
Noname manuscript No.
(will be inserted by the editor)

Symbolic Synthesis of Masking Fault-Tolerant Distributed
Programs

Borzoo Bonakdarpour · Sandeep S. Kulkarni · Fuad Abujarad

Abstract We focus on automated addition of masking

fault-tolerance to existing fault-intolerant distributed

programs. Intuitively, a program is masking
fault-tolerant, if it satisfies its safety and liveness speci-

fications in the absence and presence of faults. Masking

fault-tolerance is highly desirable in distributed pro-
grams, as the structure of such programs are fairly

complex and they are often subject to various types

of faults. However, the problem of synthesizing mask-

ing fault-tolerant distributed programs from their fault-
intolerant version is NP-complete in the size of the pro-

gram’s state space, setting the practicality of the syn-

thesis problem in doubt. In this paper, we show that
in spite of the high worst-case complexity, synthesizing

moderate-sized masking distributed programs is feasi-

ble in practice. In particular, we present and implement
a BDD-based synthesis heuristic for adding masking

fault-tolerance to existing fault-intolerant distributed

programs automatically. Our experiments validate the

efficiency and effectiveness of our algorithm in the sense

A preliminary version of this paper appeared in International
Conference on Distributed Computing Systems (ICDCS’07). This

work is partially sponsored by Canada NSERC DG 357121-2008,
ORF RE03-045, ORE RE-04-036, and ISOP IS09-06-037 grants,
and, by USA AFOSR FA9550-10-1-0178 and NSF CNS 0914913
grants.

Borzoo Bonakdarpour
Department of Electrical and Computer Engineering

University of Waterloo

200 University Avenue West

Waterloo, Ontario, Canada, N2L 3G1

E-mail: borzoo@ece.uwaterloo.ca

Sandeep S. Kulkarni and Fuad Abujarad
3115 Engineering Building
Department of Computer Science and Engineering
Michigan State University
East Lansing, MI 48824, USA
E-mail: {sandeep, abujarad}@cse.msu.edu

that synthesis is possible in reasonable amount of time

and memory. We also identify several bottlenecks in

synthesis of distributed programs depending upon the
structure of the program at hand. We conclude that

unlike verification, in program synthesis, the most chal-

lenging barrier is not the state explosion problem by it-
self, but the time complexity of the decision procedures.

Keywords Distributed programs, Fault-tolerance,

Program synthesis, Symbolic algorithms, Program

transformation, Formal methods

1 Introduction

Asserting correctness in a program is the most impor-
tant aspect and application of formal methods. Two

approaches to achieve correctness automatically in sys-

tem design are:

– correct-by-verification, and

– correct-by-construction.

Automated verification (and in particular model

checking) is arguably one of the most successful contri-
butions of formal methods in hardware and software de-

velopment in the past three decades. However, if verifi-

cation of a program against a mathematical model (e.g.,
a set of properties) identifies an error in the system, one

has to fix the error manually. Such manual revision in-

evitably requires another step of verification in order to
ensure that the error is indeed resolved and that, no new

errors are introduced to the program at hand. Thus, ac-

complishing correctness through verification involves a

cycle of design, verification, and subsequently manual
revision, if the verification step does not succeed. This

iterative procedure of verification and manual revision

of programs often requires a vast amount of resources.

2

In other words, achieving correctness by verification is

an after-the-fact task, which may potentially be costly.

Another common scenario in computing systems is
where requirements of a program evolve during the pro-

gram life cycle. Evolution of requirements is largely due

to two factors known as incomplete specification and
change of environment. While the former is usually a

consequence of poor requirements engineering, the lat-

ter is a maintenance issue. This notion of maintenance
turns out to be critical for systems where programs are

integrated with large collections of sensors and actua-

tors in hostile physical environments. Deeply embedded

systems [1,2] are examples of cases where change of en-
vironment occurs fairly frequently. In such systems, it is

essential that programs react to physical events such as

faults, delays, signals, attacks, etc., so that the system
specification is not violated. Since it is impossible to an-

ticipate all possible such physical events at design time,

it is highly desirable to have automated techniques that
revise programs with respect to newly identified physi-

cal events according to the system specification. In fact,

it often is impractical to redesign and redeploy systems

that are tightly coupled with physical processes from
scratch due to changes in specification or determining

unanticipated new physical events.

The above scenarios clearly motivate the need for

automated methods that revise programs so that the
output program preserves existing properties of the in-

put program in addition to satisfying a set of new prop-

erties. Using such revision, there is no need to re-verify

the correctness of the revised program, as it is correct-
by-construction. Taking the paradigm of

correct-by-construction to extreme leads us to auto-

mated synthesis from specification, where a program is
constructed from a set of properties from scratch. Alter-

natively, in program revision, an algorithm transforms

an input program into an output program that meets
additional properties.

In this paper, we focus on automated synthesis of

distributed fault-tolerant programs. In particular, we

study the problem of revising an existing distributed

fault-intolerant program by solely adding fault-tolerance
to the program. One problem with such an automated

synthesis, however, is that both time and space com-

plexity of such algorithms are often high, making them
difficult to apply them for large problems.

The time complexity of automated addition of fault-

tolerance can be characterized in two parts. The first

part has to deal with questions such as which recov-

ery transitions/actions should be added to guarantee
liveness, and which transitions/actions should be re-

moved to prevent safety violation in the presence of

faults. The second part has to deal with questions such

as how quickly such recovery and safety violating tran-

sitions can be identified. In our previous work [3, 4],
we focused on the first part, where we have identified

classes of problems where efficient synthesis is feasible

and developed different heuristics, especially for deal-
ing with the constraints imposed by distributed nature

of synthesized programs. To illustrate this, suppose a

process, say p, in a program executes a transition. In
a distributed setting, this transition may correspond to

several possible transitions depending upon the state of

other processes. This correspondence forms an equiva-

lence class called a group transition predicate. Thus,
when a transition is included, it would be necessary to

ensure that the corresponding group predicate can be

executed (e.g., inclusion of the corresponding equiva-
lence class, given the state of other processes, will not

result in safety violation). In other words, while deter-

mining recovery/safety-violating transitions, it is neces-
sary to consider the interdependence between different

transitions of distributed processes. In fact, the decision

problem of manipulating distributed programs to sat-

isfy some safety or liveness properties is NP-complete
in both absence and presence of faults [5, 6]. To cope

with this complexity, in our previous work, we devel-

oped heuristics for identifying recovery/safety-violating
transitions (i.e., a witness solution to the decision prob-

lem) by considering the interdependence between differ-

ent transitions of distributed processes [3].

Observe that the solution to the “what” part of

the problem is independent of the “how” issue such as

representation of programs, faults, specifications, etc.
Hence, in the previous work, we utilized

explicit-state (enumerative) techniques to design our

heuristics. Explicit-state techniques are especially valu-
able in this context, as we can identify how different

heuristics affect a given program, and thereby enable

us to identify circumstances where they might be use-
ful. Explicit-state techniques, however, are undesirable

for the second part, as they suffer from the state explo-

sion problem and prevent one from synthesizing pro-

grams with large state space. In other words, although
the polynomial time complexity of the heuristics in [3]

allows us to deal with the problem of synthesis of dis-

tributed programs, which is known to be NP-complete
[5,6], their explicit-state implementation is problematic

with scaling up for larger programs.

With this motivation, in this paper, we focus on

the second part of the problem to improve the time

and space complexity of synthesis. Towards this end,

we focus on symbolic synthesis (implicit-state) where
programs, faults, specifications, etc., are modelled us-

ing Boolean formulae and represented by Bryant’s Or-

dered Binary Decision Diagrams [7]. Although symbolic

3

techniques have been shown to be successful in model

checking [8], they have not been extensively used in the
context of program synthesis and transformation in the

literature. Thus, in this paper, our goal is to evaluate

how such symbolic synthesis can assist in reducing the
time and space complexity, and thereby permits syn-

thesizing programs beyond small toy examples.

Contributions of the paper. Our contributions in
this paper are as follows:

1. We introduce a symbolic algorithm that adds mask-

ing fault-tolerance to distributed programs. The core

of the algorithm involves BDD-based state explo-

ration in order to (1) removing unsafe transitions,
(2) eliminating deadlock states, (3) computing re-

covery transitions, and (4) generating a revised in-

variant predicate.
2. We illustrate that our symbolic technique can sig-

nificantly improve the performance of synthesis in

terms of both time and space complexity with sev-
eral orders of magnitude. In particular, our analysis

shows that the growth of the total synthesis time

is sublinear in the state space. For example, in case

of Byzantine agreement with five non-general pro-
cesses, the time for explicit-state synthesis was 15

minutes whereas the time with symbolic synthesis

is less than one second.
3. We rigorously analyze the cost incurred in differ-

ent tasks during synthesis through a variety of case

studies. These case studies are adapted from prob-
lems in the literature of distributed computing (e.g.,

[9–11]) and real-world examples (e.g., [12]). Our anal-

ysis identifies four bottlenecks that need to be over-

come, namely (1) deadlock resolution, (2) computa-
tion of recovery paths, (3) computation of reachable

states in the presence of faults, and (4) cycle reso-

lution. We show that depending upon the structure
of distributed programs, a combination of these bot-

tlenecks may affect the performance of automated

synthesis. We also demonstrate how a simple user
input can significantly assist in improving the per-

formance of program synthesis. We also show that

the time and space needed to complete synthesis

is competitive with the corresponding verification
problem.

We note that just as with model checking, this work

does not imply that synthesis would be feasible for all

programs where the size of state space is as large as the

case studies in this paper. However, the results in this
paper do illustrate that a large state space by itself is

not an obstacle to permit efficient synthesis.

Organization of the paper. In Section 2, we present

the formal definition of distributed programs and spec-
ifications. Then, in Section 3, we describe the notion

of faults and formalize the concept of fault-tolerance.

Section 4 is dedicated to the formal statement of the
synthesis problem. We introduce our symbolic synthesis

algorithm for adding fault-tolerance to distributed pro-

grams in Section 5. Experimental results and analysis of
different aspects of our synthesis algorithm using a wide

variety of case studies are presented in Sections 6-10.

Related work is presented in Section 11. Finally, in Sec-

tion 12, we outline a roadmap for further research and
present concluding remarks. For reader’s convenience,

Appendix A provides a summary of notions. Appendix

B illustrates a sample synthesized program using our
tool Sycraft [13].

2 Distributed Programs and Specifications

Intuitively, we model a distributed program in terms

of a set of processes. Each process is in turn specified

by a transition system and is constrained by read/write
restrictions over its set of variables. The notion of spec-

ification is adapted from the one introduced by Alpern

and Schneider [14]. We use a canonical version of the
Byzantine agreement problem [9] to demonstrate the

concepts introduced in this section.

2.1 Distributed Programs

Let V = {v0, v1 · · · vn} be a finite set of Boolean vari-

ables. A state is determined by the function s : V 7→
{true, false}, which maps each variable in V to either

true or false. Thus, we represent a state s by the con-

junction s =
∧n

j=0 l(vj) where vj ∈ V , 0 ≤ j ≤ n, and
l(vj) denotes a literal, which is either vj itself or its

negation ¬vj . Let v be a variable and s be a state. We

use v(s) to denote the value of v in state s.

Since non-Boolean variables with finite domain D
can be represented by log(|D|) Boolean variables, our

notion of state is not restricted to Boolean variables.

The set of all possible states obtained from variables in
V and their respective domains is called the state space.

Intuitively, a state predicate is any subset of the state

space.

Definition 1 (state predicate) Let S be the set of

states {s0, s1 · · · sm}. We specify the state predicate S
by the disjunction

∨m
i=0(si), where each si is the con-

junction of a set of literals (defined above). ⊓⊔

Observe that although the Boolean formula defined

in Definition 1 is in disjunctive normal form, one can

4

represent a state predicate by any equivalent Boolean

expression. We denote the membership of a state s in
a state predicate S by s |= S.

A transition is a pair of states of the form (s, s′)

specified as a Boolean formula as follows. Let V ′ be
the set {v′ | v ∈ V } (called primed variables). Primed

variables are meant to show the new value of variables

prescribed by a transition. Thus, we define a transition
(s, s′) by the conjunction s ∧ s′ where s′ =

∧n
j=0 l(v′

j)

such that v′
j ∈ V ′, 0 ≤ j ≤ n.

Definition 2 (transition predicate) A transition

predicate P is a finite set of transitions
{(s0, s

′
0), (s1, s

′
1) · · · (sm, s′m)} formally defined by T =

∨m
i=0(si∧s′i). We denote the membership of a transition

(s, s′) in a transition predicate T by (s, s′) |= T . ⊓⊔

Notation. Let S (respectively, s) be a state predicate

(respectively, a state). We use 〈S〉′ (respectively, 〈s〉′) to
denote the state predicate (repectively, state) obtained

by replacing all variables that participate in S (respec-

tively, s) by their corresponding primed variables. Also,
let T be a transition predicate. We use Guard(T) to de-

note the source state predicate of T (i.e., s |= Guard(T)

iff ∃s′ : (s, s′) |= T). ⊓⊔

Definition 3 (process) A process p is specified by
the tuple 〈Vp, Tp, Rp,Wp〉 where Vp is a set of variables,

Tp is a transition predicate in the state space of p (de-

noted Sp), Rp is a set of variables that p is allowed to

read, and Wp is a set of variables that p is allowed to
write such that Wp ⊆ Rp ⊆ Vp (i.e., we assume that p

cannot blindly write a variable). ⊓⊔

We now present the issue of distribution. Informally,

we model distributed processes by their ability in read-
ing and writing variables defined next.

Write restrictions. Let p = 〈Vp, Tp, Rp,Wp〉 be a
process. Tp must be disjoint from the following transi-

tion predicate due to the inability of p to change the

value of variables that p is not allowed to write:

NW p =
∨

(s,s′)

∨
v/∈Wp

(v(s) 6= v(s′)).

Read restrictions. Let p = 〈Vp, Tp, Rp,Wp〉 be a

process, v be a variable in Vp, and (s0, s
′
0) |= Tp where

s0 6= s′0. If v is not in Rp, then p must include a cor-
responding transition from all states s1 where s1 and

s0 differ only in the value of v. Let (s1, s
′
1) be one such

transition. Now, it must be the case that s′0 and s′1 are

identical except for the value of v, and, this value must
be the same in s1 and s′1. For instance, let Vp = {a, b}

and Rp = {a}. Thus, since p is not allowed to read

b, the transition ¬a ∧ ¬b ∧ a′ ∧ ¬b′ and the transition

¬a ∧ b ∧ a′ ∧ b′ have the same effect as far as p is con-

cerned. Thus, each transition (s0, s
′
0) in Tp is associated

with the following group predicate:

Groupp(s0, s
′
0) =

∨
(s1,s′

1
)|=Tp

(
∧

v 6∈Rp

(v(s0) = v(s′0) ∧ v(s1) = v(s′1)) ∧∧
v∈Rp

(v(s0) = v(s1) ∧ v(s′0) = v(s′1)))

Definition 4 (distributed program) A distributed

program (or simply program) P is specified by a set ΠP

of processes. ⊓⊔

For simplicity and without loss of generality, we as-
sume that the state space of all processes that partici-

pate in a program are identical. More specifically, given

a program P = ΠP , we have ∀p, q ∈ ΠP : (Vp = Vq).

In this sense, the state space of P is identical to the
state spaces of its processes as well.

