
Noname manuscript No.
(will be inserted by the editor)

Model-based Implementation of Distributed Systems with

Priorities

Borzoo Bonakdarpour · Marius Bozga · Jean

Quilbeuf

Abstract Model-based application development aims at increasing the application’s

integrity by using models employed in clearly defined transformation steps leading to

correct-by-construction artifacts. In this paper, we introduce a novel model-based ap-

proach for constructing correct distributed implementation of component-based models

constrained by priorities. We argue that model-based methods are especially of interest

in the context of distributed embedded systems due to their inherent complexity (e.g.,

caused by non-deterministic nature of distributed systems). Our method is designed

based on three phases of transformation. The input is a model specified in terms of

a set of behavioral components that interact through a set of high-level synchroniza-

tion primitives (e.g., rendezvous and broadcasts) and priority rules for scheduling pur-

poses. The first phase transforms the input model into a model that has no priorities.

Then, the second phase transforms the deprioritized model into another model that

resolves distributed conflicts by incorporating a solution to the committee coordina-

tion problem. Finally, the third phase generates distributed code using asynchronous

point-to-point message passing primitives (e.g., TCP sockets). All transformations pre-

serve the properties of their input model by ensuring observational equivalence. All the

transformations are implemented and our experiments validate their effectiveness.

Keywords Component-based modeling, Automated transformation, Distributed

systems, BIP, Correctness-by-construction, Committee coordination, Conflict

resolution.

The research leading to these results has received funding from Canada under NSERC Dis-
covery Grant 418396-2012, from the European Community’s Seventh Framework Programme
[FP7/2007-2013] under grant agreement no 248776 (PRO3D) and no 257414 (ASCENS), and
from ARTEMIS JU grant agreement ARTEMIS-2009-1-100230 (SMECY).

B. Bonakdarpour
School of Computer Science
University of Waterloo
200 University Avenue West, Waterloo, Ontario, Canada, N2L 3G1
E-mail: borzoo@cs.uwaterloo.ca

M. Bozga and J. Quilbeuf
UJF-Grenoble 1 / CNRS, VERIMAG UMR 5104
Grenoble, F-38041 France
E-mail: {marius.bozga, jean.quilbeuf}@imag.fr



1 Introduction

Correct design and implementation of computing systems has been an ongoing research

topic in the past three decades. This problem is significantly more challenging in the

context of distributed systems. This challenge is due to the inherent complex nature

of distributed systems caused by a number of factors, such as non-determinism, non-

atomic execution of processes, race conditions, and occurrence of faults. Correctness

of distributed implementations is of significant importance in the context of embedded

applications, as such applications are often employed in safety/mission-critical systems.

A promising approach to address the challenges in correct development of a dis-

tributed application is to automatically generate code from abstract models. Model-

based development of distributed applications aims at increasing their integrity by us-

ing explicit models employed in clearly defined transformation steps leading to correct-

by-construction artifacts. This approach is highly beneficial, as one can ensure func-

tional correctness of the system by dealing with a high-level formally specified model

that abstracts implementation details and then derive a correct implementation through

a series of transformations that terminates when actual executable code is obtained.

In this paper, we focus on the BIP framework [6, 16] as our formal modelling lan-

guage. BIP (Behaviour, Interaction, Priority) is based on a semantic model encompass-

ing composition of heterogeneous components. The behaviour of a component in BIP is

described as an automaton or Petri net extended by data and functions given in C++.

BIP uses a diverse set of composition operators for obtaining composite components

from a set of components. The operators are parametrized by a set of interactions

between the composed components. Finally, priorities are used to specify different

scheduling mechanisms. Transforming a BIP model into a distributed implementation

involves addressing three fundamental issues:

1. (Concurrency) Components and interactions should be able to run concurrently

while respecting the sequential semantics of the high-level model.

2. (Conflict resolution) Interactions that share a common component can potentially

conflict with each other. Such interactions should execute in mutual exclusion.

3. (Enforcing priorities) When two interactions are simultaneously ready to execute,

only the one with higher priority can execute.

These issues introduce challenging problems in a distributed setting. The conflict

resolution issue can be addressed by incorporating solutions to the committee coordina-

tion problem [14] for implementing multiparty interactions. For example, Bagrodia [2]

proposes different solutions with different degrees of parallelism. The most distributed

solution is based on the drinking philosophers problem [13], and has inspired the ap-

proaches by Pérez et al. [25] and Parrow et al. [24]. In the context of BIP, a transfor-

mation addressing all the three challenges through employing a centralized scheduler

is proposed in [5]. Moreover, in [8–10], the authors propose transformations that ad-

dress the concurrency issue by breaking the atomicity of interactions, and, the conflict

resolution problem by designing an architecture to automatically augment an imple-

mentation with a solution to the committee coordination problem in a distributed

fashion. However, designing transformations that enforce priorities between interac-

tions in a distributed setting remains unaddressed in spite of the vital role priorities

plays in designing systems.

