Snap-Stabilizing Committee Coordination

Borzoo Bonakdarpour®, Stéphane DevismesT, Franck Petitt
*Department of Electrical and Computer Engineering
University of Waterloo
200 University Avenue West
Waterloo, Ontario, N2L 3G1, Canada
Email: borzoo@ece.uwaterloo.ca
YVERIMAG UMR 5104
Grenoble 1, France
Email: stephane.devismes @imag.fr
1LIP6, UPMC Paris 6, France
Email: franck.petit@lip6.fr

Abstract—In this paper, we propose two snap-stabilizing
distributed algorithms for the committee coordination problem.
In this problem, a committee consists of a set of processes and
committee meetings are synchronized, so that each process
participates in at most one committee meeting at a time.
Snap-stabilization is a versatile technique allowing to design
algorithms that efficiently tolerate transient faults. Indeed,
after a finite number of such faults (e.g. memory corruptions,
message losses, etc), a snap-stabilizing algorithm immediately
operates correctly, without any external intervention.

We design snap-stabilizing committee coordination algo-
rithms enriched with some desirable properties related to
concurrency, (weak) fairness, and a stronger synchronization
mechanism called 2-Phase Discussion Time. From previous
papers, we know that (1) in the general case, (weak) fairness
cannot be achieved in the committee coordination, and (2)
it becomes feasible provided that each process waits for
meetings infinitely often. Nevertheless, we show that even under
this latter assumption, it is impossible to implement a fair
solution that allows maximal concurrency. Hence, we propose
two orthogonal snap-stabilizing algorithms, each satisfying 2-
phase discussion time, and either maximal concurrency or
fairness. The algorithm implementing fairness requires that
every process waits for meetings infinitely often. Moreover,
for this algorithm, we introduce and evaluate a new efficiency
criterion called the degree of fair concurrency. This criterion
shows that even if it does not satisfy maximal concurrency,
our snap-stabilizing fair algorithm still allows a high level of
concurrency.

Keywords-distributed algorithms, snap-stabilization, self-
stabilization, committee coordination.

I. INTRODUCTION

Distributed systems are often constructed based on an
asynchrony assumption. This assumption is quite realis-
tic, given the principle that distributed systems must be

conveniently expandable in terms of size and geographi-
cal scale. It is, nonetheless, inevitable that processes run-
ning across a distributed system often need to synchronize
for various reasons such as exclusive access to a shared
resource, accomplishing termination, reaching agreement,
constructing rendezvous, etc. Implementing synchronization
in an asynchronous distributed system has always been a
challenge, because of obvious complexity and significant
cost; if synchronization is handled in a centralized fashion
using traditional shared-memory constructs such as barriers,
it may turn into a major bottleneck, and, if it is handled
in a fully distributed manner, it may introduce significant
communication overhead, unfair behavior, and be exposed
to numerous types of faults.

The classic committee coordination problem [8] char-
acterizes a general type of synchronization called n-ary
rendezvous as follows:

“Professors in a certain university have organized
themselves into committees. Each committee has
an unchanging membership roster of one or more
professors. From time to time a professor may
decide to attend a committee meeting; it starts
waiting and remains waiting until a meeting of a
committee of which it is a member is started. All
meetings terminate in finite time. The restrictions
on convening a meeting are as follows: (1) meeting
of a committee may be started only if all members
of that committee are waiting, and (2) no two
committees may convene simultaneously, if they
have a common member. The problem is to ensure
that (3) if all members of a committee are waiting,

then a meeting involving some member of this
committee is convened.”

In the context of a distributed system, professors and com-
mittees can be mapped onto processes and synchronization
events (e.g., rendezvous) respectively. Moreover, the three
properties identified in this definition are known as (1) Syn-
chronization, (2) Exclusion, and (3) Progress, respectively.

A. Related Work

Solutions to the committee coordination problem mostly
focus on the three aforementioned properties [2], [3], [8],
[20], [22], [24]. In the seminal work by Chandy and Misra
[8], the committee coordination problem is reduced to the
dining or drinking philosophers problems [7]. Each philoso-
pher represents a committee, neighboring philosophers have
a common member, and a meeting is held only when the
corresponding philosopher is eating. Bagrodia [2] solves
the problem by introducing the notion of managers. Each
manager handles a set of committees and two managers
may have intersecting sets of assigned committees. Each
committee member notifies its corresponding committee
managers that it desires to participate. Conflicts between
two committees (i.e., committees that share a member)
managed by the same manager are resolved locally within
the manager. Conflicts between two committees managed by
different managers are resolved using a circulating token.
In a later work [3], Bagrodia combines a message count
mechanism (to ensure Synchronization) with a reduction to
dining/drinking philosophers (to ensure Exclusion).

Joung [19] extends the original committee coordination
problem by considering fairness properties. One such prop-
erty, called weak fairness in [19] or professor fairness in this
paper, requires that if a professor is waiting to participate in
some committee meeting, then it must eventually participate
in a committee meeting (not necessarily the same). The main
result is the impossibility of implementing a fair committee
coordination algorithm if one of the following conditions
hold:

¢ One process’s readiness to participate in a committee
can be known by another only through communication,
and the time it takes two processes to communicate is
non-negligible.

o A process decides autonomously when it will attempt
participating in a committee, and at a time that cannot
be predicted in advance.

Joung’s result holds for fairness on multi-party committees

as well. Tsay and Bagrodia [22] reach the same result with
respect to the second condition identified by Joung [19].

In [20], Kumar circumvents the impossibility result of
Tsay and Bagrodia by making the following additional as-
sumption: every professor waits for meetings infinitely often.
In this model, Kumar proposes an algorithm that solves
the committee coordination problem with professor fairness
using multiple tokens, each representing one committee.
Based on the same assumption, several other committee
coordination algorithms that satisfy fairness can be found
in [24].

B. Contributions

In this paper, we propose Snap-stabilizing distributed
algorithms for the committee coordination problem. Snap-
stabilization is a versatile technique allowing to design algo-
rithms that efficiently tolerate transient faults. Indeed, after a
finite number of such faults (e.g., memory corruptions, mes-
sage losses, etc), a snap-stabilizing algorithm immediately
operates correctly, without any external intervention.

