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Abstract. In this paper, we concentrate on incremental synthesis of timed au-
tomata for automatic addition of different types of bounded response properties.
Bounded response — that something good will happen soon, in a certain amount
of time — captures a wide range of requirements for specifying real-time and em-
bedded systems. We show that the problem of automatic addition of a bounded
response property to a given timed automaton while maintaining maximal non-
determinism is NP-hard in the size of locations of the input automaton. Further-
more, we show that by relaxing the maximality requirement, we can devise a
sound and complete algorithm that adds a bounded response property to a given
timed automaton, while preserving its existing universally quantified properties
(e.g., MTL). This synthesis method is useful in adding properties that are later
discovered as a crucial part of a system. Moreover, we show that addition of
interval-bounded response, where the good thing should not happen sooner than
a certain amount of time, is also NP-hard in the size of locations even without
maximal nondeterminism. Finally, we show that the problems of adding bounded
and unbounded response properties are both PSPACE-complete in the size of the
input timed automaton.

Keywords: Timed automata, Transformation, Synthesis, Real-time, Bounded
liveness, Bounded response, Formal methods.

1 Introduction

As the traditional approaches to software development turn out to be inefficient in
many cases (e.g., due to maintenance, resolving bugs, etc.), correct-by-construction ap-
proaches to treat software development as a true form of engineering gains more atten-
tion. In this approach, a software engineer constructs a mathematical model of his/her
design before any code is produced. This model is used to reason about the proposed
solution, ensuring that all required functionality will be delivered.

! This is an extended version of a paper appeared in the proceedings of FMICS’06: Interna-
tional Workshop on Formal Methods in Industrial Critical Systems, LNCS, Springer-Verlag,
2006. This work was partially sponsored by NSF CAREER CCR-0092724, DARPA Grant
OSURSO01-C-1901, ONR Grant N00014-01-1-0744, NSF grant EIA-0130724, and a grant
from Michigan State University.



Automated program synthesis is the problem of designing an algorithmic method
to find a program that satisfies a mathematical model (i.e., a required set of proper-
ties) that is correct-by-construction. The synthesis problem has mainly been studied in
two contexts: synthesizing programs from specification, where the entire specification
is given, and synthesizing programs from existing programs along with a fully or par-
tially available new specification. In approaches where the entire specification must be
available, changes in specification, e.g., addition of a new property, requires us to be-
gin from scratch. By contrast, in the latter approach, it is possible to reuse an existing
program and, hence, the previous efforts made for synthesizing it. Since it may not be
possible to anticipate all the necessary required properties at design time, this approach
is especially useful in program maintenance, where the program needs to be modified
so that it satisfies a new property of interest.

In order to add a new property to a program there are two ways: (1) comprehen-
sive redesign, where the designer introduces new behaviors (e.g., by introducing new
variables, or adding new computation paths), or (2) local redesign, where the designer
removes behaviors that violate the property of interest, but does not add any new be-
haviors. While the former requires the designer to verify all other properties of the new
program, the latter ensures that certain existing universally quantified properties (e.g.,
LTL and MTL) are preserved.

Depending upon the choice of formulation of the problem and expressiveness of
specifications and programs, the class of complexity of synthesis methods varies from
polynomial time to undecidability. In this paper, we focus on incremental synthesis
methods that add properties typically used for specifying timing constraints. This ap-
proach is opposite to those synthesize arbitrary specifications and, hence, belong to
high classes of complexity. More specifically, we study the problem of incremental ad-
dition of different types of bounded response properties — that something good will
happen soon, in a certain amount of time — to Alur and Dill’s timed automata [1], while
preserving existing Metric Temporal Logic (MTL) specification [2]. A more practical
application of the results presented in this paper is in aspect-oriented programming. In-
deed, our synthesis methods is close in spirit to automated weaving of real-time aspects.

1.1 Related Work

In the context of untimed systems, in the pioneering work [3,4], the authors propose
methods for synthesizing the synchronization skeleton of programs from their temporal
logic specification. More recently, in [5-7], the authors investigate algorithmic methods
to locally redesign fault-tolerant programs using their existing fault-intolerant version
and a partially available safety specification. In [8], the authors introduce a synthesis
algorithm that adds UNITY properties [9] such as leads-to (which is an unbounded
response property) to untimed programs.

Controller synthesis is the problem of finding an automaton (called controller) such
that its parallel composition with a given automaton (called plant) satisfies a set of
properties [10]. Synthesis of real-time systems has mostly been formulated in the con-
text of timed controller synthesis. In the early work [11-13], the authors investigate the
problem, where the given program is a deterministic timed automaton and the speci-
fication is modeled as a deterministic internal winning condition on the state space of



the plant. The authors also assume that the controller can use unlimited resources (i.e.,
the number of new clocks and guards that compare the clocks to constants). Similarly,
in [14], the authors solve the reachability problem in timed games. Deciding the exis-
tence of a winning condition with the formulation presented in [11-14] is shown to be
EXPTIME-complete in [15].

In [16, 17], the authors address the problem of synthesizing timed controllers with
limited resources. Similar to the aforementioned work, the plant is modeled by a deter-
ministic timed automaton, but the specification is given by an external nondeterministic
timed automaton that describes undesired behavior of the plant. With this formulation,
the synthesis problem is 2EXPTIME-complete. However, if the given specification re-
mains nondeterministic, but describes desired behavior of the plant the problem turns
out to be undecidable.

In [18], the authors propose a synthesis method for timed games, where the game is
modelled as a timed automaton, the winning condition is described by TCTL-formulae,
and unlimited resources are available. In [19], the authors consider concurrent two-
person games given by a timed automaton played in real-time and provide symbolic
algorithms for solving them with respect to all w-regular winning conditions. In both
approaches, deciding the existence of a winning strategy is EXPTIME-complete.

