
Automated Addition of Fault Recovery to
Cyber-physical Component-based Models∗

Borzoo Bonakdarpour
School of Computer Science

University of Waterloo
200 University Avenue West
Waterloo N2L3G1, Canada

borzoo@cs.uwaterloo.ca

Yiyan Lin
Department of Computer
Science and Engineering
Michigan State University
3115 Engineering Building

East Lansing, MI 48823, USA
linyiyan@cse.msu.edu

Sandeep S. Kulkarni
Department of Computer
Science and Engineering
Michigan State University
3115 Engineering Building

East Lansing, MI 48823, USA
sandeep@cse.msu.edu

ABSTRACT
In this paper, we concentrate on automated synthesis of
fault recovery mechanism for fault-intolerant component-
based models that encompass a cyber-physical system. We
define the notion of fault recovery for cyber-physical
component-based models. We also present synthesis con-
straints that preserve the correctness and cyber-physical na-
ture of a given fault-intolerant model under which recovery
can be added. We show that the corresponding synthesis
problem is NP-complete and consequently introduce sym-
bolic heuristics to tackle the exponential complexity. Our
experimental results validate effectiveness of our heuristics
for relatively large models.
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and Reasoning about Programs—Logic of programs
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1. INTRODUCTION
Development of software applications often utilizes mod-

els and abstractions to simplify the design process as well
as to promote communication among individuals and teams
working on a system. It is desirable if these models are built
using component-based design so as to permit reuse and re-
configuration. In this context, design and implementation
of embedded applications in a component-based fashion is
no exception and, in fact, more beneficial.

An orthogonal issue in design and implementation of em-
bedded applications is their correctness and dependability.
This is because these applications are often deployed in safety-
critical systems, operating in hostile environments where dif-
ferent types of faults may occur. Fault-tolerance is the ability
of a system to continue meeting its specification (possibly
degraded) even in the presence of faults. Building fault-
tolerant systems is a significantly challenging task, as it is
not feasible to anticipate all possible faults at design time.
This challenge occurs even more often in cyber-physical sys-
tems, where computational components are tightly coupled
with physical processes in adverse environments. Thus, it is
highly desirable if designers have access to techniques that
automatically add fault-tolerance to fault-intolerant models
with respect to a newly identified set of faults. Although
automated addition of fault-tolerance to monolithic models
has extensively been studied [7–11,19] (see Section 2 for de-
tails), we currently lack methods that add fault-tolerance
to component-based models that encompass cyber-physical
systems.

With this motivation, in this paper, we focus on the prob-
lem of automated synthesis of fault recovery mechanism for
component-based models subject to cyber-physical
constraints. Fault recovery ensures that a system eventu-
ally resumes its normal operation after occurrence of faults.
Our contributions in this paper are as follows. We first de-
fine a generic fault model and the notion of fault recovery
for component-based models. Then, we identify two sets of
constraints on addition of fault recovery to cyber-physical
models: (1) constraints to guarantee that adding recovery
mechanism does not interfere with the normal behavior of
the model in the absence of faults (i.e., conditions on pre-
serving the correctness of the original model in the absence
of faults), and (2) constraints to ensure that cyber-physical
characteristics of the model are respected during addition
of recovery to the original model. One example of latter
constraints is that the recovery mechanism is not allowed
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Figure 1: A communication protocol.

to alter the internal structure of physical components. In
other words, recovery must be accomplished through collab-
oration amongst cyber components and possibly exploiting
the existing structure of physical components.
We show that the corresponding synthesis problem is NP-

complete in the size of the state space of the given model
for adding fault recovery. Consequently, we propose a set
of efficient heuristics to cope with the exponential complex-
ity. Our heuristics preserve the normal behavior of a given
model to add recovery in the absence of faults. Moreover,
they preserve the structure of physical components and au-
tomatically add a recovery mechanism where only a mini-
mal number of cyber components participate in achieving
recovery when faults occur. Our heuristics are implemented
using BDDs [12] and we present the results of experiments
on two case studies in connection with adding fault recov-
ery to cyber-physical systems subject to faults modelled in
a component-based fashion. The experimental results vali-
date the efficiency and effectiveness of our algorithms.

Organization. The rest of the paper is organized as
follows. First, we discuss related work in Section 2. Then,
in Section 3, we present the preliminary concepts. Section
4 is dedicated to our fault model and the notion of fault
recovery. We discuss constraints on addition of recovery to
cyber-physical component-based models in Section 5. Com-
plexity analysis of addition of recovery is analyzed in Section
6. Then, we introduce our symbolic heuristics in Section 7.
Experimental results are presented in Section 8. Finally, we
make concluding remarks and discuss future work in Section
9.

2. RELATED WORK
Component-based analysis and design have been consid-

ered in numerous contexts. BIP (Behavior, Interaction, Pri-
ority) is a formal framework, where system’s behavior is de-
scribed in terms of a set of atomic components synchronized
through a set of interactions [3, 16]. Priorities are used
for scheduling purposes. Automated transformations for
BIP have successfully been used to generate real-time [1] as
well as distributed [5,6] code that is correct-by-construction.
In [4], the authors address deadlock detection in BIP mod-
els, but the approach falls short on resolving deadlock states
(e.g., created due to the occurrence of faults).
Automated addition of fault-tolerance to monolithic mod-

els is extensively studied in the literature. In [19], the au-
thors introduce synthesis methods to add different levels of
fault-tolerance to centralized and distributed models. In

particular, they show that in the context of distributed mod-
els, the problem is NP-complete. The problem of adding dif-
ferent levels of fault-tolerance to real-time models is shown
to be PSPACE-complete in [7]. Addition of multi-phase re-
covery, where each phase ensures satisfaction of a certain
predicate during recovery, to real-time models is investigated
in [9,11]. Since most related synthesis problems to add fault-
tolerance to distributed and real-time models suffer from
high-complexity, efficient symbolic heuristics and tools have
been developed to tackle the problem [8, 10]. This line of
research, however, does not deal with models expressed in a
component-based fashion, or encompass cyber-physical con-
straints.