Our snap-stabilizing committee coordination algorithms
are enriched with some other desirable properties. These
properties include Professor Fairness, Maximal Concurrency,
and 2-Phase Discussion Time. The former property means
that every professor eventually participates in a committee
meeting that it is a member of. Roughly speaking, the
second of the aforementioned properties consists in allowing
as many committees as possible to meet simultaneously.
The latter (2-Phase Discussion time) requires professors to
collaborate for a minimum amount of time before leaving a
meeting.

We first consider Maximal Concurrency and Professor
Fairness. As in [20], to circumvent the impossibility result
of [22], each time we consider professor fairness in the
sequel of the paper, we assume that every professor waits
for meetings infinitely often. Under this assumption, we
show that Maximal Concurrency and Professor Fairness are
contradictory, i.e., it is impossible to design a committee
coordination algorithm (even non-stabilizing) that satisfies
both simultaneously. The idea behind this result is rather
simple: Consider any process p. To satisfy professor fairness,
a meeting having p as member must eventually convene. To
have such a guarantee, the algorithm may eventually have
to prevent some neighbors of p to participate in meetings
until a meeting including them and p can convene. These
blockings may happen while no meeting including p can be
yet convened. This constraint then prevents some meetings
to hold concurrently. That is, making maximal concurrency
impossible.

Consequently, we focus on the aforementioned contradic-
tory properties independently by providing two algorithms.

The former maximizes concurrency at the cost of not en-
suring professor fairness. By contrast, the latter maintains
professor fairness, but maximal concurrency cannot be guar-
anteed. Both algorithms are based on the straightforward
idea that coordination of the various meetings must be driven
by a priority mechanism that helps each professor to know
whether or not (s)he can participate in a meeting. Such a
mechanism can be implemented using a token circulating
among the professors. To ensure fairness, when a process
holds a token, it has the higher priority to convene a meeting
and it retains the token until it joins the meeting. In that
case, some neighbors of the token holder can be prevented
to participate in other meetings so that the token holder
eventually does, resulting in weakening the concurrency. In
order to guarantee maximal concurrency (but at the risk of
being unfair), a waiting process must release the token if
it is not yet able to convene a meeting to give a chance to
other committees in which all members are already waiting.

We show the implementability of committee coordina-
tion with Maximal Concurrency even if professors are not
required to wait for meetings infinitely often. To the best
of our knowledge this is the first committee coordination
algorithm that implements maximal concurrency. Moreover,
the algorithm is Snap-stabilizing and satisfies 2-Phase Dis-
cussion Time.

We also propose a Snap-stabilizing algorithm that satis-
fies Fairness on professors (respectively, committees) and
respects 2-Phase Discussion Time, assuming that every pro-
fessor waits for meetings infinitely often. Following our
impossibility result, the algorithm does not satisfy Maximal
Concurrency. However, we show that it still allows a high
level of concurrency. We analyze this level of concurrency
according to a newly defined criterion called the degree
of fair concurrency. We also study the waiting time of our
algorithm.

Organization: The rest of the paper is organized as
follows. In Section II, we present the preliminary concepts.
Section III is dedicated to definitions of Maximal Concur-
rency and Fairness in committee coordination. Then, in
Section IV, we introduce 2-phase Discussion Time and our
first snap-stabilizing algorithm that satisfies both Maximal
Concurrency and 2-phase Discussion Time. In Section V, we
propose our snap-stabilizing algorithm that satisfies Fairness
and 2-phase Discussion Time. Our analysis on level of
concurrency and waiting time is also presented in this
section. Finally, we present concluding remarks and discuss
future work in Section VI

Due to reasons of space all proofs have been omitted. All
detailed proof are available in the technical report inline at

http://www.ece.uwaterloo.ca/~bbonakda/ipdps11.pdf.

II. BACKGROUND
A. Distributed Systems as Hypergraphs

Considering the committee coordination problem in the
context of distributed systems, professors and committees
are mapped onto processes and synchronization events (e.g.,
rendezvous) respectively. For the sake of simplicity, we as-
sume that each committee has at least two members (adapt-
ing our results to take singleton committees into account is
straightforward). Hence, we model a distributed system as a
simple self-loopless static hypergraph H = (V,£) where V
is a finite set of vertices representing processes and £ is a
finite set of hyperedges representing synchronization events,
such that for all € € &, we have € C 2V (i.e., each hyperedge
is formed by a subset of vertices).

Let v be a vertex in V' and € be a hyperedge in £. We
denote by v € e the fact that vertex v is incident to hyperedge
€. We denote the set of hyperedges incident to vertex v by
E,. We say that two distinct vertices v and v are neighbors
if and only if v and v are incident to some hyperedge «¢;
i.e., there exists ¢ € &, such that u,v € e. The set of all
neighbors of a vertex v is denoted by N (v).

In the committee coordination problem, professors in the
same committee need to communicate with each other. We
assume that two processes can directly communicate with
each other if and only if they are neighbors. This induces
what we call an underlying communication network defined
as follows: The underlying communication network of the
distributed system H = (V,€) is an undirected simple con-
nected graph Gy, = (V, Eg), where E¢ = {{p1,p2} | p1 €
V Aps € V Aps € N(p2)}. Note that we use hypergraphs
only because they present the concepts of the committee
coordination problem elegantly and simplify reasoning about
correctness of our results. However, it is straightforward to
see that one can model the distributed system using the
underlying communication network.

B. Computational Model

The communication between processes are carried out
using locally shared variables. Each process owns a set of
locally shared variables henceforth referred to as variables.
Each variable ranges over a fixed domain and the process
can read and write them. Moreover, a process can also read
variables of its neighbors. The state of a process is defined
by the value of its variables. A process can change its state
by executing its local algorithm. The local algorithm of a
process is described using a finite set of guarded actions of
the form:

(label) :: {guard) — (statement).

The label of an action is only used to identify the action in
discussions and proofs. The guard of an action at process p
is a Boolean expression involving a subset of variables of p
and its neighbors. The statement of an action of p updates
a subset of variables of p.

A configuration v of a distributed system is an instance
of the state of its processes. We denote the set of all
configurations of a distributed system H by I'z;. The con-
current execution of the set of all local algorithms defines
a distributed algorithm. We say that an action of a process
p is enabled in a configuration -y if and only if its guard is
true in 7. By extension, process p is said to be enabled in
v if and only if at least one of its actions is enabled in ~.
An action can be executed only if its guard is enabled.

