
Compositional Verification of
Real-Time Fault-Tolerant Programs ∗

Borzoo Bonakdarpour
VERIMAG

Centre Équation
2 ave de Vinage

38610, GIÈRES, France
borzoo@imag.fr

Sandeep S. Kulkarni
3115 Engineering Building

Department of Computer Science and
Engineering

Michigan State University
East Lansing, MI 48824, USA
sandeep@cse.msu.edu

ABSTRACT
A hard-masking real-time program is one that satisfies safety
(including timing constraints) and liveness properties in the
absence and presence of faults. It has been shown that
any hard-masking program can be decomposed into a fault-
intolerant version and a set of fault-tolerance components
known as detectors and δ-correctors. In this paper, we in-
troduce a set of sufficient conditions for interference-freedom
among fault-tolerance components and real-time programs.
We demonstrate that such conditions elegantly enable us to
compositionally verify the correctness of hard-masking pro-
grams. Preliminary model checking experiments show very
encouraging results in both achieving speedups and reducing
memory usage in verification of embedded systems.

Categories and Subject Descriptors
D.4.5 [Operating Systems]: Reliability—Fault-tolerance,
Verification; D.4.7 [Operating Systems]: Organization
and Design—Real-time and embedded systems; F.3.1 [Logics
and Meanings of Programs]: Specifying and Verifying
and Reasoning about Programs—Logic of programs

General Terms
Theory, Verification, Reliability

Keywords
Fault-tolerance, Real-time, Compositional verification, In-
terference - freedom, Formal methods

∗This is an extended version of the paper appeared in
ACM/IEEE International Conference on Embedded Soft-
ware (Emsoft’09). This work is partially sponsored by
the COMBEST European project, NSF CAREER CCR-
0092724, and ONR Grant N00014-01-1-0744.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’09,October 12–16, 2009, Grenoble, France.
Copyright 2009 ACM 978-1-60558-627-4/09/10 ...$10.00.

1. INTRODUCTION
Component-based methods have increasingly become pop-

ular in all steps of system analysis and design. Conceptually,
each component is assigned an (ideally) independent task in
order to separate various concerns of a computing system,
while their collaboration accomplishes a common goal. In
the context of embedded systems, two crucial tasks that are
desirable to separate are meeting timing constraints and pro-
viding dependability. However, these tasks have conflicting
natures, making their separation and reasoning about their
correctness fairly complex.

In [10], we proposed a theory of real-time fault-tolerance
components. This theory separates fault-tolerance and func-
tionality concerns of real-time systems. We identified three
types of fault-tolerance components, namely detectors, weak
δ-correctors, and strong δ-correctors. These components are
conceptually based on the principle of detecting a state pred-
icate to ensure that program actions would be safe and cor-
recting a state predicate to ensure that the program even-
tually reaches a desirable state within a bounded amount
of time. We also introduced necessary conditions for exis-
tence of the aforementioned components in a hard-masking
fault-tolerant real-time program. A hard-masking program
is one that meets timing-independent safety, timing con-
straints, and bounded-time recovery to the normal behavior
even in the presence of faults. In particular, we showed that
any hard-masking program can be decomposed into a fault-
intolerant version and a set of fault-tolerance components.
The fault-intolerant program provides the normal operation
and functional behavior, while the fault-tolerance compo-
nents ensure satisfaction of the program’s specification in
the presence of faults.

One can observe that applying our theory of decomposi-
tion in [10] provides us with structural insights for component-
based analysis of fault-tolerant real-time programs. Never-
theless, the theory comes short of assisting in modular rea-
soning about the correctness of such programs. For instance,
a natural question in this context is:

Does correctness of a fault-tolerance component
imply the correctness of its properties in the hard-
masking program that contains it?

The answer to this question is affirmative, if execution of
the component is not interfered by other components or by
the fault-intolerant program.

With this motivation, in this paper, we focus on develop-

1

ing sufficient conditions tailored for exhibiting non-
interference of fault-tolerance components. The conditions
identified in this paper are containment, superposition, atom-
icity, order of execution, and termination. Obviously, cor-
rectness of fault-tolerance components along with their
interference-freedom guarantees the correctness of their prop-
erties in the hard-masking program that contains them. A
potential consequence of such modular reasoning, which is
equally important, is to reduce the cost of verification of
fault-tolerant real-time programs. Thus, we propose the
following four steps in order to compositionally verify the
correctness of hard-masking properties of a given real-time
program:

1. decomposing the program into a fault-intolerant pro-
gram, detector, and δ-corrector components,

2. demonstrating that these components and the (fault-
intolerant) program do not interfere,

3. verifying the basic functionality of the program in the
absence of faults (e.g., computing tasks,
deadlock-freedom, etc), and

4. verifying the correctness of fault-tolerance components
separately.

In [10], we showed the necessity of existence of fault-tolerance
components in any hard-masking program and presented a
constructive approach to obtain such components. In fact, in
many cases, this task can be automated as well. This consti-
tutes Step 1. Steps 3 and 4 can be performed using a model
checker or a theorem prover. Thus, in this paper, our focus is
on Step 2, i.e., sufficient conditions that enable us to achieve
compositional verification. We emphasize that except termi-
nation, all other conditions can be verified through simple
syntactic methods. In other words, the time for demonstrat-
ing interference-freedom of components using our results is
expected to be negligible and all resources can be diverted
to their verification. Our preliminary experiments on model
checking of fault-tolerant real-time programs using the the-
ory presented in this paper demonstrate very encouraging
results in achieving better memory usage and speedups.
Organization. In Section 2, we define the preliminary
concepts. Section 3 is dedicated to present our fault model
and the notion of hard-masking fault-tolerance. Then, in
Section 4, we introduce the notion of fault-tolerance compo-
nents (i.e., detectors and δ-correctors). In Section 5, we pro-
pose the theory of interference-freedom for fault-tolerance
components and present experimental results. Section 6
presents the related work. Finally, we make concluding re-
marks and discuss future work in Section 7. We use a run-
ning example (circular traffic controller) throughout the pa-
per to better describe the concepts. A guide to notation is
provided in Appendix A and all proofs appear in Appendix
B.

2. REAL-TIME PROGRAMS AND SPECI-
FICATIONS

In our framework, real-time programs are specified in terms
of their state space and their computations [4,5]. The defini-
tion of specification is adapted from Alpern and Schneider [3]
and Henzinger [16].

2.1 Real-Time Programs
Let V = {v0, v1 · · · } be a set of discrete variables and

X = {x0, x1 · · · } be a set of clock variables. Each discrete
variable vi, 0 ≤ i, is associated with a domain Di of values.
Each clock variable xj , 0 ≤ j, ranges over nonnegative real
numbers (denoted R≥0). A location is a function that maps
discrete variables in V to a value from their respective do-
main. A clock constraint over X is a Boolean combination
of formulae of the form x � c or x − y � c, where x, y ∈ X,
c ∈ Z≥0, and � is either < or ≤. We denote the set of all
clock constraints over X by Φ(X). A clock valuation is a
function ν : X → R≥0 that assigns a real value to each clock
variable.

For τ ∈ R≥0, we write ν + τ to denote ν(x) + τ for every
clock variable x in X. Also, for λ ⊆ X, ν[λ := 0] denotes
the clock valuation that assigns 0 to each x ∈ λ and agrees
with ν over the rest of the clock variables in X. A state
(denoted σ) is a pair (s, ν), where s is a location and ν is a
clock valuation for X. Let u be a (discrete or clock) variable
and σ be a state. We denote the value of u in state σ by
u(σ). The set of all possible states is called the state space
obtained from the associated variables. A transition is a pair
(σ0, σ1) of states in the state space. We classify transitions
as follows:

1. immediate transitions of the form (s0, ν) → (s1, ν[λ :=
0]), where s0 and s1 are two locations and λ is a subset
of X, and

2. delay transitions of the form (s, ν) → (s, ν + τ), which
preserves the location of state at s for time duration
τ , τ ∈ R≥0.

Definition 2.1 (state predicates) A state predicate S is
any subset of the state space such that in the corresponding
Boolean expression, clock constraints are in Φ(X), i.e., clock
variables are only compared with nonnegative integers. By
σ |= S, we mean that state σ is in state predicate S.

Intuitively, a real-time program is defined in terms of its
state space and set of transitions. However, to concisely
present and reason about programs, we use timed guarded
commands.

Definition 2.2 (real-time programs) A real-time pro-
gram P is specified by the tuple 〈VP , XP ,GCP〉, where VP

is a set of discrete variables, XP is a set of clock variables,
and GCP is a finite set of timed guarded commands in the
state space of P classified as follows:

• A timed action is of the form

L :: g
λ
−→ st ;

where L is a label, g is a state predicate, st is a state-
ment that describes how VP is updated, and λ ⊆ XP

is a set of clock variables that are reset by execution
of L. Thus, L denotes the set of transitions {(s0, ν) →
(s1, ν[λ := 0]) | (s0, ν) |= g and s1 is obtained by
changing s0 as prescribed by λ and st}.