In [14], the authors propose a formal component model
that incorporates the notion of a safety interface. This work
is fundamentally different from our work in that we focus
on recovery which implies guaranteeing liveness in the pres-
ence of faults. Lui and Joseph [21, 22, 25] introduce a uni-
form framework for specifying, refining, and transforming
programs that provide fault-tolerance and schedulability us-
ing the Temporal Logic of Actions [20]. A survey of similar
methods on monolithic systems is presented in [15]. Other
approaches in component-based design of fault-tolerant sys-
tems are limited to specific architectures and platforms (e.g.,
[17, 18, 24]). All these approaches study analysis issues us-
ing non-automated techniques and do not target embedded
and/or cyber-physical applications.

3. BACKGROUND
In this section, we review the operational semantics of our

component-based framework [3, 16].

Atomic Components We define atomic components as
transition systems with a set of ports labeling individual
transitions. These ports are used for communication be-
tween different components.

Definition 1 An atomic component B is a labelled transi-
tion system represented by a tuple (Q,P,→, q0) where

• Q is a finite set of states,

• P is a finite set of communication ports,

• →⊆ Q × P ∪ {τ} × Q is a finite set of transitions
including (1) observable transitions labelled by ports,
and unobservable τ transitions, and

• q0 ∈ Q is the initial state.
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Figure 2: The communication protocol in presence of faults.

For any pair of states q, q′ ∈ Q and a port p ∈ P ∪ {τ},

we write q
p
→ q′, iff (q, p, q′) ∈→. When the label is irrel-

evant, we simply write q → q′. Similarly, q
p
→ means that

there exists q′ ∈ Q, such that q
p
→ q′. In this case, we say

that p is enabled in state q. Figure 1 shows three atomic
components Sender, Channel, and Receiver. For example, in
atomic component Sender, we have Q = {s0, s1}, q

0 = s0,
P = {snd , sack}, and →= {(s0, snd , s1), (s1, sack , s0)}.
In practice, atomic components are extended with vari-

ables. Each variable may be bound to a port and modified
through interactions involving this port. We also associate
a guard and an update function to each transition. A guard
is a predicate on variables that must be true to allow the
execution of the transition. An update function is a local
computation triggered by the transition that modifies the
variables. For simplicity and without loss of generality, we
omit these details in this paper.

Definition 2 A computation of a component B = (Q,P,→
, q0) is a finite or infinite sequence of states q0q1q2 · · · , such
that (1) q0 = q0 and (2) for all j ≥ 0 (i) qj ∈ Q, and (ii)
qj → qj+1.

Reachable states. Let B = (Q,P,→, q0) be a compo-
nent and S be a state predicate in B; i.e., S ⊆ Q. We
define state predicate Reach1(S) = S ∪ {q′ | ∃q ∈ S :
q → q′}. That is, Reach1(S) can be computed by iden-
tifying states that are immediately forward reachable from
the set of states S. Likewise, one can compute Reach2(S) =
Reach1(Reach1(S)). In a finite state model, it is straightfor-
ward to show that there exists n ≥ 1, such that Reachn(S) =
Reachn+1(S). We call this the set of reachable states from
S and denote it by Reach(S). Thus, the set of reachable
states of a component B = (Q,P,→, q0) is Reach(B) =
Reach({q0}). For example, in Figure 1, we have
Reach(Sender) = {s0, s1}.

Interaction. For a given system built from a set of m
atomic components {Bi = (Qi, Pi,→i, q

0
i )}

m
i=1, we assume

that their respective sets of ports are pairwise disjoint; i.e.,
for any two i 6= j from {1..m}, we have Pi ∩ Pj = ∅. We
can therefore define the set P =

⋃m

i=1
Pi of all ports in the

system. An interaction is a set a ⊆ P of ports. When we
write a = {pi}i∈I , we suppose that for i ∈ I, pi ∈ Pi, where
I ⊆ {1..m}.

Definition 3 A composite component (or simply model) is
defined by a composition operator parametrized by a set of in-
teractions γ ⊆ 2P . B = γ(B1, . . . , Bm), is a transition sys-
tem (Q, γ,→, q0), where Q =

⊗m

i=1
Qi, q0 = (q01 , . . . , q

0
m),

and → is the least set of transitions satisfying the rule

a = {pi}i∈I ∈ γ ∀i ∈ I : qi
pi→i q

′

i ∀i 6∈ I : qi = q
′

i

(q1, . . . , qm)
a
→ (q′1, . . . , q

′

m)

In a composite component, τ -transitions do not synchronize
and execute in an interleaving fashion.

The inference rule in Definition 3 says that a composite
component B = γ(B1, . . . , Bm) can execute an interaction
a ∈ γ, iff for each port pi ∈ a, the corresponding atomic
component Bi can execute a transition labelled with pi; the
states of components that do not participate in the interac-
tion stay unchanged.

Figure 1 illustrates a composite component CCP =
γ(Sender,Channel,Receiver), where γ = {{snd , add1},
{rem1, rcv}, {rack , add2}, {rem2, sack}}. The behavior of
the model is as follows. The component Sender sends a
packet via port snd and receives the corresponding acknowl-
edgement through port sack . Likewise, Receiver receives the
sent packet through port rcv and sends an acknowledgement
through port rack . By each transmission, component Chan-
nel adds an item to its single-space buffer (through ports
add1 and add2) and by each delivery, the item is removed
(via ports rem1 and rem2).