1.2 Contributions

In our work, we consider (i) the case where the entire specification of the program is
not given to the synthesis algorithm; and (ii) nondeterministic timed automata. In fact,
we study how the level of nondeterminism affects the complexity of synthesis methods.
The main results in this paper are as follows:

— We show that adding a bounded response property while maintaining maximal non-
determinism is NP-hard in the size of the locations of the given timed automaton.

— Based on the above result and the NP-hardness of adding two bounded response
properties without maximal nondeterminism 2, we focus on addition of a single
bounded response property to a time automaton without maximal nondeterminism.
In fact, we present a surprising result that by dropping the maximality requirement
we can devise a simple sound and complete transformation algorithm that adds a
bounded response property to a timed automaton while existing MTL properties.
Note that since our algorithm is complete, if it fails to synthesize a solution then
it informs the designer that a more comprehensive (and expensive) approach must
be used. Moreover, since the complexity of our algorithm is comparable with that
of model checking, the algorithm has the potential to provide timely insight to the
designer about how the given program needs to be modified to meet the required
bounded response property. Thus, in this paper, we extend the results presented
in [8] to the context of timed automata.

— We show that adding interval-bounded response, where the good thing should not
happen sooner than a certain amount of time, is also NP-hard in the size locations
of the given timed automaton even without maximal nondeterminism.

2 1In [8], it is shown that adding two unbounded response properties to an untimed program
is NP-hard. The same proof can be easily extended to the problem of adding two bounded
response properties to a timed automaton.



— We show that the problems of adding bounded and unbounded response (also called
leads-to) properties are both PSPACE-complete in the size of the input timed au-
tomaton.

Table 1 compares the complexity of our approach and other synthesis methods in the
literature. A natural question is “since direct synthesis of limited MTL to bounded re-
sponse properties is PSPACE-complete, what is the advantage of our method over direct
synthesis?”. There are two advantages:

— Since we incrementally add properties to a given timed automaton while preserving
its existing MTL specification, we do not need to have this specification at hand.
This is particularly useful when the existing specification includes properties whose
automated synthesis is undecidable (e.g., ¢0=s¢) or lies in classes of complexity
higher than PSPACE.

— The second advantage of our approach is in cases where the given timed automaton
is designed manually for ensuring that it is efficient. Since in our approach, existing
computations are preserved it has the potential to preserve the efficiency of the
given timed automaton.

Adding Bounded Response [Direct Synthesis from MTL | Timed Control Synthesis| Timed Games
(This paper) [20] [16,17] [11,13,14,18,19]

PSPACE-complete EXPSPACE-complete 2EXPTIME-complete |EXPTIME-complete

Table 1. Complexity of different synthesis approaches.

Organization of the paper. In Section 2, we present the preliminary concepts. In
Section 3, we formally state the problem of addition of an MTL property to an exist-
ing timed automaton. We describe the NP-hardness result for adding bounded response
with maximal nondeterminism in Section 4. Then, in Section 5, we present a sound
and complete algorithm for adding bounded response to timed automata without max-
imal nondeterminism. In Section 6, we present the complexity of addition of interval-
bounded response and unbounded response properties. Finally, we make the concluding
remarks and discuss future work in Section 7.

2 Preliminaries

Let AP be a set of atomic propositions. A state is a subset of AP. A timed state se-
quence is an infinite sequence of pairs (o, 7) = (09, 70), (01, 71)..., Where o; (i € N) is
a state and 7; € R>¢, and satisfies the following constraints:

1. Initialization: 9 = 0.
2. Monotonicity: 7; < 7,41 forallt € N.
3. Progress: For all t € R, there exists j such that 7; > ¢.



2.1 Metric Temporal Logic

We briefly recap the syntax and semantics of point-based MTL. Linear Temporal Logic
(LtL) specifies the qualitative part of a program. MTL introduces real time by con-
straining temporal operators, so that one can specify the quantitative part as well. For
instance, the constrained eventually operator ([, 3] is interpreted as “eventually within
1 to 3 time units both inclusive”.

Syntax. Formulae of MTL are inductively defined by the grammar: ¢ ::=p | =¢ | p1 A
¢2 | dr1Urp2, where p € AP and I C R>( is an open, closed, half-open, bounded, or
unbounded interval with endpoints in Z>. For simplicity, we use ¢ ;¢ and [J; ¢ instead
of trueldrp and = 1—¢. We also use pseudo-arithmetic expressions to denote intervals.
For instance, “< 4” means [0, 4].

Semantics.  For an MTL formula ¢ and a timed state sequence (o,7) =
(60,70), (01, 71)..., the satisfaction relation (c;,7;) = ¢ is defined inductively as fol-
lows:

(04,7:) Epiffo; E p(o; E piff p € 0; and we say o; is a p-state);

(0i,7i) | —@iff (03, 73) [~ ¢

(0is7i) E d1 A2 iff (04, 7) = d1 A (00, 73) = @23

(04, 7)) = 1o iff there exists j > ¢ such that 7; — 7; € I and (04, 7w) = ¢1
forall ¢/, where ¢ < ¢’ < j,and (0}, 7;) = ¢a.

A timed state sequence (o, 7) satisfies the formula ¢ if (0, 70) E ¢.

The formula ¢ defines a set £ of timed state sequences that satisfy ¢. We call this
set a property. A specification X is the conjunction of a set of properties. In this paper,
we focus on a standard class of real-time properties defined as follows. An interval-
bounded response property is of the form £; = O(p — Oy5,,5,9), Where p,q € AP
and 61, 02 € Z>o, i.e., it is always the case that a p-state is followed by a g-state within
02, but not sooner than §; time units. A special case of L; is in which §; = 0 known as
bounded response property and is of the form L5 = O(p — 0<sq), i.e., it is always the
case that a p-state is followed by a g-state within ¢ time units. An unbounded response
(or leads-to) property is defined as Lo, = O(p — Oj0,00)9)s i-€, it is always the case
that a p-state is eventually followed by a ¢-state.