• A delay action is of the form

L :: g −→ wait;

2

where g identifies the set of states from where de-
lay transitions with arbitrary durations are allowed
to be taken as long as g continuously remains true.
Thus, L denotes the set of transitions {(s, ν) → (s, ν +
τ) | (s, ν + ǫ) |= g, for all τ ∈ R≥0 and ǫ ≤ τ .

2.1.1 Example: Circular Traffic Controller
Consider a chain of n traffic signals operating in a cir-

cular manner. A signal changes phase from green to yel-
low and then to red, based on a set of timing constraints.
A signal turns green some time after the previous signal
in chain turns red. A traffic controller program (T C) has
n discrete variables to represent the status of the signals,
i.e., VT C = {sig0, sig1 · · · sign−1}, where the domain of sigi,
0 ≤ i ≤ n−1 is {G, Y, R} . T C has three timers for each sig-
nal to change phase, i.e., XT C = {xi, yi, zi | 0 ≤ i ≤ n − 1}.
When a signal turns green, it may turn yellow within 10
time units, but not sooner than 1 time unit. Subsequently,
the signal may turn red between 1 and 2 time units after it
turns yellow. Finally, when the signal is red, it may turn
green within 1 time unit after the previous signal becomes
red. All signals operate identically. Thus, GC T C is as fol-
lows:

T C1i :: (sig i = G) ∧ (1 ≤ xi ≤ 10)
{yi}
−−−→ (sig i := Y);

T C2i :: (sig i = Y) ∧ (1 ≤ yi ≤ 2)
{zi}
−−−→ (sig i := R);

T C3i :: (sig i = R) ∧ (zj ≤ 1)
{xi}
−−−→ (sig i := G);

T C4i :: ((sig i = G) ∧ (xi ≤ 10)) ∨
((sig i = Y) ∧ (yi ≤ 2)) ∨
((sig i = R) ∧ (zj ≤ 1)) −−−→ wait;

where i ∈ {0 · · ·n − 1} and j = (i − 1 + n) mod n.

2.2 Specifications

Definition 2.3 (computations) Let V and X be sets
of discrete and clock variables respectively. A computation
is a finite or infinite timed state sequence of the form σ =
(σ0, τ0) → (σ1, τ1) → · · · iff the following conditions are
satisfied (1) σi = (si, νi) is a state in the state space obtained
from V and X for all i ∈ Z≥0, and (2) the sequence τ0, τ1, · · ·
(called the global time), where τi ∈ R≥0 for all i ∈ Z≥0,
satisfies the following constraints:

• (monotonicity) for all i ∈ Z≥0, τi ≤ τi+1,

• (time consistency) for all i ∈ Z≥0, (1) if τi < τi+1,
then si = si+1 and νi+1(x) = νi(x)+ (τi+1 − τi) for all
x ∈ X, and (2) if τi = τi+1, then νi+1 = νi[λ := 0] for
some λ, where λ ⊆ X.

Notice that in Definition 2.3, we do not specify an initial
value for the global time. Now, let Σ be a set of computa-
tions. We require that Σ must be closed with respect to time
offsets. That is, ∀σ ∈ Σ : ∀t ∈ R : (σ+ t) ∈ Σ, where σ+ t

denotes the computation (σ0, τ0 + t) → (σ1, τ1 + t) → · · · ,
such that τ0 + t ≥ 0.
Notation. Let σi denote the pair (σi, τi) in computation
σ. Also, let α be a finite computation of length n and β

be a finite or infinite computation. The concatenation of α

and β (denoted αβ) is a computation, iff states αn−1 and β0

meet the constraints of Definition 2.3. Otherwise, the result
of concatenation is null. If Γ and Ψ are two sets containing
finite and finite/infinite computations respectively, then ΓΨ
= {αβ | (α ∈ Γ) ∧ (β ∈ Ψ) }.

Let P = 〈VP , XP ,GCP〉 be a program. We define a com-
putation of P by adding the following constraint to Defi-
nition 2.3: for all i ∈ Z≥0, (σi, σi+1) is a transition of P
described by a timed guarded command in GCP . We de-
note the set of computations of P by ΠP and require its
maximality, i.e., given a computation prefix α of length n

of P, P does not contain the computation that stutters at
αn−1 indefinitely if there exists other computation of P that
extends α.

Definition 2.4 (closure) We say that a state predicate
S is closed in P = 〈VP , XP ,GCP〉 iff in every computation
(σ0, τ0) → (σ1, τ1) → · · · in ΠP , if σj |= S, j ∈ Z≥0, then
σk |= S, for all k, k ≥ j.

Definition 2.5 (specifications) A specification (or prop-
erty), denoted SPEC , is a tuple 〈VSPEC , XSPEC , ΣSPEC 〉
where VSPEC is a set of discrete variables, XSPEC is a set of
clock variables, and ΣSPEC is a set of infinite computations
in the state space of SPEC .

As we argued in [10], we allow real-time programs to ex-
hibit Zeno behaviors. The reason is due to the fact that such
modeling gives freedom in dealing with situations where a
component reaches a state from where another component
makes progress.
Specifying timing constraints. In order to express
time-related behaviors of real-time programs (e.g., dead-
lines and recovery time), we focus on a standard property
typically used in real-time computing known as the sta-
ble bounded response property [16]. A stable bounded re-
sponse property, denoted P 7→≤δ Q, where P and Q are two
state predicates and δ ∈ Z≥0, is the set of all computations
(σ0, τ0) → (σ1, τ1) → · · · in which, for all i ≥ 0, if σi |= P ,
then there exists j, j ≥ i, such that:

1. σj |= Q,

2. τj − τi ≤ δ, and

3. for all k, i ≤ k < j, σk |= P .

In other words, it is always the case that a state in P is
followed by a state in Q within δ time units and P remains
true until Q becomes true. We call P the event predicate, Q

the response (or recovery) predicate, and δ the response (or
recovery) time.

The specifications considered in this paper are an inter-
section of a safety specification and a liveness specification
[3,16]. In particular, we concentrate on a special case where
the specification is the intersection of (1) timing-independent
safety characterized by a set of bad instantaneous transitions
(denoted SPEC bt), (2) timing dependent safety character-
ized by a set of stable bounded response properties (denoted
SPEC br), and (3) liveness.

Definition 2.6 (safety specifications)

1. (timing-independent safety) Let SPEC bt be a finite set
of instantaneous bad transitions of the form (s0, ν) →
(s1, ν[λ := 0]), where s0 and s1 are two locations and
λ ⊆ XSPEC . We denote the specification whose com-
putations have no transition in SPEC bt by SPEC bt.

2. (timing constraints) We denote SPEC br by the con-
junction

Vm

i=0(Pi 7→≤δi
Qi), for state predicates Pi

and Qi, and, response times δi.

3

Thus, given a specification SPEC , one can implicitly iden-
tify SPEC bt and SPEC br as defined above. Throughout the
paper, SPEC br is meant to prescribe how a program should
meet its timing constraints such as providing bounded-time
recovery to its normal behavior after the occurrence of faults.
We formally define the notion of recovery in Section 3.

Definition 2.7 (liveness specifications) A liveness spec-
ification of SPEC is a set of computations that meets the
following condition: for each computation prefix α, there
exists an infinite computation β such that αβ ∈ SPEC .

2.2.1 Example (cont’d)
The timing-independent safety specification of T C is char-

acterized by the set of bad transitions where two signals are
not red in their target states:

SPEC btT C
= {(σ0, σ1) | ∃i, j ∈ {0 · · ·n − 1} :

(i 6= j) ∧ (sigi(σ1) 6= R) ∧ (sigj(σ1) 6= R)}.

We present the timing constraints of T C (i.e., SPEC br) in
Section 3, where we define the notion of recovery.

2.3 Refinement
We now define what it means for a program to refine a

specification and what it means for a program P ′ (typically,
a fault-tolerant program) to refine a program P (typically, a
fault-intolerant program). Essentially, we would like to say
that ‘P ′ refines P’ iff computations of P ′ are a subset of that
in P. However, if P ′ is obtained by adding fault-tolerance to
P, then P ′ may contain additional variables that are not in
P. Hence, it will be necessary to project the computations
of P ′ on (the variables of) P and then check if the projected
computation is a computation of P.

