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Abstract

Design and implementation of distributed algorithms of-

ten involve many subtleties due to their complex struc-

ture, nondeterminism, and low atomicity as well as oc-

currence of unanticipated physical events such as faults.

Thus, constructing correct distributed systems has al-

ways been a challenge and often subject to serious er-

rors.

We present a methodology for incremental and

component-based modeling, verification, and perfor-

mance evaluation of a self-stabilizing algorithm known

as distributed reset. The methodology is based on the

BIP component framework. In BIP, a system is modeled

as the composition of a set of atomic components by us-

ing two types of operators: interactions describing syn-

chronization constraints between components, and pri-

orities to specify scheduling constraints. The method-

ology involves three steps. First, a high-level model of

the algorithm is built in BIP from the set of its processes

by using powerful primitives for multiparty interactions

and scheduling. Then, we use this model for the verifica-

tion of functional properties including closure, deadlock-

freedom, and finite reachability of the set of legitimate

states. Finally, a distributed model which is observation-

ally equivalent to the high-level model is generated. This

model is used for performance analysis taking into ac-

count the degree of parallelism and convergence times

for failure-free behavior as well as in the presence of

faults. We choose distributed reset for our case study

due to its simplicity and elegance. The original algorithm

works in the shared memory model and we demonstrate

how refinement of a small set of very simple guarded

commands to a less high-level model involves many sub-

tleties that may dramatically affect the correctness of the
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refined model and how BIP facilitates the process of rig-

orous modeling, simulation, and verification.

We believe that this work opens the path for further

research on component-based formal modeling, verifica-

tion, and deployment of more complex distributed sys-

tems.
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1 Introduction

Distributed systems are constructed from a set of rela-
tively independent components that form a unified, but
geographically and functionally diverse entity. They re-
main difficult to design, build, and maintain, because of
their inherently concurrent, nondeterministic, and non-
atomic structure as well as the occurrence of unantici-
pated physical events such as faults.

We currently lack disciplined methods for rigorous de-
sign and correct implementation of distributed systems.
These systems are still being constructed in an ad-hoc
fashion in practice, mainly for two reasons: (1) formal
methods are not easy to use by designers and developers;
and (2) there is a wide gap between modeling formalisms
and automated verification tools on one side, and practi-
cal development and deployment tools on the other side.
It is not clear how existing results can be consistently in-
tegrated in design and implementation methodologies.

Formalisms such as process algebras [1], I/O automata
[21], and UNITY [9] have been used for modeling and
reasoning about the correctness of distributed systems.
Numerous techniques and algorithms have also been in-
troduced for adding reliability and fault-tolerance to dis-
tributed systems. Moreover, an interest has recently
emerged in verification of distributed algorithms. For in-
stance, model checking protocols in the promising area
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of transactional memory has received considerable atten-
tion [11, 16–18]. Verification of agreement algorithms
has also been studied from different perspectives. For in-
stance, in [27], the authors use bounded model checking
[10] to verify the correctness of consensus algorithms.
While these approaches play an important role in for-
malizing and achieving correctness of distributed algo-
rithms, we believe that a more systematic and unified
approach for modeling, verification, and as importantly
deployment of distributed systems in a natural and prac-
tical fashion (multi-threaded, component-based, and in-
cremental) is still required.

In this paper, we apply a methodology which consis-
tently integrates modeling, verification, and performance
evaluation techniques, based on the BIP (Behavior, In-
teraction, Priority) component framework developed at
Verimag [3, 4]. BIP is based on a semantic model en-
compassing composition of heterogeneous components.
In contrast to all other formalisms using a single type in-
teraction (e.g., rendezvous, asynchronous message pass-
ing), BIP uses two families of composition operators for
expressing coordination between components: interac-

tions and priorities. Interactions are expressed by com-
bining two protocols: rendezvous and broadcast. In
[7], we have proposed a notion of expressiveness for
component-based systems and have shown that BIP is
more expressive than any formalism based on a single
type of interaction. Supporting tools of BIP’s theory in-
clude techniques for model verification [24] as well as
for generating from a high-level component-based model
in BIP an observationally equivalent multi-threaded dis-
tributed implementation [3].

BIP is implemented in a toolset which, (1) provides
an expressive formal specification language [7] yet easy-
to-understand by engineers and developers; (2) pro-
poses a fully disciplined methodology for incremental
and component-based architectural and hierarchical de-
velopment; (3) provides state exploration tools for model
checking; and (4) generates executable multi-threaded
C++ code out of a formally specified model. BIP has suc-
cessfully been used for modeling and verifying complex
robotics as well as real-time multimedia systems [4, 5].

To illustrate our methodology, we have chosen the
self-stabilizing distributed reset algorithm due to Arora
and Gouda [2]. Our choice is not due to efficiency or
practicality of the algorithm, but to its simplicity and
elegance. The distributed reset algorithm consists of
two layers: a tree layer for constructing a global rooted
spanning tree across processes and a wave layer for re-
setting the entire system through a diffusing computa-
tion mechanism. In the original algorithm, each layer
is consists of a small set of very simple guarded com-
mands in the shared memory model. Pioneered by Dijk-
stra [12], a self-stabilizing distributed algorithm guaran-

tees that starting from an arbitrary state, it converges to a
legitimate state (from where it satisfies its specification)
and remains in a legitimate set of states thereafter. Nev-
ertheless, as Dijkstra points out in a belated proof of cor-
rectness of his token ring algorithm [13], designing and
deploying correct self-stabilizing algorithms is not a triv-
ial task at all, although it initially seems straightforward.
In the context of distributed reset, we demonstrate how
refinement of such a simple algorithm to a less high-level
model involves many subtleties that may dramatically af-
fect the correctness of the refined model. We also show
how BIP facilitates rigorous modeling, verification, and
performance analysis of the distributed reset algorithm.
In particular, our methodology involves three steps:

• The starting point is a high-level BIP model of a
distributed system obtained as the composition of a
set of components representing its processes. This
model represents a system with a global state and
atomic transitions. Multiparty interactions (interac-
tions that involve an arbitrary number of compo-
nents) may lead the system from one state to an-
other. Modeling a distributed system in such a high-
level model confers numerous advantages such as
modularity and faithfulness as coordination is di-
rectly expressed by using protocols instead of low-
level primitives. We show how BIP allows indepen-
dent modeling of the tree layer and wave layer
of distributed reset as the composition of atomic
components. Composition involves in addition to
interactions, scheduling constraints expressed as dy-
namic priorities among interactions.

• We use this compact high-level model for verifi-
cation of functional (implementation independent)
properties. We specify safety and liveness prop-
erties that any self-stabilizing algorithm must sat-
isfy. These properties include closure, deadlock-

freedom, and finite reachability of the set of legit-
imate states. We verify these properties on our BIP
model for distributed reset by using model check-
ing techniques.

• A multi-threaded (distributed) executable C++
model is generated from the high-level model.
This C++ model faithfully represents an actual dis-
tributed implementation of the high-level model.
In other words, the logical properties and dynam-
ics of the C++ model conforms with the high-level
model and an actual distributed C++ implementa-
tion. The generation is fully automated. The multi-
threaded (distributed) model is obtained by applying
two transformations preserving observational equiv-
alence, following results in [3]: (1) multiparty inter-
actions are substituted by protocols based on asyn-
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chronous message passing; (2) the state of a com-
ponent is undefined (due to distribution) when it
performs some internal computation. The multi-
threaded model which meets all the functional prop-
erties of the global-state model, is used for estimat-
ing performance of the implementation. This in-
cludes analysis taking into account the degree of
parallelism and convergence times for failure-free
behavior as well as in the presence of faults.

Organization of the paper. In Section 2, we review
the distributed reset algorithm and basic concepts of
the BIP framework. In Section 3, we formally model the
distributed reset algorithm in the BIP language. Section
4 is dedicated to verification of distributed reset using
model checking. We describe our experiments and ana-
lyze the performance of distributed reset in Section 5.
Finally, we discuss future work and present concluding
remarks in Section 6.

2 Background

In this section, we present an intuitive overview of our
case study and the methodology used in order to incre-
mentally model, verify, and evaluate the performance of
distributed algorithms. In Subsection 2.1, we present the
distributed reset algorithm [2]. Then, in Subsection 2.2,
we present an overview of the BIP framework [4, 26].

2.1 Distributed Reset

Intuitively, distributed reset augments functionality of a
distributed system with a subsystem where each process
can initiate a global reset to a predefined global state.
Each process is associated with a set of adjacent pro-
cesses with which it can communicate. At any time in-
stant, an alive process may crash which results in change
of the list of adjacent processes. The reset subsystem
consists of three layers where each layer is embedded in
each process as an independent local component:

• In the tree layer, adjacent processes communicate
in order to construct and maintain a rooted span-
ning tree throughout the alive processes. Thus, any
changes in the adjacency relationship of processes
eventually result in corresponding changes in the
structure of the spanning tree. The tree layer is
self-stabilizing in the sense that starting from any
arbitrary topology (e.g., a grid, ring, etc) and initial
structure (e.g., a forest of rooted trees, cyclic graphs,
etc), construction of a rooted spanning tree within a
finite number of steps is guaranteed. In other words,
faults such as process failures and local variable cor-
ruptions do not result in permanent destruction of
the spanning tree.

• The application layer may locally choose to initiate
a global reset. In this case, the corresponding local
component sends a request to the local wave layer
described next.

• The wave layer may receive a reset request from
the application layer in order to start a global reset.
In this case, the local wave component of a process
forwards the request to its parent in the current span-
ning tree until the request reaches the root. Once
the root receives a reset request, it initiates a dif-

fusing computation as follows. First, the root resets
its own state and then initiates a reset wave. The
reset wave travels towards the leaves of the span-
ning tree and causes the wave component of each
encountered process to reset its state. When the re-
set wave reaches a leaf process, it bounces as a com-

pletion wave that travels towards the root process. A
process propagates the completion wave to its par-
ent if all its offsprings are complete. When the com-
pletion wave reaches the root, the reset is complete.
In the algorithm proposed by Arora and Gouda [2],
each wave component maintains a session number

in order to ensure that concurrent resets do not inter-
fere. The wave layer is also self-stabilizing in the
sense that starting from any arbitrary configuration
of the wave components, the algorithm guarantees
an eventual global reset within a finite number of
states.

Figure 1(a) illustrates the overall architecture of two adja-
cent processes in distributed reset. The communication
channels between these two processes are as follows:

1. Adjacent tree components communicate to con-
struct and maintain a spanning tree (Channel 1).

2. A tree component communicates with the local
wave component to indicate changes in parent-child
relationship of the process caused by modifications
in the structure of the spanning tree (Channel 2).

3. Wave components that are in parent-child relation-
ship communicate in order to accomplish a global
reset (Channel 3).