Notation. Let P = ΠP be a program. We use TP to
denote the transition predicate of P which is formally

the collection of transition predicates of all processes in

ΠP , i.e., TP =
∨

p∈ΠP
(Tp).

To concisely write the transitions in a process, we

use guarded commands (also called actions). A guarded
command is of the form:

L :: G −→ ST ;

where L is a label, G is a state predicate (called the

guard), and ST is a statement that describes how the
program state is updated. Thus, an action G −→ ST

denotes the following transition predicate:

{(s, s′) | (s |= G) and s′ is obtained by

changing s as prescribed by ST}.

Example (Byzantine agreement). The Byzantine
agreement program (denoted BA) consists of a general,

say g, and three (or more) non-general processes: j, k,

and l. Since the general process only provides a deci-
sion, it is modelled implicitly by two variables. Thus,

ΠBA = {j, k, l}. Each process of BA maintains a de-

cision variable d; for the general, the decision can be

either 0 or 1, and for the non-general processes, the de-
cision can be 0, 1, or ⊥, where the value ⊥ denotes that

the corresponding process has not yet received the de-

cision from the general. Each non-general process also
maintains a Boolean variable f that denotes whether

or not that process has finalized its decision. For each

process, a Boolean variable b shows whether or not the
process is Byzantine. Thus, the state space of each pro-

cess is obtained by the variables in the following set:

VBA = {d.g, d.j, d.k, d.l} ∪ (decision variables)

{f.j, f.k, f.l} ∪ (finalized?)

{b.g, b.j, b.k, b.l}. (Byzantine?)

5

The set of variables that a non-general process, say

j, is allowed to read and write are respectively:

Rj = {b.j, d.j, f.j, d.k, d.l, d.g}, and

Wj = {d.j, f.j}.

The read/write restrictions of processes k and l can be

symmetrically instantiated.
The fault-intolerant version of BA works as follows.

Each non-general process copies the decision from the

general and then finalizes (outputs) that decision, pro-

vided it is non-Byzantine. Thus, the transition predi-
cate of a non-general process, say j, is specified by the

following two actions:

BA1j :: (d.j = ⊥) ∧ (f.j = false) −→ d.j := d.g;

BA2j :: (d.j 6= ⊥) ∧ (f.j = false) −→ f.j := true;

Definition 5 (computation) Let P be a program.

A computation of P is a finite or infinite sequence of
states of the form:

s = s0 → s1 → · · ·

iff ∀i ≥ 0 : (si, 〈si+1〉
′) |=TP .

We distinguish between a terminating computation

and a deadlocked computation. Precisely, when a com-
putation s terminates in state sl, we include the tran-

sition (sl, s
′
l) in TP . Thus, s can be extended to an infi-

nite computation by stuttering at sl. On the contrary,

if there exists a state sd such that there is no outgoing
transition (or a self-loop) that originates from sd, then

sd is a deadlock state.

Definition 6 (deadlock state) We say that a state

s0 in program P is a deadlock state iff for all states
s1 in the state space of P, (s0, 〈s1〉

′) 6|= TP . ⊓⊔

2.2 Specification and Invariant

In this section, we formally present the concept of spec-

ifications and define what it means for a program to

satisfy a specification.

Definition 7 (specification) A specification (or prop-
erty), denoted SPEC , is a set of infinite computations

of the form s = s0 → s1 → · · · , where si is a state for

all i ∈ Z≥0. ⊓⊔

In this paper, since we use specifications to reason
about the correctness of a program, we assume that the

state space of a specification is identical to the state

space of the program under consideration. In order to

reason about the correctness of programs, we consider

invariance properties defined later in this subsection.
One key feature of an invariance property is its closure

in execution of the respective programs.

Definition 8 (closure) Let T be a transition pred-

icate and S be a state predicate. We say that a state
predicate S is closed in T iff

∧
(s,s′)|=T ((s |= S) ⇒

(s′ |= 〈S〉′)) holds. ⊓⊔

Following Definition 8, we say that a state predicate

S is closed in program P iff S is closed in TP . We

are now ready to formally define what it means for a
program P to satisfy a specification SPEC .

Definition 9 (satisfies) Let P be a program, S be

a state predicate, and SPEC be a specification. We say

that P satisfies SPEC from S and write P |=S SPEC
iff

1. S is closed in P, and

2. for all computations s = s0 → s1 → · · · of P where

s0 |= S, s is in SPEC . ⊓⊔

Definition 10 (invariant) Let P be a program,

SPEC be a specification, and I be a state predicate
where I 6= false. We say that I is an invariant predicate

of P for SPEC iff P satisfies SPEC from I; i.e.,

P |=I SPEC . ⊓⊔

In this paper, since an invariant predicate is an
essential constituent in establishing correctness about

programs, a program is always accompanied by its in-

variant predicate1. In fact, from this point, we denote

a program P by the tuple 〈ΠP , IP〉, where ΠP is a set
of processes and IP is an invariant predicate.

Assumption. Given a program P = 〈ΠP , IP〉, if the
invariant predicate IP has a state s0, such that there

does not exist state s1, where (s0, s1) |= TP , then we

assume that state s0 is a terminating state. In other
words, a computation that reaches s0 stutters at s0 us-

ing the self-loop (s0, s0).

Observe that the notion of satisfies characterizes the
property of infinite sequences with respect to a pro-

gram. In order to characterize finite sequences, we in-

troduce the notion of maintains.

Definition 11 (maintains) Let P be a program,
SPEC be a specification, and S be a state predicate.

We say that program P maintains SPEC from S iff

1 Observe that Definition 9 is similar to the standard defini-
tion of satisfaction in temporal logic. However, Definition 9 is

concerned with satisfaction from a predicate S to distinguish (1)
correct behavior of programs in the absence of faults, (2) in the
presence of fault (i.e., when ¬S holds), and (3) reasoning about
recovery. This issue will be explained in detail in Section 3.

6

1. S is closed in P, and

2. for all computation prefixes α of P that start from
S, there exists an infinite sequence of states β such

that αβ is in SPEC . ⊓⊔

Definition 12 (violates) Let P be a program, SPEC
be a specification, and S be a state predicate. We say

that program P violates SPEC from S iff it is not

the case that P maintains SPEC from S. ⊓⊔

We let the specification consist of a safety specifica-

tion and a liveness specification. Following Alpern and

Schneider [14], the safety specification can be character-
ized by a set of bad prefixes that should not occur in any

computation. Throughout this paper, we let the length

of such bad prefixes be two. In other words, we charac-
terize the safety specification by a set of bad transitions

that should not occur in any program computation. We

denote this transition predicate by SPEC bt. Thus, the

safety specification can be formally defined by the set
SPEC bt of infinite sequences, such that no infinite se-

quence contains a transition in SPEC bt.

A liveness specification of SPEC is a set of infinite
sequences of states that meets the following condition:

for each finite sequence of states α, there exists a suf-

fix β such that αβ ∈ SPEC . In our synthesis problem
(cf. Section 4), we begin with an initial program that

satisfies its specification (including the liveness specifi-

cation). Moreover, we require our synthesis algorithm
to preserve liveness. In other words, if the input pro-

gram satisfies a liveness specification, then the trans-

formed program satisfies that liveness specification as

well. Hence, the liveness specification need not be spec-
ified explicitly.

Example (cont’d). The safety specification of BA
requires validity, agreement, and persistency :

– Validity requires that if the general is non-Byzantine,

then the final decision of a non-Byzantine process
must be the same as that of the general.

– Agreement means that the final decision of any two

non-Byzantine processes must be equal.
– Persistency requires that once a non-Byzantine pro-

cess finalizes (outputs) its decision, it cannot change

it.

Thus, the following transition predicate characterizes

the above requirements as the safety specification of

BA:

SPEC btBA
=

(∃p ∈ {j, k, l} :: ¬b′.g ∧ ¬b′.p ∧

(d′.p 6= ⊥) ∧ f ′.p ∧ (d′.p 6= d′.g)) ∨

(∃p, q ∈ {j, k, l} :: ¬b′.p ∧ ¬b′.q ∧ f ′.p ∧ f ′.q ∧

(d′.p 6= ⊥) ∧ (d′.q 6= ⊥) ∧ (d′.p 6= d′.q)) ∨

(∃p ∈ {j, k, l} :: ¬b.p ∧ ¬b′.p ∧ f.p ∧
((d.p 6= d′.p) ∨ (f.p 6= f ′.p))).

In this context, an example of a liveness specification

can be “all non-general non-Byzantine processes even-

tually reach the same decision”.
One possible invariant predicate of BA consists of

the following sets of states:

1. First, we consider the set of states where the general

is non-Byzantine. In this case:
– one of the non-general processes may be Byzan-

tine,

– if a non-general process, say j, is non-Byzantine,

it is necessary that d.j be initialized to either ⊥
or d.g, and

– an undecided non-Byzantine process does not fi-

nalize its decision.
2. We also consider the set of states where the general

is Byzantine. In this case, g can change its decision

arbitrarily. It follows that other processes are non-
Byzantine and d.j, d.k and d.l are initialized to the

same value that is different from ⊥.

Thus, the invariant predicate is as follows:

IBA =

¬b.g ∧ (∀p, q ∈ {j, k, l} :: (¬b.p ∨ ¬b.q)) ∧

(∀p ∈ {j, k, l} :: ¬b.p ⇒ (d.p = ⊥ ∨ d.p = d.g)) ∧
(∀p ∈ {j, k, l} :: (¬b.p ∧ f.p) ⇒ (d.p 6= ⊥))

∨

(b.g ∧ ¬b.j ∧ ¬b.k ∧ ¬b.l ∧
(d.j = d.k = d.l ∧ d.j 6= ⊥))

An alert reader can easily verify that BA satisfies

SPEC btBA
from IBA.

3 Fault Model and Fault-Tolerance

Following Arora and Gouda [15], the faults that a pro-
gram is subject to are systematically represented by a

transition predicate. Precisely, a class of faults F for

program P = 〈ΠP , IP〉 is a transition predicate in the
state space of P, i.e., F ⊆ SP ×SP . We use P[]F to de-

note the program P in the presence of faults F . Hence,

transitions of program P in the presence of F is ob-
tained by taking the disjunction of the transitions in

TP and the transitions in F , i.e., TP ∨ F .

We emphasize that such representation is possible

notwithstanding the type of the faults (be they stuck-
at, crash, fail-stop, timing, performance, Byzantine, mes-

sage loss, etc.), the nature of the faults (be they per-

manent, transient, or intermittent), or the ability of the

7

program to observe the effects of the faults (be they

detectable or undetectable). We also note that since a
program does not have control over the occurrence of

faults, they are not limited to processes’ restrictions.

That is, fault transitions are independent of read/write
restrictions and program specification.

Example (cont’d). The fault transitions that affect a
process, say j, of BA are as follows: (We include similar

actions for k, l, and g)

F0 :: ¬b.g ∧ ¬b.j ∧ ¬b.k ∧ ¬b.l −→ b.j := true;

F1 :: b.j −→ d.j, f.j := 0|1, false|true;

where d.j := 0|1 means that d.j could be assigned

either 0 or 1. In case of the general process, the sec-
ond action does not change the value of any f -variable.

Just as we introduced the notion of invariant for
reasoning about the correctness of programs in the ab-

sence of faults, we introduce the notion of fault-span

to reason about program correctness in the presence of

faults.

Definition 13 (fault-span) Let P = 〈ΠP , IP〉 be a

program and F be a set of faults. We say that a state

predicate SP is an F -span (read as fault-span) of P from
IP iff the following conditions are satisfied:

1. IP ⇒ SP , and

2. SP is closed in P[]F . ⊓⊔

Observe that for all computations of P that start

from states where IP is true, SP is a boundary in the
state space of P up to which (but not beyond which) the

state of P may be perturbed by the occurrence of the

transitions in F . Subsequently, as we defined the com-
putations of P, one can define computations of program

P in the presence of faults F as follows. We say that

a sequence of states, s = s0 → s1 → · · · , is a compu-
tation of P[]F iff the following three conditions are

satisfied:

1. ∀j ≥ 0 :: (sj , sj+1) |= (TP ∨ F),

2. if s is finite and terminates in state sl, then there

does not exist state s such that (sl, 〈s〉
′) |=TP , and

3. ∃n ≥ 0 :: (∀j ≥ n :: (sj , sj+1) |=TP).

Informally, the third condition requires that the number

of occurrence of faults in a computation has to be finite.

This constraint is necessary to ensure recovery in the
presence of faults.

We are now ready to define what it means for a

program to be masking fault-tolerant. Intuitively, a pro-

gram is masking fault-tolerant if it satisfies its safety
and liveness specifications in both absence and pres-

ence of faults. In other words, the program masks the

occurrence of faults.

Definition 14 (masking fault-tolerance) Let P =

〈ΠP , IP〉 be a program with specification SPEC and F
be a set of faults. We say that P is masking F -tolerant

to SPEC from IP iff the following conditions hold:

1. P |=IP SPEC , and

2. there exists a state predicate S such that:

(a) S is an F -span of P from IP ,
(b) P[]F maintains SPEC from S, and

(c) every computation of P[]F that starts from a

state in S eventually reaches a state s, such that
s |= IP . ⊓⊔

Notice that condition 2-c explicitly expresses the

notion of recovery to the invariant predicate as a set

of legitimate states. It also implicitly implies that the
program reaches a state from where it can satisfy its

liveness specification.

4 The Synthesis Problem

Given are a fault-intolerant program P = 〈ΠP , IP〉, a

set F of faults, and a specification SPEC , such that
P |=IP SPEC . Our goal is to synthesize a program P ′ =

〈ΠP′ , IP′〉 such that P ′ is F -tolerant to SPEC from IP′ .

We require our synthesis method to obtain P ′ from P
by adding fault-tolerance to P without introducing new

behaviors in the absence of faults. To this end, we first

define the notion of projection. Informally, projection of
a transition predicate T on a state predicate S consists

of transitions of T that start in S and end in S.

Definition 15 (projection) Let T be a transition

predicate and S be a state predicate. The projection of T

on S (denoted T|S) is the following transition predicate:

T | S =
∨

(s,s′)|=T(s |= S ∧ s′ |= 〈S〉′). ⊓⊔

Now, observe that in the absence of faults:

1. If IP′ contains states that are not in IP then, in the
absence of faults, P ′ may include computations that

start outside IP . Since we require that P ′ satisfies

SPEC from IP′ , it implies that P ′ is using a new
way to satisfy SPEC in the absence of faults. Thus,

we require that IP′ ⇒ IP .

2. If TP′ | IP′ contains a transition that is not in
TP | IP′ then P ′ can use this transition in order

to satisfy SPEC in the absence of faults. Thus, we

require that (TP′ | IP′) ⇒ (TP | IP′).

Following the above observations, the synthesis prob-

lem is as follows:

Problem Statement. Given a program P =

〈ΠP , IP〉, specification SPEC , and a set F of faults such

that P |=IP SPEC , identify P ′ = 〈ΠP′ , IP′〉 such that:

8

(C1) IP′ ⇒ IP ,

(C2) (TP′ | IP′) ⇒ (TP | IP′), and
(C3) P ′ is masking F -tolerant to SPEC from IP′ . ⊓⊔

We recall that the stated problem, if posed as a de-

cision problem is known to be NP-complete in the size

of state space [5,6] and our focus in this paper is to cope
with this complexity for synthesizing witness solutions.