2.2 Timed Automata

A clock constraint over the set X of clock variables is a Boolean combination of for-
mulas of the formz <X corz —y = ¢, where z,y € X, ¢ € Z>(, and < is either <
or <. We denote the set of all clock constraints over X by &(X). A clock valuation is
a function v : X — Ry that assigns a real value to each clock variable. Furthermore,
for7 € R>g, v+ 7 = v(x) + 7 for every clock z. Also, for Y C X, v[Y := 0] denotes
the clock valuation for X which assigns 0 to each z € Y and agrees with v over the rest
of the clock variables in X.

Definition 2.1. A timed automaton Ais a tuple (L, L° 1, X, E), where

— L is a finite set of locations,
— LY C L is a set of initial locations,



- 9 : L — 247 is a labeling function assigning to each location the set of atomic
propositions true in that location,

— X is a finite set of clocks, and

- B C(Lx2% x ®(X) x L) is aset of switches. A switch (sq, A, ©, 51) represents
a transition from location sg to location s; under clock constraint ¢ over X, such
that it specifies when the switch is enabled. The set A C X gives the clocks to be
reset with this switch. O

The semantics of a timed automaton is as follows. A state of a timed automaton is
a pair (s, ), such that s is a location and v is a clock valuation for X at location s. The
labeling function for states is defined by ¢’((s,v)) = 9(s). Thus, if p € ¥ (s), sis a p-
location (i.e., s = p) and (s, V) is a p-state for all v. An initial state of A is (S;nit, Vinit)
where s;n;: € L° and v maps the value of all clocks in X to 0. Transitions of A are
of the form (sg, 9) — (81, 1). They are classified into two types:

— Delay: for astate (s, ) and a time increment 7 € R, (s,v) = (s,v + 7).
— Location switch: for a state (so, v) and a switch (s, A, ¢, s1) such that v satisfies
the clock constraint ¢, (s, v) — (s1,V[A 1= 0]).

We use the well-known railroad crossing problem [21] as a running demonstration
throughout the paper. The original problem comprises of three timed automata, but we
only consider the TRAIN automaton (cf. Figure 1-a). The TRAIN automaton models
the behavior of a train approaching a railroad crossing. Initially, the train is far from the
gateway of the crossing. It announces approaching the gateway by resetting the clock
variable z. The train is required to start crossing the gateway after at least 2 minutes. It
passes the gateway at least 3 minutes after approaching the gateway. Finally, there is no
constraint on reaching the initial location.

We now define what it means for a timed automaton 4 to satisfy an MTL specifi-
cation . An infinite sequence (so, Vo, 70), (S1,v1,71)..., Where 7; € R, is a com-
putation of A iff for all j > 0 (1) (sj1,v;41) — (sj,v;) is a transition of A, (2) the
sequence ToTi ... satisfies initialization, monotonicity, and progress, and (3) 7; — 7;_1 is
consistent with v; — v;_1. We write A |= ¥ and say that timed automaton A satisfies
specification X iff every computation of .A that starts from an initial state is in X. Thus,
A = (O(p — O<sq)) iff any computation of A that reaches a p-state, reaches a g-state
within ¢ time units. If A }= X, we say A violates 3.

2.3 Region Automata

Timed automata can be analyzed with the help of an equivalence relation of finite index
on the set of states [1]. Given a timed automaton A, for each clock x € X, let ¢, be
the largest constant in the guards of switches of A that involve x, where ¢, = 0 if =
does not occur in any guard. Two clock valuations v, p are clock equivalent if (1) for
all x € X, either |v(x)| = |u(x)] or both v(z), u(z) > cs, (2) the ordering of the
fractional parts of the clock variables in the set {x € X | v(z) < ¢;} is the same in g,
and (3) forall z € {y € X | v(y) < ¢}, the clock value v(z) is an integer if and only
if p(x) is an integer. A clock region p is a clock equivalence class. Two states (so, o)
and (s1, 1) are region equivalent, written (sg, v9) = (s1, 1), if (1) sg = s1 and (2) v



and v are clock equivalent. A region is an equivalence class with respect to =. Also,
region equivalence is a time-abstract bisimulation [1].

Using the region equivalence relation, we construct the region automaton of A (de-
noted R(A)) as follows. Vertices of R(.A) are regions. Edges of R(.A) are of the form
(s0,p0) — (s1,p1) iff for some clock valuations vy € pg and v1 € p1, (S0,v0) —
(s1,v1) is a transitions of A. Figure 1-b shows the region automaton of the TRAIN
automaton.

We say a region (so, po) of region automaton R(A) is a deadlock region iff for
all regions (s1, p1), there does not exist an edge of the form (sg, po) — (s1,p1). The
definition of a deadlock state is analogous. A clock region  is a time-successor of a
clock region « iff for each v € «, there exists 7 € R, such that v + 7 € (3, and
v+ 71 € aUfforall 7' < 7. We call a region (s, p) a boundary region, if for each
v € pand for any 7 € Ry, v and v + 7 are not equivalent. A region is open, if
it is not a boundary region. A region (s, p) is called end region, if v(z) > c, for all
clocks x. For instance, in Figure 1-b, (APPROACHING, x = 2) is a boundary region,
(CROSSING,3 < x < 4) is an open region, and (PASSED, x > 4) is an end region.

2.4 Measures of Complexity

We use two measures of complexity: (1) size of input timed automata, and (2) size
of locations of input timed automata. We note that, the size of a region automaton
is in linear order of the size of locations of its corresponding timed automaton [1].
Furthermore, the size of a region automaton is in exponential order of the size of timing
constraints of the input timed automaton. It follows that the size of a region automaton
is in exponential order of the size of the input timed automaton. Hence, when we say
a problem is NP-hard in the size of the locations of the input automaton, it implies
that the problem is NP-hard in the size of the corresponding region automaton as well.
Moreover, when we say “a problem is in PSPACE”, we mean “it is in PSPACE in the size
of the input timed automaton”.