Definition 2.8 (projection) Let P = 〈VP , XP ,GCP〉
and P ′ = 〈VP′ , XP′ ,GCP′〉 be real-time programs such that
VP′ = VP ∪ ∆v and XP′ = XP ∪ ∆x for some ∆v and ∆x.
The projection of a state of P ′ on P is a state obtained
by considering VP ∪ XP only, i.e., by abstracting away the
variables in ∆v ∪ ∆x.

The same concept applies to programs and specifications.
Extending this definition for computations, we say that the
projection of a computation of P ′ on P (respectively, SPEC)
is a computation obtained by projecting each state in that
computation on P (respectively, SPEC).

Definition 2.9 (refines) Let P and P ′ be real-time pro-
grams, S be a state predicate and SPEC be a specification.
We say that P ′ refines P (respectively, SPEC) from S iff
the following two conditions hold:

1. S is closed in P ′, and

2. for every computation in ΠP′ that starts in a state
where S is true, the projection of that computation
on P (respectively, SPEC) is a computation of ΠP

(respectively, ΣSPEC).

The reason we require closure of S in Definition 2.9 is that
S typically expresses a set of legitimate states from where
correct execution of a program is closed. In order to reason
about the correctness of programs (in the absence of faults),
we define the notion of program invariant.

Definition 2.10 (invariants) Let P be a real-time pro-
gram, S be a nonempty state predicate, and SPEC be a
specification. We say that S is an invariant of P for SPEC
iff P refines SPEC from S.

Whenever the specification is clear from the context, we
will omit it; thus, “S is an invariant of P” abbreviates “S

is an invariant of P for SPEC ”. We note that our rather
unconventional definition of invariant is due to the fact that
in our framework, an invariant has double role. First, it
specifies the closure property of a program in the absence of
faults. Thus, starting from a set of initial states, one possible
invariant can simply be the set of reachable states. Secondly,
as we will describe in Section 3, the invariant predicate also
specifies a set of legitimate states which in turn determines
the reachability condition of a program for recovery when
faults occur.

2.3.1 Example (cont’d)
One invariant for the program T C is the following, where
l = (j − 1 + n) mod n:

ST C = ∀i ∈ {0 · · ·n − 1} :
[(sig i = G) ⇒ ((xi ≤ 10) ∧

∀j ∈ {0 · · ·n − 1} : (j 6= i ⇒ (sigj = R)) ∧ (zl > 1))]
∧
[(sig i = Y) ⇒ ((yi ≤ 2) ∧

∀j ∈ {0 · · ·n − 1} : (j 6= i ⇒ (sigj = R)) ∧ (zl > 1))]
∧
[(∀j ∈ {0 · · ·n − 1} : (sigj = R))

⇒ ∃j ∈ {0 · · ·n − 1} : ((zl ≤ 1) ∧
∀k ∈ {0 · · ·n − 1} : (j 6= k ⇒ (zk > 1)))].

It is straightforward to see that T C refines SPEC btT C
from

ST C , i.e., starting from a state in ST C , the program never
reaches a state where two signals are not red.

3. HARD-MASKING FAULT-TOLERANCE

3.1 Fault Model
Intuitively, the faults that a program is subject to may

perturb the execution of the program by variable corruptions
or unexpected time delays. Thus, faults can be formally
represented by a set f of (immediate and delay) transitions
in the state space of a program. Similar to program actions,
faults can be concisely modeled by timed and delay actions.
We denote the program P in the presence of f by P[]f =
〈VP , XP ,GCP[]f 〉, where GCP[]f is obtained by taking the
union of fault and program timed guarded commands.

Just as we use invariants to show program correctness in
the absence of faults, we use fault-spans to show the correct-
ness of programs in the presence of faults.

Definition 3.1 (fault-spans) Let P = 〈VP , XP ,GCP〉
be a real-time program with invariant S, T be a state pred-
icate, and f be a set of fault transitions. We say that T is
an f-span of P from S iff

1. S ⊆ T , and

2. T is closed in ΠP[]f .

4

3.1.1 Example (cont’d)
The program T C is subject to clock reset faults due to

circuit malfunctions. In particular, we consider faults that
reset one z timer at a time at any state in the invariant ST C

without changing the location of T C. Formally,

Fi :: ST C
{zi}
−−−→ skip;

where i ∈ {0 · · ·n−1}. It is straightforward to see that in the
presence of the above faults, T C may violate SPEC btT C

. For

instance, if F1 occurs when T C is in a state where (sig0 =
sig1 = R) ∧ (z0 ≤ 1) ∧ (z1 > 1), in the resulting state, we
have (sig0 = sig1 = R) ∧ (z0 ≤ 1) ∧ (z1 = 0). From this
state, immediate execution of timed actions T C30 and then
T C31 results in a state where (sig0 = sig1 = G), which
is clearly a violation of the safety specification SPEC btT C

.
Thus, we require that when a fault occurs, the program,
first, ensures that nothing catastrophic happens by reaching
a state where both signals are red, and then recovers to its
normal behavior. Formally, the timing constraints of T C is
as follows:

SPEC brT C
≡ (¬ST C 7→≤3 QT C) ∧ (Q 7→≤7 ST C),

where QT C = ∀i ∈ {0 · · ·n − 1} : ((sigi = R) ∧ (zi > 1)).
The response times in SPEC brT C

are simply two arbitrary
numbers for illustration.

3.2 Fault-Tolerance
We now define what we mean by fault-tolerance in the

context of real-time programs. Obviously, in the absence
of faults, a program should refine its specification. In the
presence of faults, however, it may not refine its specifi-
cation and, hence, it may refine some ‘tolerance specifica-
tion’. This tolerance specification is based on refinement
of a combination of (timing-independent) safety, liveness,
timing constraints, and a desirable bounded-time recovery
mechanism in the presence of faults. The resulting toler-
ance specification with respect to each combination, defines
a level of fault-tolerance. In this paper, we focus on the
strongest level, known as hard-masking fault-tolerance [8].
Intuitively, given a specification SPEC , the hard-masking
tolerance specification of SPEC is identical to SPEC . In
other words, the occurrence of all faults are masked. More-
over, we require SPEC to prescribe a bounded-time recovery
mechanism.

Definition 3.2 (hard-masking tolerance specification)
Let SPEC be a specification where SPEC ⇒ (¬R 7→≤θ R)
for some recovery predicate R and some recovery time θ ∈
Z≥0. The hard-masking tolerance specification of SPEC is
SPEC .

We are now ready to define what it means for a program to
be hard-masking f -tolerant. With the intuition that a pro-
gram is hard-masking f -tolerant to SPEC if it refines SPEC
in the absence of faults and it refines the hard-masking tol-
erance specification of SPEC in the presence of f , we define
‘hard-masking f -tolerant to SPEC from invariant predicate
S’ as follows.

Definition 3.3 (hard-masking programs) Let P be
a real-time program with invariant S, f be a set of fault
transitions, SPEC be a specification, and θ be a nonnegative
integer. We say that P is hard-masking f-tolerant to SPEC

with recovery time θ from S iff the following two conditions
hold:

• P refines SPEC from S, and

• there exists T such that T ⊇ S and P[]f refines the
hard-masking tolerance specification of SPEC for re-
covery time θ and recovery predicate S from T .

3.2.1 Example (cont’d)
The following program is a hard-masking version of our

traffic controller program, denoted by T C′. In this program,
i, k ∈ {0 · · ·n−1}, j = (i−1+n) mod n, k 6= i, and t1 and
t2 are two new clock variables to keep track of time elapsed
since ¬S and Q have become true, respectively:

T C′1i:: (sigi = G) ∧ (1 ≤ xi ≤ 10)
{yi}
−−−→ (sigi := Y);

T C′2i:: (sigi = Y) ∧ (1 ≤ yi ≤ 2)
{zi}
−−−→ (sigi := R);

T C′3i:: (sigi = R) ∧ (zj ≤ 1) ∧

(sigj = R)
{xi}
−−−→ (sigi := G);

T C′4i:: ((sigi = G) ∧ (xi ≤ 10)) ∨
((sigi = Y) ∧ (yi ≤ 2)) ∨
((sigi = R) ∧ (zj ≤ 1)) −−−→ wait;

T C′5i:: (sigi 6= R ∨ sigk 6= R) ∧ (t1 ≤ 3)
−−−→ sigi, sigk := R;

T C′6i:: (t1 ≤ 3) −−−→ wait;
T C′7i:: (sigi = sigj = R) ∧ (zi, zj > 1)

{zi}
−−−→ skip;

T C′8i:: (sigi = sigj = R) ∧ (zi, zj > 1) ∧
(t2 ≤ 7) −−−→ wait;

Intuitively, timed guarded command T C′3i is revised to
ensure refinement of SPEC bt in the presence of faults. More-
over, T C′5i and T C′6i are added to ensure refinement of the
first stable bounded response property in SPEC br. Finally,
T C′7i and T C′8i are added to ensure refinement of the sec-
ond stable bounded response property in SPEC br. We will
formally analyze this program in Section 4.