Notice that constraint C3 obviously requires that the

synthesized program has to be masking fault-tolerant.

Based on Definition 14, this requirement implicitly im-
plies that the synthesized program is not allowed to

exhibit new finite computations, which in turn means

that synthesis algorithms are not allowed to introduce
deadlock states to the input program. This condition

ensures that if the given intolerant program satisfies a

universally quantified liveness property, then the syn-
thesized fault-tolerant program satisfies the property as

well.

Our formulation of the synthesis problem is in spirit

close to both controller synthesis, where program and
fault transitions may be modelled as controllable and

uncontrollable actions, and game theory, where pro-

gram and fault transitions may be modelled in terms
of two players. In both problems, the objective is to

restrict the program actions at each state through syn-

thesizing a controller or a wining strategy such that the
behavior of the entire system satisfies some safety or

reachability conditions in the presence of an adversary.

Notice that the conditions C1 and C2 precisely express

this notion of restriction. Furthermore, the conjunction
of all conditions expresses the notion of language in-

clusion, where the synthesized program is supposed to

exhibit a subset of behaviors of the input intolerant
program in the absence of faults.

Finally, unlike controller synthesis and game the-

ory algorithms where arbitrary specifications are of-
ten considered, our algorithms are tailored for prop-

erties typically used in specifying distributed and fault-

tolerance requirements and, hence, they synthesize pro-

grams more efficiently. We elaborate on comparison and
contrast with controller synthesis and game theory in

Section 11 in detail.

Another point in the problem statement is that it
does not allow extending the state space during syn-

thesis. However, there are different ways to modify the

problem statement and corresponding algorithms so that
redundancy will be added during synthesis. One ap-

proach is as follows: If addition of fault-tolerance fails

then we add one bit to each process. The original pro-

gram can update this variable in any way it wishes.
Now, we can run the algorithm with this added redun-

dancy. If it is possible to add fault-tolerance then even-

tually this algorithm will succeed.

Although this approach looks promising, there are

several concerns. One problem is that with the above
approach, the algorithm may never terminate. In fact,

the problem will be undecidable [16]. Even if the al-

gorithm terminates, the complexity could be extremely
high. Another, and more serious problem, is that adding

such bits may not be consistent with the underlying

model. For example, it is not always obvious what
read/write restrictions should be imposed on these new

bits. For certain models such as read/write or shared

memory, one can identify these restrictions. But, in our

work, we have allowed the designer to identify their
own read/write restrictions to allow for more general-

ity. Hence, adding such bits during the algorithm will

make the algorithms less general. Yet another serious
problem is how one can model the effect of faults on

the new bits. For example, if one uses transient faults

that perturb the program to an arbitrary state, then the
bit could be corrupted arbitrarily. For fail-stop faults,

presumably, the bit will not be corrupted. Again, this

reduces the generality of the algorithms considered in

the paper.
Additionally, if the approach for enhancing state

space results in the use of more processes (to obtain

additional redundancy) then that has another cost (in
terms of hardware, money etc.). We believe that an

automation algorithm should never add this cost on its

own, as an automation algorithm cannot determine rea-
sonableness of the increased cost.

For these reasons, we advocate the one approach

where addition of such bits should be done (manually)

by the designer if synthesis fails. With this approach,
the state space remains unchanged during the synthe-

sis algorithm. Another approach we advocate is to use

components that can increase the state space. In [17],
we have developed one such algorithm where inability

to synthesize is used to identify a type of component

that should be added. The added component has its
own variables thereby increasing the state space. We

believe that the designer can use one of the two ap-

proaches to deal with the case where sufficient redun-

dancy is unavailable.

5 The Symbolic Synthesis Algorithm

In this section, we present our symbolic algorithm for
solving the synthesis problem presented in Section 4.

As mentioned in Section 4, the corresponding decision

problem is known to be NP-complete [5,6] and our goal

in this section is to develop an efficient symbolic (i.e.,
BDD-based) heuristic that can synthesize a rich class

of programs. We validate this claim in Sections 6-10

through presenting different case studies. Our heuristic

9

is inspired by the explicit-state algorithms developed

in [3, 4].

Algorithm sketch. The algorithm takes an intoler-
ant program, a safety specification, and a set of fault

transitions as input and synthesizes a fault-tolerant pro-

gram that satisfies the constraints of the Problem State-
ment in Section 4. The algorithm consists of five steps.

The first step is initialization, where we identify state

and transition predicates from where execution of faults

alone may violate the safety specification. In Step 2, we
identify the fault-span by computing the state predi-

cate reachable by the program in the presence of faults,

starting from the program invariant. In Step 3, the al-
gorithm identifies and rules out program transitions

whose execution may lead to violation of the safety

specification. Then, in Step 4, we resolve deadlock states.
Resolving deadlock states is crucial to ensure that no

new finite computations are introduced to the input

fault-intolerant program. Hence, in order to ensure that

the synthesized fault-tolerant program satisfies liveness
specification of the input program, deadlock states must

be handled by either adding recovery paths or state

elimination. Finally, in Step 5, we re-compute the in-
variant predicate so that it is closed in the final pro-

gram. We repeat steps 2-3, 2-4, and 2-5 until a fixpoint

is reached. The fixpoint computations are represented
by three nested repeat-until loops in the algorithm.

Thus, the algorithm terminates when no progress is pos-

sible in all the steps described above.

We now describe the algorithm Symbolic Add FT

(cf. Algorithm 5.1) in detail:

– Step 1: Initializations (Lines 1-3). First, we

compute the state predicate ms from where execu-
tion of faults alone violate the safety specification

(Line 1). To this end, we start from state predicate

where Guard(F ∧ SPEC bt) is true (i.e., states from

where faults directly violate the safety specification)
and explore backward reachable states by applying

fault transitions only. This is achieved by invok-

ing the procedure BWReachStates as a black box.
The first parameter of the procedure is the state

predicate from where we start computing backward

reachable states. The second parameter is the tran-
sition predicate applied for exploring reachable

states. The procedure FWReachStates works in a

similar fashion. The only difference is it explores

forward reachable states. We do not present the de-
tails of how we compute the set of forward and back-

ward reachable states, as the problem has been thor-

oughly studied and already implemented in sym-

bolic model checkers [8, 18, 19]. Nonetheless, as we

will illustrate in Sections 6-10, small changes in im-
plementation may have tremendous impact on the

efficiency of state exploration with respect to differ-

ent programs. This impact is often more dramatic
in program synthesis than verification since reacha-

bility analysis procedures may be applied multiple

times during the course of synthesizing
a program.

Since a program does not have control over the oc-

currence of faults, one has to ensure that the state

predicate ms never becomes true in any program
computation. Otherwise, faults alone may lead the

program to a state where the safety is violated.

Thus, we remove ms from the invariant of the fault-
tolerant program (Line 2). We also compute the

transition predicate mt whose transitions should not

be executed by the fault-tolerant program. Initially,
mt is equal to the union of SPEC bt and transi-

tions that start from any arbitrary state and end

in ms (Line 3). Since the fault-tolerant program is

not supposed to reach a state in ms, we allow the
transitions that originate in ms to be in the fault-

tolerant program (Line 3). Notice that in Algorithm

Add Symbolic FT and its sub-procedures, any addi-
tion or removal of a transition predicate has to be

applied along with its group predicate due to the is-

sue of read restrictions. Thus, issues with regard to
distributed processes are all handled in computing

group predicates. Since ms is unreachable, we allow

the program to execute transitions that originate

in ms. This inclusion is along with its group pred-
icate which results in increasing the level of non-

determinism of the synthesized program in the sense

that the program is more likely to have multiple
choices of execution paths at each reachable state.

Such diversity often increases chances for successful

synthesis. Observe that although a state predicate,
in Line 3, one can interpret ms as a transition pred-

icate that starts in ms and ends in true.

– Step 2: Re-computing the fault-span (Lines

9-11). After initializations, we re-compute the

invariant predicate, program transition predicate,

and fault-span of the fault-tolerant program in three
nested loops, respectively. Each loop resembles a fix-

point calculation. We start with the most inner loop,

where we re-compute the fault-span. The reason for
re-computing the fault-span is due to the fact that

in other steps of our algorithm, we add and remove

transitions that originate in the fault-span. Hence,

new states may become reachable and some states

10

Algorithm 5.1 Symbolic Add FT
Input: program transition predicate TP , invariant predicate IP ,

fault transitions F , and bad transition predicate SPEC bt.
Output: program transition predicate TP′ and invariant predi-

cate IP′ .

// initializations
1: ms := BWReachStates(Guard(F ∧ SPEC bt), F);
2: I1, fte := IP − ms, false;
3: mt := (〈ms〉′ ∨ SPEC bt) ∧ Group(¬ms);

// recomputing the invariant predicate
4: repeat

5: I2 := I1;
// recomputing the transition predicate

6: repeat

7: S1, T2 := I1, T1;

// recomputing the fault-span
8: repeat

9: S2 := S1;

10: S1 := FWReachStates(I1, T1 ∨ F);
11: S1 := S1 − fte;
12: mt := mt ∧ S1;

// removing unsafe transitions

13: T1 := T1 − Group(T1 ∧ mt);
14: until (S1 = S2);

// Resolving deadlock states through adding recovery

or state elimination
15: ds := S1 ∧ ¬Guard(T1);
16: T1 := T1 ∨ AddRecovery(ds, I1, S1, mt);
17: ds := S1 ∧ ¬Guard(T1);

18: T1, fte := Eliminate(ds, T1, I1, S1, F, false, false);
19: until (T1 = T2);
20: T1, I1 := ConstructInvariant(T1, I1, fte);
21: until (I1 = I2);

22: IP′ , TP′ := I1, T1;
23: return IP′ , TP′ ;

may become unreachable. Thus, re-computation is
needed to update the fault-span.

Let the initial fault-span S1 be equal to the invari-

ant I1 (Line 7). We re-compute the fault-span by
starting exploration from states where the invariant

I1 is true and applying the program transition pred-

icate in the presence of faults (i.e., T1 ∨ F). To this

end, we invoke the procedure FWReachStates (Line
10). After recomputing the fault-span, we remove

the state predicate fte from the new fault-span S1

(Line 11). This state predicate is identified later in
Step 4 where we resolve deadlock states. For now,

fte contains states failed to eliminate during dead-

lock resolution.

– Step 3: Identifying and removing unsafe tran-

sitions (Lines 12-13). We first identify unsafe

transitions. Suppose there exists a state predicate
which is a subset of Guard(mt), but it is unreachable

by transitions in T1 ∨F starting from the invariant.

In other words, it does not intersect with the fault-

span. Since Guard(mt) is unreachable by computa-

tions of the program even in the presence of faults,
we let the transitions that originate in this state

predicate be in the fault-tolerant program (Line 12).

In other words, the necessary condition for a tran-
sition to be unsafe is its source state has to be in

the fault-span. Otherwise, the transition can exist

in the fault-tolerant program transition predicate,
even if it is in SPEC bt. The reason for not including

such transitions in mt is due to the fact that their

corresponding group predicates are also included in

the synthesized program transition predicate which
in turn adds to non-determinism and diversity of

the program.

The fault-tolerant program transition predicate is
computed based on the following principle: a tran-

sition can be included if it is not unsafe. Thus, once

we identify unsafe transitions (i.e., transition predi-
cate mt), we rule them out from the program transi-

tion predicate (Line 13). Note that a transition can

be included in the fault-tolerant program if its en-

tire corresponding group predicate can be included.

– Step 4: Resolving deadlock states (Lines 15-

18). Since the algorithm may remove some transi-
tions from the input program, some states may have

no outgoing transitions due to this removal. Thus,

when the execution of the algorithm reaches a fix-
point in the inner loop, we identify deadlock states

inside the fault-span. We deal with deadlock states

in two ways. We either add a safe recovery path from

a deadlock state to the program invariant, or (if re-
covery is not possible) we eliminate the deadlock

state. That is, we make the deadlock state unreach-

able. The deadlock resolution mechanisms are im-
plemented in two procedures AddRecovery and Elim-

inate (cf. Procedures 5.2 and 5.3), respectively. We

now describe these mechanisms in detail.
First, the algorithm Symbolic Add FT identifies the

deadlock state predicate ds (Line 15). Intuitively, a

state in the fault-span is deadlocked if the guard of

T1 is false in that state. We now proceed as follows
to resolve deadlock states:

– (Adding safe recovery paths) The Procedure Ad-

dRecovery (cf. Procedure 5.2) takes a deadlock

state predicate ds, invariant predicate I, fault-
span S, and unsafe transition predicate mt as

input. It returns a transition predicate which

contains new recovery transitions as output. We

add recovery paths in an iteratively layered fash-
ion. Let the first layer that recovery can reach

be the program invariant, i.e., lyr = I1 (Line

1). Also, let rt be the transition predicate that

11

Procedure 5.2 AddRecovery
Input: deadlock states ds, invariant I, fault-span S, and transi-

tion predicate mt .
Output: recovery transition predicate rec.

1: lyr , rec := I, false;

2: repeat

3: rt := Group(ds ∧ 〈lyr〉′);
4: rt := rt − Group(rt ∧ mt);
5: if DetectCycles(T ∨ rec ∨ rt , S) then

6: rt := false;
7: end if

8: rec := rec ∨ (rt − Group(rt ∧ I ∧ ¬〈I〉′));

9: lyr := Guard(ds ∧ rt);
10: until (lyr = false);
11: return rec;

originates from the deadlock state predicate ds
and ends in lyr (Line 3). Since we require the

fault-tolerant program to satisfy safety during

recovery, rt must be disjoint from mt . Thus, we

check whether the group predicate of rt main-
tains the safety specification (Line 4). If so, we

check whether addition of rt to the program tran-

sition predicate creates a cycle that is entirely
in the fault-span. Existence of such a cycle may

prevent the program to recover to the invariant

predicate within a finite number of steps. To this
end, we invoke the procedure DetectCycles with

parameters T ∨ rec ∨ rt and S. If there is indeed

a cycle in the fault-span created due to addition

of rt to the program transition predicate, we do
not add the new recovery transitions in rt to

rec which is the final set of recovery transitions.

Otherwise, it is safe to add rt to rec (Line 8).
There exist several symbolic approaches in the

literature for detecting cycles [20]. We, in par-

ticular, incorporate the approach introduced by
Emerson and Lei [21].

For the next iteration, we let lyr be the state

predicate from where one-step safe recovery is

possible (Line 9). We continue adding recovery
steps until no new recovery transition is added.

– (Eliminating deadlock states) If safe recovery is
not possible from a deadlock state predicate, we

choose to eliminate it. By state elimination we

mean making that state unreachable. The recur-
sive Procedure Eliminate takes a deadlock state

predicate ds, program transition predicate T, in-

variant predicate I, fault-span S, fault transi-

tions F , a predicate vds of deadlock states vis-
ited while eliminating, and a predicate fte of

deadlock states failed to eliminate as input. It

returns a revised program transition predicate

T ′, visited deadlock states vds ′, and states fte ′

failed to eliminate as output.
The Procedure Eliminate works as follows. First,

if all deadlock states in ds have already been

considered for elimination, the procedure returns
immediately (Lines 1-5). Otherwise, we add ds

to the predicate vds of states already visited

(Line 6). There are potentially two ways to reach
a state in ds: (1) by a program transition, or

(2) by a fault transition. If ds is reachable by

a fault transition, we need to backtrack to the

source state predicate and make that predicate
unreachable. This is due to the fact that the pro-

gram does not have control over the occurrence

of faults and if there exist states in ds that are
reachable by fault transitions from another state

predicate, say fs (Line 9), then one has to back-

track and eliminate fs. Thus, we mark the states
reachable by fault transitions from fs as failed to

eliminate (Line 10)2. We note that elimination

2 Let T be a transition predicate. T ′′ denotes the state pred-
icate obtained from unpriming all variables in the target state
predicate of T , i.e., the state predicate reachable by T .