A computation of a distributed systems is a maximal
sequence of configurations g, 71, ... such that g is an
arbitrary configuration and for each configuration ~;, ¢ > 0,
the next configuration y; 11 is obtained by atomically execut-
ing the statement of at least one action that is enabled in ;.
Maximality of a computation means that the computation is
either infinite or eventually reaches a terminal configuration
(i.e., a configuration where no action is enabled).

Computations are driven by a daemon (or scheduler). A
daemon is defined as a predicate on computations. There ex-
ist several kinds of daemons. Here we consider a distributed
weakly fair daemon. Distributed means that, at each step, if
one or more processes are enabled, then the daemon chooses
at least one (maybe more) of these processes to execute an
action. Weak fairness means that every continuously enabled
process eventually executes an enabled action.

We say that a process p is neutralized in y; — v;4+1 if p
is enabled in ~; and not enabled in ;4 1, but did not execute
any action in y; — y;+1. To compute the time complexity,
we use the notion of round [16]. This notion captures the
execution rate of the slowest process in any execution. The
first round of an execution e is the minimal prefix of e,
Yo ---7i, containing the activation or the neutralization of
every process that is enabled in the initial configuration. Let
e, be the suffix of e starting from ~; (the last configuration
of the first round of e). The second round of e is the first
round of e,,, and so on.

The parallel composition (or simply composition) [21]
of two algorithms P; and P, is denoted by P; o Po
and is the union of guarded actions of P; and Ps. Thus,
computations of P; o Py is obtained by considering all
possible interleavings of P; and Ps.

C. Snap-stabilization

Snap-stabilization [6] is a versatile technique that allows
designing algorithms that efficiently tolerate transient faults.
Indeed, after a finite number of such faults (e.g., memory
corruptions, message losses, etc), a snap-stabilizing algo-
rithm immediately operates correctly, without any exter-
nal intervention. In contrast, the related concept of self-
stabilization [14] only guarantees that the system eventually
recovers to a correct behavior.

In (self- or snap-) stabilizing systems, we consider the
system immediately after the end of the last fault. That is,
we study the system starting from an arbitrary configuration
reached due to the occurrence of transient faults, but from
which no fault will ever occur. By abuse of language, this
configuration is referred to as initial configuration of the
system. A snap-stabilizing algorithm then guarantees that
starting from any initial configurations, any of its compu-
tations always satisfies the specification of the problem at
hand.

It is important to note that a snap-stabilizing algorithm is
not insensitive to transient faults. In fact, a snap-stabilizing
algorithm guarantees that any task execution started after the
end of the faults will operate correctly. However, we have no
guarantees for tasks executed completely or in part during
faults. For example, in the committee coordination problem,
every meeting convened after the last transient faults will
satisfy every requirement of the committee coordination
problem. However, we have no guarantee for the meetings
started during the transient faults, except that they will not
interfere with the execution of the other meetings.

D. The Committee Coordination Problem

The original committee coordination problem is as fol-
lows [8]. Let H = (V,&) be a distributed system. Each
process in V' represents a professor and each hyperedge
in £ represents a committee. We say that two committees
€1 and ey are conflicting if and only if ¢, Nex # 0. A
professor can be in one of the following three states: (1)
idle, (2) waiting, and (3) meeting. A professor may remain
in the idle state for an arbitrary (even infinite) period of
time. An idle professor may start waiting for a committee
meeting. A professor remains waiting until all participating
professors of a committee, which it is a member of, agree
on meeting. Professors may leave a meeting, become idle,
and subsequently be waiting for a new committee meeting.

Chandy, Misra [8], and Bagrodia [3] require that any solu-
tion to the problem must satisfy the following specification:

e (Exclusion) No two conflicting committees may meet

simultaneously.

e (Synchronization) A committee meeting may be
started only if all members of that committee are
waiting.

o (Progress) If all members of a committee € are
waiting, then some professor in € eventually goes to
the meeting state.

III. MAXIMAL CONCURRENCY VERSUS FAIRNESS IN
COMMITTEE COORDINATION

In practical applications, it is crucial to allow as many
processes as possible to execute simultaneously without
violating other correctness constraints. Although the level
of concurrency has significant impact on performance and
resource utilization, it does not appear as a constraint in the
original committee coordination problem. Moreover, the so-
lutions proposed by Chandy and Misra [8] and Bagrodia [2],
[3] result in decreasing the level of concurrency drastically,
making them less appealing for practical purposes. Examples
include the circulating token mechanism among conflicting
committees [2], and reduction to the dining philosophers
problems, where a “manager” handles multiple committees.
Reduction to the drinking philosophers problem such as
those in [3], [8], [23] results in more concurrency, but not
maximal. This is due to the fact that existing solutions to
the drinking philosophers problem try to achieve concur-
rency and fairness simultaneously, which we will show is
impossible in committee coordination.

We formulate the issue of concurrency, so that as many
committees as possible meet simultaneously. Our defini-
tion of maximal concurrency is inspired by the efficiency
property given in [11]. Informally, we define maximal con-
currency as follows: if there is at least one committee,
such that all its members are waiting, then eventually a
new meeting convenes even if no other meeting terminates.
Now, to formally define this constraint, we let a professor
(process) remain in the meeting state forever. We emphasize
that we make this assumption only to define our constraint;
our results in this paper do assume finite-time meetings as
mentioned earlier.

Definition 1 (Maximal Concurrency) Assume that there
is a set of professors Py that are all in infinite-time meetings.
Let P> be a set of professors waiting to enter a committee
meeting (Obviously, P1 N P, = () and idle processes are in
neither Py nor Ps). Let 11 be the set of hyperedges having
all their incident professors in Py. If I1 # (), then a meeting
between every professor incident to some hyperedge € € 11
eventually starts.

As mentioned in Subsection I-A, if a professor’s status
does not become waiting infinitely often, achieving fairness
is impossible [22]. Thus, we consider fairness assuming
professors always eventually switch to the waiting status.
In this context, we define fairness on professors (also called
weak fairness) as follows.

Definition 2 (Professor Fairness) Every professor eventu-
ally participates in a committee meeting that it is a member

of.