APPROACHIN( APPROACHIN APPROACHINT
0<x<l1 x=1 I<x<2

(PPROA

(a) (b)
Fig. 1. (a) TRAIN automaton. (b) Region automaton of TRAIN automaton.
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3 Problem Statement

Given are a timed automaton A(L, L, +, X, E) and an MTL property L (either L, L,
or L). Our goal is to find a timed automaton A’ (L', L' +’, X', E'), such that A’ = L
and for any MTL specification 3, if A = X then A’ = 3.

Since we require that A" |= X, if L’ contains locations that are not in L, then .4’
includes computations that are not in ¥ and as a result, A’ may violate . Hence, we
require that L' C L and L'° C L°. Moreover, if E’ contains switches that are present
in E, but are guarded by weaker timing constraints, or £’ contains switches that are not
present in F at all then A’ includes computations that are not in 3. Hence, we require
that E’ contains a switch (sg, A, ¢’, s1), only if there exists (s, A, ¢, s1) in E, such that
¢ is stronger than . Furthermore, extending the state space of A by introducing new
clock variables under the above circumstances is legitimate. Finally, we require v’ to
be equivalent to ¢. Thus, the synthesis problem is as follows:

Problem Statement 3.1. Given A(L, L°, ¢, X, E) and an MTL property L, identify
AL, L4, X', E') such that

(Cl1) 'CcL,L°C1L®

(C2) ¢ =4

(C3) XCX'

(C4) Y(so, A\, ¢',s1) € E' : ((s0, N\ p,81) € E: (¢ = )

(Cs) AECL

(C6) For any MTL specification ¥: (A | ¥) = (A E X)) O

Notice that constraint (C6) implicitly implies that the synthesized program is not al-
lowed to have deadlock states. This constraint is known as the non-blocking condition
in the literature of controller synthesis. Furthermore, constraint (C6) is similar to lan-
guage inclusion condition in controller synthesis where the set of uncontrollable tran-
sitions is empty. Note that, based on Problem Statement 3.1, since we allow synthesis
methods to remove states and transitions of a timed automaton, such methods are appro-
priate to preserve universally quantified properties only. In fact, constraints of Problem
Statement 3.1 do not suffice to preserve existential properties of a program (e.g., TCTL).
Soundness and completeness. We say that an algorithm for the synthesis problem is
sound iff its output meets the constraints of the Problem Statement 3.1. We say that an
algorithm for the synthesis problem is complete iff it finds a solution to the Problem
Statement 3.1 iff there exists one.

Comparison to controller synthesis and game theory. Our formulation of the syn-
thesis problem is in spirit close to both controller synthesis and game theory where the
winning condition is expressed as MTL formulae. In fact, in both problems , the objec-
tive is how to restrict the program actions at each state through synthesizing a controller
or a wining strategy. Notice that the conditions (C'1) and (C2) precisely express this
notion of restriction. Furthermore, the condition (C6) precisely expresses the notion of
language inclusion, where the synthesized program is supposed to exhibit a subset of
behaviors of the input program. As mentioned in Section 1, the main advantage of our
synthesis methods over controller synthesis and game theory is our algorithms are tai-
lored for the properties typically used in specifying real-time requirements and, hence,



synthesizes programs more efficiently. Moreover, our synthesis algorithms accept non-
deterministic input programs.

4 Adding Bounded Response Properties with Maximal
Nondeterminism

In this section, we show that the synthesis problem in Problem Statement 3.1 for adding
a bounded response property while maintaining maximal nondeterminism is NP-hard
in the size of locations of the input timed automaton. We show this result by a reduction
from the Vertex Splitting Problem [22] in directed acyclic graphs (DAG).

Given a timed automaton A and property Lg = O(p — O<sq), we say that the

synthesized timed automaton A’ is maximally nondeterministic iff A’ meets all the
constraints of Problem Statement 3.1 and its set of transitions is maximal. Maintain-
ing maximal nondeterminism is desirable in the sense that it increases the potential for
future successful incremental synthesis. Indeed, in our framework, maximal nondeter-
minism is similar to the concept of weakest controller in the literature of controller
synthesis.
The DAG Vertex Splitting Problem (DVSP). Let G(V, A) be a weighted DAG and
vs, U be arbitrary source and target vertices in G. Let G/Y denote the DAG when each
vertex v € Y is split into vertices v*" and v°“* such that all arcs (v,u) € A, where
u € V, are replaced by arcs of the form (v°“*,u) and all arcs (w,v) € A, where
w € V, are replaced by arcs of the form (w, v"™). In other words, the outgoing arcs of
v now leave vertex v°“* while the incoming arcs of v now enter v**, and there is no
arc between v®™ and v°*“!, The DAG vertex splitting problem is to find a vertex set Y,
where Y C V and |Y| < ¢ (for some positive integer 7), such that the length of the
longest path of G/Y from v, to v; is bounded by a prespecified value d. In [22], the
authors show that DVSP is NP-hard.

We now show that the problem of adding a bounded response property while main-
taining maximal nondeterminism is NP-hard.

Instance. A timed automaton A(L, L°, ), X, E), a bounded response property Lp =
O(p — O<s9), and a positive integer k, where |E| > k.
Maximally Nondeterministic Bounded Response Addition Problem (MNBRAP).
Does there exist a timed automaton A’(L/, L', ¢)', X', E’), such that |E’| > k and A’
meets the constraints of the Problem Statement 3.17
Theorem 4.1: MNBRAP is NP-hard in the size of locations of the input timed au-
tomaton.
Proof. We reduce DVSP to MNBRAP. The reduction maps a weighted DAG G(V, A)
and integers d and ¢ to a timed automaton .4 and integers d and k, respectively.
Mapping. Let G(V, A) be any instance of DVSP whose longest path is to be bounded
by d. Let [(a) be the length of an arc a € A. We construct a timed automaton A as
follows (cf. Figure 2). Each vertex v € V is mapped to a pair of locations v*" and v°%!
in A. The set of initial locations of A is the singleton L° = {vi"}, where v, is the
source vertex in G. Switches of A consist of two types of switches as follows:

— We include switches of the form v®" L==0r, v°u for all v in V. The clock con-

straint (z = 0) is used to force computations of .A not to wait at location v*".



x=1Ua)?,x:=0

i(a) mapping
 E— RN

Fig. 2. Mapping DVSP to MNBRAP.

