem and Its Complexity

modified (i.e., controlled) by an external entity through a diagnosis Analysis

immediately diagnosable variablethen it can potentially modify o determine several properties of programs in the context of test-
entity can be the developer, tester, debugger, or the environment inanoygh information to efficiently observe the value of a set of vari-
which the program is running. Likewise, a variable is observable if aples of interest. Another application is in creating data logs. For

its value can be read through a diagnosis chain. instance, since it is inefficient to store the valueabfvariables of
. ) ) ) a non-terminating program (e.g., in embedded applications), it is
DEFINITION 2 (Controlability). A variable v is controllable iff desirable to store the value of a subset of variables (ideally mini-

v is diagnosable and an external entity can modify the value of  mum) and somehow determine the value of other variables using
by using an immediately controllable variable and a diagnosis  the logged variables. Such a property is highly valuable in em-

chain that ends with'. bedded systems as they do not have the luxury of large external
- . . ) mas storage devices. Thus, the problem boils down to the follow-
DEFINITION 3 (Observability).A variablev is observable iff v ing question:
is diagnosable and an external entity can read the value b¥
using an immediately observable variableand a diagnosis chain Given a diagnosis graph and a set of immediately diagnos-
that ends with'. able variables, determine whether a variable is diagnos-
able.

In order to analyze observability and controllability in a more
systematic fashion, we introduce the notion of diagnosis graphs. A Another side of the coin is to identify a set of variables that can
diagnosis graphs a data structure that encodes data dependenciesmake another set of variables diagnosable. To better understand
for a given variable. For instance, with respect to variabie the the problem, consider the diagnosis graph in Figure 1. One can
above program, all statements hatare of interest. In other words,  observe the value of by making, for instance, variableg, 4,
theprogram slicd4] of the above program with respect to variable £} immediately observable.
a is the setL, = {11, 12, 13, 14, 15, 17, 18}. A special case A valid question in this context is that if a set of variables is to
of constructing slices is for conditional statements (e.g., if-then- be diagnosed, why not make all of them immediately diagnosable.
else and case analysis). For example, in the above program, sincéVhile this is certainly a solution, it may not be efficient or feasible.
we cannot anticipate which branch will be executed at runtime, we Consider again the graph in Figure 1. Let us imagine that we are
have to consider both branches to compute dependencies. Thus, forestricted by the fact that variablds, b, ¢, g} cannot be made

variablec, we take both statemeni8 and15 into account; i.e., immediately observable (e.qg., for security reasons). Now, in order

L. = {12, 13,14, 15}. to diagnose variable, two candidates aré¢d, e, £} and {4, f,
Formally, letv be a variableL,, be a program slice with respect  x, y, z}. Obviously, for the purpose of, for instance, logging, the

to v, and Vars be the set of all variables involved if,. We reasonable choice is the det, e, £ }.

construct the diagnosis directed gragtas follows. Figure 2 shows another example where choice of variables for

diagnosis matters. For instance, in order to make, andc di-
e (Vertices)V = C U U, whereC = {¢ |l € L,} and agnosable, it suffices to makeandy immediately diagnosable.

U = {u, | v € Vars}. We call the seC context verticegi.e., Thus, it is desirable to identify the minimum number of immedi-
one vertex for each instruction ih,) and the seUU variable ately diagnosable variables to make a set of variables of interest

vertices(one vertex for each variable involved In,). diagnosable.
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Figure3. An example of mapping HSP to DGP.

It is well-known in the literature that the diagnosis problem is
a typical covering problem [1, 7, 17]. In fact, many instances of
the diagnosis problem is in spirit close to thigting set problem
[12] (a generalization of the vertex cover problem). We now show

|V < K,asK = N in our mapping andS’| < N. Now,
since every set € S is covered by at least one elementdh
it implies thatl”” makes all variables ifv diagnosable.