The next theorem shows that Maximal Concurrency and
Professor Fairness are imcompatible. Its proof follows ideas
similar to the impossibility results of Joung [19] as well as
Tsay and Bagrodia [22].

Theorem 1 Assuming that every professor waits for meet-
ings infinitely often, it is impossible to design an algo-
rithm for an arbitrary distributed system that solves the
committee coordination problem and simultaneously satisfies
Maximal Concurrency and Professor Fairness even in a non-
stabilizing context.

We note that every algorithm that satisfies Professor
Fairness also satisfies Progress. Also, observe that Professor
Fairness does not imply that particular committees eventu-
ally convene. We define such a property as follows.
Definition 3 (Committee Fairness) Every committee
meeting eventually convenes.

Notice that since Committee Fairness implies Professor
Fairness, impossibility of satisfying both Maximal Concur-
rency and Committee Fairness trivially follows.

Corollary 1 Assuming that every professor waits for meet-
ings infinitely often, it is impossible to design an algo-
rithm for an arbitrary distributed system that solves the
committee coordination problem and simultaneously satisfies
Maximal Concurrency and Committee Fairness even in a
non-stabilizing context.

Theorem 1 clearly shows that Professor Fairness and
Maximal Concurrency are contradictory properties to satisfy.
Thus, in order to satisfy one property, we have to omit the
other. Omitting fairness results in an algorithm such as the
one presented in Section IV. Omitting maximal concurrency
results an algorithm such as the one presented in Section V.

Note that both algorithms use a single token circulation
that ensures the progress in the former case and the fairness

in the latter. As a matter of fact, they mainly differ in way
they handle the token. Concerning the second algorithm, one
can suggest that the use of several tokens (e.g., the local
mutual exclusion mechanism in [17]) instead of a single one
would enhance the fairness guarantee. However, increasing
the number of tokens results in decreasing the degree of
(fair) concurrency, which is the target metric here. The key
idea is that the token is used to give the highest priority to
convene a meeting. However, the token is not mandatory to
join a meeting, unless a process is starved to join a meeting.
Then, to guarantee fairness, it is mandatory that the token
holder selects a committee and sticks with that committee
until it meets, even if some members of that committee are
currently participating in another meeting. In this case, every
other waiting member of that committee has to wait until
the meeting starts while they may participate in a meeting
of another committee. This results in decreasing the degree
of concurrency (that is why our second algorithm does not
satisfy maximal concurrency): every waiting member of the
committee selected by the token holder are blocked until the
committee is able to convene. Hence, increasing the number
of tokens increases the number of blocked processes which
in turn decreases the degree of concurrency. In other word,
enhancing the fairness makes the concurrency decreasing:
fairness and concurrency are orthogonal properties in the
committee coordination problem.

IV. SNAP-STABILIZING 2-PHASE COMMITTEE
COORDINATION WITH MAXIMAL CONCURRENCY

In this section, our goal is to develop a Snap-stabilizing
algorithm that satisfies Maximal Concurrency as well as a
stronger synchronization property called 2-Phase Discussion
Time. This latter property is defined and justified in Subsec-
tion IV-A. We present our algorithm in Subsection I'V-B.

A. 2-Phase Discussion Time

The original problem specification does not constrain
professors with respect to their time spent in a commit-
tee meeting in any ways. Thus, distributed algorithms for
committee coordination have been developed liberally with
respect to this issue. For instance, solutions proposed in
[3], [8] that employ the dining philosophers problem [7]
in order to resolve committee conflicts satisfy the above
specification, but have the following shortcoming: Since a
philosopher acquires and releases forks all at once, members
of the corresponding committee have to leave the meeting all
together'. There are two problems with such a restriction: (1)

The same argument holds for solutions based on the drinking philoso-
phers [7] and tokens.

an implicit strong synchronization is assumed on terminating
a committee meeting, and (2) fast professors have to wait
for slow professors to finish the task for which they setup a
rendezvous.

We constrain the specification such that upon agreement
on a meeting, the meeting takes place until a professor
unilaterally leaves (that is, without waiting for other pro-
fessors) the meeting. The reason for this requirement is due
to the fact that in practical settings, based upon the speed
of processes (professors), the type of local computation,
and required resources, each process may spend a different
time period to utilize resources or execute a critical section.
Nevertheless, we also require that each professor must spend
a minimum amount of time to discuss issues in the meeting.
The intuition for this constraint is that processes participate
in a rendezvous to share resources or do some minimal
computation and, hence, they should not be allowed to
leave the meeting immediately after it starts. Another reason
for requiring this minimal discussion by all professors is
inspired by the fact that in the recent applications of using
rendezvous interactions to generate correct distributed and
multi-core code, such interactions normally involve data
transmission and even code execution at interaction level
[4], [5]. The following definition elegantly captures this
requirement.

Definition 4 (2-Phase Discussion Time) We define the 2-
phase discussion time by the following two properties:

e Phase 1. (Essential Discussion Time) Upon a meet-
ing starts, each participating professor must remain in
the meeting for some finite time period.

e Phase 2. (Voluntary Discussion Time) Upon a
meeting starts and after fulfilling the essential discus-
sion, the discussion (and consequently the meeting)
continues for a (possibly zero) finite time until a pro-
fessor voluntarily terminates his/her discussion (and
consequently the meeting).

In the following, we call 2-phase committee coordination
problem the committee coordination problem enriched with
the essential and voluntary discussion times.

B. Algorithm

Our algorithm is the parallel composition of two modules:
(1) a Snap-stabilizing algorithm — denoted CC1 — that ensures
Exclusion, Synchronization, Maximal Concurrency, and 2-
Phase Discussion, and (2) a self-stabilizing module that
manages a circulating token — denoted 7C — for ensuring
Progress.

Remark 1 We emphasize that this composition is snap-
stabilizing, as the self-stabilizing token circulation is not
used to ensure any safety property.

Token Circulation Module. We assume that the token cir-
culation module is a black box with the following property:

Property 1

o TC contains one action to pass the token from neighbor
to neighbor:

T :: Token(p) +~— ReleaseToken,

o Once stabilized, every process executes Action T in-
finitely often, but when T is enabled in a process, it is
not enabled in any other process.

o TC stabilizes independently of the activations of Action
T.