— We add 2|V | number of parallel switches of the form v°“* (e=te)t, &:=0, u'™, for

all arcs a = (v, u) € A of length {(a).

Let the set of clock variables of A be the singleton X = {z}. Finally, let vi" = p,
v = g, k = |E| — i, and § = d. Other locations may satisfy arbitrary atomic
propositions except p and q.

Reduction. We need to show that vertex v € Y in G must be split if and only if the

(x=0)?
_—

switch v v must be removed from A. We distinguish two cases:

— DVSP — MNBRAP: Suppose the answer to DVSP is the set Y, where |Y| < i.
Hence, after splitting all v € Y the length of the longest path of G is at most
d. Now, we show that we can synthesize a timed automaton A’ from the mapped
timed automaton A(L, {vi"}, 1, {z}, E) as an answer to MNBRAP. It is easy to

see that if we remove switches of the form v?" (==07, voul (forall v € Y)
from E to obtain E’, the maximum delay between locations v*™ and v¢“* in A’
becomes at most 0. Recall that, § = d and k = |E| — 4. Therefore, A’ = Lp and
|E'| > |E|—1i = k. Other constraints of the Problem Statement 3.1 are immediately
met by construction of A’

— MNBRAP — DVSP: Suppose the answer to MNBRAPis A’ (L, L', ¢/ {x}, E'),
where |E’| > k and the maximum delay to reach v from vi" is at most d.
Note that, L’® = {v®}. Since the number of switches removed from E is at most
|E| — k, k = |E| — i, and ¢ < |V, we could not have removed switches of the

=l ?, 2:=0 . .. -
form vou! Le=te)?, 20, u*™. This is because there are 2|V | of such switches and,

hence, their removal would not change the maximum delay. Thus, we should have

. . =0)? .
removed switches of the form v*" & v°% from F to bound the maximum

delay. Indeed, these switches identify the set Y of vertices that should be split in
G,ie, Y ={v|(veV) A ((vI",v) € (E — E'))}. Itis easy to see that by
removing the set Y from V the length of the longest path of G becomes at most
d. O

Although we defined maximality in terms of transitions of a timed automaton, one
may define it in terms of reachable locations or behaviors of a timed automaton. How-
ever, various definitions do not change the NP-hardness result. In fact, many of the edge
and vertex deletion problems are known to be NP-hard [22,23]. In particular, in case of
maximal reachable locations, one can easily reduce the vertex deletion problem [22] to
our synthesis decision problem. Moreover, in case of maximal number of behaviors,
one can develop a reduction from the k" shortest path problem [24].
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S Adding Bounded Response Properties without Maximal
Nondeterminism

In this section, we show that by relaxing the maximality constraint, we can solve the
Problem Statement 3.1 in polynomial time in the size of locations of the input timed
automaton. A possible approach to add a bounded response property to a timed au-
tomaton is as follows. First, we construct an auxiliary timed automaton A accepting
all behaviors of the given bounded response property. Then, we construct the product
of Az and the given timed automaton .4; (denoted .4; ® Az). Although this approach
is semantically correct, it does not meet the constrains of the Problem Statement 3.1. In
particular, construction of the product alone may introduce deadlock states to A1 ® As.
As a result, some of the infinite computations of .4; become finite in A; ® A5 and,
hence, existing MTL properties are not preserved, which in turn violates the constraint
(C6) of the problem statement. Thus, we need a more “behavior-aware” approach.

Since our synthesis algorithm constructs and manipulates a specific weighted di-
rected graph introduced by Courcoubetis and Yannakakis as a solution to the maximum
delay problem in timed automata [25], we review this problem in Subsection 5.1. In
Subsection 5.2, we describe our synthesis algorithm.

5.1 The Maximum Delay Problem in Timed Automata

The maximum delay problem is as follows. Given a timed automaton .4, a source loca-
tion and clock valuation, what is the latest time that a target location can appear along a
computation of .A? We first construct the region automaton R(.A)(S, T'), where S is the
set of regions and 7' is the set of edges. Then, we transform the region automaton to an
ordinary weighted directed graph (called MaxDelay digraph). Let the subroutine Con-
structMaxDelayGraph do this transformation as follows. It takes a region automaton
R(A)(S,T), aset X of source regions, and a set Y of target regions, where X, Y C S,
as input, and constructs a MaxDelay digraph G(V, A). Vertices of G consist of the
regions in R(.A) with the addition of a source vertex v, and a target vertex v;.
Notation: We denote the weight of an arc (vg, v1) by Weight(vg,v1). Let f denote a
function that maps each region in R(.A) to its corresponding vertex in G, i.e., f(r) is a
vertex that represents region r in G. Also, let f ~! denote the inverse of f,i.e., f~! (v)
is the region of R(A) that corresponds to vertex v in G. Likewise, let F' be a function
that maps a set of regions in R(.A) to the corresponding set of vertices in G and F'~! be
its inverse. Finally, for a boundary region r with respect to clock variable x, we denote
the value of x by 7.2 (equal to some constant in Z>).
Arcs of G consist of the following:

— Arcs of weight 0 from v to all vertices in F'(X), and from all vertices in F'(Y) to
Vt.

— Arcs of weight 0 from vg to vy, if f~(vg) — f~(v1) is a location switch in
R(A).