Similar to atomic components, one can trivially express
the notions of computations and reachable states in the con-
text of composite components as well. For example, the set
of reachable states of the model in Figure 1 is the following
Reach(CCP ) = {s0c0r0, s1c1r0, s1c2r1, s1c3r0}.

4. FAULT MODEL AND RECOVERY
In this section, we describe our fault model and the con-

cept of fault recovery in the context of the component-based
framework described in Section 3.

4.1 Fault Model
Let B = (Q,P,→, q0) be an atomic component. In order

to specify the faulty behavior of component B, denoted Bf ,
we extend the component by introducing new ports P f . A
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Figure 3: The communication protocol with fault recovery.

fault transition in Bf is of the form t = (q, p, q′), such that
(1) t 6∈→, (2) q, q′ ∈ Q, and (3) p ∈ P f ∪ {τ}. If p ∈ P f ,
we say that fault transition t is observable. Otherwise, (i.e.,
p = τ), we say that fault transition t is internal. We call
transitions in → normal transitions. Now, let →f be the
set of fault transitions in component Bf . Thus, we obtain
component Bf = (Q,P ∪ P f ,→ ∪ →f , q0) and we call it
component B in the presence of faults.
We emphasize that such representation is possible notwith-

standing the type of the faults (be they stuck-at, crash, fail-
stop, timing, performance, Byzantine, message loss, etc.),
the nature of the faults (be they permanent, transient, or
intermittent), or the ability of the program to observe the
effects of the faults (be they detectable or undetectable). In
fact, representation of faults in transition systems has been
explored extensively.
We also note that since our focus is on model-based syn-

thesis of fault recovery, in our framework the set of faults
needs to be provided. Having said that, one can model the
effect of unanticipated faults by specifying the set of faults
that start from any state of a component and can reach any
state of the component. This is in fact the core idea in self-
stabilizing systems [13], where faults can perturb the system
to any arbitrary state. Modeling self-stabilizing systems and
unanticipated faults in BIP have been studied in [2]. All re-
sults in this paper hold regardless of the set of faults in a
model.
Likewise, we define a composite component in the pres-

ence of faults. Let B = γ(B1, . . . , Bm) be a composite com-

ponent and Bf = (γ ∪ γf )(Bf
1 , . . . , B

f
m) be the composite

component in the presence of faults. Obviously each inter-
action in γ only consists of ports associated with normal
transitions (called normal interactions). However, an inter-
action in γf (called fault interaction) consists of at least one

port in P
f
j , where 1 ≤ j ≤ m.

The concept of reachable states in a model in the pres-
ence of faults is similar to the one presented in Section 3, by
considering internal, normal, and fault transitions as well as
fault and normal interactions. Likewise, the notion of com-
putations can be trivially extended by considering the union
of normal and fault interactions and internal transitions.
Continuing our communication protocol example (see Fig-

ure 2), let us consider the case where the channel is lossy and
faults cause loss of the sent packet (i.e., internal transition

τ1) or the acknowledgement (i.e., internal fault transition
τ2). We denote this model by CCPf =
(γ ∪ γf )(Senderf ,Channelf ,Receiverf ). Components Sender
and Receiver have no faulty behavior
(i.e., P f =→f= ∅). In other words, Senderf = Sender and
Receiverf = Receiver. On the contrary, in Channel, we have
P f = ∅, and, →f= {c1 −−→ c0, c3 −−→ c0}. Since both fault
transitions are internal, we have γf = ∅.

Introducing faults to a model may result in obtaining un-
desirable behaviors. For instance, the occurrence of a fault
transition in Channel leads CCPf to reach the state s1c0r0
that is not reachable in the absence of faults. This state is
a deadlock state, as no interaction or internal transition is
enabled in s1c0r0.

Definition 4 Let B = (Q, γ,→, q0) be a model. We say
that a state q ∈ Q is a deadlock state, if and only if there
does not exist a ∈ γ such that q

a
→.

4.2 Fault Recovery
In general, introducing faults to a model may result in two

undesirable situations:

• Introducing deadlock states.

• Introducing cycles outside the set of reachable states
(i.e., livelocks).

In order to tackle these pitfalls, a common practice in
fault-tolerant system is to provide the system with a recov-
ery mechanism. Roughly speaking, given a model Bf , fault
recovery ensures that if faults cause a system to reach a
state in ¬Reach(B), the system is able to reach a state in
Reach(B) within a finite number of steps1.

Definition 5 Let Bf be a model in the presence of faults
and q0q1q2q3 · · · be a computation of Bf . We say that Bf

provides fault recovery iff when there exists i ≥ 1 such that
qi 6∈ Reach(B), then there exists j ≥ i + 1 , where qj ∈
Reach(B).

1We emphasize that in this paper, we are not concerned
with safety issues. In other words, safety can be temporar-
ily violated during recovery. In fault-tolerant systems, it is
normally assumed that the system works correctly in the
absence of faults when it reaches a normal state (in our con-
text, a state in Reach(B)).



Considering our communication protocol, one way to re-
solve the deadlock state s1c0r0 is to add the recovery mecha-
nism, where a packet is re-transmitted when the packet or its
acknowledgement is lost in the previous attempt. This solu-
tion results in obtaining the model CCP ′ =
γ′(Sender′,Channel,Receiver) in Figure 3, where:

• Sender′ includes an additional port rec and transition
s1

rec
→ s1.

• γ′ includes an additional recovery interaction
{rec, add1}.