(<) Let the answer to DGP be the st C V. Our claim
is that in the instance of HSP, the s¢t= {z | v, € V'} is
the answer to HSP (i.e., the hitting set). To this end, first, notice
that|S’| = |V’| and, hence|S’| < N, asN = K in our
mapping andV’| < K. Now, since every variable, € V
is made diagnosable by at least one variable verteX'init
implies elements of’ hit all sets inS. O

Note that our result in Theorem 1 is for diagnosis graphs of
diameter 2. If the diameter of a diagnosis graph is unknown (i.e., the
depth of diagnosis chains), we conjecture that another exponential
blow-up is involved in solving the problem. In fact, our problem
will be similar to anestedversion of the hitting set problem and it
appears that the problem is not in NP.

5. Mappingto Integer Linear Programming

that this is indeed the case with respect to our formulation. We also In order to cope with the worst-case exponential complexity of

show that a simplified version of our problem is also NP-complete.

Instance (DGP). A diagnosis grapld- of diameter 2, wheré€' and
U are the set of context and variable vertices respectivelyand
is the set of arcs af7, asefl” C U, and a positive integek’ < |U|.

Question. Does there exist a sét’ C U, such thafV'| < K
and all variables in” are diagnosable if all variables W’ are
immediately diagnosable.

We now show that the above decision problem is NP-complete
using a reduction from thaitting set problem(HSP) [12]. This
problem is as follows: Given a collectiafl of subsets of a finite
setS and positive integeN < | S|, is there a subsef’ C S with
|S’] < K such thatS’ contains at least one element from each
subset inS?

THEOREM 1. DGP is NP-complete.

Proof. Since showing membership to NP is straightforward, we
only show that the problem is NP-hard. We map the hitting set
problem to our problem as follows. L&t S, andN be an instance
of HSP. We map this instance to an instance of DGP as follows:

e (Variable vertices) For each set € S, we add a variable vertex
v to U. In addition, for each elementc S, we add a variable
vertexuv, to U.

¢ (Context vertices) For each element € S, we add a context
vertexc, to C.

e (Arcs) For each element € S thatisin sets € S, we add arc
(vs, cz). And, for eachz € S, we add ardc., vz ).

eWeletV = {v, | s € S} (i.e., the set of variables to be
diagnosed) an& = N.

Observe that the diameter of the graph constructed by our map-

ping is 2. To illustrate our mapping, consider the example, where
S = {a,b,c,d} andS = {{a, b}, {b,c}, {a,d}, {b,d},{b}}. The
result of our mapping is shown in Figure 3.

We now show that the answer to HSP is affirmative if and only
if the answer to DGP is also affirmative:

e (=) Let the answer to HSP be the sgt C S. Our claim
is that in the instance of DGP, the sét = {v, | z € S’}
is the answer to DGP (i.e., the set of immediately diagnosable
variables). To this end, first, notice that’| = |.S’| and, hence,

our instance of the diagnosis problem, in this section, we map
our problem tolnteger Linear ProgrammingILP). ILP is a well-
studied optimization problem and there exist numerous efficient
techniques for it. The problem is of the form:

Minimize c¢.x

Subjectto Ax>b

whereA (a rationalm x n matrix), ¢ (a rational-vector), ant (a
rationalm-vector) are given, anck is ann-vector of integers to be
determined. In other words, we try to find the minimum of a linear
function over a feasible set defined by a finite number of linear
constraints. It can be shown that a problem with linear equalities
or <= linear inequalities can always be put in the above form,
implying that this formulation is more general than it might look.
ILP is known to be NP-complete, but as mentioned earlier there
exist many efficient techniques and tools that solve ILP.