Procedure 5.3 Eliminate
Input: deadlock states ds, transition predicate T, invariant I,

fault-span S, fault transitions F , visited deadlock states vds,
and predicate fte failed to eliminate.

Output: revised program transition predicate T, visited dead-
lock states vds, and predicate fte failed to eliminate, where

states in ds become unreachable.

1: ds := ds − vds;
2: if (ds = false) then

3: T ′, vds′, fte′ := T, vds, fte;
4: return T ′, vds′, fte′;
5: end if

6: vds := vds ∨ ds;

// eliminating states in ds
7: tmp := (S − I) ∧ T ∧ 〈ds〉′;

8: T := T − Group(tmp);

// eliminating source states of incoming fault transitions

9: fs := Guard(S ∧ F ∧ 〈ds〉′);
10: fte := fte ∨ 〈fs ∧ F 〉′′;
11: OffendingStates := OffendingStates ∨ (fs ∧ I);
12: if (fs 6= false) then

13: T, vds, fte := Eliminate(fs − I, T, I, S, F, vds, fte);
14: end if

// testing whether removal of incoming program transitions
creates new deadlock states

15: nds := Guard(S ∧ Group(tmp) ∧ ¬T);
16: T := T ∨ (Group(tmp) ∧ nds);

17: fte := fte ∨ ((nds ∧ 〈Group(tmp)〉′′) − I);
18: T ′, vds′, fte′ := Eliminate(nds, T, I, S, F, vds, fte);

19: return T ′, vds′, fte′;

12

of states in fs is based on the following principle:

we do not eliminate states in the invariant pred-
icate. Thus, if fs intersects with the invariant,

we mark the intersection as OffendingStates and

deal with them when we re-compute the invari-
ant predicate in Step 5. At this point, we invoke

Eliminate recursively with parameter fs−I (Line

13).
If ds is reachable by program transitions, we re-

move those transitions and their corresponding

group predicates from T, provided no new dead-

lock states are introduced. Thus, we temporarily
remove such transitions, say tmp, with the hope

that this removal makes ds unreachable (Lines 7-

8). Once we deal with incoming fault transitions,
we ensure that removal of Group(tmp) does not

introduce new deadlock states to the program.

If there exist new deadlock states, the predicate
nds (computed in Line 15) is not equal to false.

Thus, we take the following steps: We

1. reinstate the transitions originating from nds

back to the program (Line 16),
2. mark the states in nds as failed to eliminate

(Line 17), and

3. attempt to ensure that nds is never reached
by invoking Eliminate with parameter nds

recursively (Line 18).

As mentioned earlier the Algorithm Symbolic Add FT

exploits the above mechanisms to deal with dead-

lock states. As can be seen, first it invokes the Pro-
cedure AddRecovery on the existing deadlock states

(Line 16). Then, if AddRecovery fails to resolve some

deadlock states, we make them unreachable by in-
voking the Procedure Eliminate (Line 18). Finally,

notice that in Line 11 of the algorithm, we exclude

state predicate fte from the re-computed fault-span.
This is because these states have to eventually be-

come unreachable and if we include them in the

fault-span, in the next iteration of resolving dead-

lock states, they will be unnecessarily re-considered
for elimination.

– Step 5: Re-computing the invariant (Line 20).

Once we reach a fixpoint after re-computing fault-

span and program transition predicate, we

re-compute the invariant by invoking the Procedure
ConstructInvariant (see Procedure 5.4).

Re-computation of invariant has to be done due to

identifying offending states during state elimination.

Recall that a computation, say s = s0 → s1 → · · · ,
that starts from an offending state may reach a state

that was considered for elimination. In particular,

since the first transition of s is a fault transition, s0

which is an offending state has to become unreach-

able. To this end, we first remove offending states
from the invariant (Line 2). Then, due to this re-

moval, we need to ensure that the invariant pred-

icate is closed in T. Thus, we remove the transi-
tion predicate that violates the closure of T (Lines

3 and 4). We continue these steps until a fixpoint is

reached in the sense that no offending states exist
and I is closed in T.

The algorithm keeps repeating steps 1-5 until the
three fixpoints are reached. At the end of each fixpoint

computation, we verify the correctness of conditions of

the Problem Statement. Hence, when the algorithm ter-
minates, we are guaranteed the solution is sound.

Theorem 1 The algorithm Symbolic Add FT is sound.

Proof In order to prove soundness, we show that the

output of the algorithm meets the constraints of our
Problem Statement in Section 4:

– (Constraint C1) The first constraint requires that

the invariant of the synthesized program must be

a subset of the input program’s invariant. Notice

that the invariant predicate can only be modified by
Procedure ConstructInvariant. Moreover, Construct-

Invariant may only remove states from the given in-

variant predicate. Hence, IP′ ⇒ IP .
– (Constraint C2) The second constraint ensures that

transitions that start and end in the invariant pred-

icate are not added to the program. Observe that
the algorithm only adds transitions to the program

in Procedure AddRecovery. In this procedure, tran-

sitions that start from the invariant predicate and

end outside this predicate are ruled out in Line 8
(i.e., only transitions that start outside the invari-

ant are added). Hence, (TP′ |IP′) ⇒ (TP |IP′).

– (Constraint C3) Following constraints C1 and C2,
in the absence of faults, the synthesized program

does not exhibit new behaviors. Hence, if P |=IP

Procedure 5.4 ConstrucInvariant
Input: invariant predicate I, program transition predicate T,

and offending states OffendingStates.
Output: revised invariant predicate I′ and program transition

predicate T ′.

1: while (OffendingStates 6= false) do

2: I := I − OffendingStates;
3: tmp := T ∧ I ∧ 〈¬I〉′;
4: T := T − Group(tmp);
5: OffendingStates := 〈tmp〉′′;

6: end while

7: I′, T ′ := I, T;
8: return I′, T ′;

13

SPEC , then P ′ |=IP′ SPEC . In the presence of

faults:

– The algorithm ensures that the synthesized pro-
gram executes no transition in SPEC bt by re-

moving all transitions (i.e., mt) that lead to a

state in ms (i.e., the set of states from where

faults alone can violate the safety specification).
Hence, P ′ maintains SPEC bt from the fault-span

in the presence of faults.

– Moreover, if the synthesized program reaches a
state outside the invariant predicate, the algo-

rithm ensures that P ′ does not deadlock through

adding safe recovery paths by invoking Proce-
dure AddRecovery. If adding safe recovery is not

possible, then the algorithm makes deadlock states

unreachable via invoking Procedure Eliminate.

Thus, the synthesized program never deadlocks
and eventually reaches a state in the invariant

predicate from where satisfaction of liveness is

guaranteed.

Hence, P ′ maintains SPEC from the invariant pred-

icate in the presence of faults. ⊓⊔

The structure of the output program is typically

formed by three types of actions as compared to the

input intolerant program. These action types are the
following:

1. Unchanged actions. These actions identically exist
in both the tolerant and intolerant programs.

2. Strengthened actions. Transitions corresponding to

these actions exist in the input program. However,
the guard of the corresponding actions are stronger

than their counterpart actions in the input program.

This is due to the fact that the transformed program
makes unsafe states and some deadlock states un-

reachable.

3. Recovery actions. These action do not exist in the

input program at all. Recovery actions are added to
the input program in order to resolve some dead-

lock states that are reachable by the program in the

presence of faults.

In the next five sections, we present a set of experi-
mental results of implementation of the Algorithm Sym-

bolic Add FT and its procedures in our tool Sycraft

[13]. Our case studies include three classic examples in
the literature of distributed fault-tolerant computing,

namely, the Byzantine agreement problem [9], Byzan-

tine agreement with fail-stop faults, and the token ring

[10] problem. We also present experimental results on
addition of fault-tolerance to a bulk data dissemina-

tion protocol in wireless sensor networks, known as In-

fuse [12]. As mentioned in the introduction, our case

studies address a wide variety of structural issues and

obstacles that can potentially affect the efficiency of
our algorithm. In all case studies, we find a consider-

able improvement in both time and space complexity

as compared to the existing approaches.

6 Case Study 1: Byzantine Agreement

Throughout this section and Sections 7, 8, 9, and 10, all

experiments are run on a dedicated PC with a 2.2GHz

AMD Opteron processor and 1.2GB RAM. The BDD

representation of the Boolean formulae is implemented
using the Glu/CUDD package [22]. We analyze all the

experiments in terms of time and space to complete syn-

thesizing a fault-tolerant program. From the time per-
spective, we consider total synthesis time, time spent

for resolving deadlock states (including addition of safe

recovery and state elimination), cycle detection, and
computing the fault-span. From the space perspective,

we consider the number of states reachable by each dis-

tributed program in the presence of faults (i.e., the size

of fault-span) and the actual memory usage. Our first
case study is the continuation of our running example,

the Byzantine agreement program.

Example (cont’d). The output of our algorithm
with respect to program BA is program BA′ which tol-

erates the Byzantine faults identified in Section 3 in

the sense that BA′ never violates its specification and

it does not deadlock when faults occur. We note that
our synthesized program is identical to the canonical

version of Byzantine agreement program manually de-

signed in [9]. The actions of the synthesized program for
a non-general process j are as follows (see Appendix B

for the actual output of the tool Sycraft with respect

to BA):

BA′1j :: d.j = ⊥ ∧ f.j = false
−→ d.j := d.g;

BA′2j :: d.j 6= ⊥ ∧ f.j = false ∧ (d.k=⊥ ∨ d.k = d.j) ∧

(d.l=⊥ ∨ d.l = d.j) ∧ (d.k 6= ⊥ ∨ d.l 6= ⊥)
−→ f.j := true;

BA′3j :: d.j = 1 ∧ d.k = 0 ∧ d.l = 0 ∧ f.j = false
−→ d.j, f.j := 0, false|true;

BA′4j :: d.j = 0 ∧ d.k = 1 ∧ d.l = 1 ∧ f.j = false
−→ d.j, f.j := 1, false|true;

BA′5j :: d.j 6= ⊥ ∧ f.j = false ∧

((d.j =d.k ∧ d.j 6= d.l) ∨ (d.j =d.l ∧ d.j 6= d.k))
−→ f.j := true;

Notice that action BA′1 is unchanged, actions BA′3
and BA′4 are recovery actions, and actions BA′2 and

BA′5 are strengthened actions.

14

Space Time(s)
reachable memory deadlock resolution fault-span total

states (MB) Eliminate Recovery generation

BA5 104 3.5 < 1 < 1 < 1 < 1

BA10 109 6.2 4 2 < 1 6

BA15 1012 11.5 39 5 < 1 45

BA20 1015 13.68 185 10 1 199

BA25 1019 14.2 642 19 5 669

BA30
1022 15.2 1791 32 7 1836

BA35 1026 15.6 4492 54 10 4565

BA40 1030 16.5 9253 82 16 9366

(a)

 0.1

 1

 10

 100

 1000

 10000

 5 10 15 20 25 30 35 40

T
im

e
(s

)
(lo

g
sc

al
e)

Number of Processes

Time vs. Number of Processes

total synthesis time
state elimination

recovery addition
fault-span generation

(b)

Fig. 1 Experimental results for algorithm Symbolic Add FT and the Byzantine agreement problem.

We now present the results of our experiments with

respect to the Byzantine agreement program. Figure
1(a) shows actual memory usage in megabytes and time

needed to accomplish each subtask of the algorithm in

seconds in terms of the number of non-general processes
(BAi denotes Byzantine agreement program with i non-

general processes). Figure 1(b) compares the total syn-

thesis time and the time spent to complete subtasks
of the algorithm graphically. Notice that the x-axis is

in logarithmic scale. The number of processes synthe-

sized in our experiments ranges over 5 to 40. Although

it is feasible to synthesize programs with more number
of processes in a reasonable amount of time, the trend

of the graph with maximum 40 processes is sufficiently

clear to make sound judgements. We now analyze the
results.

Total synthesis time

Observe that it takes less than one second to synthesize

5 non-general processes. It is noteworthy to mention
that an enumerative implementation of similar heuris-

tics [3, 4] requires 900 seconds to synthesize the same

number of processes. Moreover, this enumerative im-
plementation can not handle more than 5 processes

due to the state explosion problem. To the contrary,

our symbolic approach is cable of synthesizing 40 pro-

cesses (1030 reachable states and beyond) in a reason-
able amount of time, which is obviously a significant

improvement. Note that the size of state space of BA40

is 1028 times larger than the size state space of BA5.

Figure 1(b) shows that the growth rate of total time

spent to synthesize Byzantine agreement is sublinear to

the size of reachable states. In particular, our analysis
shows that the fraction Time

ReachableStates0.13 remains con-

stant as the number of non-general processes grows.

Sublinearity of total synthesis time to the size of reach-

able states is important in the sense that the expo-

nential blow-up of state space does not affect the time
complexity of our synthesis algorithm. More precisely,

the size of reachable states is not an obstacle by itself

in order to synthesize distributed programs.

Fault-Span generation

As can be seen in Figure 1(b), the generation of fault-

span is fairly fast in case of the Byzantine agreement

program. This is mainly due to the following contribut-
ing factors:

1. The state space of the program is partially reach-

able. To illustrate the issue of the size of reachable
states, let us consider the Byzantine agreement pro-

gram with i processes. Since we represent the de-

cision value of each processes by two Boolean vari-
ables, as the size of their respective domain is 3, each

non-general process has 4 Boolean variables. Also,

the general has 2 variables. Hence, the program has
4i+2 Boolean variables in total and the size of state

space is 24i+2. In order to compute the size of reach-

able states approximately, observe that non-general

processes are either undecided (i.e., d.j = ⊥), or
they are decided (i.e., d.j = 0|1) and their decision

is either finalized or not yet finalized (i.e., f.j =

false|true). Hence, each non-general can have 5 dif-
ferent combinations. Furthermore, the general can

have either decision value (i.e., d.g = 0|1) and be

Byzantine or non-Byzantine (i.e., b.g = false|true).
Hence, the size of reachable states is at most 5i ∗ 4,

which is considerably less than the size of the entire

explicit state space. For instance, in case of BA40,

the size of state space is 1045, while only 1030 states
are reachable.

2. The diameter of the state-transition graph of the

program is not long and, hence, shallow reachability

15

is possible. For instance, in case of BA30, the fault-

span can be computed by only 32 rounds of frontier
generation in a breadth first manner.

These reasons significantly affect the efficiency of

fault-span generation. It is important to notice that the
above factors may behave differently in distributed pro-

grams with different structures. As a matter of fact, our

experiments with respect to the token ring problem (see
Section 9) validates this statement.