The recovery interaction {rec, add1} is enabled when CCP ′f

is in the state s1c0r0. From this state, executing interaction
{rec, add1} results in re-transmitting the last packet, which
in turn leads the model to state s1c1r0. Since this state is
in Reach(CCP ′), we are guaranteed that the model recovers
and can resume its normal operation in the absence of faults.
Our goal in this paper is to investigate automated ap-

proaches to synthesize a component-based model that pro-
vides fault recovery, such as CCP ′ in Figure 3 from a given
component-based model in the presence of faults, such as
CCPf in Figure 2. To this end, we first present a set of con-
straints under which we devise our synthesis decision proce-
dure.

5. CONSTRAINTS FOR ADDING
RECOVERY

As discussed in Section 4, developing a recovery mecha-
nism for a model involves augmenting the model with com-
putations that ensure reaching normal operation of the model
when faults occur. For instance, a naive approach to achieve
such recovery is to reset all components in the model (e.g.,
to force all components to start working from their initial
states). Now, a natural question is whether such a solution
is acceptable for all models in all domains.
In order to automatically synthesize a recovery mechanism

for a model in the presence of faults that does not satisfy the
recovery condition as stated in Definition 5, one has to first
identify the constraints of such synthesis depending upon
correctness criteria and application domain:

• Correctness. We require that addition of recovery
should not interfere with the normal behavior of the
model in the absence of faults; i.e., adding recovery
does not result in changing the behavior of the original
model in the absence of faults. This is discussed in
Subsection 5.1.

• Application domain. The second type of the
constraints deals with the case where the initial model
encompasses a cyber-physical system. For instance, in
such systems, it is not reasonable (or sometimes pos-
sible) to change the behavior of physical processes in
order to add a recovery mechanism. Thus, our naive
reset solution is impractical as it is often impossible
to reset physical processes during system execution.
These constraints are discussed in Subsection 5.2.

5.1 Non-interference Constraints
The first set of constraints ensure that adding recovery to

a model in the presence of faults does not change the be-
havior of the model in the absence of faults. Formally, let
B = γ(B1, . . . , Bm) be a model and Bf be B in the presence
of faults. Suppose that B′ = γ′(B′

1, . . . , B
′

m) is synthesized
from B by adding some recovery mechanism; i.e., if B′f

reaches a state in ¬Reach(B′), then it eventually reaches
a state in Reach(B′). Recall that γ′ may include interac-
tions that do not exist in γ. In order to guarantee that such
synthesis preserves the normal behavior of the given model,
we require that when B′f recovers (i.e., it reaches a state
in Reach(B′)), it behaves the same as B in the absence of
faults. More specifically, we require that the set of compu-
tations of B and B′ in the absence of faults are equivalent.
Furthermore, we require that all atomic components in B′

behave the same as their corresponding atomic components
in B. To this end, we first introduce the notion of projection.

Definition 6 Let B = (Q,P,→, q0) be a component. The
projection of a set of transitions T ⊆→ on a state predicate
S ⊆ Q is the set of transitions:

T | S = {q → q′ ∈ T | (q ∈ S) ∧ (q′ ∈ S)};

i.e., the set of transitions that start in S and end in S.

We now formalize our correctness constraints as follows:

(C1) For all 1 ≤ i ≤ m, we have Qi = Q′

i, and

(C2) γ′ | Reach(B′) ⊆ γ | Reach(B′)

The first constraint is concerned with atomic components
in B′. In particular, constraint C1 requires that the state
space of each atomic component is kept unchanged during
synthesis. Constraint C2 ensures that no new interactions
are added to B′ in the absence of faults. This constraint
along with Constraint C1 ensure that the set of computa-
tions of B′ is equal to the set of computations of B in the
absence of faults.

5.2 Constraints on Cyber-physical
Interactions

In this section, we describe the constraints that have to be
met during addition of recovery to component-based models
of cyber-physical systems. In particular, our focus is on dif-
ferent types of interactions in such systems and their effect
during synthesis. For simplicity, we first consider scenarios
where an interaction is only between two components; inter-
actions with three or more components can be handled in a
similar fashion as discussed at the end of this Subsection.

Let B = γ(B1, . . . , Bm) be a model. We partition the
atomic components in B into classes BC (cyber compo-
nents) and BP (physical components). Such partitioning
is normally specified by a model designer. For instance, in
our communication protocol BC = {Sender,Receiver} and
BP = {Channel}. Based on this classification, we also parti-
tion interactions into four sets: cyber-to-cyber (CC), cyber-
to-physical (CP), physical-to-cyber (PC), and physical-to-
physical (PP). While CC and PP interactions can be trivially
identified, we distinguish between CP and PC interactions
based on whether the interaction is “initiated” by a cyber
component or a physical component. We expect that the



initiator of an interaction is identified by the designer, as it
depends upon the semantics of the given action. For exam-
ple, in our communication protocol example, it is expected
that Sender initiates the message transmission and, hence,
interaction {snd , add1} is considered to be a CP interac-
tion. Although the issue of symmetric interactions, where
the initiator cannot be determined is outside the scope of
this paper, we can consider it to be a set of interactions;
for example, an interaction between components A and B

would be viewed as two interactions: one where A is the
initiator and one where B is the initiator.
Before we describe the cyber-physical constraints, notice

that among all interaction types, CC is the most simple inter-
action. It involves two computational components. Hence,
during the synthesis process, it would be possible to revise
either of the two components involved in the interaction
by adding and/or removing transitions inside a component,
adding and/or removing ports inside a component, or adding
and/or removing interactions among components. For ex-
ample, in Figure 2, if the receiver interacted with another
cyber component that processed the messages, then during
synthesis, it would be possible to modify the receiver compo-
nent as well as the component that processed these messages.
Thus, we impose no restrictions over CC interactions.
The cyber-physical constraints are as follows:

(C3) Unlike CC interactions, CP interactions add constraints
during synthesis. Consider the interaction {snd , add1}
between Sender and Channel in Figure 2. This interac-
tion is initiated by Sender and Channel participates in
it. Since Channel is a physical process, it is not possi-
ble to modify this component during synthesis. Hence,
any synthesis algorithm must keep original Channel

transitions unchanged. It cannot add new transitions
(e.g., from state c1 to c3) or remove existing transi-
tions. Likewise, the synthesis algorithm cannot add or
remove existing ports. However, it may be possible to
utilize existing ports (e.g., add1 port in Channel) to add
new interactions (e.g., recovery interaction {rec, add1}
in Figure 3 for re-transmission by Sender).