4. An application component may send reset requests
to the local wave component (Channel 4).

Notice that the wave layer always assumes the exis-
tence of a sound rooted spanning tree. Thus, the only
piece of information that a tree component shares with
the corresponding local wave component is the identity
of the parent process in the spanning tree.
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(a) The overall architecture of two

adjacent processes in distributed
reset.
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(b) A simple BIP example.

Figure 1: Preliminary concepts.

2.2 The BIP Framework

In the BIP language [4,6,26], an architecture is character-
ized as a hierarchically structured set of components ob-
tained by composition from a set of atomic components.
Composition is parameterized by sets of interactions be-
tween the composed components. The BIP toolset has a
compilation chain allowing the generation of C++ code
from BIP models. The generated code is modular and
can be executed on a dedicated middleware consisting of
an Engine which orchestrates the computation of atomic
components by executing their interactions. Hierarchical
description allows incremental reasoning and progressive
design of complex systems. Priorities among interac-
tions allow specifying scheduling policies in BIP.

A BIP component is characterized by its interface and
its behavior. An interface consists of a set of external

ports used to specify interactions. Each port p has some
associated variables vp which are visible when an interac-
tion involving p is executed. It is assumed that the ports
and associated variables of atomic components are dis-
joint.

The behavior of atomic components is described as a
finite state automaton extended with data and functions
given in C++. A transition of the automaton is labeled
with a trigger and a function f describing a local com-
putation. A trigger consists of a guard g on (local) data
and a port p through which an interaction is sought. For
a given control state, a transition can be executed if its
guard g is true and an interaction involving p is possi-
ble (we precisely define the notion of interactions later
in this section). Execution of transitions is atomic: it is
initiated by the interaction and followed by the execution
of f . We emphasize that a component may have internal

ports as well. Transitions labeled by internal ports are
executed independently and do not require initiation of
an interaction.

Graphical notation. An atomic component (i.e., its be-
havior and interface) is placed in a box (see Figure 1(b)
for an example). Each external port and its correspond-
ing variables are placed in a rectangle inside its contain-
ing component. Behavior of a component is described
by the classic notation of an automaton; a hollow circle
denotes a control state and an arrow denotes a transition.
For the sake of clarity, we use a solid (respectively, dot-
ted) arrow to denote a transition triggered by an external
(respectively, internal) port.

Composition consists in applying a set of connectors

to a set of components. A connector is defined by:

1. an exported port p and the associated variables;

2. its support set of ports {p1, . . . , pn} of the com-
posed components;

3. its set of interactions, that are, subsets of the set
{p1, . . . , pn}. Each interaction α = {pi1 . . . pik}
is annotated by

(a) a guard G, boolean expression involving vari-
ables associated with the ports pij involved in
the interaction α;

(b) an upstream transfer function U specifying
flow of data from variables associated with
the support set of ports towards the associated
variables of the exported port;

(c) and downstream transfer functions

Di1 , . . . , Dik specifying flow of data from the
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variables associated with the exported port
towards variables associated with the support
set of ports.

When it is clear from the context, we simply de-
note a connector by only its support set of ports (i.e.,
〈p1 . . . pn〉). The set of interactions associated with a
connector is defined using a typing mechanism of ports
in its support set of ports. We distinguish two types of
ports: synchron and trigger. Any set of support ports that
is either maximal or it contains a trigger denotes a valid
interaction. Intuitively, a synchron is a passive port, and
needs synchronization with other ports. In other words,
such a port cannot initiate an interaction without synchro-
nizing with other ports. However, a special case (such as
the one in Figure 1(b)) is a connector that only involves
synchrons. Such a connector denotes a rendezvous and
requires all ports to participate. On the other hand, a
trigger is an active port, and can initiate an interaction
without synchronizing with other ports.
The global behavior resulting from the application of a
connector to a set of components is defined as follows.
An interaction α = {pi1 . . . pik} of the connector is en-
abled only if for each one of its ports pij , there exists
an enabled transition in some component labeled by pij .
Execution of the interaction involves two steps:

1. a temporary variable v is assigned the value
U(vpi1

, . . . , vpik
);

2. the variables vij associated with the ports pij are

assigned values Dij (v).

The execution of an interaction is followed by the execu-
tion of the local computations of the synchronized tran-
sitions.
Graphical notation (cont’d). A connector is repre-
sented as a solid line connecting all ports in its support
set. The exported port by a connector is placed over the
connector. A solid circle attached to an external port de-
notes a synchron and a triangle denotes a trigger (see Fig-
ure 2(b) for an example).

A composite component is recursively obtained from
a set of atomic or sub-components by successive (i.e.,
acyclic) application of connectors. The support set of
any connector contains ports exported either by sub-
components or other existing connectors.
Graphical notation (cont’d). A composite compo-
nent is also respresented as a box containting its sub-
components and their respective connector hierarchy.
Example. In Figure 1(b), we provide a simple compos-
ite component. It is composed of three atomic compo-
nents B1, B2, and B3. Each atomic component Bk holds
an integer variable vk, exported through an external port
pk. Additionally, the component has an internal port ik

which triggers the execution of an internal computation
defined by the function fk. The ternary connector de-
fines the interaction {p1, p2, p3} which is a rendezvous
among external ports p1, p2, and p3. As a result of this in-
teraction, following the definition of upstream an down-
stream transfer functions, each component receives the
maximum of the exported values. Moreover, notice that
the exported port of the connector belongs to the inter-
face of the composite component, that is, it can be used
for further interactions.