We now describe how we map our instance of the diagnosis
problem described in Sections 3 and 4 to ILP. Although in our im-
plementation, we start from the source code, here for the sake of
clarity, we start our mapping from a given diagnosis graph.&et
be a diagnosis graph with the ggtof context vertices, the séf
of variable vertices, and the set of arcs. Our goal is to make
the setV” of vertices diagnosable and we are looking for the min-
imum number of variable vertices that must become immediately
diagnosable. In order to make variablesiofliagnosable, one has
to consider all diagnosis chains that start from the variablds.in
Now, letv be a variable vertex iiv whose outgoing arcs reach con-
text vertices{c; - - - ¢, }. Obviously,v can be diagnosed through
any of the context vertices, say, wherel < i < n. Thus, in
our mapping, we represent each context vect@ith a binary in-
teger variabler,; i.e., the value ofc. is 1 if and only if v can be
diagnosed through. Otherwise,x. is equal to0. Thus, for each
variablev € V whose reachable context vertices &g - - - ¢, },
we add the following constraint to our integer program:

n
Z Te; > 1
i=1

ze;, € {0,1} 1)

Intuitively, this constraint means that variahlés diagnosed by at
least one of the context vertices that it can reach in the diagnosis
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Figure 4. Data flow in the tool chain.

graph. For example, for Figure 3, we have the following constraints
according to inequality 1:

Tey + Tey,

1,
Teg + Tey 1,

2
2

Now, if a variable vertex is diagnosed through a context vertex

¢, then all variable vertice$v; - - - v, } that are reachable from

by one step must be diagnosable as well (following our notion of
diagnosis chains). In order to encode this in our integer program,
for each context vertex, in addition to integer variable., we

add another integer variahté, whose value is the negation of.
Thus, for each context vertex, we add the following constraint to
our integer program:

T4, =1 2)
We now encode the fact that if a context verteis chosen in the
solution to the integer program (i.e:, = 1), then all its variable
vertices must be diagnosable. To this end, if context vertéx
associated with variable verticés, - - - v, }, we add two integer
variablez,, andx;i, forall1 < ¢ < m, to our integer program.
Moreover, we add the following constraints:

T+ Ty, > 1 ®3)
rp —xy, > —1 (4)
To;, + 37;1 =1 (5)

Zv; € {0, 1}
Intuitively, Constraint 3 means that if a context vertex is not chosen

by the solution, then its associated variable vertices may or may not
appear in the solution. And, constraint 4 ensures that Constraint

3 is consistent with that fact that,, is the negation ofz,,. For
example, we have the following constraints for the graph in Figure
3 for context vertex,:

/ / /
Te, +To, = 1, xo, — 7y, = —1

minimum number of variables that must become immediately diag-
nosable. Hence, our integer program optimization is the following:

k
Minimize Z T, (6)
i=1
For example, in our example in Section 3, the optimization criterion
is to minimizexq + e + x5 + 2o + xy + 2.

6. Implementation and Tool Chain

In this section, we present a detailed representation of our tool
chain. Our tool chain consists of three main phases as depicted in
Figure 4:

1. Extracting data:We first extract the data dependency chains of
the variables of interest for diagnosis from the source code.

2. Transformation to ILP: Next, we transform the extracted data
dependencies and the respective optimization problem into an
integer linear program as described in Section 5. This phase also

involves translation to the input language of our ILP solver.

. Solving the optimization problenwe solve the corresponding
ILP for finding the minimum set of variables required to be-
come immediately diagnosable.

In the following, we describe each phase in detail.

6.1 Extracting data

As mentioned earlier, one input to our problem is the set of data
dependency chains with respect to our variables of interest. Thus,
we need to extract all the statements in the source code that af-
fect the value of the variables of interest. This extraction is known
as program slicing[4, 22]. We apply the technique in [5] to ex-
tract program slices from the single-static assignment (SSA) of the
source code, as it requires less computation resources.