(C4) In PC interactions, we have an issue similar to the
CP interactions; i.e., the physical component cannot
be modified to add/remove transitions and/or ports.
Additionally, PC interactions also prevent removal of
certain interactions. To illustrate this, consider the in-
teraction {rem1, rcv} in Figure 2. It is expected that
when Channel delivers the message, the receiver is ob-
ligated to accept it by performing its own transition
r0

rcv
→ r1. Thus, in addition to the constraints imposed

by physical components, a PC interaction requires one
to deal with forced interactions, where an action in one
component must be associated with an action in an-
other component. In other words, in the synthesized
model, we cannot have transitions where the physical
component executes its transitions but the correspond-
ing cyber component does not execute its transitions.

(C5) The effect of PP interactions can be understood by
the constraints in synthesizing physical components.
Specifically, it is not possible to add/remove any such
interactions and/or ports. Moreover, it is not permis-
sible to use existing ports to create new interactions.
(Note that this was possible in the CP interactions.)

Finally, for interactions that involve three or more compo-
nents, these restrictions can be extended in a similar man-
ner by first identifying the initiator component and then
extending above restrictions accordingly. For example, a CP

interaction (initiated by a cyber component with two phys-
ical components), it would not be possible to modify the
physical components. However, the ports inside the physi-
cal components can be used to create new interactions with
the cyber component.

6. THE SYNTHESIS PROBLEM AND ITS
COMPLEXITY

In this section, we focus on complexity analysis of the
problem of adding fault recovery to component-based mod-
els according to Constraints C1 · · ·C5 identified in Section
5. We consider an additional constraint that identifies an
efficiency requirement. Specifically, we can expect that the
components that interact in the original model can continue
to interact efficiently in the synthesized model. However,
new interactions among components that do not interact in
the original model may be inefficient:

(C6) Let B = γ(B1, . . . , Bn) be a model and
B′ = γ′(B′

1, . . . , B
′

n) be a synthesized model by adding
fault recovery to B. We require that if there exists an
interaction a ∈ γ′\γ that involves components {Bi}i∈I ,
where I ⊆ {1..n}, then there must exist an interaction
a′ ∈ γ, such that a′ also involves components {Bi}i∈I .
In other words, a new recovery interaction can only in-
volve components that interact in the original model.

Instance. A model B = γ(B1, . . . , Bn) where Bf =

(γ ∪ γf )(Bf
1 , . . . , B

f
n) is B in the presence of faults.

Component-based CPS synthesis decision
problem (CBCPS). Does there exist a model

B′ = γ′(B′

1, . . . , B
′

n), such thatB′f = (γ′∪γ′f )(B′f
1 , . . . , B′f

n )
provides fault recovery and meets Constraints C1 · · ·C6?

Theorem 1 CBCPS is NP-complete.

Proof. Given a certificate to the above decision problem,
it is straightforward to verify whether the certificate solves
the problem in polynomial time. Thus, the CBCPS belongs
to the class NP.

We now show that the problem is NP-hard. To this end,
we reduce the problem of adding masking fault-tolerance to
distributed programs (denoted MFTDP) [19] to our decision
problem. The MFTDP problem is as follows. Let V =
{v0, v1, . . . , vn} be a finite set of variables with finite domains

Dv0 , Dv1 , . . . , Dvn , respectively. A state is determined by
mapping each variable v in V to a value in Dv. The set of
all possible states obtained by variables in V is called the
state space. A transition is a pair of states of the form (s0, s1)
in the state space. A process π is defined by a set of guarded
commands of the form:

l :: g −→ st ;

where l is a label, guard g is a Boolean expression (i.e., a
predicate) defined over variables in V and st is a statement

that describes how the process’s state is updated. With-
out loss of generality, we assume that guards only involve
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a conjunctions of equalities (a guard with other arithmetic
and Boolean operators can be trivially transformed to a set
of guarded commands with only conjunctions of equalities).
Thus, an action g −→ st denotes the transition predicate
{(s0, s1) | s0 ⇒ g and s1 is obtained by changing s0 as pre-
scribed by st}. Consequently, a process π can be trivially
transformed into a transition system. Moreover, a process π
is constrained by a set of variables πr ⊆ V that it is allowed
to read and a set πw ⊆ πr that it is allowed to write. A
program Π is a set of processes defined over a common set
of variables.
To illustrate our NP-hardness proof, we utilize the follow-

ing program. Let V = {x, y}, where Dx = {0, 1, 2, 3} and
Dy = {0, 1}. Process π is defined by:

l1 :: (x = 0) ∧ (y = 0) −→ y := 1;
l2 :: (x = 0) ∧ (y = 1) −→ y := 0;

where πr = {x, y} and πw = {y}. Process π′ is defined by:

l3 :: (x = 1) −→ x := 2;

where π′

r = πw = {x}.
Fault actions are also specified by a set of guarded com-

mands. In our example, the following guarded command
represents a fault action:

lf :: (x = 0) −→ x := 1;

Moreover, there exists a set of guarded commands that
encode unsafe transitions that should not be executed during
the execution of the program. We assume that such tran-
sitions are not reachable in the absence of faults. In our
example, let the following guarded command encode an un-
safe transition:

lu :: (x = 2) −→ x := 3;

The MFTDP decision problem is as follows. Let Π =
{π1, . . . , πk} (i.e., a set of processes with read/write restric-
tions) be a program, f be a set of faults, and ut be a set of
unsafe transitions. Decide whether there exists a program
Π′ such that (1) in the absence of faults, the set of compu-
tations of Π′ is a subset of the set of computations of Π, (2)
Π′ respects read/write restrictions of Π, and (3) in the pres-
ence of faults, (i) Π′ never executes a transition in ut , and
(ii) if Π′ reaches a state in ¬Reach(Π′), then it eventually
reaches a state in Reach(Π′). This problem is known to be

NP-complete in the size of the state space of Π [19].