Deadlock resolution

Figure 1 also shows the time spent to resolve deadlock

states for different number of processes. As mentioned
earlier, deadlock resolution is crucial in order for the

output program to meet liveness properties. We note

that deadlock resolution (as defined in Section 5) is a
problem that uniquely exists in the context of program

synthesis and transformation and, hence, has not been

addressed by the model checking community. In fact,
there is very little experimental analysis with regard to

synthesis of liveness properties in the literature. Since

deadlock resolution is achieved through adding recovery

paths and state elimination, we present the time spent
in each subtask for a more thorough analysis.

Addition of safe recovery is the first attempt that
the algorithm makes in order to resolve deadlock states.

The results of our experiments in case of Byzantine

agreement shows that this mechanism is not costly as
compared to the total synthesis time (see Figure 1(b)).

This is solely due to the structure of BA where the size

of fault-span and safety specification are not barriers in
efficient addition of safe recovery paths.

As can be seen in Figure 1(b), the graph of to-
tal synthesis time is almost identical to the graph of

state elimination time. In fact, in the range of 5-40 pro-

cesses, on average, 96% of the total synthesis time is

spent to resolve deadlock states through state elimi-
nation. In other words, only 4% of the total synthesis

time is spent to re-compute the fault-span, checking the

safety of group predicates, computing recovery paths,
and re-computing the program invariant. This is ba-

sically due to the fact that state elimination can po-

tentially involve many backtracking steps. As a matter
of fact, this is exactly what is happening in Byzantine

agreement. For instance, in case of BA5, the Procedure

Eliminate needs to be called 26 times recursively. Thus,

state elimination can potentially be a serious stumbling
block in efficiency of synthesis algorithms. We note that

the existence and diversity of deadlock states directly

depends on the structure of the given program. In Sec-

tion 9, we show that in case of token ring, for instance,

deadlock resolution is not a time-consuming issue.

Finally, Figure 1(a) shows that if we were not re-
quired to resolve deadlocks states, identifying a solution

to the problem can be accomplished considerably faster.

Although such a solution is not a masking fault-tolerant
program, it is a correct failsafe fault-tolerant program.

A failsafe program is one that is required to merely

satisfy its safety specification (and not necessarily its

liveness specification) in the presence of faults. Conse-
quently, there is no need to resolve deadlock states in

order to synthesize a failsafe solution. Thus, one can

synthesize a failsafe solution to BA40 in 22 seconds.
This performance is significantly better than the Di-

Conic approach in [23] where synthesis of a failsafe ver-

sion of BA40 requires 353 seconds using a cluster of
workstations.

Memory usage

Figure 1(a) also shows the amount of virtual memory
that the Algorithm Symbolic Add FT requires (in MB)

for different number of non-general processes. As can be

seen, the amount of memory that the algorithm requires
to synthesize 40 processes (16.5 MB) is not considerably

greater than the amount of memory required to syn-

thesize 5 processes (3.5 KB). The insignificant growth
trend of memory usage is more appreciable when it is

compared to the growth of number of reachable states

in case of 5 and 40 processes. Low memory usage of

our algorithm with respect to this case study is clearly
due to efficient representation of Boolean formulae by

BDDs.

The issue of variable ordering

The key reason to efficient encoding of a Boolean for-

mula in a BDD is to identify an appropriate order of
variables when constructing the BDD [7]. In our imple-

mentation, we order the variables based on the following

two principles, regardless of the structure of the given
fault-intolerant program:

1. Each primed variable is always ordered immediately
after its corresponding unprimed variable, and

2. Variables of each process are ordered subsequently

one after another.

For instance, in Byzantine agreement program, the or-

der of variables is as follows:

d.j < d′.j < f.j < f ′.j < b.j < b′.j < d.k < d′.k <

f.k < f ′.k < b.k < b′.k < · · · .

The first principle is a rule of thumb in existing sym-

bolic model checkers as well, as a transition often up-

dates a subset of program variables, say U , and leave

16

the rest unchanged. Hence, for each variable v where

v /∈ U , v = v′ must hold in the BDD that encodes the
transition. Therefore, in order to reduce the number of

nodes in the BDD, it is more efficient to order each

primed variable immediately right after its correspond-
ing unprimed variable.

The second principle reduces the number of nodes

in BDDs that encode group predicates. Recall that the

value of all readable variables in source state of all tran-
sitions in a group predicate are equal. The same premise

holds for target states. Thus, it is beneficial to order

readable variables of a process subsequently. As a con-
crete example, an implementation of Symbolic Add FT

that does not apply the second principle requires one

minute to synthesize BA10, which is 10 times slower
than the case where the second principle is applied.

Comparison with model checking

In order to demonstrate the effectiveness and efficiency

of our synthesis algorithm, we present a comparison
with the corresponding verification problem, which is

a significantly easier problem3. To this end, we use the

model checker NuSMV [24] to verify the following prop-
erties for Byzantine agreement:

– agreement,

– validity,

– deadlock-freedom, and
– recovery (i.e., from any state outside the invariant

predicate, the program eventually reaches the in-

variant.

Figure 2 shows the results of our experiments with

respect to the property that requires maximum verifica-
tion time for 10, 20, 30, and 40 processes and compares

them with their respective synthesis problem. As can be

seen, verification of fault-tolerant Byzantine agreement
is faster than its synthesis. The main reason for this

clear difference is the issue of deadlock resolution. As

mentioned earlier, deadlock resolution is the main bot-
tleneck of synthesizing Byzantine agreement. If we ex-

clude deadlock resolution from synthesizing Byzantine

agreement, then the total synthesis time of our method

will be equal to the sum of fault-span generation and
adding recovery paths. In this case, the total synthesis

time would be even less than its corresponding model

checking. This latter observation is due to the following
reasons:

1. NuSMV employs a general labelling algorithm for

model checking in full CTL. The steps of our syn-

3 In our framework, model checking distributed programs can
be done in O(n2) time, where n is the size of the state space, but
their synthesis is NP-complete [5].

Total verification time(s) Total synthesis time(s)

BA10
0.8 6

BA20
11 199

BA30
50 1836

BA40
332 9366

Fig. 2 Experimental results for model checking Byzantine agree-

ment using NuSMV.

thesis algorithm for Byzantine agreement does not

suffer from BDD-based cycle detection.

2. Our synthesis algorithm is customized to the as-
sumption that occurrence of faults is finite and the

program eventually executes non-fault transitions

only. This means that our algorithm can completely
overlook searching for cycles involving faults only.

3. Following the previous point, since cycles consisting

only fault transitions are of no concern, our NuSMV

model employs an integer variable to count the num-
ber of occurrence of faults and enforce an upper-

bound on it. Integer counters often make symbolic

model checking inefficient.

7 Case Study 2: Exploiting Human Knowledge

to Assist Synthesis Algorithms

Our experiments on the Byzantine agreement problem

clearly exhibited state elimination as a severe bottle-

neck. One way to remedy this problem is by making
states that have to be considered for elimination un-

reachable by adding constraints to the safety specifi-

cation (i.e., SPEC bt). This can be achieved through
labelling transitions that can potentially lead a com-

putation to reach deadlock states as bad transitions in

the safety specification. To demonstrate our idea, below
we analyze the state elimination step of the Byzantine

agreement program by the state-transition graph of the

BA.

Let the sequence 〈x1, x2, x3, x4〉 denote the set of
states with respect to decision value of processes, i.e.,

x1 = d.g, x2 = d.j, x3 = d.k, and x4 = d.l. In this no-

tation, an overlined (respectively, underlined) d-value
shows that the corresponding process has finalized its

decision (respectively, is Byzantine). Now consider the

following scenario: Starting from a state s0 in 〈1,⊥,⊥, 1〉,
where the general and process l agree on decision 1 and

processes j and k are undecided, the program may reach

the following sequence of states due to the occurrence

of faults (denoted 99K) and execution of program ac-
tions (denoted →):

〈1,⊥,⊥, 1〉 −→ 〈1,⊥,⊥, 1〉 99K 〈1,⊥,⊥, 1〉 99K

17

Space Time(s)
reachable memory deadlock resolution fault-span total

states (MB) Eliminate Recovery generation

BA5 104 3 0 < 1 < 1 < 1

BA10 109 6 0 2 < 1 3

BA15 1012 14.5 0 14 1 17

BA20 1015 18 0 63 1 67

BA25 1019 24 0 188 1 199

BA30
1022 31 0 506 4 526

BA35 1026 44 0 1203 7 1237

BA40 1030 64 0 2428 25 2496

(a)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 5 10 15 20 25 30 35 40

T
ot

al
 S

yn
th

es
is

 T
im

e
(s

)

Number of Processes

Total Synthesis Time vs. Number of Processes

modified Byzantine agreement
original Byzantine agreement

(b)

Fig. 3 Experimental results for modified Byzantine agreement problem.

〈0,⊥,⊥, 1〉 −→ 〈0, 0,⊥, 1〉 −→ 〈0, 0, 0, 1〉.

Let s1 be a state in 〈0, 0, 0, 1〉, where non-general pro-

cesses j and k agree with the Byzantine general on de-
cision 0, but process l has finalized its decision on 1.

Observe that s1 is a deadlock state and since process l

has finalized its decision, we cannot resolve s1 by adding

safe recovery. Thus, s1 has to be eliminated.

One way to make s1 (and symmetrically equal states)

unreachable through adding constraints to the safety

specification is by allowing non-general processes to fi-
nalize their decision only when there does not exist two

or more undecided non-generals. In this case, a non-

general process cannot reach a deadlock state such as
s1. Thus, we modify the safety specification of BA (i.e.,

the bad transition predicate SPEC btBA
introduced in

Subsection 2.2) as follows:

SPEC btBA
= SPEC btBA

∨

∃p :: ¬b′.p ∧ f ′.p ∧ (∃q, r :: d.q = d.r = ⊥),

where p, q, and r range over non-general processes.

Addition of such constrains is generally straight for-

ward and a user can identify them by a simple analysis

of the program behavior. Figure 3 shows the results

of our experiments for Byzantine agreement with the
above modification in the safety specification. One can

make the following observations from this figure:

– Figure 3(a) shows that no time is spent for state
elimination. This is obviously due to non-existence

of deadlock states from where safe recovery is not

possible.

– Figure 3(b) compares total synthesis time of the
original and modified versions of Byzantine agree-

ment and one can obviously see a considerable im-

provement. Precisely, in average, the modified ver-

sion can be synthesized 4 times faster than the orig-

inal version for the range of 5 to 40 processes. It
is expected that this factor becomes larger as the

number of processes increases.

– Although constraining a non-general process casts
away states that have to be eliminated, it affects

the performance of addition of safe recovery. Our

analysis shows this is mainly due to enlarging the
transition predicate SPEC btBA

and as a result its

corresponding BDD. Recall that recovery paths are

not allowed to violate the safety specification and,

hence, the large size of the BDD that encodes
SPEC btBA

affects the performance of addition of re-

covery.

Nonetheless, this cost does not diminish the im-
provement of total synthesis time.

– Due to the same reason, memory usage of our mod-

ified version of Byzantine agreement is increased.
Although this increase suffers by a factor of 2 in av-

erage, we argue that the trade-off is worthwhile. A

closer look at Figures 1 and 3 uncovers that unlike

verification where the time complexity of algorithms
is generally not high, our crucial issue in synthesis

is time and not space. In other words, in synthesis,

we run out of time before we run out of space. Thus,
given the low memory usage of our case study, it is

beneficial to increase memory usage by a factor of 2

to gain a speed-up by a factor of 4.

8 Case Study 3: Byzantine Agreement with

Fail-Stop Faults

A fail-stop fault is one that halts a process in response
to any internal failure and does so before the effects

of that failure become visible [11]. In this Section, we

introduce fail-stop faults to the Byzantine agreement

18

Space Time(s)
reachable memory deadlock resolution fault-span total

states (MB) Eliminate Recovery generation

BA5 105 5.2 1 < 1 < 1 1

BA10 108 13 28 3 2 36

BA15 1012 14.5 505 15 5 528

BA20 1016 15.9 4322 35 9 4378

BA25 1020 17.8 23387 76 21 23502

(a)

 0.1

 1

 10

 100

 1000

 10000

 100000

 5 10 15 20 25

T
im

e
(s

)
(lo

g
sc

al
e)

Number of Processes

Time vs. Number of Processes

total synthesis time
state elimination

recovery addition
fault-span generation

original BA total synthesis time

(b)

Fig. 4 Experimental results for Byzantine agreement subject to fail-stop faults.

problem to make the program more complicated (de-
noted BAFS). To this end, we first add a Boolean

variable u to each process; if u is true then the process

is alive and working, otherwise, the process has been
stopped and is not working. Thus, actions of a process,

say j, are as follows:

BAFS1j :: (d.j = ⊥) ∧ (f.j = false) ∧ (u.j = true)

−→ d.j := d.g;

BAFS2j :: (d.j 6= ⊥) ∧ (f.j = false) ∧ (u.j = true)
−→ f.j := true;

In addition to the faults introduced in the example

in Section 3, we introduce the following fault action:

∀p :: (u.p) −→ u.j := false;

In other words, at most one process may fail. A Byzan-

tine process can change its decision only if it is alive.
Thus, we revise fault action F1 as follows:

F1 :: b.j ∧ u.j

−→ d.j, f.j := 0|1, false|true;

Likewise, the safety specification and invariant of

BAFS must express the fact that a process may decide
or finalize its decision only if it has not stopped due to

the occurrence of faults. Thus, SPEC btBAFS
and IBAFS

are as follows:

SPEC btBAFS
=

(∃p ∈ {j, k, l} :: ¬b′.g ∧ ¬b′.p ∧
(d′.p 6= ⊥) ∧ f ′.p ∧ (d′.p 6= d′.g)) ∨

(∃p, q ∈ {j, k, l} :: ¬b′.p ∧ ¬b′.q ∧

f ′.p ∧ f ′.q ∧ u′.p ∧ u′.q ∧
(d′.p 6= ⊥) ∧ (d′.q 6= ⊥) ∧ (d′.p 6= d′.q)) ∨

(∃p ∈ {j, k, l} :: ¬b.p ∧ ¬b′.p ∧ f.p ∧ ¬u′.p ∧

((d.p 6= d′.p) ∨ (f.p 6= f ′.p))),

and

IBAFS =
(∀p, q ∈ {j, k, l} :: u.p ∨ u.q) ∧

[¬b.g ∧ (∀p, q ∈ {j, k, l} :: (¬b.p ∨ ¬b.q)) ∧

(∀p ∈ {j, k, l} :: ¬b.p ⇒ (d.p = ⊥ ∨ d.p = d.g)) ∧
(∀p ∈ {j, k, l} :: (¬b.p ∧ f.p) ⇒ (d.p 6= ⊥))

∨

(b.g ∧ ¬b.j ∧ ¬ b.k ∧ ¬ b.l ∧
∀p, q ∈ {j, k, l} :: ((u.p ∧ u.q) ⇒

((d.p = d.q) ∧ (d.p 6= ⊥))))].

Figure 4 shows the results of our experiments on the

Byzantine agreement program subject to fail-stop faults

with 5-25 non-general processes. The growth trend of
both time and space as the number of processes in-

creases is similar to the normal Byzantine agreement.

However, BAFS has obviously a larger state space and
occurrence of fail-stop faults makes the synthesis prob-

lem more complex. In particular, state elimination is

significantly harder to solve, as the Procedure Elimi-

nate involves more backtracking steps due to existence

of a failed process on reachability paths. As a concrete

example, observe that it takes about 6.5 hours to syn-

thesize a solution to BAFS25, while it only takes 11
minutes to synthesize a solution to BA25.