In terms of the corresponding tool, we leverage LLVM [13]
to extract program slices. LLVM is a collection of modular and
reusable compiler and tool chain technologies. We choose LLVM
among other options such as GCC, because of its ability to convert

We keep repeating this procedure for each new reachable levelprograms into SSA. In addition, LLVM is well-established and
of context vertices of the diagnosis graph and generate constraintswell-documented with a rich API, which simplifies the process of

3-5 until we reach the vertices of the graph whose outdegree is

Such vertices do exist in a diagnosis graph according to Observa-

tion 1. Once we reach a vertex whose outdegrék ¥8e generate

implementing new analysis and transformation passes.
Consequently, we implement a nelata dependency passer
the LLVM framework (see Phase 1 in Figure 4). First, theta

no constraints. This is because such vertices must be considered adependency pasaccepts the source code and the set of desired

both a context vertex and a variable vertex (i.e., the variable can
be made diagnosable only if it is made immediately diagnosable).
Thus, the value of their corresponding integer variable is either
or 1 independent of other variables.

Finally, we specify our objective function. L&t” = {v; - - - vy, }
be the set of variable vertices that we allow to become immedi-
ately diagnosable. Obviously” can be equal t@/, the set of all
variable vertices. As mentioned in Section 4, our goal is to find the

variables for diagnosis as input. We note that the source code is
customized to be MISRA-C [14] compliant while only having an-
alyzable use of pointers. Secondly, it converts all the memory vari-
ables into registers, since LLVM only considers register variables
in its SSA conversion. Then, th#ata dependency passcorpo-
rates the dominator tree passes anddéeuseanduse-defAPI’'s

of LLVM to extract the data dependency chains. Finallgta de-
pendency passlices the program into its SSA form, so that only



the SSA statements affecting the values of desired variables are ex- 79

tracted into an output file. o ' allvariables == ' T T
g selected variables sossm o
$ 60 K
6.2 Transformation into Integer Linear Programming S = KK
. . ol I e
Once we have the program slices as LLVM output, we perform g 50 :.: K KA
another phase of processing to transform the slices into an integer § o KK 03 :01 :0: :g
program. To this end, we develop a transformer (see Phase 2 in £ 4o | ~ KR K&K o K .
. . s K KKK 5]
Figure 4), calledILP Generator This generator takes program E X] K K b :91 %
slices as input and converts them to the input format of the ILP g 30 :01 K ):4 & B
solver. The transformation follows our method described in Section § ::: gq =
5. However, in our implementation, we do not start from a diagnosis 5 20 [3 :01 B
graph. In fact, our transformation starts directly from program 2 :,: =
slices.

First, ILP Parser takes program slices and converts each SSA
statement to a unique variable set. It considers the list of all sets
as the vector of variables in the ILP model. Then, it analyzes the
dependency of each set with the other sets extracted from program Case Study
slices. In other words, for the variables of a set to be diagnosed, the_; re5. R Its of riments on effectiven f optimization
parser finds all the sets whose variables must become diagnosablé 9ur€ > Results of experiments on effectiveness of optimizatio
as well. This is similar to the role of context vertices in diagnosis of instrumentation points.
graphs in Section 5. The completion of this phase results in iden-
tifying the set of all constraints and variables of the ILP model.
Then, the ILP generator computes the objective function based on
the variables used by the statements in program slices of the LLVM
output (see also objective function 6 in Section 5). Finally, ILP gen- ¢ pivcount andgsort from automative,

erator puts the ILP model into an output file and feeds it into the
ILP solver. e JPEG andTIFF from consumer,

of programs: automative, consumer, office, network, security, an
telecomm. We randomly choose the following programs for our
experiments:

) o e dijkstra from network,
6.3 Solving the Optimization Problem . i
o . o e rsynth andstringsearch from office,
This is the last phase of our tool chain (see Phase 3 in Figure ) .
e blowfish andsha from security, and