4. FAULT-TOLERANCE COMPONENTS
One way to ensure the correctness of a program is to deal

with the program as one unit and verify its properties. Al-
ternatively, if we can somehow decompose a program into
a set of interference-free components and verify each com-
ponent individually, we can conclude that their composition
satisfies the same set of properties as well. Verification of
components separately is advantageous, as we generally deal
with simpler tasks in terms of complexity of properties, size
of state space, and resources required to complete verifica-
tion.

In this section, we present three types of components that
are involved in a hard-masking program, namely, detectors,
weak δ-correctors, and strong δ-correctors. Roughly speak-
ing, these components ensure satisfaction of
timing-independent safety (i.e., SPEC bt), timing constraints
(i.e., SPEC br), and bounded-time recovery, respectively, in
the presence of faults.

4.1 Detectors
Intuitively, a detector is a program component that en-

sures satisfaction of timing-independent safety (i.e., SPEC bt

in Definition 2.6).

5

Definition 4.1 (detects) Let W and D be state predi-
cates. Let ‘W detects D’ be the specification, that is the set
of all infinite computations σ = (σ0, τ0) → (σ1, τ1) → · · · ,
satisfying the following three conditions:

• (Safeness) For all i ∈ Z≥0, if σi |= W , then σi |= D.
(In other words, σi |= (W ⇒ D).)

• (Progress) For all i ∈ Z≥0, if σi |= D, then there exists
k, k ≥ i, such that σk |= W or σk 6|= D.

• (Stability) There exists i ∈ Z≥0, such that for all j,
j ≥ i, if σj |= W , then σj+1 |= W or σj+1 6|= D.

Definition 4.2 (detectors) Let D be a program and D,
W , and U be state predicates of D. We say that W detects
D in D from U (i.e., D is a detector) iff D refines ‘W detects
D’ from U .

A detector D = 〈VD, XD,GCD〉 is used to check whether
its“detection predicate”, D, is true. Since D satisfies Progress

from U , in any computation in ΠD, if U ∧ D is true contin-
uously, D eventually detects this fact and makes W true.
Since D satisfies Safeness from U , it follows that D never
lets W witness D incorrectly. Moreover, since D satisfies
Stability from U , it follows that once W becomes true, it
continues to be true unless D is falsified. In the context
of fault-tolerance, D is a predicate of the fault-intolerant
program from where timing-independent safety should be
always satisfied and W is a predicate of the fault-tolerant
program that witnesses the detection of D.

4.1.1 Example (cont’d)
One detector of T C′ is D1

T C′
i

defined by the following timed

guarded commands GCD1

T C′
i

= {T C′1i, T C′2i, T C′4i} with

the following detection and witness predicates:

DD1

T C′
i

= guard(T C3i) ∧ (sigj = R)

WD1

T C′
i

= guard(T C′3i).

where i ∈ {0 · · ·n − 1} and j = (i − 1 + n) mod n. It is
straightforward to show that D1

T C′
i

satisfies Safeness, Stabil-

ity , and Progress with respect to DD1

T C′
i

and WD1

T C′
i

. An-

other detector of T C′ is D2
T C′

i

, where GCD2

T C′
i

= {T C′5i}

and where DD2

T C′
i

= WD2

T C′
i

= (sigi = sigj = R).

4.2 δ-Correctors
Intuitively, a δ-corrector is a program component that en-

sures bounded-time recovery to a correction predicate. For
instance, recovery to the invariant predicate is essential to
guarantee that liveness properties (cf. Definition 2.7) and
timing constraints (cf. SPEC br in Definition 2.6) are met
when the state of a program is perturbed by the occurrence
of faults. Thus, we will use δ-correctors where we need re-
finement of stable bounded response properties in the pres-
ence of faults. Depending upon the closure of the correction
predicate in δ-correctors, they are classified into weak and
strong.

Definition 4.3 (weakly corrects) Let C and W be
state predicates. Let ‘W weakly corrects C within δ’ be
the specification, that is the set of all infinite computations
σ = (σ0, τ0) → (σ1, τ1) → · · · , satisfying the following con-
ditions:

• (Weak Convergence) There exists i ∈ Z≥0, such that
σi |= C and (τi − τ0) ≤ δ.

• (Safeness) For all i ∈ Z≥0, if σi |= W , then σi |= C.

• (Progress) For all i ∈ Z≥0, if σi |= C, then there exists
k, k ≥ i, such that σk |= W or σk 6|= C.

Definition 4.4 (strongly corrects) Let C and W be
state predicates. Let ‘W strongly corrects C within δ’ be
the specification, that is the set of all infinite computations
σ, satisfying the following two conditions:

• W weakly corrects C within δ.

• (Stability) There exists i ∈ Z≥0, such that for all j,
j ≥ i, if σj |= W , then σj+1 |= W or σj+1 6|= C.

• (Strong Convergence) In addition to Weak Convergence,
C is closed in σ.

Definition 4.5 (δ-correctors) Let C be a program and
C, W , and U be state predicates of C. We say that W

weakly/strongly corrects C within δ in C from U (i.e., C is a
weak/strong δ-corrector) iff C refines ‘W weakly/strongly
corrects C within δ’ from U .

Notice that since C satisfies Weak (respectively, Strong)
Convergence from U , it follows that C reaches a state where
C becomes true within δ time units (and, respectively, C

continues to be true thereafter). In addition to Weak/Strong

Convergence, a δ-corrector never lets the predicate W wit-
ness the correction predicate C incorrectly, as C satisfies
Safeness from U . Moreover, since C satisfies Progress from
U , it follows that W eventually becomes true. And, finally,
in case of strong δ-correctors, since C satisfies Stability from
U , it follows that when W becomes true, W is never falsified.

Unlike weak δ-correctors, we use strong δ-correctors where
we need bounded-time recovery to a state predicate closed in
the execution of the program. Hence, the correction pred-
icate of a δ-corrector C is typically an invariant predicate
of the fault-intolerant program while the witness predicate
witnesses the correction of the correction predicate. This is
obviously due to the fact that real-time programs are closed
in their invariant predicate. Existence of strong δ-correctors
are of special interest, since recovery to the invariant predi-
cate automatically ensures refinement of the liveness speci-
fication.

4.2.1 Example (cont’d)
We now identify δ-correctors for each stable bounded-

response property in SPEC brT C
. First, consider the prop-

erty ¬ST C 7→≤3 Q. Let C1
T C′

i

be the weak 3-corrector in

T C′ consisting of timed actions T C′5i and T C′6i with cor-
rection and witness predicates both equal to Q. Intuitively,
C1
T C′

i

ensures that when T C′ is in a state outside the invari-

ant, it reaches a state where signal i and its previous sig-
nal are red within 3 time units. Likewise, for the property
QT C 7→≤7 ST C , let C2

T Ci
be the strong 7-corrector consisting

of timed actions T C′7i and T C′8i with witness and correc-
tions predicates equal to ST C . In C2

T C′
i

, a z timer gets reset

when the state of T C′ is in ¬ST C ∧ Q within 7 time units
since the occurrence of a fault. Such a reset takes the traffic
controller back to its invariant predicate ST C where timed
action T C1i is enabled.

6

5. INTERFERENCE-FREEDOM OF
FAULT-TOLERANCE COMPONENTS

As mentioned in Section 1, using the concept of fault-
tolerance components, we propose a method for composi-
tional verification of hard-masking properties of a real-time
program via four steps. In this section, we focus on Step
2. Our goal is to develop sufficient conditions under which
existence of correct fault-tolerance components guarantees
a correct hard-masking program. Compositional proofs of
interference-freedom have received substantial attention in
the formal methods community in the past two decades (e.g.,
[1]). Drawing from these efforts, we identify simple sufficient
conditions to ensure that when a program P is composed
with a detector or a δ-corrector Q, corresponding properties
of Q, (i.e., Safeness, Stability , Progress, Weak/Strong Con-

vergence) are preserved. These conditions are superposition,
atomicity, order of execution, termination, and containment.
Except termination, the correctness of all these conditions
can be verified syntactically making them useful in compo-
sitional verification.

In order to study the effect of programs and fault-tolerance
components on each other and their possible interference, we
focus on to types of commonly considered program compo-
sition: parallel and sequential composition. Intuitively, the
parallel composition of two programs P and P ′ interleaves
non deterministically between (timed and delay) actions of
P and P ′.

Definition 5.1 (parallel composition) Let P =
〈VP , XP ,GCP〉 and P ′ = 〈VP′ , XP′ ,GCP′〉 be two pro-
grams1. The parallel composition of P and P ′ is the program
P[]P ′ = 〈VP ∪ V ′

P , XP ∪ X ′
P , GCP ∪ GCP′〉.