Mapping. We now map an arbitrary instance of MFTDP
to an instance of CBCPS as follows. Let V be a set of
variables and Π be a program defined over V in MFTDP2:

• (Cyber Components) We map each variable v in V to
an atomic component Bv = (Qv, Pv,→v, q

0
v) in our

instance of CBCPS. For instance, in Figure 4, com-
ponents Bx and By correspond to variables x and y

respectively in the above guarded commands exam-
ple. For each element d in Dv (i.e., the domain of
variable v), we include a state qd in the set Qv. For
instance, Qx = {q0, q1, q2, q3}, as Dx = {0, 1, 2, 3}. For
each transition (s0, s1) encoded in guarded commands
of Π that changes the value of variable v from d0 to

d1, we include a transition qd0
lv→v qd1 , where l is the

label of the guarded command in Π that encodes tran-
sition (s0, s1). We also include port lv in Pv

3. For
instance, in our example (see Figure 4), guarded com-

mands l1 and l2 are mapped to transitions q0
l1y
→ q1 and

q1
l2y
→ q0 in component By, as they change the value

of y. Likewise, guarded command l3 results in transi-

tion q1
l3x→ q2 in component Bx. We assume that all

components Bv, where v ∈ V , are cyber components.

• (Physical Component) We also include a special physi-
cal componentBph = (Qph , Pph ,→ph , q

0
ph), whereQph =

{q0, q1}, Pph = {ut}, →ph= {q0
ut
→ q1, q1 → q1}, and

q0ph = q0 (see Figure 4). Addition of this component is
regardless of the structure of the instance of MFTDP.

• (Interactions) In order to compose the atomic compo-
nents and build a model BΠ = γΠ(Bv1 , . . . , Bvn , Bph),
for each guarded command l in a process π, we include
an interaction al. First, this interaction does not in-
volve a component Bv, where v 6∈ πr. The interaction
involves a component Bv if v appears in the guard or
statement of l. If the guard of l includes a constraint
of the form v = d, and l does not change the value of v,

2We note that our mapping is polynomial-time in the size
of the state space of Π. Thus, our proof shows that CBCPS
is NP-complete in the size of global reachable states of a
component-based model.
3In case a guarded command encodes multiple transitions
within an atomic component, a simple naming convention
must be used to distinguish different ports.



then we add a self-loop qd
lv→ qd to component Bv. We

also add port lv to component Bv. For instance, map-
ping constraint (x = 0) in l1 results in adding self-loop

q0
l1x→ q0 and port l1x in component Bx (see Figure 4).

Now, for guarded command l, we construct interaction
al using all ports lv, where v is a variable that partic-
ipates in guarded command l; i.e, al =

⋃
v∈V

lv. Ob-
serve that such an interaction synchronizes transitions
in atomic components that are encoded in the corre-
sponding guarded command l. For example, guarded
command l1 is mapped to interaction {l1x, l1y} and
guarded command l3 is mapped to singleton interac-
tion {l3x}.

• (Fault and unsafe actions) Fault actions are mapped
to transitions and interactions in a similar manner.
For unsafe actions, we add corresponding transitions
and interactions as well. However, we include port ut
of physical component Bph in all unsafe interactions
as well. For example, unsafe action lu is mapped to
interaction {ut , lux}.

Reduction. We now show that the instance of MFTDP
has a solution if and only if the answer to the corresponding
instance of CBCPS is affirmative:

• (⇒) Let the answer to MFTDP be a program Π′. We
construct model BΠ′ from program Π′ in the same way
that we mapped an arbitrary instance of MFTDP to
an instance of CBCPS. We now show that this model
is sound ; i.e., BΠ′ and BΠ satisfy the constraints iden-
tified in Section 5 and C6:

– (Constraints C1 and C2) Since the set of compu-
tations of Π′ is a subset of the set of computations
of Π, we are guaranteed that the set of states of
each atomic component in BΠ′ is equal to the set
of state of the same component in BΠ. Also, BΠ′

and BΠ must have the same set of atomic compo-
nents, as MFTDP cannot employ new variables
to obtain Π′ from Π. Moreover, the set of tran-
sitions of Π′ that start and end in Reach(Π′) has
to be a subset of the set of transitions of Π that
start and end in Reach(Π′). Thus, in the absence
of faults, we have γ′ | Reach(B′) ⊆ γ | Reach(B′),
where γ and γ′ are the sets of interactions of BΠ

and BΠ′ . For example, in Figure 4, the behav-
iors of BΠ′ and BΠ are identical in the absence of
faults.

– (Fault recovery) In the presence of faults, if Π′

reaches a state in ¬Reach(Π′), then it eventually
reaches a state in Reach(Π′). Thus, by adding
masking fault-tolerance to Π, Π′ is augmented
with a set of transitions that guarantee reaching
Reach(Π′) from a state in ¬Reach(Π′). These
transitions in Π′ form a set of transitions and
interactions in BΠ′ . By construction, these in-
teractions guarantee that if BΠ′ reaches a state
in ¬Reach(BΠ′) in the presence of faults, then it
reaches a state in Reach(BΠ′), as by abstracting
componentBph , one can obtain an one-to-one cor-
respondence between state space of Π′ and global
states of BΠ′ . For example, in Figure 4, interac-
tion {recx, recy} is a recovery interaction.