4). Our choice of ILP solver is the binary integer programming
toolbox of MATLAB. As described in Section 5, all variablesinour e CRC32 andFFT from telecomm.
integer program are binary and MATLAB's library suffices for our

purpose. In our tool chain, the ILP input is in MATLAB's format. Figure 5 shows the percentage of reduction in the number of in-
MATLAB's solution to the given ILP problem is the set of variables ~ Strumentation points for each case study under two scenarios. Be-
that need to be immediately diagnosable. fore we elaborate on the results, we recall that our goal in this paper

is to optimize a given instrumentation scheme. In other words, our
. technique does not start with a null set of instrumentation points.
7. Experimental Results It rather optimizes a user-specified mandatory instrumentation re-
In this section, we describe the results of our experiment on using quirement. Thus, if the given instrumentation scheme is not effi-
our tool chain in order to evaluate our method based on the factor cient and already imposes a significant overhead, our method can
of instrumentation point reductiorBy instrumentation point, we  reduce this overhead based on the program structure. In this con-
mean instructions that are added to the source code in order totext, absolute values of results in this section (e.g., execution time
observe or control the value of a set of desired variables. Examplesof the uninstrumented programs) are not relevant to the idea of the

of such instrumentation include logging instructions suchprasf paper. What is indeed relevant is the relative optimization.
andfprintf. ) o )

In Subsection 7.1, we analyze the effectiveness of our method 7-1.1 Scenario A: Optimization with Respect to a Subset of
on a set of real-world applications by studying the reduction in in- Variables

strumentation points. We present evidence in Subsection 7.2 that in|n the first scenario (marked by ‘selected variables’ in Figure 5), in

order to handle our case studies, we have not reached the boundeach MiBench program, we use our intuition to set the instrumen-
aries of capabilities of ILP solvers. Then, in Subsection 7.3, we tation points (i.e., desired variables for diagnosis). Similar to any

look into the effect of optimizing instrumentation points on exe- debugger, we pin down all the variables we would typically suspect
cution time of instrumented code. Finally, in Subsection 7.4, we as faulty when the output of the program is erroneous. Then, at
present a metric for diagnosis graphs that can assist in predictingeach instruction point defining each of these suspicious variables,
the effectiveness of our optimization method on a source code for we insert an instrumentation instruction which logs the value of

a given set of desired variables to be diagnosed. the variable. To clarify our procedure, consider the following code

) o from theqsortlarge program in MiBench:
7.1 Effectiveness of Our Optimization Method

To conduct our experiments, we used MiBench [11] as the set of
. . . 1struct my3DVertexStruct{

programs to run our method. MiBench is a free, commercially, ~ int x, y, z;

representative embedded benchmark suite. We choose MiBench double distance;

because of its high diversity in programs and benchmarks. The }:

e D . ; :
programs differ in size, property, and behaviour and provide US int compare Gonst void =eleml, const void selem2)
with a wide range of source codes that we can use to study the

effectiveness of our method. MiBench has six main categoriess double distancel, distance2;
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distancel
(*((struct my3DVertexStruct x)eleml1)). distance;
distance2

(x((struct my3DVertexStruct x)elem2)). distance;

return (distancel> distance2) ? 1
((distancel distance2) ? 0 =1);
}

int
main(int argc, char xargv[]) {
struct my3DVertexStruct array [MAXARRAY];

FILE xfp;
int i,count=0;
int x, y, z;

if (arge<2) {

fprintf(stderr ,"Usage.qgsort.large<file >\n");

exit(—1);
else {
fp = fopen(argv[1l],"r");

while((fscanf(fp, "%d”, &x) 1) && (fscanf(fp, ™%d”
, &) == 1) && (fscanf(fp, "%d", &) == 1)

& (count < MAXARRAY)) {

array[count
array[count
array[count
array[count

X5

Y

Z;

tance = sqrt(pow(x, 2) +
pow(y, 2) + pow(z,

1.x =
1.y =
]l.z =
].dis
2));

count++;

}

gsort(array ,countsizeof (struct my3DVertexStruct)
,compare);

for (i=0;i<count;i++)
printf ("%d. %d.%d.\n", arrayl[i].x,
array[i].y, arrayl[il].z);
return O;