Informally, the sequential composition of two programs P
and P ′ is a new program that first runs P and then P ′.

Definition 5.2 (sequential composition) Let P =
〈VP , XP ,GCP〉 and P ′ = 〈VP′ , XP′ ,GCP′〉 be two pro-
grams. The sequential composition of P and P ′ is the pro-
gram P;P ′ = 〈VP ∪ V ′

P , XP ∪ X ′
P , GCP;P′〉 such that

ΠP;P′ = {αβ | α ∈ prefix (ΠP) ∧ β ∈ ΠP′)}.

5.1 Superposition
The first sufficient condition is superposition. Roughly speak-
ing, a program P is superposed on a component Q, if ex-
ecution of P has no impact on concurrent execution of Q.
Characterizing superposition for real-time systems is more
challenging due to the existence of timing constraints. To
address this issue, we define the notion of delay-compatible
components.

Definition 5.3 (delay-compatibility) Let P1 =
〈VP1

, XP1
,GCP1

〉 and P2 = 〈VP2
, XP2

,GCP2
〉 be two com-

ponents and U be a state predicate. We say that P1 is
delay-compatible with P2 from U iff

U ⇒ (∀gc1|gc1 is a delay action in GCP1
::

∃gc2|gc2 is a delay action in GCP2
::

(guard(gc1) ⇒ guard(gc2))).

1Observe that our fault-tolerance components have all the
characteristics of Definition 2.2. Thus, from this point of the
paper, when we refer to a program in definitions or theorems,
it obviously covers the notion of components as well.

In other words, P1 is delay-compatible with P2 if and only
if taking delays by P1 is concurrently permitted by P2 as
well. In addition to delay-compatibility, another key factor
for meeting liveness properties (i.e., Progress, Stability , and
Weak/Strong Convergence) of detectors and δ-correctors is
eventual execution of actions whose guards are constantly
true. Hence, we assume that programs need to satisfy the
following fairness condition.

Assumption 5.4 We assume that program computations
are fair in the sense that in every computation, if the guard
of an action is continuously true, then that action is even-
tually chosen for execution.

Theorem 5.5 (superposition) Let P = 〈VP , XP ,GCP〉 be
a program, U be a state predicate such that U is closed in
P, and C = 〈VC , XC ,GC C〉 be a strong (respectively, weak) δ-
corrector component in which W strongly (respectively,
weakly) corrects C within δ from U .
If

• C does not read any variable in VP and XP ,

• P only reads the discrete variables in VC written by C
and it cannot reset the clock variables in XC, and

• P is delay-compatible with C,

then

• W strongly (respectively, weakly) corrects C within δ

in P[]C from U .

The superposition theorem is valid for detector compo-
nents as well. It suffices to substitute the properties of a
δ-corrector with properties of a detector in Theorem 5.5.

Theorem 5.6 (superposition) Let P = 〈VP , XP ,GCP〉 be
a program, U be a state predicate such that U is closed in P,
and D = 〈VD, XD,GCD〉 be a detector component in which
W detects D from U .
If

• D does not read or write any variable in VP and XP ,

• P only reads the discrete variables in VD written by D
and it cannot reset the clock variables in XD, and

• P is delay-compatible with D,

then

• W detects D in P[]D from U .

Superposition can often be characterized by simpler con-
straints. For instance, if the set of variables of a program
and a component are disjoint, then the read/write restric-
tions in Theorems 5.5 and 5.6 are automatically satisfied.
Thus, delay-compatibility becomes the sole constraint to be
checked in order to prove interference-freedom of the com-
posed components.

7

5.2 Atomicity
Notice that our fairness assumption is necessary for meet-

ing liveness properties and in particular, Progress of super-
posed components. In other words, if the components are
not executed fairly, then premises of Theorems 5.5 and 5.6 do
not suffice to demonstrate non-interference of components.
However, this fairness assumption is not always necessary.
For instance, in many fault-tolerant systems, the recovery
mechanism involves only a single step that leads a program
back to its normal behavior. Thus, yet another condition
for satisfying non-interference of composed components is
to require that the component of interest makes progress for
detection or correction in one atomic step.

Definition 5.7 (atomic detector) Let D be a non-zeno
detector with detection predicate D and witness predicate
W , and σ = (σ0, τ0) → (σ1, τ1) → · · · be in ΠD. We say
that D is an atomic detector iff for all i, i ≥ 0, if σi |= D,
then τi < τi+1 or σi+1 |= (W ∨ ¬D).

In other words, in an atomic detector component, if the
detection predicate holds in a state, then the component
takes permitted delays or satisfies Progress immediately. No-
tice that if the component is allowed to exhibit zeno-
behaviors, then it has to establish the witness predicate
without taking delays. Otherwise, there is no guarantee that
the component satisfies Progress.

Theorem 5.8 (atomicity) Let P = 〈VP , XP ,GCP〉 be a
program, U be a state predicate such that U is closed in P,
and D = 〈VD, XD,GCD〉 be a detector component in which
W detects D from U .
If

• for all σ ∈ ΠP and i ∈ Z≥0, if σi |= (U ∧ W), then
σi+1 |= (W ∨ ¬D),

• D is atomic, and

• P is delay-compatible with D,

then

• W detects D in P[]D from U .

Definition 5.9 (atomic δ-corrector) Let C be a non-
zeno δ-corrector with correction predicate C and witness
predicate W , and σ = (σ0, τ0) → (σ1, τ1) → · · · be in ΠC .
We say that C is an atomic δ-corrector iff for all i, i ≥ 0,
if σi 6|= W , then τi < τi+1 or σi+1 |= (C ∧ W).

In other words, in an atomic δ-corrector component, if
the witness predicate does not hold in a state, then the
component takes permitted delays or establishes both the
correction and witness predicate by one change of location.

Theorem 5.10 (atomicity) Let P = 〈VP , XP ,GCP〉 be a
program, U be a state predicate such that U is closed in P,
and C = 〈VC , XC ,GC C〉 be a strong δ-corrector component
in which W strongly corrects C within δ from U .
If

• for all σ ∈ ΠP and i ∈ Z≥0, if σi |= (U ∧ W), then
σi+1 |= W ,

• C is atomic, and

• P is delay-compatible with C,

then

• W strongly corrects C within δ in P[]C from U .

The theorem for weak δ-correctors is a bit different from
Theorem 5.10. Since these components do not have to ex-
hibit Stability , and closure of the witness predicate, the first
condition of Theorem 5.10 is not required for weak
δ-correctors.

5.3 Order of Execution
As mentioned earlier, a program may often undo a com-

ponent’s efforts to satisfy Progress and establish its witness
predicate. Another way to ensure that a program does not
interfere with Progress of a component is to run them in
order. In other words, the program only observes the execu-
tion of the component and is allowed to execute only when
the component satisfies Progress and establishes its witness
predicate. Such an order in execution of components can be
captured by sequential composition. Roughly speaking, if
we sequentially compose a strong δ-corrector and a program,
the program does not interfere with the strong δ-corrector,
as it is allowed to run only when the strong δ-corrector com-
pletes its correction. Thus, the only consideration for the
program is preserving the closure of witness predicate of the
strong δ-corrector. To formulate this constraint, we denote
the constrained execution of a program P by state predicate
W by W ⊲P (i.e., computations of P where W always holds).

Theorem 5.11 (order of execution) Let P be a program, U

be a state predicate such that U is closed in P, and C be a
strong δ-corrector component in which W strongly corrects
C within δ from U . It is the case that W strongly corrects
C within δ in C; (W ⊲ P) from U .

Observe that delay-compatibility is not an issue here, as
the execution of the component and the program are not in-
terleaved. In case of weak δ-correctors, since Strong Conver-

gence and Stability are not required, constrained execution
of P is unnecessary and simple sequential composition of a
weak δ-corrector and the program preserves all the proper-
ties of the weak δ-corrector.

Theorem 5.12 (order of execution) Let P be a program, U

be a state predicate such that U is closed in P, and C be a
weak δ-corrector component in which W weakly corrects C

within δ from U . It is the case that W weakly corrects C

within δ in C;P from U .

In the case of sequential composition of a detector and a
program, the only consideration is that the program does not
violate Stability of witness predicate of the detector, when
the detector stops working.

Theorem 5.13 (order of execution) Let P be a program, U

be a state predicate such that U is closed in P, and D be a
detector component in which W detects D from U .
If

• for all σ ∈ ΠP and i ∈ Z≥0, if σi |= (U ∧ W), then
σi+1 |= (W ∨ ¬D),

then

• W detects D in D;P from U .