3 Modeling Distributed Reset in BIP

We model distributed reset according to the BIP system
construction methodology: (1) designing the behavior of
each atomic component (i.e., an automaton extended by
variables and ports), (2) applying synchronization mech-
anisms for ensuring coordination of components through
interactions, and (3) specifying scheduling constraints by
using priorities.

We first model the wave layer and the tree layer of
the algorithm independently in Subsections 3.1 and 3.2,
respectively, by applying the above methodology to each
layer. Then, we add cross-layer connectors in order to
interconnect the two independent layers in Subsection
3.3. From the wave and tree components designed in
this section, one can incrementally build a distributed
system equipped with the distributed reset functionality
according to a topology of interest.

3.1 The Wave Layer

The wave layer of distributed reset assumes that a per-
fect rooted spanning tree exists throughout the distributed
system. Thus, the wave layer is only concerned with
achieving a self-stabilizing diffusing computation to ac-
complish a distributed reset. Each process in the dis-
tributed system contains a wave atomic component. We
describe the wave atomic component in terms of normal,
faulty, and recovery behaviors of the wave layer.

3.1.1 Normal Operation

We start with modeling the normal operation of the
wave layer, where each component works perfectly in
the absence of faults.

Interface and Behavior

• (Exported Ports) A wave component has the fol-
lowing four ports: (1) pRequest for propagating a
reset request from a child to its parent, (2) pReset
for enforcing a child to reset its state by the parent,
(3) pComplete for informing a node that its subtree
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Figure 2: Normal operation of the wave layer.

has completed diffusing computation, and (4) pPc
for identifying adjacent processes that are neither a
child nor a parent. As can be seen in Figure 2(a),
each port is associated with a subset of variables of
the component.

• (Variables) Each component maintains the follow-
ing variables: (1) an integer index to represent the
unique index of the component, (2) an integer f to
keep the index of the parent process in the spanning
tree, and (3) an integer sn for the session number of
the current ongoing reset.

• (Automaton) A wave component has three con-

trol states: NORMAL, INIT , and RESET (see Fig-
ure 2(a)). Initially, all components are in the NOR-

MAL control state. A wave component may move
to INIT by either enabling the myRequest internal
port (e.g., from the application layer of the same
process) or when a reset request is received via
the pRequest port. This move occurs during the
request wave. Next, the component moves from
INIT to RESET and resets its state when the port
pReset is enabled during the reset wave. A com-
ponent may also move from INIT to RESET on port
pReset , if it was not involved in the request wave.
Finally, a wave component moves back to NORMAL

on port pComplete, when its subtree has completed
the completion wave. A completed wave compo-
nent is either in NORMAL control state or in INIT if
another reset has already been initiated in its sub-
tree. The pComplete self-loop at this control state

is added for this reason.

Interactions
Interactions among wave components are specified in
terms of a set of connectors between them. Notice that
each process is associated with a set of adjacent pro-
cesses according to a topology. However, not all adja-
cent processes are normally in parent-child relationship
and, hence, are not allowed to communicate. In order
to make our design as flexible as possible, the static de-
sign of connectors should provide the potential of com-
munication between any two adjacent processes depend-
ing upon the topology. Nonetheless, the actual commu-
nication in the wave layer should occur only between
processes that are allowed to do so. This is similar to
designing a circuit of electronic components with a set
of switches, where depending upon the state of switches
only a subset of components are actually involved in the
circuit. In this context, let w be a wave component whose
adjacent neighbors are w1 · · ·wn. We categorize the in-
teractions based on the three waves of the wave layer:

• (Request Wave) The first set of connectors is
{〈(w.pRequest)(wi.pRequest)〉 | 1 ≤ i ≤ n}.
These connectors allow the component w at INIT to
synchronize with a component wi, that is already in
control state INIT : wi synchronizes with w by taking
the pRequest self-loop at control state INIT . Figure
2(b) presents an example, where w has two adjacent
processes w1 and w2

1. Observe that the connec-

1The connectors involved in Figure 2(b) essentially construct
Channel 3 of Figure 1(a).
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tors between pRequest ports are associated with a
guard to ensure correct parent-child relationship and
bottom-up flow of requests (e.g., w.index = w1.f ).
Hence, if two processes are adjacent due to the
topology, but not in any parent-child relationship,
they do not interact to send or receive reset requests.
This guard is present in almost all of the connectors
in the wave layer 2. Recall that since BIP allows us
to associate ports with variables, evaluation of the
above guard does not require explicit use of shared
memory.

• (Reset wave) The second set of connectors is
{〈(w.pReset)(wi.pReset)〉 | 1 ≤ i ≤ n}. Once the
root (of the spanning tree) wave component moves
to INIT , it goes to RESET without synchronizing
on port pReset . This is managed through speci-
fying a guard on this type of connectors. That is,
the corresponding synchronization is bypassed, if
w.f = w.index (see Figure 2(b)). Once a non-
root process is in RESET , its children can go to
RESET from either NORMAL or INIT by synchroniz-
ing on port pReset . In other words, a child whose
parent is in RESET can reset its state regardless of
its past desire to initiate a global reset. A parent
synchronizes with its resetting children through the
pReset self-loop at control state RESET . Similar to
the connector between pRequest ports, we ensure
that only a parent can propagate the reset wave to
its children by specifying a guard on the connector
between pReset ports. This guard also ensures that
the session number of a child is one less than the
session number of its parent. Finally, when the re-
set connector gets enabled, it increments the session
number of the child component, to mark the number
of the current reset wave.