– (Constraints C3 . . . C5) Since Π′ never executes
an unsafe transition even in the presence of faults,
it implies that interactions that involve compo-
nent Bph never get enabled. Thus, there is no
need to modify component Bph , respecting con-
straints C3 . . . C5. For example, Π′ cannot in-
clude transition ((x = 1), (x = 2)). Thus, in Fig-

ure 4, transition q1
l3x→ q2 and, hence, interaction

{l3x} are not included in component Bx when
we construct BΠ′ from Π′, disabling interaction
{ut , lux} in all computations of BΠ′ .

– (Constraint C6) Since Π′ respects read/write re-
strictions of Π, constructing BΠ′ does not include
an interaction whose set of components does not
match another interaction in BΠ. For example,
in Figure 4, recovery interaction {recx, recy} is
added between component Bx and By that al-
ready interact in the original model.

• (⇐) Let B′ be an answer to CBCPS (i.e., obtained
from BΠ, respecting Constraints C1 · · ·C6 and fault
recovery). One can construct Π′ by simply computing
the transition system of B′. Observe that Π′ never
executes a transition in ut . Otherwise, there exists a
computation of B′ that executes an interaction that
involves component Bph . Such an interaction cannot
occur, because it leads the model to a deadlock situa-
tion. Also, it is not possible to remove these interac-
tions, as B′ violates Constraint C3 or C4. Moreover,
Π′ does not violate read/write restrictions of Π. Oth-
erwise, B′ would violate Constraint C6. Furthermore,
it is straightforward to see that computations of Π′ is
a subset of computations of Π in the absence of faults
and Π′ augments a fault recovery mechanism (proof
is similar to the first two points of the forward direc-
tion).

7. HEURISTICS
During the addition of fault-tolerance to component-based

models, we need to add recovery transitions and/or inter-
actions to ensure that the model recovers to states that
are reachable from initial states in the absence of faults.
As shown in Section 6, the problem of synthesizing fault-
tolerant CPS models is NP-complete when we want to pre-
serve the efficiency of the original model. Hence, we need
to identify heuristics that permit efficient implementation
while ensuring that we can find the desired fault-tolerant
component-based model in many examples. Moreover, in
cases where preserving efficiency is not possible, we would
like to minimize the number of interactions that do not sat-
isfy constraint C6. Based on this discussion, we present five
heuristics, next. Of these, the first two preserve C6. The
remaining three provide a tradeoff between the feasibility to
synthesize the fault-tolerant model and its efficiency.

Before we describe our heuristics, we observe the execution
cost of any added interaction. An interaction among several
components suffers from a high execution cost since it re-
quires synchronization among several components. Also, if
an interaction is added among components that were not
interacting before, then the resulting execution cost may be
high. Based on these observations, we identify our heuris-
tics, next.



Heuristic 1: Original Interactions. If two com-
ponents interact in the original (input) model then we can
hypothesize that it is possible to implement the interaction
among those two components efficiently. For this reason, we
first identify any recovery interactions that can be added by
only focusing on components that interacted in the original
model. As an illustration, in the example in Figure 1, we
can add an interaction between the pair (Sender, Channel)
and (Channel, Receiver). Of course, this might include ad-
ditional recovery transitions added inside one component.
Also, it may include new interactions that utilize existing
transitions and/or the newly added transitions. However,
the choice of new transitions and/or interactions is limited
by the constraints of the cyber-physical system. For ex-
ample, in adding a new recovery interaction for Sender and
Channel component, we cannot add new transitions or ports
to Channel. However, existing ports could be composed with
new ports introduced in Sender.
A limitation of the first heuristic is that there are scenarios

where the original model involves interaction between sev-
eral components although the synthesized model needs to
include interactions that only include a subset of those com-
ponents. As an illustration, consider the extension of the ex-
ample in Figure 1 where there are two channels and two (cor-
responding) receivers. In this case, the original model will
contain a (broadcast) interaction where the sender and both
channels participate. However, the synthesized model may
also contain additional (unicast) interactions where sender
and only one channel participate. Based on this observation,
we introduce the following heuristic.

Heuristic 2: Limited Original Interactions. If the
original model contains an interaction that includes com-
ponents B1, B2, . . . , Bn then during recovery, we consider
interactions consisting of a subset of components in {B1,
B2, ..., Bn}. Although this may result in a worst case situ-
ation where we need to consider an exponential number of
possibilities, we note that this is exponential in the number
of components (and not in state space). Furthermore, this
could be optimized further by only considering interactions
where we only consider a small subset of components (e.g.,
with two or three components) and their complements (i.e.,
all components except the chosen components).
The above heuristics only permit interactions among com-

ponents that were interacting in the original model. In
some scenarios, it may be necessary to add further interac-
tions among components that did not interact in the original
model. For this reason, we introduce the following heuristic:

Heuristic 3: Transitive Interaction. If no recovery
could be added by applying heuristics 1 and 2, we consider
new interactions that are obtained by transitive closure of
interactions in the original model. Specifically, if original
model contains an interaction between components B1 and
B2 and another interaction between components B2 and B3,
then we consider possible recovery interactions among com-
ponents B1, B2, and B3. As an illustration, in the exam-
ple in Figure 1, we can consider an interaction between the
Sender, Channel, and Receiver.

Heuristic 4: Limited Transitive Interaction. For
the case where transitive interaction also fails to add the re-
quired recovery, we consider limited transitive interactions.

Number of Reachable Time for Addition
channels States of Fault Recovery (ms)

5 103 48
10 106 58
50 1030 149
100 1060 489
200 10120 2278
500 10300 11935
1000 10600 58763
2000 101200 256166

Table 1: Experimental results for automated addi-
tion of fault recovery to broadcast channel.