To obtain such a token circulation, one can compose a self-
stabilizing leader election algorithm (e.g., in [1], [13], [15])
with one of the self-stabilizing token circulation algorithms
in [9], [10], [12], [18] for arbitrary rooted networks. The
composition only consists of two algorithms running concur-
rently with the following rule: if a process decides that it is
the leader, it executes the root code of the token circulation.
Otherwise, it executes the code of the non-root process.
We note that the composition CC1 o 7C does not explicitly
contain Action 7": In the composite algorithm, Action T’
is emulated by CC1, where predicate Token(p) and the
statement ReleaseToken,, are given as inputs in CC1.
Committee Coordination Module: The Algorithm CC1

(see Algorithm 1) is identical for all processes in the dis-
tributed system. We assume that each process has a unique
identifier and the set of all identifiers is a total order. We
simply denote the identifier of a process p by p.

Interactions between each professor p and its local algo-
rithm are managed using two input predicates: RequestIn(p)
and RequestOut(p). These predicates materializes the fact
that each professor autonomously decides to wait and leave a
meeting. The predicate RequestIn(p) holds when professor
p requests its participation in a committee meeting. After
a committee convenes, the predicate RequestOut(p) holds
when p fulfills its essential discussion and voluntarily stops
discussing. Thus, since p has done its essential discussion,
p eventually satisfies RequestOut(p). Once RequestOut(p)
is true, it remains true until p becomes idle.

Each process p maintains a status variable S, &
{idle, looking, waiting, done}, a boolean variable 7, and a

edge pointer P,. We explain the goal of these variables
below:

o When process p is idle (that is S, = idle) but de-
sires to participate in a committee meeting (that is, if
RequestIn(p) is true), it changes its status from idle to
looking and initializes its edge pointer P, to L (Action
Step,).

o Next, process p starts looking for an available com-
mittee to join. Process p shows interest in joining a
committee whose processes are all looking by setting
its edge pointer P, to the corresponding hyperedge, if
such a hyperedge exists (Actions Step,; and Stepys,).
We call the set of such hyperedges FreeEdges,,.

To obtain agreement on the committees to convene,
we implement token-based priorities as follows. Each
process p maintains a Boolean variable 7), which
shows whether or not it owns a token. A token holder
has a higher priority than its neighbors to convene
a committee. In case of several token holders (only
during the stabilization of token circulation), the looking
process with the maximum identifier breaks the tie.
A token holder releases its token in two cases : (1)
when it leaves a meeting or (2) when it is currently
not guaranteed to eventually convene a committee (that
is, in each of its incident committees, at least one
member is not looking). Note that the algorithm does
not guarantee fairness because of this latter case.

In order to guarantee Maximal Concurrency, we have
to authorize committees to meet when all members
are looking and either the token holder is currently
in a meeting or if there is no looking token holder
in the neighborhood. In this case, among the looking
processes we give priority to the looking process with
the maximum identifier.

e Once all processes of a hyperedge are looking and
they agree on that hyperedge, they are all ready to
start their discussion. To this end, a process changes
its status from looking to waiting? to show that it is
waiting for the committee to convene (Action Steps;).
The committee convenes since all the members have
changed their status to waiting. Then, each process
executes its essential discussion and switches its status
to done (Action Stepss).

« Finally, a process is allowed to leave the committee
meeting when all processes of the committee have
fulfilled their essential discussion (i.e., they are all in

2Note that looking and waiting status constitute the waiting state of the
original problem specification.

Algorithm 1 Pseudo-code of CC1 for process p.

Inputs:
pRequestIn(p) Predicate: input from the system indicating desire for participating in a committee
RequestOut(p) Predicate: input from the system indicating desire for leaving a committee
Token(p) Predicate: input from 7°C indicating process p owns the token
ReleaseToken(p) Statement: output to 7 C indicating process p releases the token
Constants:
Ep : Set of hyperedges incident to process p
Variables:) .
S, € {idle, looking, waiting, done} Status
P, U{l} Edge pointer
Ty : Boolean
Macros;
FreeEdges, = {e€é&,|VYgee : Sy =looking}
FreeNodes = {q| 3e € FreeEdges, : q € ¢}
TFreeNodes, = {q € FreeNodes, | Ty}
Candsy = if (TFreeNodes, # 0) then TFreeNodes,, else FreeNodes, fi
Predicates:
Ready(p) = 3Fe€&, : Vg€e : ((Pg=¢€) N (Sq € {looking, waiting}))
LocalMaz(p) = p = max(Candsp)
MazToFreeEdge(p) = (FreeEdges, #0) A LocalMaz(p) A —Ready(p) N (P, & FreeEdges,,)
JoinLocalMaz(p) = (FreeEdges, #0) A —LocalMaxz(p) A —Ready(p) A
(Fe e FT@EEdgeSp : (Pmax(Cdesp) =e A B # E))
Meeting(p) = Fe€&, : Vge€e : (Pg=¢€¢ AN Sq € {waiting, done})
LeaveMeeting(p) = 3Je€& : (Ppb=¢€) N (Vg€e : ((Pg=¢€) = (Sq=done))))
Useless(p) = Token(p) N [(Sp =idle) Vv (S, =looking A FreeEdges, = 0)]
Correct(p) = [(Sp =idle) = (Pp=1)] A
[(Sp = waiting) =
Bee& : Pp=e¢ AN (Vg€e : (Pg=€¢ N Sq € {looking, waiting})) v
(Vg €€ : (Pg=¢€¢ N Sq € {waiting,done})))]] A
[(Sp =done) =
[Bee &, : Pp=e¢ AN (Vg€e : (Pg =€ N Sq € {waiting,done}) v
(Vg €e : (Pg=¢€¢ = Sq=done))))]]
Actions:
Step, RequestIn(p) A (S, = idle) — Sp := looking,
P, =1
Stepoy MazToFreeEdge(p) — P, =g, such that ¢ € FreeEdges,;
Stepoy JoinLocalMaz(p) — Pp:=¢,suchthat (e € E, N e = Pmax(&mdsp));
Stepgy Ready(p) A (Sp = looking) — Sp := waiting;
Stepss Meeting(p) A (Sp = waiting) +— (EssentialDiscussion),
Sp := done;
Stepy LeaveMeeting(p) A RequestOut(p) +— S, :=idle,
P, =1,
if Token(p) then ReleaseToken(p) fi,
Ty := false;
Tokeny Token(p) # Tp — T, := Token(p);
Tokens Useless(p) +— ReleaseToken(p),
Ty := false;
Stab, —Correct(p) N (Sp =idle) — Pp:i=1;
Staba —Correct(p) N (Sp # idle) — Sp := looking,
P, :=1;

the done status). Then, the meeting takes place until a
process p unilaterally decides to leave it (that is, until
RequestOut(p) is true) after finite period of voluntary
discussion time. To leave the committee, it switches its
status to idle again, resets its hyperedge pointer, and
releases the token if it owns it (Action Step,).