• (Completion wave) The design of connectors for
the completion wave is a bit more complex, as a pro-
cess declares completion only if all its children are
complete (which essentially means its entire sub-
tree is complete). The completion mechanism in-
herently requires a multi-party rendezvous. How-
ever, our design should be flexible in the sense that
it allows bypassing irrelevant adjacent processes
as well as synchronizing with real children pro-
cesses. To this end, we construct a hierarchical
connector as follows. First, we include a connec-
tor between pPc ports of w and wi, where 1 ≤
i ≤ n (see Figure 2(b)). This connector gets en-
abled when w and wi are not in a parent-child re-
lationship. The connector exports a port called

2We note that symmetric conditions should be added to the guard
of connectors to cover all cases among adjacent processes (e.g., w1 is
parent of w). We omit them in the figure for simplicity.

pX i, which gets triggered when the completion of
wi is irrelevant to w. Now, the pair of pX i and
wi.pComplete constructs another connector, which
exports the port pY i. This port is present in the
rendezvous that covers all wi components. The full
interaction can be characterized by the following
rendezvous: 〈(w.pComplete)pY 1pY 2 · · · pY n〉,
where pY i = 〈(pX i) + (wi.pComplete)〉 and
pX i = 〈(w.pPc)(wi.pPc)〉. The ‘+’ operator de-
notes a choice between two enabled ports. As an
example, if w is a leaf in the spanning tree, it does
not wait for any of the adjacent processes to com-
plete, as pX i is active for all i.

Notice that starting from an initial state and operating
normally, the global state of the set of all components in
the wave layer arranged on a rooted spanning tree should
remain in the following set of legitimate states:

Sw ≡ ∀w1, w2 ::
((w1.f = w2.index ∧ ¬ w2.RESET) ⇒

(¬w1.RESET ∧ w1.sn = w2.sn)) ∧
((w1.f = w2.index ∧ w2.RESET) ⇒

((¬w1.RESET ∧ w2.sn = w1.sn + 1) ∨
w2.sn = w1.sn)).

where w1 and w2 are two wave components.

3.1.2 Faulty Behavior

In distributed reset, faults can lead a process to reach
any arbitrary state. To capture the notion of faults, it suf-
fices to focus on transitions that reach a state in ¬Sw.
These faults are modeled in Figure 3(a). The transitions
labeled by internal port f cause a process to go to RESET

from either INIT or NORMAL without synchronizing with
its parent. Faults labeled by fSn are self-loops that cor-
rupt the session number of a process by executing the C
assignment sn = (sn + rand()) % K, where K is
the maximum number of processes. To make the occur-
rence of faults a random event, we associate the guard of
fault transitions with a probability prob. Notice that the
union of transitions in Figures 2(a) and 3(a) may lead a
wave component to reach any arbitrary state. Finally, we
emphasize that we do not associate any synchronization
with faults. This allows faults to occur under no synchro-
nization constraints.

3.1.3 Self-Stabilization (Recovery)

Interface and Behavior. We model self-stabilization of
the wave layer based on the two conjuncts of Sw. Essen-
tially, the recovery mechanism should ensure that starting
from any state in ¬Sw, the entire distributed system can
reach a state in Sw within a finite number of steps. To
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Figure 3: Self-stabilization of the wave layer.

this end, we add the following behavior to each wave
component. First, we consider the case where a parent
process is not in RESET , but one of its children is. To
resolve this case, it suffices for the child to (1) move to
the control state where its parent is (i.e., either NORMAL

through synchronization on port pRec11 or INIT through
port pRec12), and (2) copy the session number from the
parent to maintain consistency (see Figure 3(b)). To re-
solve the case where a parent and its child are in the same
control state but their session numbers differ, the pro-
cesses synchronize on port pRec13 and the child copies
the parent’s session number (see Figure 3(b)).

The second type of recovery behavior resolves the
cases where the second conjunct of Sw is violated. In par-
ticular, if a process and one of its children are in RESET ,
but their session numbers differ, then they synchronize
on port pRec21 and the child copies the session number.
Finally, if a process is in RESET , but one of its children
is not in RESET and the child’s session number is not
one less than its parent’s, then they synchronize on port
pRec22 and the child copies the session number.

Interactions. Recovery connectors define
interactions on corresponding ports between adja-
cent components. Thus, the set of connectors is
{〈(w.pRecjk)(wi.pRecjk)〉 | (i = 1..n) ∧ (j = 1..2) ∧
(k = 1..3)}, where wi is adjacent to w. Similar to
the normal operation, we associate guards with recovery
connectors to ensure the correct parent-child relationship
among the adjacent processes. Moreover, we incorporate
data transfer in interactions for copying session numbers.

3.2 The Tree Layer

Unlike the wave layer, the tree layer is only concerned
with a self-stabilizing algorithm for constructing a rooted
spanning tree.

Interface and Behavior

• (Exported Ports) Adjacent processes in the tree
layer communicate via three ports: (1) pForest
when two adjacent processes identify two different
roots, (2) pNeighbor when two adjacent processes
identify an inconsistency between them (i.e., dif-
ferent roots, incorrect shortest distance to the root,
or a root process that has a parent), and (3) pPc
when a parent process crashes (see Figure 4(a)).
Port pCycle is used for cross-layer interactions de-
scribed in Subsection 3.3.