}

Listing 1. gsortlarge

In this code, the main variables taking part in the outputare:
Y, z, distancedistanceldistance2fp, argc, andmy3DVertexStruct
Thus, we add instrumentation points, at lines 37, 38, 39, 40, 10, 12,

32, 27, and 45 to log each variable respectively. For instance, we do

not instrumentount since it only controls access to the array ele-
ments and its value is not considered in the outpujswrtlarge.
Likewise, we use the same procedure in instrumenting our other
case studies. As can be seen in Figurgsbrt shows an improve-
ment of 11.11%. Our experiments show that the number of instru-
mentation points dropped from 9 to 8. The deleted instrumentation
point was on line 40 for loggindistance This result is quite ob-
vious, sincedistancehas a data dependency withy, andz Since

X, ¥, andz are log they become immediately diagnosable, creat-
ing a resolvable data dependency wdtktance This results irdis-
tancebecoming observable as well, eliminating the need for it to
be logged.

On the contrary, we see considerable improvement in the reduc-
tion of instrumentation points IBPEG, TIFF, andFFT. The case
studies show reduction of 42%, 41%, and 40.27% in instrumenta-
tion points, respectively. For instance, JREG, our optimization
reduces instrumentation points to an average of 10 in each C file
and achieves a 42% reduction in total. LikewisefFFiT, the orig-
inal 72 instrumentation points are dropped to 40, gaining 40.27%
improvement.

The aforementioned results on percentage of reduction of in-
strumentation clearly shows the effectiveness of our method. For

instance, if our method is applied to a reactive embedded system
where there exists only a limited auxiliary storage for logging pur-
poses, 40% reduction in the size of the data log can be significantly
beneficial.

7.1.2 Scenario B: Optimization with Respect to all Variables

Our second scenario (marked by ‘all variables’ in Figure 5) is
based on instrumenting all the variables in the program slice of the
output variables. For instance, considerésgrt, we loggedcount

as well, since its value takes part in creating the output and, hence,
it appears in the program slice. As can be seen, in this scenario,
we achieve even more reduction. For instance, we achieve a 60%
reduction insha when logging all variables, while we achieved
27.27% reduction by choosing only a subset of variables based on
our debugging intuition.

On average, our method achieves a 30.5% reduction in instru-
mentation points for the MiBench programs studied in this section.
Hence, as argued earlier, if we can reduce instrumentation points
of long-running programs close to 30%, it is worthwhile optimiz-
ing programs that create large data logs and require great amount
of costly resources, such as the black box recorders in aircrafts. On
the other hand, by reducing the instrumentation points in embed-
ded systems by 30%, we reduce the debugger interference with the
original source code to reduce debugging side-affects in the natural
behaviour of the system.

As can be seen in Figure 5, the reduction in the instrumen-
tation points fluctuates from one program to another. Thus, one
needs to analyze the experimental results by relating each reduction
to the program’s structural and behavioural properties. To clarify
our analysis process, consider our examplgsoft. Based on our
study, we conclude that the small number of dependencies among
the variables in the source code is the reason behind small im-
provement in reduction of instrumentations. For instancg,and
z are not data dependent and, hence, none can become diagnos-
able through the other. On the contrary, consider progriss,

TIFF, andFFT. All three show considerable instrumentation re-
duction. In general, the results from our studies show that there are
three main factors causing the reduction:

1. Large number of common variables used and updated by differ-
ent functions in different C files,

2. Large number of functions that their input arguments are devel-
oped by a set of other functions in different C files, and

3. The size of the input source code.

To generalize the results from our analysis, we draw the follow-
ing set of factors as causes of fluctuations:

1. The data flow of the program which in turn defines the data

dependencies among variables in the source code.
2.