— Arcs of weight ¢/ — ¢, where ¢,¢’ € Z>g and ¢’ > ¢, from vg to vy, if f71(vg)
and f~!(v;) are both boundary regions with respect to clock variable x;, such that
fY(wo).wi = ¢, f~1(v1).2; = ¢, and there exists a path in R(A) from f~*(vg)
to f~*(v1), which does not reset ;.
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Fig. 3. (a) MaxDelay digraph of TRAIN automaton. (b) MaxDelay digraph with respect to § = 4

— Arcs of weight ¢ — ¢ — €, where ¢, ¢’ € Z>g, ¢ > ¢,and 0 < € < 1, from vg to v;
,if (1) f~1(vo) is a boundary region with respect to clock variable z;, (2) f~1(v1)
is an open region whose time-successor f ~!(vs) is a boundary region with respect
to clock variable ;, (3) f~!(vo) — f~*(v1) represents a delay transition in R(.A),
and (4) f~Y(vo).z; = cand f~1(ve).x; = .

— Self-loop arcs of weight oo at vertex v, if f~!(v) is an end region.

In order to compute the maximum delay between X and Y/, it suffices to find the
longest distance between v, and v; in G. As an example, Figure 3-a shows the MaxDe-
lay digraph of the TRAIN automaton.

5.2 The Synthesis Algorithm

In this subsection, we present a sound and complete algorithm,
Add_BoundedResponse (cf. Figure 4), for solving the Problem Statement 3.1 with
respect to Lp = O(p — O<sq). The core of the algorithm is straightforward. It begins
with an empty digraph and builds up a subgraph of the MaxDelay digraph by adding
paths of length at most ¢ that start from the set of vertices that represents p-regions in G
to the set of vertices that represents g-regions. Then, it adds the rest of vertices and arcs
while ensuring that no new paths from p-regions to g-regions are introduced. In order
to ensure completeness, the algorithm preserves p-regions.

We now describe the algorithm in detail. First, in order to keep track of time elapsed
since p have become true, we add an extra clock variable ¢ to A as a timer. Moreover,
the maximum value that ¢ would be compared with is § (lines 1-2). Next, we construct
the region automaton R(A)(S,T'), where S is the set of regions and 7 is the set of
edges (Line 3). Let the function g : AP — 2 calculate the set of regions with respect
to an arbitrary atomic proposition ap as follows:

glap) = {(s1,p1) | (51 FF ap) A
(3 (50, p0) | (((505p0), (51, 1)) €T) : (s0 [~ ap))}

12



Add_BoundedResponse(A(L, L% 4, X, E) : timed automata, L5 = O(p — 0<s9)
{

X =XU{t};ct :=9; 1)
V(so, N\, p,81) | ((sS0, A\, p,81) EE A (so EpAsiEp)) « A= AU{th 2)
R(A)(S,T) := ConstructRegionAutomaton(.A4); 3)
Repeat
IsQRemoved := false; “4)
G(V, A) := ConstructMaxDelayGraph(R(.A), g(p), g(¢q)); \\ Defined in Subsection 5.1  (5)
G'(V’, A’y := ConstructSubgraph(G, §); (6)
R(A) (S, T') = {}: )
S = F (V') ®)

T :={(ro,m1) | (ro,71) €T A (f(ro), f(r1)) € A’} U
{(r1,m2) [ (r1,m2) € T A (f(r1), fr2)) € A' A

3rg : Weight(f(ro), f(r1)) =1 —€}; )

while (3¢ |70 € S’ : (Vr1i|r1 €S & (ro,r1) € T')) (10)
S =8 —{ro}; T :=T" — {(r,70), (ro,7) | r € S'}; (11)

ifro € g(q) then (12)
IsQRemoved := true; (13)

S:=8—{rohT:=T —{(r,70),(ro,7) | r € S}; break; (14)
until (IsQRemoved = false);
if {(s,0) | (s,p) €S As€ L°ANVa,v|(vEpAz € X):v(z)=0)}={}then

declare failure; exit; (15)
A’ := ConstructTimedAutomata(R(.A")); (16)
return A’; (17)
ConstructSubgraph(G(V, A) : MaxDelay digraph, ¢ : integer)
{
G (V' A"y = {} (18)
for all vertices v such that (vs,v) € A 19)
if the length the shortest path P from v to v, is at most § then (20)
V' i=V'U{u|uisonP}; @1
A=A U{a|aisonP}; (22)
A=A U {(u,v) | (u,v) €EA AN (@ V' Vv (u,v:) € AN} (23)
V=W u{u|(Fv: (u,v) € AV (v,u) € AN}) — {vs,ve }; (24)
return G’ (V' A’); 25)
}

Fig. 4. The synthesis algorithm for adding bounded response.

We now reduce our problem to the problem of bounding the length of longest path
in ordinary weighted digraphs. Towards this end, we first generate the MaxDelay di-
graph G(V, A) (Line 5), as described in Subsection 5.1. Then, we invoke (Line 6) the
subroutine ConstructSubgraph (lines 18-25) which takes a MaxDelay digraph G and
an integer ¢ as input. It generates a subgraph G’ whose longest path from v to vy is
bounded by §. Recall that vs and v, are additional source and target vertices connected
to F(g(p)) and F(g(q)), respectively. We now begin with an empty digraph and add
a certain number of paths in polynomial order of |S|. To this end, first, we include the
shortest path from each vertex in F'(g(p)) to v¢, provided its length is at most § (lines
19-22). Then, we add the rest of the vertices and arcs to G’ (lines 23-24) while ensuring
that no new paths are added from v to v;.

After invoking ConstructSubgraph, we transform G’ back to a region automaton
R(A’) (lines 7-9). Next, due to pruning some vertices and arcs in ConstructSubgraph,
we remove deadlock regions from R(.A’) (lines 10-11). However, in order to ensure that
this removal does not break the completeness of our algorithm, we should consider the
case where a g-region becomes a deadlock region (lines 12-14). In case the removal
of deadlock regions leaves no initial regions, the algorithm declares failure and termi-
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nates (Lines 15). Otherwise, it constructs the timed automaton A’ out of R(A’) and
terminates successfully (lines 16-17).
Level of nondeterminism. In order to increase the level of nondeterminism, we can
include additional paths whose length is at most §. However, every time we add a path,
we need to test that this path does not create new paths of length greater than 6 or cycles
containing an edge of nonzero weight. To this end, we can use one of the algorithms in
the literature of graph theory (e.g., [26]) to find and add & shortest paths in an ordinary
weighted digraph.