9 Case Study 4: Token Ring

In a token ring program (denoted T R) for solving dis-

tributed mutual exclusion, processes 0..N are organized
in a ring and the token is circulated along the ring in

a fixed direction. Each process, say p where p ∈ {0..N},

maintains a variable x.p with domain

{0, 1,⊥}, where ⊥ denotes a corrupted value. Process
p, 0 ≤ p ≤ N − 1, has the token and can enter the

critical section iff x.p differs from its successor x.(p+1)

and process N has the token iff x.N is the same as its

19

successor x.0. Each process p can only write its local

variable (i.e., x.p). Moreover, a process can only read
its own local variable and the variable of its predeces-

sor. Thus, the read/write restrictions are as follows:

Vp = {x.i | 0 ≤ i ≤ N}, where p ∈ {0..N},

Wp = {x.p}, where p ∈ {0..N},

Rp = {x.p, x.(p − 1)}, where p ∈ {1..N}, and
R0 = {x.0, x.N}.

Fault-intolerant program. The program consists of two

actions. Formally, these actions are as follows:

T Rp :: x.p 6= x.(p − 1) −→ x.p := x.(p − 1);

T R0 :: x.0 = x.N −→ x.0 := x.N +2 1;

where p ∈ {1..N} and where +2 denotes modulo 2 ad-

dition.

Fault actions. Faults can restart at most N − 1 pro-

cesses. Thus, the fault action for process p, where p ∈

{0..N} is as follows:

F :: ∃i, j ∈ {0..N} | (i 6= j) ::

(xi 6= ⊥) ∧ (xj 6= ⊥) −→ x.p := ⊥;

Safety specification. The safety specification of T R re-

quires that a process whose state is uncorrupted should
not copy the value of a corrupted process. Formally,

the safety specification is the following set of bad tran-

sitions:

SPEC btT R
=

∨N
p=0(x.p 6= ⊥ ∧ x′.p = ⊥).

Note that in token ring (unlike Byzantine agreement),
we require that the safety specification can only be vio-

lated by execution of program actions. In other words,

when a fault action restarts a process, safety is not vi-
olated.

Invariant predicate. The invariant predicate of the to-

ken ring program is determined as follows. Consider a
state where a process, say p, has the token. In this state,

since no other process has the token, the x-value of all

processes 0..p is identical and the x-value of all pro-
cesses (p+1)..N is identical. Letting X denote the string

of binary values x.0, x.1 · · ·x.N , we have that X sat-

isfies the regular expression (0l1(N+1−l) ∪ 1l0(N+1−l)),
which denotes a sequence of length N + 1 consisting of

zeros followed by ones or ones followed by zeros.

Fault-tolerant program. The output of our algorithm
is a program T R′ that tolerates the above fault action.

Intuitively, a process in the synthesized program is al-

lowed to copy the value of its predecessor, if this value

in not corrupted. The actions of the synthesized fault-

tolerant program are as follows:

T R′
p :: (x.p 6= x.(p − 1)) ∧ (x.(p − 1) 6= ⊥)

−→ x.p := x.(p − 1);

T R′
0 :: (x.0 6= (x.N +2 1)) ∧ (x.N 6= ⊥)

−→ x.0 := x.N +2 1;

where p ∈ {1..N}. Observe that action T R′
0 stipulates

recovery transitions that start from outside program
invariant as well.

Figure 5 shows the results of our experiments with

respect to the token ring program. Although token ring

has a less complex structure than Byzantine agreement,
it exhibits features that Byzantine agreement does not.

One of these features is the existence of two cycles in

both input and output programs which affect the ad-
dition of multi-step recovery. Another feature is con-

cerned with the size of fault-span. Unlike Byzantine

agreement, the fault-span (i.e., the set of all reachable
states) of token ring is almost identical to the state

space of the program.

Total synthesis time

Similar to the previous case studies, in case of token

ring, the total synthesis time is sublinear to the num-

ber of reachable states. We emphasize that the result of
our experiments with respect to token ring is consider-

ably different from the results reported in [25]; we can

synthesize up to 100 processes in less than two hours
while it takes 8 hours to synthesize 25 processes using

the method in [25]. This is mainly due to the choice of

reachability analysis algorithm.

BDD-based computation of reachable states is nor-
mally achieved using a breadth-first search algorithm

on state-transition graph of the input program. Such a

BFS algorithm involves a frontier generation step which
can be implemented in two ways:

1. Applying the transition predicate only on unexplored

states which at iteration d, consists of all states at
distance exactly d from the invariant predicate.

2. Applying the transition predicate to all known states,

that is all states at distance at most d from the in-
variant predicate.

While the second approach may sound wasteful, the

cost of applying the transition predicate in a symbolic
setting depends on the number of nodes in the corre-

sponding BDD, not on the number of states encoded by

the BDD. Thus, even in the verification research com-

munity, it is unknown which approach is better. In [25],
we implemented the first approach, but through analyz-

ing more case studies, we choose to incorporate the sec-

ond approach for its generality. An obvious reason for

20

Space Time(s)
reachable memory recovery cycle fault-span total

states (MB) addition detection generation

T R30
10

14
8 5 5 < 1 5

T R40
10

19
13.3 13 13 < 1 35

T R50
10

23
14.5 43 43 < 1 44

T R60
10

28
15.2 176 174 1 179

T R70
10

33
18.8 433 432 1 438

T R80
10

38
25.3 992 990 2 999

T R90
10

42
33.7 2272 2270 4 2283

T R100
10

47
44.2 7824 7819 4 7837

(a)

 0.1

 1

 10

 100

 1000

 10000

 30 40 50 60 70 80 90 100

T
im

e
(s

)
(lo

g
sc

al
e)

Number of Processes

Time vs. Number of Processes

total synthesis time
recovery addition

fault-span generation
cycle detection

(b)

Fig. 5 Experimental results for token ring mutual exclusion program.

better performance of the second approach in the con-
text of our synthesis problem which is highly probable

is that the entire state space of programs is reachable

in the presence of faults. Thus, many variables may be-
come don’t care in the corresponding BDD which in

turn reduces the number of nodes in the BDD. More-

over, in programs such as token ring, there exists many
transitions that visits states that are already explored.

Consequently, the issue of fault-span generation is not

a serious bottleneck as it was in [25].

Deadlock resolution and cycle detection

In this case study, we are not concerned with state elim-
ination time, as safe recovery from all deadlock states

is possible. Thus, in order to analyze deadlock resolu-

tion time, we only focus on addition of recovery. As can
be seen in Figure 5, the total synthesis time is almost

equal to the time spent for adding recovery paths to the

program. Moreover, the time spent for adding recovery
is almost equal to the time spent for detecting cycles.

First, we note that in previous case studies, cycle detec-

tion time were negligible and, hence, was not discussed.

However, in this case study, a considerable amount of
time is spent for detecting cycles. Recall that in Proce-

dure AddRecovery, after adding a new layer to recovery

paths, we check whether or not a cycle has been in-
troduced to the fault-span of the intermediate program

(see Line 5 of Procedure 5.2). Since the input program

in previous case studies does not contain a cycle, the
cycle detection algorithm tends to return a negative

answer fairly fast. However, one can easily observe that

the token ring intolerant program has two cycles that

cover all states in the invariant. Thus, in the steps of
adding multi-step recovery paths, new cycles are intro-

duced to the fault-span symmetrically which is reflected

in the time spent to detect cycles and subsequently re-

moving transitions involved in the cycles. In fact, one
can observe in Figure 5(b) the total synthesis times, and

time spent detecting cycles and adding recovery are al-

most equal. Thus, in programs such as token ring cycle
detection becomes a stumbling block of our synthesis

algorithm.

The Effect of Multi-Step Recovery

As mentioned earlier, the issue of cycle detection ex-

ists in addition of recovery, as our algorithm constructs
multi-step recovery paths. Notice that the first recov-

ery step includes transitions that originate from a set

of reachable deadlock states and end in the invariant

predicate. Recall that each transition has to be added
along with its corresponding group predicate. Thus, in-

cluding additional recovery steps can potentially intro-

duce cycles to the fault-span which in turn prohibits
the program to recover to the invariant predicate in a

finite number of steps. Hence, an algorithm that syn-

thesizes single-step recovery to an input program need
not detect cycles.

Obviously, depending upon the structure of input

program, a different type of recovery path may be re-

quired. For instance, in case of the token ring pro-
gram, single-step recovery suffices to resolve all dead-

lock states. Thus, a respective algorithm need not in-

clude the while loop and DetectCycle function in the
Procedure AddRecovery. Figure 6 shows the result of

experiments using such an algorithm for adding single-

step recovery to T R. As can be seen, an enormous

speed-up is gained. On average, the total synthesis time
drops by a factor of 330. To illustrate the effect of such a

small change in the algorithm, we note that one can syn-

thesize token ring with 200 processes (reachable states

21

Space Time(s)
reachable memory recovery cycle fault-span total

states (MB) addition detection generation

T R30
10

14
4 < 1 0 < 1 0

T R40
10

19
5 < 1 0 < 1 1

T R50
10

23
7.6 1 0 < 1 1

T R60
10

28
9.8 1 0 < 1 2

T R70
10

33
11.4 1 0 1 3

T R80
10

38
12.5 1 0 3 5

T R90
10

42
12.9 1 0 4 6

T R100
10

47
13 2 0 4 8

(a)

 1

 10

 100

 1000

 10000

 30 40 50 60 70 80 90 100

Lo
g-

S
ca

le
 T

ot
al

 S
yn

th
es

is
 T

im
e

(s
)

Number of Processes

Total Synthesis Time vs. Number of Processes

token ring with single-step recovery
token ring with multi-step recovery

(b)

Fig. 6 Experimental results for token ring mutual exclusion with single-step recovery.

of size 1095) in less than 2 minutes.

Comparison with model checking

We now present a comparison with the corresponding

verification problem for token ring. To this end, we ver-
ify the following recovery property:

The invariant predicate is eventually reached by

the program even in the presence of faults.

Figure 7 shows the results of our experiments for 20,

40, 60, 80, and 100 processes and compares them with

their respective synthesis problem. As can be seen, our
synthesis algorithm for adding single-step recovery ex-

hibits a significantly better performance than the corre-

sponding model checking experiment. Similar to Byzan-
tine agreement, this is due to the following reasons:

1. NuSMV employs a general labelling algorithm for

model checking in full CTL. Our synthesis algo-
rithm for adding single-step recovery is only con-

cerned with a subset of CTL which does not handle

cycles consisting program transitions only.

2. Our synthesis algorithm is customized to the as-
sumption that occurrence of faults is finite and the

program eventually executes non-fault transitions

only. This means that our algorithm can completely
overlook searching for cycles involving faults only.

3. Since in token ring all but one process are subject to

faults, our NuSMV model employs an integer vari-
able to count the number faults to ensure that faults

do not occur in all processes. Integer counters often

make symbolic model checking inefficient.

On the contrary, our multi-step algorithm does not
outperform model checking of token ring. This is simply

because cycle detection and resolution makes synthesis

significantly more difficult.

10 Case Study 5: Infuse

We now focus on Infuse, a time division multiple access

(TDMA) based reliable data dissemination protocol in

sensor networks [12]. Our intention to present this case
study is twofold. First, we intend to demonstrate an

application of our algorithm outside the literature of

fault-tolerant distributed computing. In other words,
we demonstrate the applicability of our algorithm in

real-world problems by adding fault-tolerance to a sen-

sor network protocol. Secondly, we use Infuse as yet

another case study to analyze the performance of our
algorithm.

In Infuse, a base station is responsible for commu-

nicating with the outside world. The data is split into

fixed size packets. Note that Infuse is not concerned
with the contents of the data. In our version of case

study, all sensors are located in a simple line topology.

The base station sends new data to its sole neighbour.

Then, this neighbour forwards the packet to its neigh-
bour and so on.

Each sensor maintains two variables r and s where

r denotes the sequence number of the last packet the

sensor has received and s denotes the sequence number
of the packet to be sent to its neighbour. Each vari-

able ranges over 0..M , where M is the number of bytes

in each packet. Thus, if sensors are numbered 0 to N ,

where sensor 0 is the base station, the read/write re-
strictions for corresponding processes are as follows:

R0 = {s.0, r.0, s.1, r.1},

W0 = {s.0, r.0},

Rj = {s.(j − 1), r(j − 1), s.j, r.j, s.(j + 1), r.(j + 1)},

Wj = {s.j, r.j}, where 1 ≤ j ≤ N − 1,

22

Total verification time(s) Total muti-step synthesis time(s) Total single-step synthesis time(s)

T R20
0.2 2 < 1

T R40
5 35 < 1

T R60
23 179 2

T R80
110 999 5

T R100
632 7837 8

Fig. 7 Experimental results for model checking token ring using NuSMV.

Space Time(s)
reachable memory recovery fault-span total

states (MB) addition generation

IF30
10

15
4.7 1 < 1 1

IF50
10

25
10 8 < 1 8

IF70
10

34
11 26 < 1 26

IF90
10

43
14.5 53 1 53

IF110
10

51
15 85 1 87

IF130
10

60
16 118 2 121

(a)

 0.1

 1

 10

 100

 1000

 20 40 60 80 100 120 140

T
im

e
(s

)
(lo

g
sc

al
e)

Number of Processes

Time vs. Number of Processes

total synthesis time
recovery addition

fault-span generation

(b)

Fig. 8 Experimental results for Infuse bulk data dissemination protocol in sensor networks.

RN = {s.N, r.N, s.(N − 1), r.(N − 1)},

WN = {s.N, r.N}.

Fault-intolerant program. Initially, all packets are dis-

seminated from the base station. A new packet is sent

to sensor 1 when the base station knows that sensor 1
has received the last packet it had sent. Thus, the ac-

tion for the base station is as follows:

IF0 :: s.0 = r.1 −→ s.0 := s.0 + 1;

Intuitively, a sensor, say j, where j ∈ {1..N − 1}, may

receive a new packet, if

1. the successor (i.e., j + 1) has all the packets that j

has received, and

2. j − 1 is transmitting the next packet.

If this is the case, then j receives the packet and trans-

mits it in the next slot. Thus, the action that models

packet transmission for sensors 1..N − 1 is as follows:

IFj :: (r.j = r.(j + 1)) ∧ (s.(j − 1) = r.j + 1)

−→ r.j, s.j := r.j + 1, s.j + 1;

Finally, sensor N obtains a packet, if its predecessor

has the next packet that sensor N expects. Formally,

IFN :: s.(N − 1) = r.N + 1 −→ r.N := r.N + 1;

Fault actions. A fault causes the base station to trans-

mit a packet that sensor 1 does not expect. In other

words, some packet transmitted by the base station is
lost. For the rest of sensors, a fault allows a sensor, say

j, to receive a packet from its predecessor j − 1 even

though its successor j+1 did not obtain the packet that
j transmitted last. Thus, the fault actions of Infuse are

as follows:

F0 : true −→ s.0 := s.0 + 1;
Fj :: (r.j ≤ r.(j − 1)) ∧ (s.(j − 1) = r.j + 1)

−→ r.j, s.j := r.j + 1, s.j + 1;

Safety specification. The safety specification of Infuse

informally consists of the following constrains:

– Reception of a packet cannot be undone and packets

can be received only in order,

– A sensor is not allowed to receive a packet unless its
predecessor neighbour has received it,

– A sensor may not send a packet that it has not ob-

tained yet.