3. The size (i.e., number of variables and instructions) and struc-
ture (i.e., functions and modules) of the program.

The control flow of the program.

4. The set of variables of interest.

Although the proposed properties affect the effectiveness of our
method, at this point, we do not claim that the presented set is
closed. Extracting the complete set of factors and formalization of
the relation between the reduction of instrumentation points and the
above factors still need further research.

Based on the presented results, we are now able to explain the
reason of the increase of instrumentation reduction when consid-
ering the logging of all the variables in the program slice. When
we consider all the variables in a program slice, we are consider-
ing more variables in our analysis. Each variable introduces a new



set of data dependencies which we can use to our benefit. These i,
new data dependencies increase the possibility of diagnosing vari-
ables via other variables. In other words, the possibility that vari-
ables share common variables for their diagnosis increases. That is
why we see an increase in the reduction. Asdles, the signifi-

cant increase in the reduction shows that there is a large number of
variables which take part in diagnosis of the output that are sim- .
ply overseen by the debugger. This can be for various reasorfs, suc |
as the layout of the source code. Hence, when all the variables are
logged, all the variables affecting the output and their data depen-
dencies are included in the analysis, which in turn introduces new
data dependency chains, resulting in reducing the number of vari-
ables needed to become immediately diagnosable.
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7.2 Complexity of the Integer Program %{/ N %&O
When it comes to dealing with problems with exponential com- °
plexity, a valid concern is the scalability issue. Our experiments Case Study
show that in the context of our case studies, our method has not
yet reached the boundaries of capabilities of current ILP solvers.
For example, in case ofPEG, where the source code has 3105

lines of C code, the corresponding integer program has 220 binary

variables and 65968 constraints. The approximate time to solve the

Figure 6. Comparison of execution time between instrumented
and optimized instrumented code.

integer program on a MacBook Pro with 2.26 GHz Intel Core 2 70 , , , , , , | .
Duo and 2GM RAM is 5 minutes using MATLAB. Hence, scala- selecto variables Q
bility by itself is not an obstacle in optimizing instrumentation of 60 |- graph density % O 1
real-world applications in the size of our case studies. £ o O 5 F
$ s0t _
7.3 TheEffect of Instrumentation Optimization in Execution = o O
; o O *
Time Q 40 ® © T, K
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An important consequence of optimized instrumentation is better 2 | & L X a4 %
execution time of instrumented code. In order to validate this claim, % 3055 . L
we conduct three experiments to measure execution tinfd of £ A
dijkstra, andJPEG in two settings: 20 - B
A
1. Running the programs with instrumenting the hand-selected 10t L L L L L NS Sa—
. . - % QG % %% 3 s b % SN} &,
variables in the program slice, 2, ’?O"b /4% 0%5 Y ,)0% ’o% SR O N

2. Running the program with the reduced set of instrumentation Vo

points identified using our method.
Case Study

Our instrumentation involves a fast I/0O interaction: writing the
value of variables on the hard-disk. The results from this experi-
ment are presented in Figure 6. 1T, the result shows a 69.25%
decrease of execution time after our method reduces the number of
instrumentations. As for the other programs, our method decreases
the average execution time £EG by 31.5% andlijkstra by 34%. 7.4 A Graph Theoretic Metric for Characterizing
A counter intuitive observation in this context is JPEG. Since Effectiveness of Optimization
JPEG has the best optimization, one may conjecture that it must
show the highest decrease in execution time. However, this is not
the case. Our analysis shows that the number of instrumentation
points are not the only factor in the overhead caused by instrumen-
tation. It also depends upon the location of the instrumentation and
the type of variable being instrumented. For instance, deletion of an
instrumentation inside a loop causes more reduction in the execu-
tion time compared to deletion of an instrumentation point which
gets executed only once. Based on the above analysis, we conclud
that the set of instrumentations deleted frBRIT is smaller that of
JPEG, but they execute more often. Hence, their deletion causes a
larger decrease in the execution timd6fT as compared toPEG. Vi+1A]