Let us now consider the TRAIN automaton presented in Section 2 (cf. Figure 1-
a). Our goal is to bound the delay of revisiting the initial location within at most 4
minutes. To this end, we add the property L = O(APPROACHING — O<4FAR)
to the TRAIN automaton. Since § = 4, we have ¢, = 4 when generating the region
automaton. Next, we construct the MaxDelay digraph (cf. Figure 3-b). In Figure 3-b,
the dotted arcs contribute in violating £ i, but the solid arcs do not. It is easy to observe
by adding 12 shortest paths, we includes all computations that satisfy £p. Figure 5-
a shows the synthesized region automaton and Figure 5-b shows the the final timed
automaton.
Theorem 5.1: The algorithm Add_BoundedResponse is sound and complete.
Proof. We show that the timed automaton synthesized by Add_BoundedResponse
meets the constraints of Problem Statement 3.1 with respect to Lp:

— Constraint C1: 1t is easy to observe that the algorithm Add_BoundedResponse
only removes states of A. Hence, L' C L and L'° C L°. Note that, pruning re-
gions only changes the guards of the associated switches and it does not affect
reconstruction of A’ such that L' C L.

— Constraint C2: We only add an extra clock variable ¢. Hence, X C X’. Note that,
since the length of a path in MaxDelay digraph is equal to the time elapsed along
regions, our algorithm works correctly even if ¢ is reset in between a p-state and a
g-state (e.g., a computation that goes from a p-state to a (—p)-state, then again to a
p-state, and finally to a g-state).

APPROACHIN APPROACHIN APPROACHIN
0<x<l1 x=1 1<x<2

APPROACHING

2<x<4y

APPROACHIN . SED
3<x<4 3<x<4
.

x=4

(B<x<4)?

APPROACHIN
x=4

(a) (b)

Fig. 5. (a) Synthesized region automaton (b) Synthesized TRAIN automaton.
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— Constraint C3: The algorithm does not touch the labels of locations and, hence,
Y =1

— Constraint C4: The subroutine ConstructSubgraph may only remove regions or
edges from a region automaton. This removal either removes a switch from the
original timed automaton completely or makes some regions unreachable, which in
turn strengthens the guard of one or more switches. Hence, the set of switches of
A’ meets the constraint C'4.

— Constraint C5: The subroutine ConstructSubgraph ensures that the maximum
delay of any computation that starts from a region in g(p) and reaches a region
in g(q) is finite and bounded by the required response time in £ 5. Hence, we are
assured that the synthesized timed automaton satisfies £ .

— Constraint C6: First, since the algorithm removes deadlock regions from R(.A’) all
computations of A’ are infinite. Moreover, from constraints C'1...C4, it follows that
the algorithm does not introduce new computations to .A’. Thus, the set of compu-
tations of A’ is a subset of the set of computations of .A. Furthermore, as mentioned
in Section 2, an MTL formula X defines a set of timed state sequences. Note that,
an automaton A satisfies specification ¥ iff all computations of A are in 3. Hence,
a subset of computations of A satisfies ¥ as well. In the context of the algorithm
Add_BoundedResponse, although it excludes some of the computations, since it
ensures that all computations are infinite (by removing deadlock regions), it con-
tinues to satisfy its old MTL specification. A possible confusion is that “the given
automaton (before synthesis) does not satisfy the bounded response property L g,
but it does satisfy Lp after synthesis”. Note, however, that “an automaton does not
satisfy £p” cannot be expressed as “the automaton satisfies £, where £’ is an
MTL property. Also, if a given automaton satisfies =L p then no computation of
the automaton satisfies £ p and, hence, it is not possible to synthesize an automaton
that satisfies £p. In such a case, the algorithm Add_BoundedResponse declares
failure. Hence, for all MTL specifications ¥, if A = X then A’ = X as well.

Note, however, that the same problem cannot be defined by branching-time tempo-
ral logics (e.g., TCTL), as “an automaton does not satisfy £” can be expressed as
“the automaton satisfies £, where £’ is a TCTL property.

This completes the proof of soundness. In order to prove the completeness, we show
that any initial location removed from the synthesized automaton must be removed. Ob-
serve that if there exists a vertex v € F'(g(p)) from where there does not exist a path
to v; where the delay is at most 6, f ~!(v) becomes a deadlock region and it should be
removed. It follows that such regions must be removed in any timed automaton that sat-
isfies the constraints of Problem Statement 3.1. Furthermore, if a g-region r¢ becomes
a deadlock region, it is possible that all the regions along a path that starts from a region
in g(p) and ends at o become deadlock regions. Thus, we need to find another path
from that region in g(p) to a region in g(g) other than r(. Hence, we remove r( from
the set of regions of the original region automaton R(.4) and start over. Furthermore, if
removal of a region causes another region to become a deadlock region then that region
must be removed for satisfying the constraint C5. Continuing thus, if an initial region
becomes a deadlocked region then it must be removed. Our algorithm declares failure
when all initial locations are removed. Based on the above discussion, in this case, any
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Fig. 6. Mapping the longest path problem to addition of interval-bounded response.

timed automaton that satisfies the constraints of Problem Statement 3.1 cannot contain
any of the initial locations from L°. Since this is a contradiction, it follows that when
Add_BoundedResponse declares failure, no solution exists for the given instance.
Therefore, Add_BoundedResponse is complete. O
Theorem 5.2: The problem of adding a bounded response property to a timed automa-
ton is in PSPACE.