• (Variables) Each tree component maintains the fol-
lowing variables: (1) an integer index to represent
the unique index of the component, (2) an integer f
to keep the index of the parent process in the span-
ning tree, (3) an integer root that contains the index
of the root process, and an integer d whose value is
the distance of the process to the root. The value
of index is equal to that of the corresponding wave
component and is specified statically. The value of
f , however, is determined at runtime across the tree
layer. Thus, the tree and wave components of a pro-
cess need to communicate to maintain consistency.
We address this issue in Subsection 3.3. Each com-
ponent also maintains an array N , which contains
the index of all adjacent processes.

• (Automaton) Initially, all processes are alive and
in the UP control state (see Figure 4(a)). Faults can
alter the value of variables f , root , and d arbitrar-
ily through the internal port fCorrupt . Also, each
process may crash and go to the control state DOWN

through the internal port fCrash . A crashed process
may get repaired and return to the UP control state
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Figure 4: The tree layer.

through internal port pRepair . Thus, faults can po-
tentially break a rooted tree into forests, create cy-
cles, and cause (local or global) inconsistencies. A
tree component participates in resolving the above
issues when it is in control state UP. A local incon-
sistency is detected in a tree component through the
internal port pLocal associated with a guard which
indicates a discrepancy in the value of either root
or d (see Figure 4(a) for the inconsistency condi-
tions). A cycle can also be detected locally, if the
distance of a process to the root is greater than the
maximum number of processes K. A tree compo-
nent fixes a local inconsistency and breaks a cycle
by setting root = f = index and d = 0 (see Figure
4(a)).

Interactions
Similar to the wave layer, interactions among tree com-
ponents are specified in terms of a set of connectors be-
tween them according to a topology. Let t be a tree com-
ponent whose adjacent processes are t1..tn. The inter-
actions between tree components resolve the following
issues to construct a rooted spanning tree:

• (Process crashes) The set
{〈(t.pPc)(ti.pPc)〉 | 1 ≤ i ≤ n} of connec-
tors are used to inform a process that its parent has
crashed. As can be seen in Figure 4, this connector
is enabled when one participating component is in
UP and the other process is in DOWN control state.
The guard of the connector enforces the parent-
child relationship. Execution of this interaction
invalidates the variables of the child process whose

parent is crashed. Recall that interactions between
tree components construct Channel 1 of Figure
1(a).

• (Parental inconsistencies) A connector in the set
{〈(t.pNeighbor)(ti.pNeighbor)〉 | 1 ≤ i ≤ n} is
enabled when a child and its parent either do not
agree on the same root, or, the child is not located
one step farther of its parent from the root. In ei-
ther case, the child simply fixes the root index and
its distance according to the parent through the data
transfer mechanism of the connector (see the guard
G and transfer function D of the connector in Figure
4(b)).

• (Rooted forests) A connector in the set
{〈(t.pForest)(ti.pForest)〉 | 1 ≤ i ≤ n} is enabled
when multiple roots are detected by a tree compo-
nent. This situation occurs when there exists an ad-
jacent process whose root has a higher index or the
process offers a shorter distance to the root. In this
case, the process updates its root , f , and d variables
via the data transfer mechanism (see the guard G
and function D of the connector in Figure 4(b)).

Finally, we define the set of legitimate states of the
tree layer, where a rooted tree that spans over all alive
processes exists, as follows:

St ≡ (k = max{t.index | t.UP}) ∧
(∀t1 | t1.UP::

(t1.index = k ⇒
(t1.index = t1.root ∧
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t1.index = t1.f ∧ t1.d = 0)) ∧
(t1.index 6= k ⇒

(∃t2 ∈ t1.N :: (t1.f = t2.index ∧
t1.d = t2.d + 1 ∧

∀t3 ∈ t1.N :: t2.d ≤ t3.d)))).

3.3 Building Distributed Reset

Given the tree layer and wave layer components, one
can easily compose them and incrementally build a dis-
tributed reset system. To this end, we add cross layer
interactions as follows. When a cycle or multiple forests
are detected in the tree layer, a tree component may
choose a new parent from its neighbors. In this case,
the wave component of the same process has to update
its parent as well, so the subsequent resets complete ma-
turely (see Channel 2 in Figure 1(a)). Thus, we aug-
ment each wave component with a pNewParent port,
which synchronizes with pCycle or an exported port by
the pForest connectors to update its parent (see Figure
4(b)).

4 Model Checking Distributed Reset

We have verified the distributed reset algorithm using
classic model-checking. For a finite instantiation of the
distributed reset algorithm (a grid topology folded on
a sphere), we started by constructing a finite represen-
tation of its overall behavior as a flat labeled transition
systems (LTS) using BIP state-space explorer [4]. States
correspond to configurations reached by the distributed
reset algorithm, and transitions taken to move from one
configuration to another are labeled by the interactions
introduced in Section 3. On the LTS model, we have eval-
uated a set of temporal logic formulas encoding the key
properties of the distributed reset algorithm, using the
EVALUATOR tool of CADP [15, 22].

We express the properties using a generic characteriza-
tion of interactions (i.e., labels). We note that given the
set of legitimate states, such labeling can be easily au-
tomated in the context of verification of self-stabilizing
algorithms:

• We add a self-loop labeled steady to each legiti-
mate state. For the wave layer (respectively, tree
layer), all these self-loops participate in a global
rendezvous interaction whose guard satisfies ex-
pression Sw (respectively, St) introduced in Section
3.