The rest of actions of the algorithm deal with token cir-
culation and snap-stabilization. In particular, action Token
deals with acquiring the token and setting variable T}, to
true, so that neighboring processes realize that p owns
the token. If p owns the token and has no desire to take

part in a committee, or, there does not exist an available
committee for p to participate, then it releases the token
(action Tokens). Finally, actions Stab; and Staby correct
the state of a process, if faults perturb the state of a
process to a state where predicate Correct does not hold.
Predicate Correct holds at states where (1) the process is
idle and it has no interest in participating in a committee
meeting, (2) it is waiting and interested in a committee whose
processes are gathering to convene a meeting, and (3) it
has fulfilled its essential discussion and other processes in
the corresponding committee are either in {waiting, done}

status, or, the meeting is terminated, that is some processes
have left the meeting and the others are done and enabled
to reset to idle.

Theorem 2 The composition CC1oTC is a snap-stabilizing
algorithm that solves the 2-phase committee coordination
problem and satisfies Maximal Concurrency.

V. SNAP-STABILIZING 2-PHASE COMMITTEE
COORDINATION WITH FAIRNESS

We now consider the 2-phase committee coordination
problem in systems where processes are waiting for meetings
infinitely often. In such a setting, an idle process always
eventually becomes waiting. Hence, for the sake of sim-
plicity (and without loss of generality), we assume that
processes are always requesting when they are not in a
meeting. As a consequence, the predicate Requestin(p) and
the state idle are implicit in the code of the next algorithm. In
Subsection V-A, we present a snap-stabilizing algorithm that
guarantees the properties of 2-phase committee coordination
and Professor Fairness. Then, in Subsection V-B, we present
the notion of degree of fair concurrency to measure concur-
rency while preserving Professor Fairness and analyze our
algorithm presented in Subsection V-A with respect to this
measure. We also compute the worst case waiting time of our
algorithm in this Subsection. Finally, we discuss Committee
Fairness in Subsection V-C.

A. Algorithm

Our algorithm is the parallel composition of two modules:
(1) a Snap-stabilizing algorithm — denoted CC2 — that ensures
Exclusion, Synchronization, and 2-Phase Discussion, and (2)
a self-stabilizing module that manages a circulating token
— denoted 7C — for ensuring Fairness and consequently
Progress. (Remark 1 holds for this composition as well.) Al-
gorithm CC2 (see Algorithm 2) is identical for all processes
in the distributed system and we assume that each process
has a unique identifier and the set of all identifiers is a total
order. Note also that Action 7" is emulated in Algorithm CC2
in the same way as in Algorithm CC1.

Similar to Algorithm CC1, each process p maintains S,
P,, and T}, with the same meaning. Also, the token defines
priorities to convene committees. However, to guarantee
fairness, in this algorithm, a token is released only when
its holder leaves a meeting.

After receiving a token, a looking process p selects a
smallest (in terms of members) incident committee € (this
constraint is used only to slightly enhance the concurrency)
using its edge pointer P, (Step;;). Note that unlike the

previous algorithm, the members of the chosen committee
are not necessarily all looking. Then, process p sticks with
committee € until e convenes. By assumption, other members
of committee e are eventually looking and, hence, € is
selected by Action Step,.

In order to obtain the best concurrency as possible (recall
that maximal concurrency is impossible in this case), all
processes not in € must not wait for processes involved in the
committee e. To that goal, we introduce the Boolean variable
L, which shows whether or not the process is locked. A
locked process is one that is incident to a hyperedge that
contains a process that (1) owns the token, (2) has set
its pointer to that hyperedge, and (3) is looking to start a
committee meeting. The locks are maintained using Action
Lock. Hence, processes that are not in € try to convene
committees that do not involve locked processes (Step, 3 and
Step,4). As in Algorithm CC1, we use the process identifiers
to define priorities among the looking processes not in e.
The rest of actions of the algorithm are similar to those of
Algorithm CC1.

Theorem 3 The composition CC20TC is a snap-stabilizing
algorithm that solves the 2-phase committee coordination
problem and satisfies Professor Fairness.

B. Complexity Analysis

We now introduce and study two complexity measures:
degree of fair concurrency and waiting time. First, in order
to characterize the impact of fairness on reducing the number
of processes that can run concurrently, we introduce the
notion of Degree of Fair Concurrency. Roughly speaking, this
degree is the minimum number of committees that can meet
concurrently without compromising Professor Fairness.

Definition 5 (Degree of Fair Concurrency) Let A be a
committee coordination algorithm that satisfies Professor
Fairness. Let professors remain in the meeting for infinite
time.> Under such an assumption the system reaches a
quiescent state where the status of all professors do not
change any more. The Degree of Fair Concurrency of A is
then the minimum number of meetings held in a quiescent
state.

We now analyze the degree of fair concurrency of Algo-
rithm CC2 o 7TC. To this end, we recall some concepts from
graph theory. A matching of hypergraph H = (V,€) is a
subset S of hyperedges of , such that no two hyperedges

3 As in Definition 1, infinite meetings are used only for formalization.

Algorithm 2 Pseudo-code of CC2 for process p.