Proof. The core of the algorithm is reachability analysis for a timed automaton. De-
ciding reachability of a location in timed automata is in P in the size of the region
automaton [25]. Moreover, our synthesis algorithm involves finding shortest paths and
(possibly) k shortest paths in an ordinary weighted digraph. Eppstein [26] proposes an
algorithm that finds the k shortest paths (allowing cycles) in time O(m + nlogn + k),
where n is the number of vertices and m is the number of arcs of a given digraph. Note
that, we require that £ must be in polynomial order of the number of locations of the
input timed automaton. Hence, one can implement a synthesis algorithm which runs in
polynomial time in the qualitative part (locations), and polynomial space in the quanti-
tative part (timing constraints) of the input automaton. a

6 Adding Interval-Bounded and Unbounded Response Properties

We first consider automatic addition of an interval-bounded response property £; =
O — 0[51752]q) to a timed automaton, where 6; > 0. As an intuition, let us use the
algorithm Add_BoundedResponse to add L. Since the required response time has a
lower bound, the subroutine ConstructSubgraph has to enumerate and ignore all the
paths whose lengths are less than d;. Obviously, this enumeration cannot be done in
polynomial time in the size of region automata.
Theorem 6.1: The problem of adding an interval-bounded response property to a
timed automaton is NP-hard in the size of the locations of the input timed automaton.
Proof. The proof is a simple reduction from the longest path problem to an instance
of the problem, where £; = O(p — O(s,,00)¢)- Figure 6 illustrates the mapping of a
digraph G to a timed automaton A. It is easy to see that if G has a path of length at least
01 from a source vertex v, to a target vertex v; then 4 can be transformed to a timed
automaton A’ whose delay from v, to v; is at least d; time units and vice versa. O
Next, we discuss the problem of addition of unbounded response (also called leads-
to) properties.
Theorem 6.2: The problem of addition of an unbounded response property to a timed
automaton is PSPACE-complete in the size of the input timed automaton.
Proof. Since this problem is an instance of adding bounded response, membership
to PSPACE follows from Theorem 5.2 immediately. We now show that the problem is
PSPACE-hard. To this end, we reduce the reachability problem in timed automata [25]
(whether a location s; is reachable from another location sg) to an instance of our prob-
lem.
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Mapping. Let the timed automaton A be any instance of the reachability problem. We
map A to an instance of our problem as follows. Let A* be an automaton identical to A
with the following modifications. Let s = p and s; = ¢. Other locations of .A* may
satisfy arbitrary atomic propositions except p and gq. Let sg be the only initial location
of A*. We also add a self-loop at s;.
Reduction. If s; is reachable from sg in A then there exists a computation in A*
that starts from sg and ends at s;. A timed automaton A’ constructed from this com-
putation plus the self-loop at s; satisfies L., and meets the constraints of Problem
Statements 3.1. Now, we show the other direction. Let us assume that the answer to the
decision problem is affirmative and we can synthesize a timed automaton A’ from .A*
such that A" = L. Then A’ should contain both sy and s;. This means that s; is
reachable from sg. Otherwise, A’ would not satisfy £. O

Since an unbounded response property is an instance of bounded and interval-
bounded response properties, problems of adding those properties are also PSPACE-
hard.
Corollary 6.3: The problem of adding a bounded response property to a timed au-
tomaton is PSPACE-complete in the size of the input timed automaton. a
Remark 6.4. The time complexity of adding an unbounded response property to a
timed automaton with maximal nondeterminism in terms of transitions remains open in
this paper. However, we refer the reader to [8], where the authors introduce a synthe-
sis algorithm for adding leads-to properties to an untimed program, while maintaining
maximal nondeterminism in terms of reachable states of the given program.

We summarize the complexity of problems of addition of different types of response
properties in Table 2.

Bounded Response Unbounded Response Interval-Bounded Response

Maximal | NonMaximal || Maximal (NonMaximal
(Sec. 4) (Sec. 5) (Sec. 6) (Sec. 6) (Sec. 6)

NP-hard P see Rem. 6.4 P NP-hard

Table 2. Complexity of adding response properties in the size of the locations.

7 Conclusion and Future Work

In this paper, we focused on automated incremental synthesis of timed automata by
adding various types of bounded response properties, while preserving its existing Met-
ric Temporal Logic (MTL) specification. Unlike specification-based methods, in our
approach, we start with an existing program rather than specification and, hence, the
previous efforts made for synthesizing the input program are reused.

First, we showed the problem of addition of a bounded response property to a timed
automaton while maintaining maximal nondeterminism is NP-hard in the size of loca-
tions of the input automaton. Then, we presented a simple sound and complete transfor-
mation algorithm that adds a bounded response property to a timed automaton (with-
out maximal nondeterminism), such that the automaton continues to satisfy its existing
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MTL specification. The complexity of the algorithm is polynomial in the size of region
automata. Furthermore, we showed that the problem of addition of interval-bounded
response properties is also NP-hard. Moreover, we showed that adding bounded and
unbounded response properties are PSPACE-complete in the size of the input timed au-
tomaton.

Detailed region automata are not an efficient finite representation of timed au-
tomata in terms of space complexity. On other hand, zone automata [27] are more
efficient finite representation of timed automata used in model checking techniques.
Since our goal was to evaluate complexity classes for adding bounded response, we
focused on region automata. However, an interesting improvement step is modifying
Add_BoundedResponse, so that it manipulates a zone automaton rather than a de-
tailed region automaton.

In many hard real-time systems (e.g., mission-critical systems) meeting deadlines
in the presence of faults is a necessity. As future work, we plan to study the problem
of automatic addition of fault-tolerance to existing fault-intolerant real-time systems.
More specifically, we plan to extend the theory of automated addition of fault-tolerance
to untimed programs [5-7] to the context of real-time programs. In particular, we plan
to study how time-bounded recovery can be achieved in the presence of faults using the
results presented in this paper.

Acknowledgment. The authors would like to thank Edith Elkind at Princeton Univer-
sity for her ideas on the NP-hardness result in Section 4.
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