8

5.4 Termination
Another alternative that guarantees non-interference of a

program P with Progress of a component Q is to force P
to terminate. It follows that after P has terminated, execu-
tion of Q in isolation satisfies it Progress. The termination
condition is in some sense the opposite of the order of exe-
cution condition presented in the previous subsection. That
is, in the order of execution, the component completes its
job and the program runs subsequently, whereas in termina-
tion, the program stops working at some point in order to let
the component make progress. Termination of the program
can be enforced by, for instance, reaching a particular state
predicate.

Theorem 5.14 (termination) Let P be a program, U and
V be two state predicates closed in P, and D be a detector
component in which W detects D from U .
If

• P[]D refines U 7→≤∞ V ,

then

• W detects D in (¬V ⊲ P)[]D from U .

In case of δ-correctors, the only condition that has to be
taken into account is to ensure that there is an appropriate
time bound on termination of P. Otherwise, it is not pos-
sible to reason about the worst case correction time of the
composed program.

Theorem 5.15 (termination) Let P be a program, U and
V be two state predicates closed in P, and C be a weak/strong
δ-corrector component in which W weakly/strongly corrects
C within δ from U .
If

• P[]C refines U 7→≤θ V , for some θ ∈ Z≥0,

then

• W weakly/strongly corrects C within δ + θ in (¬V ⊲

P)[]C from U .

5.5 Containment
A straightforward sufficient condition for non-interference

is containment. Containment requires that the computa-
tions of a program P is a subset of the computations of the
component that contains it. This condition occurs, for in-
stance, when a program acts as a detector (or a δ-corrector).
Thus the containment theorems are as follows.

Theorem 5.16 (containment) Let P = 〈VP , XP ,GCP〉 be
a program, U be a state predicate such that U is closed in P,
and D = 〈VD, XD,GCD〉 be a detector component in which
W detects D from U . If ΠP ⊆ ΠD, then W detects D in
P[]D from U .

Theorem 5.17 (containment) Let P = 〈VP , XP ,GCP〉 be
a program, U be a state predicate such that U is closed in P
and C = 〈VC , XC ,GC C〉 be a strong (respectively, weak) δ-
corrector component in which W strongly (respectively,
weakly) corrects C within δ from U . If ΠP ⊆ ΠC, then W

strongly (respectively, weakly) corrects C within δ in P[]C
from U .

Since we often represent programs and components in
terms of timed guarded commands, containment can be
shown by a straightforward syntactical test for the com-
ponents to be composed. Our experience with design and
analysis of fault-tolerant programs shows that containment
is often useful to reason about detector components. This is
due to the fact that detectors ensure satisfaction of timing-
independent part of a safety specification, which has to be
maintained in every computation step of the program. Thus,
the fault-tolerant program often has to act as a detector
component as well.

5.6 Example (cont’d)
To prove interference-freedom between and D1

T C′
i

and P =

{T C′3i}, we apply Theorem 5.13. It is straightforward to see
that (1) P can be executed only when D1

T C′
i

establishes the

witness predicate, and (2) P satisfies the first condition of
Theorem 5.13, as it immediately falsifies the detection pred-
icate. In case of D2

T C′
i

, we also apply Theorem 5.13 where

P = {T C′6i, T C′7i, T C′8i} as follows. Obviously, P can only
execute when D2

T C′
i

establishes WD2

T C′
i

(i.e., it turns both

signals red). Moreover, P preservers the witness predicate
of D2

T C′
i

, as it leaves the state of both signals unchanged.

Hence, to verify that T C′ never reaches a state where any
two signals are not red even in the presence of faults, it
suffices to verify the correctness of D1

T C′
i

and D2
T C′

i

.

An alert reader can easily prove non-interference of the
δ-correctors with each other and with the program by show-
ing that they run in order (i.e., by applying Theorems 5.11
and 5.12). Alternatively, one can exploit the fact that both
δ-correctors are atomic (i.e., by applying Theorem 5.10).
Hence, to verify that T C′ never violates its timing con-
straints even in the presence of faults, it suffices to verify
the correctness of C1

T C′
i

and C2
T C′

i

.

Table 1 summarizes verification of fault-tolerance prop-
erties of T C′ with 100-500 traffic signals using the model
checker Uppaal [21]. All experiments are run on a PC with
a 3GHz Pentium 4 processor and 1GB RAM. All times are
in seconds and all memory usages are in megabytes.

As can be seen, verification of T C′ as a whole requires
considerable more resources than the case where we verify
it compositionally. For instance, verification of deadlock-
freedom in T C′ with 200 traffic signals needs 1150MB of
memory and 70s to complete, whereas verifying the same
property in the fault-intolerant program and δ-correctors
needs a total of 11.9s and a maximum of 500MB of main
memory. Observe that verification of deadlock-freedom is
accomplished in a compositional manner as follows: it suf-
fices to verify this property for the fault-intolerant program
and δ-correctors independently. This is due to the fact that
when a strong δ-corrector establishes the witness predicate
during recovery, the invariant predicate is reached. Reach-
ing the invariant predicate in turn guarantees that only the
fault-intolerant program operates (i.e., another application
of order of execution).

As we increase the number of traffic signals, the advantage
of our method becomes more clear. For instance, in case of
T C′ with 250 traffic signals, Uppaal goes out of memory
when verifying the recovery timing constraints in SPEC br.
On the other hand, verifying the correctness of δ-correctors
to show the same property is not even close to the limits.

9

Compositional Verification Non-Compositional Verification

Detectors Correctors Fault-Intolerant SPEC
bt

SPEC
br

Deadlock-Freedom

memory time memory time memory time memory time memory time memory time

T C
100 70 2 38 1 112 2 146 9 250 9 350 19

T C
200 96 5 40 1.9 500 10 220 50 1200 59 1150 70

T C
250 155 19 42 2.6 900 30 340 118 - - 2100 180

T C
300 177 29 41 3.4 1650 90 500 178 - - - -

T C
350 290 60 45 4.2 2200 260 790 240 - - - -

T C
400 330 120 45 5 - - 1100 357 - - - -

T C
500 524 262 53 6.6 - - - - - - - -

Table 1: Experimental results for circular traffic signals.

Since no two δ-correctors write each other’s variables, and
they are delay compatible, we can verify them separately.
This is the main reason that verification of δ-correctors in
Table 1 require negligible resources.

Finally, we note that similar to other compositional ver-
ification approaches, our method may not perform well if
the fault-tolerance components of a program are tightly in-
tertwined. For instance, some programs act as both a de-
tector and a corrector and it is not possible to decompose
them into completely disjoint components. One example of
such programs is Dijkstra’s token ring mutual exclusion al-
gorithm [13], where recovery actions are embedded in the
normal actions of the fault-tolerant program.

6. RELATED WORK
Compositional verification has mostly been studied in the

context of assume-guarantee methods where properties are
decomposed into two parts. One is an assumption about
the global behavior of the environment of the component;
the other is a property guaranteed by the component when
the assumption about its environment holds [2,6,11,15,23].
As discussed in [12], issues such as finding decompositions
into sub-systems and choosing adequate assumptions for a
particular decomposition make the application of assume-
guarantee rules difficult.

The theory of detectors and correctors was first introduced
in [7] in the context of untimed systems. The theory was
extended in [18] for safety-critical systems and in [24] for
proving convergence of systems to legitimate states. The
theory has also been used in design of several multi-tolerant
examples [14,19], where tolerance to different types of faults
is provided and the level of fault-tolerance varies depending
upon the severity of faults. In the context of automation of
addition of fault-tolerance to real-time programs, the theory
has been exploited in [8, 9]. In the context of verification,
simplified versions of this theory are applied in verification
of time-triggered architectures [22] and in [17, 20] for soft-
ware verification through separation of concerns using the
theorem prover PVS.

In [10], we extended the theory to the context of real-
time programs and we showed the necessity of existence of
fault-tolerance real-time components in hard-masking pro-
grams. This work differs from the previous work in that we
introduce sufficient conditions for non-interference of fault-
tolerance real-time components. These conditions enable us
to compositionally verify fault-tolerant real-time program.
Moreover, this work demonstrates the first application of
the theory of fault-tolerance real-time components in model

checking.

7. CONCLUSION AND FUTURE WORK
The theory of fault-tolerance real-time components pro-

posed in [10] separates fault-tolerance and functionality con-
cerns of real-time systems. It identifies three types of com-
ponents, namely detectors, weak δ-correctors, and strong δ-
correctors and shows that the necessary condition for a real-
time program to be fault-tolerant is to contain a set of these
components based upon the safety and liveness specifications
that it has to satisfy in the presence of faults. In this paper,
we enriched the theory by identifying various sufficient con-
ditions to show interference-freedom among fault-tolerance
components and programs. A majority of these conditions
can be verified via simple syntactic methods.