– Finally, the current s-value of a sensor should reflect
the packet it expects from the neighbouring sensor.

Thus, the safety specification of Infuse is formally as

follows:

23

SPEC btIF
=

∃p ∈ {1..N} :: ((r′.p < r.p) ∨ (r′.p > r.p + 1)) ∨
∃p ∈ {1..N − 1} :: (r′.p = r.p + 1) ∧

((r′.p 6= s.(p − 1)) ∧ (r′.p 6= s.(p + 1))) ∨

(r′.N = r.N + 1 ∧ r′.N 6= s.(N − 1)) ∨
∃p ∈ {0..N} :: (r′.p < s′.p) ∨

∃p ∈ {0..N − 1} :: ((s.p > r.(p + 1) + 1) ∧

(s′.p < r.(p + 1) + 1)).

Invariant. Informally, the invariant of Infuse specifies
the following set of legitimate states:

– It is illegitimate for a sensor to send a packet that

it has not received.

– The packet to be sent by a sensor must be expected

by its successor sensor.
– The base station initially owns all the packets.

– Finally, a sensor should not have a packet that its

predecessor sensor dose not.

Thus, the invariant of Infuse is formally defined as fol-
lows:

IIF = (∀p ∈ {0..N} :: s.p ≤ r.p) ∧

(s.0 ≤ r.1 + 1) ∧

(∀p ∈ {1..N − 1} :: (s.p ≤ r.(p − 1) + 1) ∧
(s.p ≤ r.(p + 1) + 1)) ∧

(s.N ≤ r.(N − 1) + 1) ∧

(r.0 = M) ∧

(∀p ∈ {1..N} :: r.p ≤ r.(p − 1))

Fault-tolerant program. Given IF , F , SPEC btIF
, and

IIF , the output of our algorithm is a fault-tolerant

version of Infuse, denoted IF ′. Adding fault-tolerance

to IF basically results in synthesizing recovery paths.
This is because the occurrence of faults does not lead

the program to a state from where safety may be vio-

lated. Hence, the only task Algorithm

Add Symbolic FT needs to accomplish is to guarantee
deadlock freedom. And, such deadlock freedom can be

achieved by adding safe recovery and no state elimina-

tion is required. Formally, the fault-tolerant of Infuse is
the following program:

IF ′0j :: (r.j = r.(j + 1)) ∧ (s.(j − 1) = r.j + 1)

−→ r.j, s.j := r.j + 1, s.j + 1;

IF ′1j :: (s.j > r.(j + 1) + 1)
−→ s.j := r.(j + 1) + 1;

IF ′2j :: (s.j > r.(j + 1) + 1) ∧

(s.(j − 1) = r.j + 1)

−→ s.j, r.j := r.(j + 1) + 1, r.j + 1;

where j ∈ {1..N − 1}. Actions of the base station and
sensor N can be derived similarly. Observe that IF ′0j

is an unchanged action. Actions IF ′1j and IF ′2j are

recovery actions and resolve reachable deadlock states.

Essentially, these actions enable the program to retrans-

mit packets that are lost while maintaining the safety
specification to keep the correct sequence of packet trans-

mission.

Figure 8 shows the result of our experiments with

respect to Infuse. We emphasize that IF does not reach
states that need to be eliminated. In addition, the state-

transition graph of Infuse does not include cycles. Thus,

cycle detection and state elimination do not play any
role in adding fault-tolerance to IF . Given these facts,

Figure 8 is self-evident in describing the behavior of Al-

gorithm Symbolic Add FT with respect to Infuse. The

majority of total synthesis time is spent to add safe
recovery which is expected due to the structure of In-

fuse. One can also observe that the fault-span gener-

ation time is negligible. This is due to the fact that
the diameter of the state-transition graph of Infuse is

short.

11 Related Work

The concept of program synthesis has been studied from

different perspectives ranging from synthesis from tem-
poral logic specifications to controller synthesis and syn-

thesizing winning strategies in game theory. In this sec-

tion, we present the work in the literature that is rele-
vant to our work in this paper.

11.1 Controller Synthesis

Synthesis of discrete-event systems has mostly been stud-

ied in the context of controller synthesis and game the-

ory. The seminal work in the area of controller synthesis
is due to Ramadge and Wonham [26]. The discrete con-

troller synthesis (DCS) problem is as follows: starting

from two languages U and D, identify a third language C
such that U ∩C ⊆ D. In the DCS terminology, the three

languages U , D, and C are called the plant, the desired

system, and the controller, respectively. U ∩ C is called

the controlled system. Finally, the set A of alphabets
represents events that can occur. Obviously, the lan-

guages U and D may represent the set of computations

of a given program and a safety and/or reachability
specification. Moreover, C identifies the computations

that do not violate D in the presence of uncontrollable

transitions.

The idea of transforming a fault-intolerant system

into a fault-tolerant system using controller synthesis
was first developed by Chao and Lim [27]. Similar to

the model in this paper, Chao and Lim consider faults

as a system malfunction and failures as something that

24

should not occur in any execution. Their control objec-

tive is a set of states that should be reachable by con-
trollable actions or what they define as recurrent events.

Also, Girault and Rutten [28], demonstrate the appli-

cation of discrete controller synthesis in automated ad-
dition of fault-tolerance in the context of untimed sys-

tems. They model different types of faults (e.g., proces-

sor crash, Byzantine faults, value corruption) by uncon-
trollable actions in a labeled transition system (LTS).

They show that given a fault-intolerant program as a

plant, discrete controller synthesis can automatically

add fault-tolerance to the synchronous product of the
plant and the fault model LTS with respect to invari-

ance and reachability constraints.

One can notice that our work in this paper is in
spirit close to DCS. Specifically, an input program and

fault transitions may be modelled as controllable and

uncontrollable actions. In fact, in both problems, the
objective is to restrict the program actions at each state

through synthesizing a controller such that the behav-

ior of the entire system is always desirable according

to safety and reachability conditions, in the presence
of an adversary. As mentioned in Section 4, conditions

C1 and C2 of the problem statement precisely express

this notion of restriction. Furthermore, the conjunction
of all conditions expresses the notion of language inclu-

sion, where the synthesized program in the absence of

faults is supposed to exhibit a subset of behaviors of
the input intolerant program. Although the complex-

ity of controller synthesis for centralized programs is

comparable to ours if we eliminate distribution from

our formulation [29], our work differs from synthesizing
discrete-event controllers in that:

1. The computation model for synthesizing controllers

is based on prioritized synchronization4, whereas
ours is based on interleaving.

2. Our synthesis algorithm is concerned with proper-

ties typically used in specifying fault-tolerance re-
quirements rather than any arbitrary specification.

Hence, our algorithm tends to synthesize programs

more efficiently.

3. The notion of dependability and in particular fault-
tolerance involves features beyond just invariance

and reachability. One such feature is recovery, where

a program returns to its normal behavior when its
state is perturbed by the occurrence of faults. Re-

covery is an essential building block in fault-tolerant

systems and it is the focus of this paper. In con-
troller synthesis [26–28,30–39], and in particular in

[28], which is in spirit close to our work, the recovery

4 In prioritized synchronization, different processes have syn-
chronized transitions and some have higher priority. Hence, not
all interleavings are poosible.

mechanism must be given as input to the DCS al-

gorithm. Thus, one key difference between our work
in this paper and the methods in is the fact that

we automatically synthesize recovery paths. We also

analyze the complexity and cost of dealing with live-
locks (i.e., cycles outside the invariant predicate) in

this paper. Finally, note that adding recovery transi-

tions to a given fault-intolerant program is not triv-
ial due to the distributed nature of programs and

read/write restrictions.

4. Finally, we model distribution by specifying

read/write restrictions, whereas in controller syn-
thesis, decentralized plants are modelled through

partial observability [36, 37]. As mentioned earlier,

the issue of distribution drastically increases the
complexity of synthesis [5, 6]. This results is also

known in the context of controller synthesis, but to

the best of our knowledge, this paper introduces the
first instance where synthesis of distributed fault-

tolerant programs scales up and moderate-sized pro-

grams beyond toy examples are successfully synthe-

sized. We are also not aware of any work in con-
troller synthesis that analyzes efficiency and effec-

tiveness of respective algorithms using different types

of programs in terms of structure and size. Unlike
existing controller synthesis tools such as Sigali

[40], our synthesis method and corresponding tool

Sycraft [13] is capable of synthesizing distributed
programs.

11.2 Game Theory

Game-theoretic approaches for synthesizing controllers

and reactive programs [41] are generally based on the
model of two-player games [42]. In such games a pro-

gram makes moves in response to the moves of its en-

vironment. The program and its environment interact
through a set of interface variables and, hence, the envi-

ronment can only update the interface variables. In our

model, however, faults can perturb all program vari-
ables. Moreover, in a two-player game model, players

take turns and the set of states from where the first

player can make a move is disjoint from the set of states

from where the second player can move [43]. To the con-
trary, in our work, fault-tolerance should be provided

against faults that can execute from any state.

Game theoretic methods are based on the theory of

tree automata [44]. Such an automaton represents the

specification of a system. A synthesis algorithm checks
the non-emptiness of the automaton, i.e., whether there

exists a tree acceptable by the tree automaton. If the

tree automaton is indeed nonempty, then the specifica-

25

tion is called realizable and there exists a model of the

synthesized program.

Pnueli and Rosner address the problem of synthe-

sizing synchronous open reactive modules in [41]. They
generalize their method in [45], by proposing a tech-

nique for synthesizing asynchronous reactive modules.

In particular, they investigate the problem of synthesiz-
ing an asynchronous reactive module that include only

one process and interacts with a non-deterministic en-

vironment through Boolean variables.

While symbolic model checking has been studied ex-

tensively (e.g., [8, 18, 46]), little work has been done

on symbolic synthesis and especially on performance
analysis of synthesis methods. Wallmeier, Hütten, and

Thomas [43] introduce an algorithm for synthesizing

finite state controllers by solving infinite games over fi-
nite state spaces. They model the winning constraint by

safety conditions and a set of request-response proper-

ties as liveness conditions. They transform this game
into a Büchi game which inevitably involves an expo-

nential blow-up. Moreover, the approach in [43] does

not address the issue of distribution. The reported max-

imum number of variables in their experiments is 23,
which is far less than the number of variables that we

have handled using our symbolic algorithms.

We emphasize that similar to discrete controller syn-

thesis, game theoretic approaches do not address the

issue of addition of recovery. Also, in game theory, the
notion of distribution is modelled by partial observabil-

ity.

11.3 Automated Addition of Fault-Tolerance

Algorithms for automatic addition of fault-tolerance

[6, 47–49] add fault-tolerance concerns to existing un-
timed or real-time programs in the presence of faults,

and guarantee the addition of no new behaviors to the

original program in the absence of faults. In the sem-

inal work in this area, Kulkarni and Arora [6] intro-
duce synthesis methods for automated addition of fault-

tolerance to untimed centralized and distributed pro-

grams. In particular, they introduce polynomial-time
sound and complete algorithms for adding all levels of

fault-tolerance (failsafe, nonmasking, and masking) to

centralized programs. The input to these algorithms is
a fault-intolerant centralized program, safety specifica-

tion, and a set of fault transitions. The algorithms gen-

erate a fault-tolerant program along with an invariant

predicate. The authors also show that the problem of
adding masking fault-tolerance to distributed programs

is NP-complete in the size of the input program’s state

space.

In [47], Kulkarni and Ebnenasir address the problem

of automated synthesis of untimed multitolerant pro-
grams, i.e., programs that tolerate multiple classes of

faults and provide a (possibly) different level of fault-

tolerance to each class. They show that if one needs to
add failsafe (respectively, nonmasking) fault-tolerance

with respect to one class of faults and masking fault-

tolerance with respect to another class of faults, then
such addition can be done in polynomial-time in the size

of the state space of the fault-intolerant program. They,

however, show that if one needs to add failsafe fault-

tolerance with respect to one class of faults and non-
masking fault-tolerance with respect to another class of

faults, then the problem is NP-complete.

Ebnenasir [23] develops a divide-and-conquer method
synthesis problem that scales up. In an application of

this approach for safety properties, Ebnenasir develops

an algorithm that statically analyzes (and possibly re-
vises) program instructions on separate machines in a

parallel/distributed platform. Based on this method,

the author implements a distributed framework that

exploits the computational resources of wide area net-
works for program synthesis. Using this approach, it

is possible to synthesize failsafe Byzantine agreement

with 40 processes on a cluster of three machines in 353
seconds. Using our BDD-based approach, the same pro-

gram can be synthesized in 22 seconds using one ma-

chine only.
The problem of online fault detection in timed au-

tomata is studied by Tripakis [50]. The author proposes

a polynomial-space online algorithm for designing a di-

agnoser that detects faults in behaviors of a given timed
automaton after they occur. In this work, it is assumed

that (1) the given system is in the synchronous model,

and (2) faults and failures are identical events. Thus,
this model does not capture situations where the oc-

currence of faults (although undesirable) is common

and expected, but may lead to a system with failures.
Bouyer, Chevalier, and D’Souza [51] address the same

problem where the diagnoser is realizable as a determin-

istic timed automaton or an event record automaton.

12 Concluding Remarks

In this paper, we focused on the problem of BDD-based

automated addition of masking fault-tolerance to dis-
tributed programs. We showed that although the syn-

thesis problem is NP-complete in the size of the in-

put program’s state space, the high complexity can be

overcome through devising efficient heuristics and ef-
fective implementation. In particular, we demonstrated

that synthesizing moderate-sized distributed programs

(reachable states of size 1050 and beyond) is feasible in

26

reasonable amount of time and space. Our analysis also

shows that the growth of the time complexity is sublin-
ear in the state space. Moreover, we demonstrated that

through incorporating efficient heuristics, the growth of

time complexity is comparable to that of model check-
ing.

In addition to demonstrate feasibility of synthesiz-

ing moderate-sized fault-tolerant distributed programs,
we made the following observation through conducting

several case studies:

1. Although the growth of the time complexity is sub-

linear in the state space and is comparable to that
of model checking, in general, synthesis algorithms

tend to run out of time before they run out of space.

Thus, we believe sacrificing a little bit of space in
order to achieve speed-ups is a reasonable way to

remedy the time complexity of synthesis decision

procedures.
2. We observed that the state explosion problem by

itself is not the sole obstacle in program synthe-

sis. In particular, we identified different bottlenecks

of synthesis depending upon the input program’s
structure. These bottlenecks are namely, deadlock

resolution (i.e., state elimination), cycle detection

and resolution, fault-span generation, and identify-
ing recovery computations. Thus, depending upon

the structure of the input program, our synthesis

algorithm may suffer from a subset of the aforemen-
tioned bottlenecks.

3. We also observed that small human knowledge can

dramatically improve the performance of our syn-

thesis algorithm. For instance, we showed that
adding a simple condition to the safety specification

in order to constrain the problem space or enforcing

a particular recovery mechanism reduces the total
synthesis time drastically.