As mentioned earlier, our instrumentation in this section in- Vi
volves writing the value of variables on a hard-disk. Given this As can be seen in Figure 7, in general with the increase in the
assumption and the drastic decrease in execution time when op-graph densityour method achieves more reduction in instrumen-
timized instrumented code is used, it follows that our method is tation points. To understand the relation between the behaviour of
expected to be highly beneficial in the context of embedded soft- the instrumentation reduction and graph density, we calculated the
ware where data logging involves interaction with typically slow correlation coefficienbf the instrumentation reduction of bod
1/0 such as E2PROMs. variablesandselected variableagainsgraph densityFor the case

Figure 7. Results of experiments with respect to diagnosis graph
density.

Although in Subsection 7.2, we argued that solving the ILP prob-
lem is not yet a stumbling block, it is highly desirable to have ac-
cess to simple metrics that can characterize the chances that apply-
ing our method is effective before solving the ILP problem. One
such metric can be characterized by density of diagnosis graph of
source code. Lgfl/| be the size of vertices arjdl| be the size of

arcs of a diagnosis graph. Obviously, the more arcs are distributed
among vertices in a diagnosis graph, the more data dependencies
@xist. Thus, our simple characterization metric, catiegiph den-
sityis the following:



of all variables the correlation coefficient i8.81 and for the case ~ where the size of axillary data storage for logging is limited and
of selected variablet is 0.51. Althoughgraph densitys a simple such devices are relatively slow.
metric, the obtained correlation coefficients is evidently high. In Finally, we presented a metric for predicting whether our
other words, whegraph densitys large in value, it shows thatthe  method for optimizing instrumentation of a program to achieve
number of arcs in the diagnosis graph of the corresponding programobservability and controllability accomplishes reasonable reduc-
slice is considerably more than the variable vertices. This implies tion. We showed that this metric has a high correlation with two
that variable vertices take part in multiple paths in the graph, orig- settings under which we conducted our experiments.
inating from the variables of interest and, hence, diagnosis of such  For future work, there are several open problems. One impor-
variables can possibly lead to the diagnoses of multiple variables. tant problem is extending our formulation to the case where we
We note that similar to any other predication metrics, our metric can handle pointer data structures. We are currently working on
may suffer from outliers as well. Consider the caseselfected developing prediction metrics better than the notion of graph den-
variablesfor sha andall variablesfor FFT. In the case ofFT, sity presented in Subsection 7.4. We believe that metrics that in-
graph density decreases while the reduction in the instrumentationcorporate network flow or compute vertex disjoint paths are better
points increases and as fera, graph density increases while the suited, as these concepts are based on path properties rather than
reduction in instrumentation points decreases. Our analysis showsvertex properties. Having access to intelligent metrics is also de-
that this abnormality is due to whether a variable that appears in sirable to develop transformations that can generate programs that
multiple diagnosis chains is in fact reachable from a variable of can be instrumented more efficiently; i.e., generating programs that
interest. In other words, when a variable takes part in multiple data preserve all observational properties but have better slices for our
dependency chains, it does not necessarily mean that this variableoptimization problem. Another interesting line of research is devel-
is diagnosable, making variables residing in the data chains becomeoping customized heuristics, approximation algorithms, and trans-
undiagnosable as well. Recall that the existence of a diagnosisformations to solve our optimization problem. One such transfor-
chain between two variables is only one of the properties that mation can be from our optimization problem to the satisfiability
needs to be satisfied to make one variable diagnosable via theproblem to employ SAT-solvers.
other. Another vital condition is the diagnosability of the data chain
dependency. Thus, if the data chain between the variables is not
diagnosable, converting one of the variables into a diagnosableg' Acknowledgements
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instrumentation points depends not only on the number of variables ORF RE03-045, ORE RE-04-036, and ISOP 1S09-06-037.
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