For instance, in the example considered in the previous para-
graph, this would result in consideration of an interaction
between components B1 and B3.

Finally, for the case where all these heuristics fail, we
consider new interactions that are developed from scratch.
Specifically, in this case, the new recovery interactions may
not be related to the interactions in the original model.

Heuristic 5: Hail Mary. Since our goal is to identify
interactions with small number of components, we first con-
sider interactions among any set of two components, then
any set of three components and so on.

8. EXPERIMENTAL RESULTS
In this section, we discuss the experimental results of ap-

plying the heuristics from Section 7 in the context of the
example in Figure 1 as well as another example. All exper-
iments in this section are run on a PC with AMD Athlon
II X4 2.8 MHz processor with 6GB RAM. All heuristics are
implemented using the Glu/CUDD package [23].

8.1 Broadcast Channel
Based on the heuristics in Section 7, we first consider pos-

sible new interactions that can be added to the model in
Figure 1. For the case where there is only one channel and
one receiver, according to heuristic 1, we consider possible
interactions between (Sender, Channel) and (Channel, Re-

ceiver). While we consider all possible interactions that can
be added, we ensure that no new transitions can be added to
Channel component and no existing transitions from Chan-

nel component are removed. Based on these restrictions,
we add the interaction that consists of transition (s1, s1) in
Sender and the transition (c0, c1) in the Channel. Applying
this heuristic results in obtaining the model in Figure 3.

For the case where there are multiple channels, heuristic 1
adds the interaction to deal with the case where all receivers
lose the message. Subsequently, heuristic 2 deals with the
case where a subset of receivers lose the message. First,
heuristic 2 considers interactions between a subset of two
components. Thus, it considers an interaction between (1)
a pair of channels and (2) between the sender and one chan-
nel. Of these, due to the restriction imposed on the channel
component, we cannot add any interactions between a pair
of channels. And, it adds an interaction between the sender
and one channel. Since added interactions suffice to pro-
vide recovery for this example, an exponential blowup in
the number of possible component combinations is avoided.

The results for the time required for synthesis for a differ-
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Figure 5: A train signal controller.

ent number of receivers is as shown in Table 1. Furthermore,
based on the discussion above, the time required for obtain-
ing the fault-tolerant program is at most quadratic in the
number of components. Furthermore, the time needed for
addition of fault recovery is small. For example, even with
1000 receivers, the time for addition of fault recovery is less
than one minute.

8.2 Train Signals Controller
We also applied our heuristics to a train signal controller

example. In this example (see Figure 5), a train (physical
component Train) travels on a circular railway track con-
trolled by a sequence of signals (cyber components Signal1

· · · Signal4). The train can pass a signal only if it is green.
Each signal operates as follows. When Train passes the sig-
nal (say Signal3), it changes phase from green to red. This
action is synchronized with the two preceding signals (i.e.,
Signal2 and Signal1), so that the previous signal turns yel-
low (i.e., Signal2) and the signal before that (i.e., Signal1)
turns green. Moreover, this action is synchronized with the
location of Train as well (i.e., moving from location 3 to 4).
Thus, by starting from initial state Y RGG3, where the first
4 letters denote the state of the signals and the last num-
ber represents the state of Train, the composite component
exhibits a computation of the following form:

Y RGG3, GY RG4, GGY R1, RGGY 2, · · ·

Faults can arbitrarily cause change of phase from red to
yellow in each component. We show this in Figure 5 in com-
ponent Signal3 only for simplicity. The occurrence of such
a fault causes the model to reach the state GY Y G4 which
is a deadlock state. Applying the heuristics introduced in
Section 7 adds the recovery interaction {rec4, rec3, rec2} and
the corresponding transitions in component Signal4, Signal3,
and Signal2 as shown in Figure 5.
The time for synthesis for the train example is as shown

in Table 2. As we can see, when the number of trains is

2 trains 3 trains 4 trains 5 trains
5 signals 50ms
8 signals 52ms 53ms
10 signals 107ms 65ms 62ms
12 signals 119ms 582ms 54ms
15 signals 765ms 11649ms 105ms 138ms

Table 2: Experimental results for automated addi-
tion of fault recovery to train signals controller.

increased initially, the reachable state space increases. This
causes an increase in the time for addition of fault recovery.
However, after a certain threshold on the number of trains,
the level of concurrency decreases. In other words, only a
small subset of trains can move at a given instance. Hence,
after this threshold, the time needed for addition of fault
recovery decreases.

9. CONCLUSION
In this paper, we focused on the problem of automated

addition of fault recovery to component-based models that
encompass cyber-physical systems. We used the BIP frame-
work [3, 16] to specify component-based models and pro-
posed a set of constraints to capture cyber-physical fea-
tures. We showed that automated addition of fault recov-
ery to cyber-physical component-based models augmented
with faulty behavior is NP-complete. Consequently, we in-
troduced a set of heuristics to cope with exponential com-
plexity. Our method is fully implemented using BDDs [12]
for which we presented very encouraging experimental re-
sults. Although our focus is on BIP, all results in this paper
can be applied to any model specified in terms of a set of
components synchronized by broadcast and rendezvous in-
teractions.

There are still several open complexity questions. For
example, the complexity of the recovery addition problem



where non-interacting components can participate in recov-
ery (i.e., eliminating Constraint C6) is unknown. Another
open problem is the complexity of the synthesis problem
where recovery interactions must involve a minimum num-
ber of components. We are currently working on the same
problem in the context of timed component-based cyber-
physical models. Another interesting research direction is
to exploit invariant generation techniques to generate recov-
ery mechanisms for component-based models.
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