A direct application of the sufficient conditions is in com-
positional verification of fault-tolerance properties as fol-
lows. Given a real-time program one can (1) decompose the
program into a fault-intolerant version and a set of fault-
tolerance components using the method presented in [10],
(2) demonstrate non-interference among the intolerant pro-
gram and the components, (3) verify the correctness of the
intolerant program against functional properties of the pro-
gram, and (4) verify the correctness of each component. Our
preliminary experiments show a considerable improvement
in memory usage and achieving speedups. To our knowledge,
this work is the first in applying the theory of fault-tolerance
components in model checking.

One future research direction is to automatically synthe-
size fault-tolerance real-time components. This enables us
to design fault-tolerant programs using pre-synthesized com-
ponents that are correct-by-construction. Another future
work is to extend the theory in the context of multi-tolerant
real-time programs, where programs must exhibit a different
level of tolerance based on severity of faults. Such programs
have more complex structure and, hence, more difficult to
design and verify.

8. REFERENCES
[1] M. Abadi and L. Lamport. Composing specifications.

ACM Transactions on Programming Languages and
Systems, 15(1):73–132, Jan. 1993.

[2] M. Abadi and L. Lamport. Conjoining specifications.
ACM Transactions on Programming Languages and
Systems (TOPLAS), 17(3):507–534, May 1995.

[3] B. Alpern and F. B. Schneider. Defining liveness.
Information Processing Letters, 21:181–185, 1985.

10

[4] R. Alur and D. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183–235, 1994.

[5] R. Alur and T. A. Henzinger. Real-time system =
discrete system + clock variables. International
Journal on Software Tools for Technology Transfer,
1(1-2):86–109, 1997.

[6] R. Alur and T. A. Henzinger. Reactive modules.
Formal Methods in System Design, 15(1):7–48, 1999.

[7] A. Arora and S. S. Kulkarni. Detectors and correctors:
A theory of fault-tolerance components. In
International Conference on Distributed Computing
Systems (ICDCS), pages 436–443, 1998.

[8] B. Bonakdarpour and S. S. Kulkarni. Incremental
synthesis of fault-tolerant real-time programs. In
International Symposium on Stabilization, Safety, and
Security of Distributed Systems (SSS), LNCS 4280,
pages 122–136, 2006.

[9] B. Bonakdarpour and S. S. Kulkarni. Masking faults
while providing bounded-time phased recovery. In
International Symposium on Formal Methods (FM),
pages 374–389, 2008.

[10] B. Bonakdarpour, S. S. Kulkarni, and A. Arora.
Disassembling real-time fault-tolerant programs. In
ACM International Conference on Embedded Software
(EMSOFT), pages 169–178, 2008.

[11] E. M. Clarke, D. E. Long, and K. L. McMillan.
Compositional model checking. In Logic in Computer
Science (LICS), pages 353–362, 1989.

[12] J. M. Cobleigh, G. S. Avrunin, and L. A. Clarke.
Breaking up is hard to do: An evaluation of
automated assume-guarantee reasoning. ACM
Transactions on Software Engineering and
Methodology (TOSEM), 17(2), 2008.

[13] E. W. Dijkstra. Self-stabilizing systems in spite of
distributed control. Communications of the ACM,
17(11), 1974.

[14] S. Ghosh and X. He. Fault-containing self-stabilization
using priority scheduling. Information Processing
Letters, 73(3–4):145–151, 2000.

[15] O. Grumberg and D. E. Long. Model checking and
modular verification. ACM Transactions on
Programming Languages and Systems (TOPLAS),
16(3):843–871, 1994.

[16] T. A. Henzinger. Sooner is safer than later.
Information Processing Letters, 43(3):135–141, 1992.

[17] R. D. Jeffords, C. L. Heitmeyer, and M. Archer.
Adding fault-tolerance to requirements specifications.
Under review - Personal communication, 2007.

[18] A. Jhumka, F. Gartner, C. Fetzer, and N. Suri. On
systematic design of fast and perfect detectors.
Technical Report 200263, School of Computer and
Communication Sciences, EPFL, 2002.

[19] S. S. Kulkarni and A. Ebnenasir. Automated synthesis
of multitolerance. In International Conference on
Dependable Systems and Networks (DSN), pages
209–219, 2004.

[20] S. S. Kulkarni, J. Rushby, and N. Shankar. A
case-study in component-based mechanical verification
of fault-tolerant programs. In Internationa Workshop
on Self-Stabilization (WSS), pages 33–40, June 1999.

[21] K. G. Larsen, P. Pattersson, and W. Yi. UPPAAL in a

nutshell. International Journal on Software Tools for
Technology Transfer, 1(1-2):134–152, 1997.

[22] J. Rushby. An overview of formal verification for the
time-triggered architecture. In Formal Techniques in
Real-Time and Fault-Tolerant Systems (FTRTFT),
pages 83–105, 2002.

[23] E. W. Stark. A proof technique for rely/guarantee
properties. In Foundations of Software Technology and
Theoretical Computer Science (FSTTCS), pages
369–391, 1985.

[24] O. Theel and F. Gartner. An exercise in proving
convergence through transfer functions. In Workshop
on Self-Stabilizing Systems (SSS), pages 41–47, 1999.

11

APPENDIX

A. SUMMARY OF NOTATION

Z≥0 nonnegative integers
R≥0 nonnegative reals

V set of discrete variables
X set of clock variables

Φ(X) set of all clock constraints over X

σ state
σ computation

7→≤ stable bounded response
S state predicate or program invariant
T fault-span predicate
D detection predicate
W witness predicate
C correction predicate
P real-time program

GCP set of guarded commands of program P
D detector component
C δ-corrector component

X ⊲ P constrained program P by state predicate W

T C traffic controller program
Π set of computations
f set of fault transitions
• fusion operator
[] transition insertion operator

SPEC specification
SPEC bt set of bad immediate transitions
SPEC bt safety specification characterized by SPEC bt

SPEC br timing dependent safety specification

B. PROOFS

Theorem 5.5 Let P = 〈VP , XP ,GCP〉 be a program, U

be a state predicate such that U is closed in P, and C =
〈VC , XC ,GC C〉 be a strong (respectively, weak) δ-corrector
component in which W strongly (respectively, weakly) cor-
rects C within δ from U .
If

• C does not read any variable in VP and XP ,

• P only reads the discrete variables in VC written by C
and it cannot reset the clock variables in XC, and

• P is delay-compatible with C,

then

• W strongly (respectively, weak) corrects C within δ in
P[]C from U .

Proof. We need to show that P[]C satisfies Safeness, Sta-

bility , Progress, and Weak/Strong Convergence. Consider a
computation σ = (σ0, τ0) → (σ1, τ1) → · · · of ΠP[]C :

• (Safeness) Consider a state σi, i ≥ 0, of σ where σ |=
U ∧ W . Now, if σ 6|= U ∧ C, then it must be the case
that P[]C has reached a state that neither P nor C could
reach. However, this is in contradiction with the fact
that U is closed in P and C satisfies Safeness from U .
Hence, σ |= (U ⇒ (W ⇒ C)).

• (Progress) Let σi, i ≥ 0, be a state of σ where σ |= C.
Now, if C constantly remains true, but there does not
exist a state σk, k ≥ i, such that σk |= W , then it must

be the case that the value of variables of the corrector C
never establish the state predicate W . Obviously, W is
not eventually established only if one or a combination
of the following occurs: (1) P manipulates a variable in
VC , (2) the guard of actions of C depend on the value of
variables of P, but P never lets the guard of actions of
C establish so that C can progress, or (3) P takes a de-
lay that leads P[]C to a state where C cannot progress.
However, the above scenarios are in contradiction with
the three assumptions of the theorem, respectively. An
intuitive argument of the above proof by contradiction
is as follow. Consider an abstraction of computation σ

on variables of δ-corrector C. In this abstraction, (1)
location changes of P are stutter (due to the read/write
restrictions), and (2) delay actions of P are delay ac-
tions of C (due to delay-compatibility of P with C).
Hence, Progress of P[]C is met.

• (Strong/Weak Convergence) Three scenarios can cause
violation of Strong/Weak Convergence in P[]C: (1) state
predicate C is not reached, (2) it is reached, but not
within δ time units, and (3) C is not closed (for strong
δ-correctors only). The first scenario cannot happen,
since it requires that P either (1) changes the value of
some variables in VC , (2) takes delays longer than C is
allowed to take and, hence, causes C not to progress,
or (3) guard of actions of C are evaluated using vari-
ables of P. However, these reasons all contradict with
the premises of the theorem. The second scenario con-
tradicts with delay-compatibility of P and C. Finally,
the last scenario (violation of closure of C), contradicts
with the fact that P cannot write the discrete variables
or reset the clock variables of of C. Thus, Strong Con-

vergence of P[]C holds.