Inputs:
pRequestOut (p) Predicate: input from the system indicating desire for leaving a committee
Token(p) Predicate: input from 7°C indicating process p owns the token
ReleaseToken Statement: output to 7 C indicating process p releases the token
Constant:
Ep Set of hyperedges incident to p
Variables:
s Lp : Booleans
P,e&,U{Ll} Edge pointer
Sp € {looking, waiting, done} Status
Macros:)
FreeEdges, = {e€é&, |Vgee : (Sq=looking A =Ly N =Tg)}
FreeNodesp = {q| 3e € FreeEdges, : q € €}
TPointingEdges, = {e€&y|3Iqg€e : (Pg=¢€¢ AN Ty A Sq = looking)}
TPointingNodes,, = {q | 3¢ € TPointingEdges, : q € €}
MinSize, = mineeg, €|
MinEdges,, = {e€& | |e] = MinSizep}
Predicates;
Locked(p) = TPointingEdges,, # 0
Ready(p) = Je€&, : Vge€e : (Pg=€¢ N Sq € {looking, waiting})
Meeting(p) = Je€&, : Vg€e : (Pg=€¢ N Sq € {waiting, done})
LeaveMeeting(p) = Je€& : (Pp=¢ AN (Vg€e : (Pg=€¢ = S, =done)))
LocalMaz (p) = p = max(FreeNodesp)
MazToFreeEdge(p) = - Token(p) N =Tp AN —Locked(p) A =L, A FreeEdges, +0 A
LocalMaz(p) A —Ready(p) A P, & FreeEdges,
JoinLocalMaz(p) = -~ Token(p) A =T, A —Locked(p) N =L, A FreeEdges, # 0 A
—LocalMaz(p) A —Ready(p) A
Je € FreeEdges,, : (Pmax(FreeNodesp) =eAPp #e)
TokenHolderToEdge(p) = Token(p) A Tp N (Sp = looking) A (P, ¢ MinEdges,,)
JoinTokenHolder(p) = - Token(p) N =T, A (Sp =looking) A —Ready(p) A Locked(p) A
(Pp ¢ TPointingEdges)
Correct(p) = [(Sp = waiting) =
Hee& : (Pp=¢ AN (Vg€e€ : (Pg=€¢ N Sq € {looking, waiting})) v
(Vg€e : (Pg =€ N Sq € {waiting,done}))))]] A
[(Sp =done) =
[Feec& : (Pp=¢ AN (Vg€e : (Pg=¢€¢ N Sq € {waiting,done})) v
(Vgee : (Pg=€¢ = S; =done))))]]
Actions:
Stepq, TokenHolderToEdge(p) — P, := esuch that e € MinEdges,;
Stepq JoinTokenHolder(p) — P, := € such that € € &£,, where Pmax(Tpmnm”gNndesp) =€
Stepq MazToFreeEdge(p) — P, := esuch that € € FreeEdges,;
Stepq4 JoinLocalMaz (p) — P, := € such that € € &£, where Prax(FreeNodesp) = €
Step, Ready(p) N (Sp = looking) — Sp := waiting;
Steps Meeting(p) A (Sp = waliting) +— (EssentialDiscussion),
Sy := done;
Step, LeaveMeeting(p) N RequestOut(p) — S, := looking,
Py, =1,
if Token(p) then ReleaseToken,, fi,
Ty := false;
Token Token(p) # Tp — T, := Token(p);
Lock Locked(p) # Ly — Ly := Locked(p);
Stab - Correct(p) — Sp := looking,
P, :=1;

in S have a vertex in common. We denote by M4, the set
of all possible matchings of a hypergraph H. The size of
a matching is the number of hyperedges that it contains. A
maximal matching of H is a matching of H that has no
superset that is a matching of . We denote by MMy
the set of all maximal matchings of a hypergraph H. As 'H
is clear from the context, we omit it from M and MM.
Obviously, MM C M. Note that by definition, the degree
of fair concurrency d satisfies 1 < d < minpaqng, Where

10

minpqrq is the size of the smallest maximal matching. The
length of a hyperedge ¢, noted |e|, is the number of nodes
incident to e. For every process p, we denote by Eg‘i“ the
subset of hyperedges incident to p of minimum length, i.e.,
e € &0 if and only if € € £, and Ve’ € &,, |e] < |€/]. Let
ming, denote the minimum length of a hyperedge incident
to p. Let MazMin = max,cv (E,"").

We denote by Hy- the subhypergraph induced by V' \ Y.
Given a hyperedge € and a vertex p, we define Y, , = {y €

2| pey A |yl < |e|}. Let Almost(e, X), where € is
a hyperedge and X is a set of vertices, be the set {m €
MMy | Vg € e\ X : gisincident to a hyperedge of m}.
Let AMM(p) = Ueegmin Uyey, , Almost(e, y), where p
is a vertex. Let AMM = |J, oy AMM(p). Observe that
AMM may be equal to the emptyset, e.g., when there is
only one hyperedge in H.

The set AMM as defined above characterizes the cases
where Professor Fairness and Maximal Concurrency exhibit
their conflicting natures. Consider the case where a process
p is the token holder and cannot participate in a meeting. In
this case, there exists a neighbor of p, say g, in the smallest
hyperedge ¢ incident to p, such that ¢ is participating in
another committee meeting. It follows that processes in ¢
(including p) that are currently not meeting are blocked until
e convenes. This implies that the current setting does not
form a maximal matching and, hence, maximal concurrency
cannot be achieved. Thus, in order to analyze the Degree of
Fair Concurrency, one needs to consider the set of all max-
imal matchings of the subhypergraph induced by removing
those blocked processes.

Theorem 4 Degree of Fair Concurrency of Algorithm CC2 o
TC is minMMuAMM.

In the next theorem, we present a lower bound for
min A mMuAMM-

Theorem 5 minymuamam > (minp g —MazMin + 1).

Since algorithm CC2 o 7C satisfies Professor Fairness, it
is of practical interest to evaluate its Waiting Time. In our
context where processes are either waiting or meeting, we
define waiting time as follows:

Definition 6 (Waiting Time) The maximum time before a
process participates in a committee meeting.

To evaluate Waiting Time, we need to introduce max p;s.
which is the maximum amount of time a process discusses
in a meeting. We assume that 7 C is a fair composition of the
token circulation algorithm in [10] and the leader election
algorithm in [13]. It follows that the following properties
hold: (1) starting from any configuration, there is a unique
token in the distributed system in O(n) rounds, and (2) once
there is a unique token, O(n) processes can receive the token
before a process receives the token.

Theorem 6 In Algorithm CC20TC, the worst case Waiting
Time is O(maxpis. Xn), where n is the number of pro-
cesses.