Based on the lessons learned from our experiments,

we categorize open problems and suggest a comprehen-
sive roadmap for further research as follows:

– In our implementation, the Procedure

FWReachableStates is implemented simply by next-

state relation. This approach is efficient for cases
where the size of BDDs are small. However, as soon

as the size of BDDs become larger, next-state reach-

ability analysis can be as bad as enumerative meth-
ods. Hence, we are planning to incorporate more

recent symbolic techniques such as partitioning [19],

clustering [52], and saturation-based reachability

analysis [53,54] in our current implementation. These
techniques will certainly improve computation of

state predicates such as program invariant and fault-

span.

Since we add and remove transitions and states dur-

ing the course of synthesis, in each iteration of the
algorithm, we need to recompute a new fault-span

starting from the program invariant using the mod-

ified set of program transitions. Thus, another open
problem is to develop algorithms that reuse the ex-

isting fault-span from previous iterations and revise

it by removing unreachable states.
– Another future work is to develop more efficient

methods for deadlock resolution, which turns out to

be one of the most serious bottlenecks of addition

of fault-tolerance. Note that deadlock resolution (in
the sense presented in Section 5) is a problem that

exists in the context of program synthesis and trans-

formation and, hence, has not been addressed by
the model checking community. Dealing with bot-

tlenecks of course includes developing efficient algo-

rithms for other issues such as cycle detection and
resolution as well.

– Distributed programs often consist of processes with

the same or similar structure. Thus, an interesting

problem is to exploit the symmetry in distributed
programs to reduce the synthesis time using sym-

metry reduction techniques [55–57].

– Observe that in case of Byzantine agreement, the
first action of the program never violates safety. This

fact suggests that it is beneficial if we can somehow

identify such actions and rule them out in early
stages of synthesis. Also, observe that if processes

of a distributed program are allowed to read and

write only few number of variables (e.g., in token

ring), the size of associated group predicates be-
come relatively large. Since violation of safety can

be modelled as a simple satisfiability problem [23],

we expect that integrating our implementation with
a SAT or SMT (satisfiability modulo theories) solver

is beneficial. In SMT solvers (e.g., Yices [58]), in ad-

dition to Boolean variables, one can use other types
such as abstract data types, integers, reals, etc., in

formulae that involve arithmetic and quantifiers as

well.

– The BDD data structure of a Boolean formula is of-
ten more space-efficient than the enumerative rep-

resentation provided a good ordering of variables is

chosen. In model checking, since the goal is to ver-
ify the correctness of a model against a property,

once the BDD of the model is constructed, there is

no need to reconstruct it during verification. Hence,
an appropriate initial order of variables, is sufficient

during the course of verification. However, synthe-

sis is a more dynamic procedure, as we often add

and remove states and transitions to manipulate a
given program so that it satisfies a desired property.

27

In other words, since the structure of a program

changes during synthesis, reordering the variables
of BDDs dynamically may be beneficial. Neverthe-

less, there is a trade-off between the time spent to

reorder variables on one side, and the time spent
to synthesize the program on the other side. Thus,

another open problem is to determine the circum-

stances under which dynamic variable reordering is
beneficial.

We expect that the aforementioned further improve-
ments will enable us to synthesize a large class of fault-

tolerant distributed programs with larger state space

from their fault-intolerant version.

References

1. Lee, E.A.: Cyber-physical systems - are computing founda-
tions adequate? In: Position Paper for NSF Workshop On
Cyber-Physical Systems: Research Motivation, Techniques
and Roadmap (2006)

2. Stankovic, J.A., Lee, I., Mok, A.K., Rajkumar, R.: Opportu-
nities and obligations for physical computing systems. IEEE
Computers 38(11), 23–31 (2005)

3. Kulkarni, S.S., Arora, A., Chippada, A.: Polynomial time
synthesis of Byzantine agreement. In: Symposium on Reli-
able Distributed Systems (SRDS), pp. 130–140 (2001)

4. Ebnenasir, A., Kulkarni, S.S., Arora, A.: FTSyn: a frame-

work for automatic synthesis of fault-tolerance. International
Journal of Software Tools for Technology Transfer (STTT)
10(5), 455–471 (2008)

5. Bonakdarpour, B., Kulkarni, S.S.: Revising distributed

UNITY programs is NP-complete. In: Principles of Dis-
tributed Systems (OPODIS), pp. 408–427 (2008)

6. Kulkarni, S.S., Arora, A.: Automating the addition of fault-
tolerance. In: Formal Techniques in Real-Time and Fault-
Tolerant Systems (FTRTFT), pp. 82–93 (2000)

7. Bryant, R.E.: Graph-based algorithms for Boolean function
manipulation. IEEE Transactions on Computers 35(8), 677–
691 (1986)

8. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L.,

Hwang, L.J.: Symbolic model checking: 1020 states and be-
yond. Information and Computation 98(2), 142–170 (1992)

9. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals

problem. ACM Transactions on Programming Languages
and Systems (TOPLAS) 4(3), 382–401 (1982)

10. Arora, A., Kulkarni, S.S.: Component based design of multi-
tolerant systems. IEEE Transactions on Software Engineer-
ing 24(1), 63–78 (1998)

11. Schlichting, R.D., Schneider, F.B.: Fail-stop processors: An
approach to designing fault-tolerant computing systems.
ACM Transactions on Computers 1(3), 222–238 (1983)

12. Kulkarni, S.S., Arumugam, M.: Infuse: A TDMA based data

dissemination protocol for sensor networks. International
Journal on Distributed Sensor Networks (IJDSN) 2(1), 55–78
(2006)

13. Bonakdarpour, B., Kulkarni, S.S.: SYCRAFT: A tool for

synthesizing fault-tolerant distributed programs. In: Con-
currency Theory (CONCUR), pp. 167–171 (2008)

14. Alpern, B., Schneider, F.B.: Defining liveness. Information
Processing Letters 21, 181–185 (1985)

15. Arora, A., Gouda, M.G.: Closure and convergence: A foun-
dation of fault-tolerant computing. IEEE Transactions on
Software Engineering 19(11), 1015–1027 (1993)

16. Tripakis, S.: Undecidable problems of decentralized observa-
tion and control on regular languages. Information Process-
ing Letters 90(1), 21–28 (2004)

17. Kulkarni, S.S., Ebnenasir, A.: Adding fault-tolerance using

pre-synthesized components. In: European Dependable Com-
puting Conference (EDCC), pp. 72–90 (2005)

18. McMillan, K.L.: Symbolic Model Checking. Kluwer Aca-

demic Publishers (1993)
19. Burch, J., Clarke, E., Long, D.: Symbolic model checking

with partitioned transition relations. In: International Con-
ference on Very Large Scale Integration, pp. 49–58 (1991)

20. Fisler, K., Fraer, R., Kamhi, G., Vardi, M.Y., Yang, Z.: Is
there a best symbolic cycle-detection algorithm? In: In Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS), pp. 420–434 (2001)

21. Emerson, E.A., Lei, C.L.: Efficient model checking in frag-
ments of the propositional model mu-calculus. In: Logic in
Computer Science (LICS), pp. 267–278 (1986)

22. Somenzi, F.: CUDD: Colorado University Decision Dia-
gram Package. http://vlsi.colorado.edu/∼fabio/CUDD/

cuddIntro.html

23. Ebnenasir, A.: DiConic addition of failsafe fault-tolerance.

In: Automated Software Engineering (ASE), pp. 44–53
(2007)

24. Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.:

NUSMV: A new symbolic model checker. Software Tools
for Technology Transfer (STTT) 2(4), 410–425 (2000)

25. Bonakdarpour, B., Kulkarni, S.S.: Exploiting symbolic tech-
niques in automated synthesis of distributed programs with
large state space. In: IEEE International Conference on Dis-
tributed Computing Systems (ICDCS), pp. 3–10 (2007)

26. Ramadge, P.J., Wonham, W.M.: The control of discrete event

systems. Proceedings of the IEEE 77(1), 81–98 (1989)
27. Cho, K.H., Lim, J.T.: Synthesis of fault-tolerant supervisor

for automated manufacturing systems: A case study on pho-
tolithography process. IEEE Transactions on Robotics and
Automation 14(2), 348–351 (1998)

28. Girault, A., Rutten, É.: Automating the addition of fault
tolerance with discrete controller synthesis. Formal Methods
in System Design (FMSD) 35(2), 190–225 (2009)

29. Gohari, P., Wonham, W.M.: On the complexity of supervi-
sory control design in the RW framework. IEEE Transactions
on Systems, Man, and Cybernetics 30(5), 643–652 (2000)

30. Bouyer, P., D’Souza, D., Madhusudan, P., Petit, A.: Timed
control with partial observability. In: Computer Aided Veri-
fication (CAV), pp. 180–192 (2003)

31. D’Souza, D., Madhusudan, P.: Timed control synthesis for

external specifications. In: Symposium on Theoretical As-
pects of Computer Science (STACS), pp. 571–582 (2002)

32. Asarin, E., Maler, O.: As soon as possible: Time optimal con-

trol for timed automata. In: Hybrid Systems: Computation
and Control (HSCC), pp. 19–30 (1999)

33. Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller syn-
thesis for timed automata. In: IFAC Symposium on System
Structure and Control, pp. 469–474 (1998)

34. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete
controllers for timed systems. In: 12th Annual Symposium
on Theoretical Aspects of Computer Science (STACS), pp.
229–242 (1995)

35. Tripakis, S., Altisen, K.: On-the-fly controller synthesis for
discrete and dense time systems. In: Formal Methods 1999
(FM), pp. 233–252 (1999)

36. Lin, F., Wonham, W.M.: Decentralized control and coordina-
tion of discrete-event systems with partial observation. IEEE
Transactions On Automatic Control 35(12) (1990)

28

37. Rudie, K., Wonham, W.M.: Think globally, act locally: De-
centralized supervisory control. IEEE Transactions On Au-
tomatic Control 37(11), 1692–1708 (1992)

38. Kumar, R., Garg, V.K.: Optimal supervisory control of dis-
crete event dynamicalsystems. SIAM Journal on Control and
Optimization 33(2), 419–439 (1995)

39. Cassez, F., David, A., Fleury, E., Larsen, K., Lime, D.: Ef-
ficient on-the-fly algorithms for the analysis of timed games.

In: Concurrency Theory (CONCUR), pp. 66–80 (2005)

40. Bournai, P., Borgne, M.L., Guernic, P.L.: Synthesis of

discrete-event controllers based on the signal environment.
In: Discrete Event Dynamic System: Theory and Applica-
tions, pp. 325–346 (2000)

41. Pnueli, A., Rosner, R.: On the synthesis of a reactive module.
In: Principles of Programming Languages (POPL), pp. 179–
190 (1989)

42. Thomas, W.: On the synthesis of strategies in infinite games.
In: Theoretical Aspects of Computer Science (STACS), pp.
1–13 (1995)

43. Wallmeier, N., Hütten, P., Thomas, W.: Symbolic synthesis
of finite-state controllers for request-response specifications.

In: Implementation and Application of Automata (CIAA),
pp. 11–22 (2003)

44. Thomas, W.: Handbook of Theoretical Computer Science,
vol. B, chap. 4: Automata on Infinite Objects, pp. 133–192.
Elsevier Science Publishers B. V., Amsterdam (1990)

45. Pnueli, A., Rosner, R.: On the synthesis of an asynchronous
reactive module. In: International Colloqium on Automata,
Languages, and Programming (ICALP), pp. 652–671 (1989)

46. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Sym-
bolic model checking for real-time systems. Information and

Computation 111(2), 193–244 (1994)

47. Kulkarni, S.S., Ebnenasir, A.: Automated synthesis of multi-
tolerance. In: International Conference on Dependable Sys-

tems and Networks (DSN), pp. 209–219 (2004)

48. Bonakdarpour, B., Kulkarni, S.S.: Incremental synthesis of

fault-tolerant real-time programs. In: International Sympo-
sium on Stabilization, Safety, and Security of Distributed
Systems (SSS), LNCS 4280, pp. 122–136 (2006)

49. Bonakdarpour, B., Kulkarni, S.S.: Masking faults while pro-
viding bounded-time phased recovery. In: International Sym-
posium on Formal Methods (FM), pp. 374–389 (2008)

50. Tripakis, S.: Fault diagnosis for timed automata. In: For-
mal Techniques in Real-Time and Fault-Tolerant Systems
(FTRTFT), pp. 205–224 (2002)

51. Bouyer, P., Chevalier, F., D’Souza, D.: Fault diagnosis using
timed automata. In: Foundations of Software Science and
Computation Structure, pp. 219–233 (2005)

52. Ranjan, R., Aziz, A., Brayton, R., Plessier, B., Pixley, C.:

Efficient BDD algorithms for FSM synthesis and verification.
In: IEEE/ACM International Workshop on Logic Synthesis
(1995)

53. Ciardo, G., Lüttgen, G., Siminiceanu, R.: Saturation: An ef-
ficient iteration strategy for symbolic state-space generation.
In: Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), pp. 328–342 (2001)

54. Ciardo, G., Yu, A.J.: Saturation-based symbolic reacha-

bility analysis using conjunctive and disjunctive partition-
ing. In: Correct Hardware Design and Verification Methods
(CHARME), pp. 146–161 (2005)

55. Clarke, E.M., Filkorn, T., Jha, S.: Exploiting symmetry in
temporal logic model checking. In: Computer Aided Verifi-
cation (CAV), pp. 450–462 (1993)

56. Emerson, E.A., Sistla, A.P.: Symmetry and model checking.
Formal Methods in System Design: An International Journal
9(1/2), 105–131 (1996)

57. Attie, P., Emerson, E.A.: Synthesis of concurrent systems
with many similar processes. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS) 20(1), 51–115

(1998)
58. Yices: An SMT Solver. http://yices.csl.sri.com

29

Appendix

A Summary of Notations

V set of variables
D domain of variables
s state

s computation

S state space
Tp transition predicate of process p

Wp set of variables that process p can write
Rp set of variables that process p can read
P distributed program

ΠP processes of program P
TP transition predicate of program P

I invariant predicates
S fault-span
F fault transition predicate

T |S projection of T on S

BA Byzantine agreement
BAFS Byzantine agreement with fail-stop faults

T R token ring

IF Infuse

B Output of SYCRAFT for Byzantine

Agreement

In this appendix, we include the output of the tool Sycraft

where the input is the fault-intolerant Byzantine agreement pro-
gram with three non-general processes. These processes are la-

beled as 0, 1, and 2. The variable naming conforms with that of
in Section 6.

--
UNCHANGED ACTIONS:
--
1-((d0==2) & !(f0==1)) & !(b0==1) --> (d0 := dg)
--
REVISED ACTIONS:
--
2-(b0==0) & (d0==1) & (d1==1) & (f0==0) --> (f0 := 1)
3-(b0==0) & (d0==0) & (d2==0) & (f0==0) --> (f0 := 1)
4-(b0==0) & (d0==0) & (d1==0) & (f0==0) --> (f0 := 1)
5-(b0==0) & (d0==1) & (d2==1) & (f0==0) --> (f0 := 1)
--
NEW RECOVERY ACTIONS:
--
6-(b0==0)&(d0==0)&(d1==1)&(d2==1)&(f0==0) --> (d0 := 1)
7-(b0==0)&(d0==1)&(d1==0)&(d2==0)&(f0==0) --> (d0 := 0)
8-(b0==0)&(d0==0)&(d1==1)&(d2==1)&(f0==0) --> (d0 := 1),(f0 := 1)
9-(b0==0)&(d0==1)&(d1==0)&(d2==0)&(f0==0) --> (d0 := 0),(f0 := 1)
--