• (Stability) First, note that the proof of Stability is not
needed for weak δ-correctors. This property is violated
when the truthfulness of the witness predicate W never
gets stabled, i.e., it alternates between W and ¬W .
Since C guarantees stability of W , the alternation sit-
uation may appear only if (1) C falsifies W due to the
change of value of a variable of P, or (2) P either mod-
ifies a variable of C, or takes unexpected delays. How-
ever, all these scenarios are made impossible by the
assumptions of the theorem. An intuitive argument of
the above proof by contradiction is as follow. Consider
an abstraction the computation σ on variables of cor-
rector C. In this abstraction, (1) location changes of
P are stutter (due to the read/write restrictions), and
(2) delay actions of P are delay actions of C (due to
delay-compatibility of P with C). Hence, Stability of
P[]C holds.

Note that since U is closed in both P and C, closure of U in
P[]C immediately follows. Finally, since our fairness assump-
tion holds for both P and C as well as P[]C, Progress, Stabil-

ity , and Weak/Strong Convergence constraints are guaran-
teed to hold in P[]C.

Theorem 5.6 Let P = 〈VP , XP ,GCP〉 be a program, U

be a state predicate such that U is closed in P, and D =
〈VD, XD,GCD〉 be a detector component in which W detects
D from U .
If

• D does not read or write any variable in VP and XP ,

12

• P only reads the discrete variables in VD written by D
and it cannot reset the clock variables in XD, and

• P is delay-compatible with D,

then

• W detects D in P[]D from U .

Proof. The proof is identical to proof of Theorem 5.5,
except we omit the proof of Convergence.

Theorem 5.8 Let P = 〈VP , XP ,GCP〉 be a program, U

be a state predicate such that U is closed in P, and D =
〈VD, XD,GCD〉 be a detector component in which W detects
D from U .
If

• for all σ ∈ ΠP and i ∈ Z≥0, if σi |= (U ∧ W), then
σi+1 |= (W ∨ ¬D),

• D is atomic, and

• P is delay-compatible with D,

then

• W detects D in P[]D from U .

Proof. We need to show that P[]D satisfies Safeness,
Stability , and Progress. Consider a computation σ =
(σ0, τ0) → (σ1, τ1) → · · · of ΠP[]D:

• (Safeness) Consider a state σi, i ≥ 0, of σ where σ |=
U ∧ W . Now, if σ 6|= U ∧ C, then it must be the case
that P[]D has reached a state that neither P nor D
could reach. However, this is in contradiction with the
fact that U is closed in P and D satisfies Safeness from
U . Hence, σ |= (U ⇒ (W ⇒ D)).

• (Progress) Let σi, i ≥ 0, be a state of σ where σ |=
D. Now, since D is atomic, any non-delay action of D
either establishes W or falsifies D. Hence, Progress is
met.

• (Stability) This condition is trivially satisfied due to
the first condition of the theorem.

Theorem 5.10 Let P = 〈VP , XP ,GCP〉 be a program, U

be a state predicate such that U is closed in P, and C =
〈VC , XC ,GC C〉 be a strong δ-corrector component in which
W strongly corrects C within δ from U .
If

• for all σ ∈ ΠP and i ∈ Z≥0, if σi |= (U ∧ W), then
σi+1 |= W ,

• C is atomic, and

• P is delay-compatible with C,

then

• W strongly corrects C within δ in P[]C from U .

Proof. The proof of Safeness, Progress, and Stability is
identical to the proof of Theorem 5.8. Thus, we only need
to show Strong Convergence within δ time units. Observe
that the first condition of of the theorem guarantees that
P preserves closure of W . Moreover, since C is atomic the
witness predicate is established as soon as C has a chance
to execute. Finally, since P is delay-compatible with C, the
composed programs never takes illegal time delays. Hence,
Strong Convergence within δ is satisfied by P[]C.

Theorem 5.11 Let P = 〈VP , XP ,GCP〉 be a program, U

be a state predicate such that U is closed in P, and C =
〈VC , XC,GC C〉 be a strong δ-corrector component in which
W strongly corrects C within δ from U . It is the case that
W strongly corrects C within δ in C; (W ⊲ P) from U .

Proof. We need to show that C; (W ⊲ P) satisfies Safe-

ness, Stability , Progress, and Strong Convergence. Consider
a computation σ = (σ0, τ0) → (σ1, τ1) → · · · of ΠC;(W⊲P),

where σ = αβ such that α is a computation prefix of C and
β is in ΠP .

• (Safeness) Consider a state σi, i ≥ 0, of σ. If σi is in
α, then Safeness is trivially satisfied. If σi is in β, then
σi |= (U ∧W) in all states along β. Now, if σi 6|= U ∧C,
then it must be the case that C; (W ⊲P) has reached a
state that neither W ⊲ P nor C could reach. However,
this is in contradiction with the fact that U is closed in
P and C. Hence, σi |= (U ⇒ (W ⇒ C)).

• (Progress) Let σi, i ≥ 0, be a state of σ where σi |= C.
Since, P starts working when W holds, it has to be the
case that C establishes W before reaching the first state
in β. Hence, Progress is met.

• (Stability) This condition is trivially satisfied due to
the first condition of the theorem.

• (Strong Convergence) This condition is also trivially
met since when C is executing, P does not interfere in
any ways with C. Thus, it has to be the case that C
reaches a state in C within δ time units. Hence, Strong

Convergence is satisfied.

The proof of Theorems 5.12 and 5.13 are identical to the
proof of Theorem 5.11, except the redundant conditions (i.e.,
Strong Convergence for detectors, and, Stability and closure
of witness predicate for weak δ-correctors) can be omitted.

Theorem 5.14 Let P be a program, U and V be two state
predicates closed in P, and D be a detector component in
which W detects D from U .
If

• P[]D refines U 7→≤∞ V ,

then

• W detects D in (¬V ⊲ P)[]D from U .

Proof. We need to show that (¬V ⊲P)[]D satisfies Safe-

ness, Stability , and Progress. Consider a computation σ =
(σ0, τ0) → (σ1, τ1) → · · · of Π(¬V ⊲P)[]D:

• (Safeness) Consider a state σi, i ≥ 0, of σ. If σi |=
(U ∧ W), but σi 6|= U ∧ D, then it must be the case
that (¬V ⊲ P)[]D has reached a state that neither P
nor D could reach. However, this is in contradiction
with the fact that U is closed in P and D. Hence,
σi |= (U ⇒ (W ⇒ D)).

• (Progress) Let σi, i ≥ 0, be a state of σ where σi |= D.
Since, U 7→≤∞ V , there exists a state σk, where V

becomes true. At this point P stops working and D is
executed in isolation. Now, since D satisfies Progress,
there has to be a state σj such that j ≥ i and σj |= W .
Hence, Progress is met.

13

• (Stability) This condition is trivially satisfied since P is
is closed in V and when V is established, D is executed
in isolation, which in turn guarantees Stability .

Theorem 5.15 Let P be a program, U and V be two state
predicates closed in P, and C be a weak/strong δ-corrector
component in which W weakly/strongly corrects C within δ

from U .
If

• P[]C refines U 7→≤θ V , for some θ ∈ Z≥0,

then

• W weakly/strongly corrects C within δ+θ in (¬V ⊲P)[]C
from U .

Proof. We need to show that (¬V ⊲P)[]C satisfies Safe-

ness, Stability , Progress, and Weak/Strong Convergence. The
proof of Safeness, Progress, and Stability are identical to
those of Theorem 5.14. Thus, we only need to show that
(¬V ⊲ P)[]C satisfies Convergence in δ + θ. Consider a com-
putation σ = (σ0, τ0) → (σ1, τ1) → · · · of Π(¬V ⊲P)[]C . Since
P[]C refines U 7→≤θ V and σ0 |= U , then there exists a
state σk such that σk |= V and τk ≤ θ. At this point,
P stops working and C proceeds in isolation. Since C sat-
isfies Weak/Strong Convergence to C within δ time units,
(¬V ⊲ P)[]C also reaches a state σj such that σj |= C and
τj − τk ≤ δ. Hence, (¬V ⊲ P)[]C satisfies Weak/Strong Con-

vergence within θ + δ.

Theorem 5.16 Let P = 〈VP , XP ,GCP〉 be a program,
U be a state predicate such that U is closed in P, and D =
〈VD, XD,GCD〉 be a detector component in which W detects
D from U . If ΠP ⊆ ΠD, then W detects D in P[]D from U .

Proof. The proof is trivial. Since ΠP ⊆ ΠD, we have
ΠP[]D = ΠD. Hence, ‘W detects D from U ’ holds in all
computations of P[]D.

The proof of Theorem 5.17 is identical to the proof of The-
orem 5.16.

14