11

C. Committee Fairness

Algorithm CC2 o 7C can be easily modified to satisfy
the Committee Fairness as follows. Every time a process
acquires the token, it sequentially selects a new incident
committee. This way we obtain an algorithm, called Algo-
rithm CC3 o 7C that satisfies Committee Fairness. Waiting
Time of this algorithm remains the same as that of Theorem
6, but Degree of Fair Concurrency will be slightly degraded.
Recall that Y, , = {y € 2° | p € y A |y| < |¢|}. Now, we let
AMM'(p) = U.ce, Uy, , Almost(e, y) and AMM' =
Upey AMM!(p). Also, let MazHEdge = maxcee |e|.

Theorem 7 The degree of fair concurrency of Algorithm
CC3 0 TC is minp pquAMM-

In the next theorem, we present a lower bound for
minp pmUAMM’ -

Theorem 8 minyvuamamy = minpn —MaxHEdge+1.

VI. CONCLUSION

In this paper, we proposed two Snap-stabilizing distributed
algorithms for the committee coordination problem. The
first algorithm satisfies 2-Phase Discussion Time as well
as Maximal Concurrency. The second algorithm satisfies
2-Phase Discussion Time as well as Professor Fairness
assuming that every professor waits for meetings infinitely
often. As we showed, even under this latter assumption both
satisfaction of Maximal Concurrency and Professor Fairness
is impossible.

For the second algorithm, we introduced and analyzed the
degree of fair concurrency to show that it still allows high
level of concurrency. We also evaluated an upper bound on
waiting time. Finally, with a slight modification, we obtained
another algorithm that respects Committee Fairness.

For future work, several interesting research directions are
open. One can consider other combinations of properties. For
instance, we conjecture that providing both Maximal Con-
currency and bounded waiting time is impossible. Another
important issue is to address dynamic hypergraphs, where
professors (processes) can enter or leave the hypergraph,
and, new committees may be created or some committees
may be dissolved or merged. Optimality is also an open
question in that one can study the optimal bound on the de-
gree of fair concurrency. Another interesting line of research
is enforcing priorities on convening committees.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

REFERENCES

A. Arora and M. Gouda. Distributed reset. IEEE Transactions
on Computers, 43:316-331, 1994.

R. Bagrodia. A distributed algorithm to implement n-party
rendevouz. In Foundations of Software Technology and The-
oretical Computer Science, Seventh Conference (FSTTCS),
pages 138-152, 1987.

R. Bagrodia. Process synchronization: Design and perfor-
mance evaluation of distributed algorithms. IEEE Transac-
tions on Software Engineering (TSE), 15(9):1053-1065, 1989.

B. Bonakdarpour, M. Bozga, M. Jaber, J. Quilbeuf, and
J. Sifakis. Automated conflict-free distributed implementa-
tion of component-based models. In [EEE Symposium on
Industrial Embedded Systems (SIES), pages 108—-117, 2010.

B. Bonakdarpour, M. Bozga, M. Jaber, J. Quilbeuf, and
J. Sifakis. From high-level component-based models to dis-
tributed implementations. In ACM International Conference
on Embedded Software (EMSOFT), pages 209-218, 2010.

A. Bui, A. K. Datta, F. Petit, and V. Villain. Snap-stabilization
and PIF in tree networks. Distributed Computing, 20(1):3-19,
2007.

K. M. Chandy and J. Misra. The drinking philosophers
problem. ACM Transactions on Programming Languages and
Systems (TOPLAS), 6(4):632-646, 1984.

K. M. Chandy and J. Misra. Parallel program design: a
foundation. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1988.

A. Cournier, S. Devismes, and V. Villain. A snap-stabilizing
DFS with a lower space requirement. In Self-Stabilizing
Systems (SSS), pages 33—47, 2005.

A. Cournier, S. Devismes, and V. Villain. Light enabling snap-
stabilization of fundamental protocols. ACM Transactions on
Autonomous and Adaptive Systems (TAAS), 4(1), 2009.

A. K. Datta, R. Hadid, and V. Villain. A self-stabilizing
token-based k-out-of-1 exclusion algorithm. Concurrency
and Computation: Practice and Experience, 15(11-12):1069—
1091, 2003.

A. K. Datta, C. Johnen, F. Petit, and V. Villain. Self-stabilizing
depth-first token circulation in arbitrary rooted networks.
Distributed Computing, 13(4):207-218, 2000.

A. K. Datta, L. L. Larmore, and P. Vemula. Self-stabilizing
leader election in optimal space. In Stabilization, Safety, and
Security of Distributed Systems (SSS), pages 109—123, 2008.

E. W. Dijkstra. Self-stabilizing systems in spite of distributed
control. Communications of the ACM, 17(11), 1974.

12

[15]

[16]

[17]

(18]

[19]

[20]

[21]

(22]

(23]

(24]

S. Dolev and T. Herman. Superstabilizing protocols for
dynamic distributed systems. Chicago Journal of Theoretical
Computer Science, 1997, 1997.

S. Dolev, A. Israeli, and S. Moran. Uniform dynamic self-
stabilizing leader election. IEEE Transactions on Parallel and
Distributed Systems, 8(4):424-440, 1997.

M. Gairing, W. Goddard, S. T. Hedetniemi, P. Kristiansen, and
A. A. McRae. Distance-two information in self-stabilizing
algorithms. Parallel Processing Letters, 14(3-4):387-398,
2004.

S.-T. Huang and N.-S. Chen. Self-stabilizing depth-first token
circulation on networks. Distributed Computing, 7(1):61-66,
1993.

Y.-J. Joung. On fairness notions in distributed systems:
I. a characterization of implementability. Information and
Computation, 166(1):1-34, 2001.

D. Kumar. An implementation of n-party synchronization
using tokens. In Distributed Computung Systems (ICDCS),
pages 320-327, 1990.

G. Tel. Introduction to distributed algorithms. Cambridge
University Press, Cambridge, UK, Second edition 2001.

Y.-K. Tsay and R. Bagrodia. Some impossibility results in in-
terprocess synchronization. Distributed Computing, 6(4):221—
231, 1993.

J. L. Welch and N. A. Lynch. A modular drinking philoso-
phers algorithm. Distributed Computing, 6(4):233-244, 1993.

C. Wu, G. Bochmann, and M. Y. Yao. Fairness of n-party
synchronization and its implementation in a distributed envi-
ronment. In Workshop on Distributed Algorithms (WDAG),
pages 279-293, 1993.