• We label each internal fault transition introduced in
Section 3 by fault. This labeling makes the occur-
rence of a fault an observable event.

• We label the remaining interactions by prog. This
includes recovery as well as interactions that par-
ticipate in constructing a spanning tree at the tree
layer and interactions that contribute in achieving a
global reset at the wave layer.

We provide the exact definition of properties in regular

alternation-free µ-calculus which is the temporal logic
formalism handled by the EVALUATOR tool. This logic is
an extension of the alternation-free µ-calculus [20] with
action formulae as in ACTL [23] and regular expressions
over action sequences as in PDL [14]. The full syntax
and semantics can be found in [22]. We consider the fol-
lowing properties that any self-stabilizing system must
satisfy:

• (closure) legitimate states are preserved by taking
non-fault actions (only faults may reach an illegiti-
mate state from a legitimate state):
φ1 : [any∗] (〈steady〉T ⇒ [prog ]〈steady〉T)3

• (deadlock-freedom) from any reachable state, there
exists an outgoing program transition:
φ2 : [any∗]〈prog〉T

• (reachability) starting from any state, a legitimate
state can be reached by taking only program actions
(there always exist a path from any state to a legiti-
mate state):
φ3 : [any∗]〈prog∗〉〈steady〉T

• (convergence) starting from any state, a legitimate
state is eventually reached by taking only program
actions (the algorithm never reaches a cycle outside
legitimate states):
φ4 : [any∗]¬νX. (¬〈steady〉T ∧ 〈prog〉X)

In order to reduce the complexity of verification of
distributed reset, we utilize a compositional approach.
Specifically, we infer the correctness of the composite
distributed reset algorithm by verifying the correctness
of the tree layer and wave layer individually. However,
such compositional verification needs demonstration of
interference-freedom between components. Let C1 and
C2 be two components. We say that C1 and C2 do not
interfer with each other if whenever C1 satisfies some
property φ1 and C2 satisfies some property φ2, then their
“composition” (e.g., using BIP interactions) satisfies
φ1 ∧ φ2.

3We recall that q |= 〈a〉ϕ iff ∃q
a
−→ q

′ : q
′ |= ϕ, where q and

q
′ are two states,

a
−→ is a transition labeled by a, and ϕ is a formula.

Also, q |= [a]ϕ iff ∀q
a
−→ q

′ : q
′ |= ϕ. The label any denotes any

transition label, i.e., {steady , prog , fault}, T denotes logical true,
and ∗ denotes a sequence. Finally, ν and µ respectively denote the
largest and smallest fixpoints in the µ-calculus.
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n states transitions generation time φ1 φ2 φ3 φ4

4 56 649 < 1 < 1 < 1 < 1 < 1
tree 6 7022 81390 29 1 1 2 3

9 2456936 59409357 4000 10 23 19 145

4 996 5840 < 1 < 1 < 1 < 1 < 1
wave 6 27590 189523 36 2 2 3 5

9 1539001 7077649 2500 5 7 6 93

Table 1: Verifying distributed reset using classic model checking.

Theorem 1. The composition of the tree layer
and wave layer in the distributed reset algorithm is
interference-free for properties φ1...φ4.
Proof. Notice that the only interaction between the
tree layer and wave layer occurs when a change of
parent is decided by the tree layer. This interaction
only involves a unilateral change of parent at the wave
layer by the tree layer. Thus, the wave layer does
not interfere with the tree layer in any way. Moreover,
when the wave layer is silent, a change of parent does
not change the state of the wave layer. Thus, the only
possible pitfall of the aforementioned interaction is
where an ongoing reset at the wave layer coincides
with a change of parent at the tree layer. Since there
exist only a finite number of actions at the tree layer
to construct a spanning tree, the wave layer eventually
complete its execution on the current spanning tree as
well. The only consequence of a change of parent is
that the ongoing reset completes immaturely, which
is a known and permitted phenomenon in the original
algorithm as well. �

The immediate consequence of Theorem 1 is that sep-
arate verification of the layers results in the correctness
of distributed reset. In order to generate LTS mod-
els of manageable size for a reasonably large number of
processes in the algorithm we manually applied the fol-
lowing well-known model checking heuristics on the BIP
model:

• We apply abstraction by reducing the domain of
values of each variable to the minimal possible set.
For instance, when a fault alters the value of the root
variable in a process, the exact new value does not
matter and, hence, the corresponding illegitimate
state can be encoded by a single corrupted value for
the root variable.

• We perform a live analysis [8] in every component
and based on it, we re-initialize each variable as
soon as it becomes dead on a computation path.

• Finally, we simplify the sequence of occurrence of
faults by allowing multiple types of faults occurring

at the same time.

Table 1 summarizes the results about the size of the
models in terms of number of processes in the grid. The
LTS generation time as well as the time needed to verify
the properties considered are all in seconds. All verifi-
cation tasks are run on a PC with a 3.2GHz Intel Xeon
processor and 4GB RAM.

5 Performance Evaluation

The BIP toolset provides us with means for generat-
ing C++ multi-threaded code from high-level BIP mod-
els. This feature enables us to evaluate the performance
of distributed algorithms described by high-level mod-
els. This allows in particular, to evaluate the impact of
changes to the high-level model without getting involved
with its actual C++ implementation. We emphasize that
the logical properties and dynamics of the C++ model
conform with the high-level model and an actual C++
implementation. Below, we present the result of some
of our experiments and lessons learned in evaluating the
performance of distributed reset. All experiments in
this section are run on a PC with a Pentium IV 3GHz
processor and 1GB memory under Debian Linux. All
plots on each graph is the average value of 10 runs for
the corresponding experiment. The reason for this num-
ber of experiments is due to the fact that our models do
not exhibit a high level non-determinism. In fact, we ob-
served that the result of experiments do not fluctuate sig-
nificantly.

Degree of Parallelism. The BIP Engine uses different
parallelism policies to execute distributed models. In a
lazy policy, the Engine executes only one interaction at a
time. In other words, it waits for all atomic components
to complete their internal computation before initiating a
new interaction. Conversely, in a dynamic policy, the En-
gine allows multiple interactions to be executed in paral-
lel as long as the overall execution conforms with the se-
quential semantics (i.e., their executions are observation-
ally equivalent). Figure 5(a) compares the convergence
time of the tree layer under these policies in the absence
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(a) Degree of parallelism (b) Crash fault vs. variable corruption

Figure 5: Performance analysis of the tree layer.

(a) Effect of fault factor. (b) Effect of priorities.

Figure 6: Performance analysis of the tree layer and wave layer.

of faults. As can be seen, the graph shows that under the
dynamic policy convergence is much faster, as the En-
gine allows multiple tree components to work simultane-
ously. This makes performance evaluation of distributed
algorithms very close to reality.

Severity of Faults. Figure 5(b) compares the effect
of d-variable corruption and crash faults on convergence
time of the tree layer. The graphs clearly show that crash
faults’ damage to the spanning tree is more severe than
the case where a process has wrong coordinates of the
root. This result is expected, as crashing a node requires
reconstructing the spanning, which can be costly. For
instance, if a crashed process is the root, the entire span-
ning tree has to be reconstructed. On the other hand, a
d-variable corruption can be fixed by a single interaction

with one of the adjacent processes.

Figure 6(a) shows the behavior of the tree layer in the
presence of crash faults, where the probability of occur-
rence of such faults decreases by a fault factor ff , where
ff < 1. That is, if the current probability of a crash is p
for a process, after the process is repaired, the probability
of the subsequent crash for this process is ff ∗ p. As can
be seen, the convergence time increases as the fault fac-
tor grows to 60%. However, when the fault factor grows
beyond 60%, the tree layer converges faster. This is be-
cause there are so many crashed processes that are not
repaired and, hence, not participating in forming a span-
ning tree. Thus, a high fault factor reduces the size of
actual distributed system (the average number of process
crashes for some plots are available in Figure 6(a)).
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Effect of specifying priorities. Figure 6(b) shows the
effect of granting priority to execution of tree layer over
the wave layer. The idea is when the spanning is broken,
the algorithm should focus on reconstructing a new tree
rather than letting the wave layer work. In fact, simulta-
neous operation of both layers may result in completing
immature resets. In BIP, one can easily specify priorities
among interactions. In particular, we specify a local pri-
ority for the tree layer interactions of adjacent processes
and Figure 6(b) shows slightly faster convergence for the
prioritized tree layer.

6 Conclusion

The paper illustrates the application of a methodology
consistently integrating high-level modeling and verifi-
cation of functional properties with performance analysis
of a distributed implementation. Consistency is ensured
by results guaranteeing preservation of properties of the
initial high-level model by its implementation.

We demonstrated how one can build-up the self-
stabilizing distributed reset algorithm attributed to
Arora and Gouda [2] by developing a set of indepen-
dent atomic components and then wiring them by us-
ing connectors. We also identified a set of safety and
liveness properties that any self-stabilizing algorithm has
to satisfy. These properties include closure, deadlock-

freedom, and finite reachability of the set of legitimate
states starting from any arbitrary state. We successfully
verified these properties for each layer of distributed re-
set for a grid topology

BIP allows a natural high-level description of the co-
ordination between atomic components by using struc-
tured connectors and multiparty interactions. Modeling
the same coordination with formalisms based on point-
to-point interaction is a non-trivial problem. It would
have required the use of additional atomic components
implementing multiparty interactions by protocols. The
obtained models can be modified incrementally. New
processes can be added or deleted without disturbing the
operation of the system.

Furthermore, the high-level model abstracts from
silent actions used to implement multiparty interactions
in the distributed model [3]. This drastically simplifies
property verification.

For performance evaluation, we used a distributed
model functionally equivalent to the high-level BIP
model. This model can be used for implementation pur-
poses. It is based on operational semantics which allows
a rigorous analysis of extra-functional properties. The
obtained benchmarks show the effect of scheduling poli-
cies and of different types of faults on convergence times
and the degree of parallelism. Here again incremental

description by adding or removing architectural features
has been very useful for modifying the model.

We believe that our approach can be used for mod-
eling, verifying, and evaluating distributed algorithms.
It advantageously combines an expressive and rigorous
high-level component-based formalism and its associated
distributed implementation, which is beneficial for more
complex algorithms such as concurrency control tech-
niques. In this context, we are currently working on a
generic component-based framework for modeling and
analyzing transactional memory [19, 25] algorithms us-
ing BIP. We are also working on a wide range of trans-
formations from high-level BIP models into low-level ac-
tual implementations such as the Message Passing Inter-
face (MPI), multi-core, and fully distributed platforms.
Another interesting research direction is to automate the
procedure presented in this paper by transforming algo-
rithms in (shared memory) guarded commands into BIP
models.
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