2



C1 C2 C3

p1 p2 p3

I

Fig. 1 A component-based model
with broadcast interaction.

In Subsection 1.1, we discuss the importance of incorporating priorities as a schedul-

ing tool to solve a wide range of computing problems and the main difficulty in their

implementation. In Subsection 1.2, we state our contributions in this paper.

1.1 Motivation

Priorities are widely used in system design as a way of scheduling events. Below, we

present examples of how applying priorities can guide a system to satisfy certain prop-

erties:

– Ensuring safety. Safety properties are normally of the form “nothing bad hap-

pens during the system execution”. In the context of concurrent and distributed

computing, an example of such a bad thing is often due to the existence of a set

of processes competing over a resource. Priorities can be used to resolve race con-

ditions. For instance, one way to prevent two processes to enter a critical section

simultaneously is to give explicit priority to one process. Dynamic priorities can

then be used to ensure non-starvation.

– Improving performance. In distributed systems, it is often the case that cer-

tain resources have higher demands. For example, in group mutual exclusion [19], as

Mittal and Mohan argue [23], in many commonly considered systems, group access

requests are non-uniform. Hence, in order to improve the performance, it is reason-

able to devise algorithms that give priority to groups that require a resource with

higher demand. A concrete example of group mutual exclusion is the well-known

readers/writers problem. In most cases, we give priority to readers to improve the

performance.

– Reducing non-determinism. Non-determinism in distributed and concurrent

computing is one of the sources of obtaining a diverse set of behaviors. In many

scenarios and in particular, in embedded applications, it is desirable to constrain

the system, so that it behaves in a predictable fashion. For example, consider the

model in Figure 1 with the following semantics. Port p1 is an active port (e.g.,

a trigger), whereas ports p2 and p3 are passive (e.g., synchrons). Connector I is

enabled if port p1 is enabled and other components can optionally participate in

the interaction (i.e., if their corresponding ports are enabled). Thus, connector I

allows interactions of the following set: {p1, p1p2, p1p3, p1p2p3}. Now, if we are to

build a broadcast interaction out of I, all passive ports that are listening (enabled)

have to be activated whenever this interaction takes place. This can be achieved

when interaction p1p2p3 is given higher priority than p1p2 and p1p3 that are given

higher priority that p1 alone.

The main challenge in utilizing priorities in a distributed setting is their correct

implementation while ensuring efficiency. This is due to the fact that components need

3



R1

p1

D

p2

R2

p3

W
p4

r1 r2w

Fig. 2 A simple BIP model for mul-
tiple readers/single writer problem.

to obtain a reliable knowledge about enabledness of interactions, so that only the

interaction with the highest priority is executed. In [4], the authors propose a model

checking approach that determines whether actions of a given Petri net can be executed

without violating priority rules. However, the downside of this approach is (1) it has

scaling issues, as it uses model checking, and (2) in most cases the local knowledge of

processes is shown to be insufficient to decide whether or not an action can be executed.

Other approaches include applying customized algorithms to implement priority rules

for specific problems in distributed computing (e.g., [23]).

To better describe our idea in this paper, consider the multiple readers/single writer

problem. A high-level component-based model to solve the problem is shown in Figure

2. Component D contains shared data, component W is a writer, and components R1

and R2 are two readers. Components W , R1, and R2 access the shared data through

binary rendezvous interactions w, r1, and r2, respectively. The semantics of this model

requires that these interactions are executed atomically, ensuring sequential consistency

of the shared data. Using the approach introduced in [8, 9], one can automatically

generate a distributed implementation that is observationally equivalent to the high-

level model. However, the solutions in [8,9] come short in implementing a priority rule

such as (w < r1)∧(w < r2), where the writer has to wait as long as readers are reading

the shared data.

These examples clearly demonstrate the demand for developing methods that auto-

matically construct a correct distributed implementation by starting from a high-level

model along with a set of priority rules. This way, all implementation issues are dealt

with by transformation algorithms. Thus, a designer only needs to make minimal effort

to develop an abstract model of the distributed application.

BIP model Deprioritized

BIP model

Distributed

BIP modelMultiparty
interactions
+ Priorities

Multiparty
interactions

Send/Receive
interactions

1 2

Distributed code

3

Fig. 3 Steps for generating a distributed implementation from a high-level BIP model.

4



1.2 Contributions

Our contributions in this paper are as follows:

– We propose a transformation that takes a high-level BIP model with priorities as

input and generates a BIP model without priorities as output. This corresponds to

the first step in Figure 3.

– We show the correctness of this transformation by proving that the initial and

transformed models are observationally equivalent.

– We apply the transformations introduced in [8–10] to derive a distributed model,

where multiparty interactions are implemented in terms of asynchronous point-

to-point send/receive primitives. This corresponds to the second step in Figure 3.

From this distributed model, we generate distributed code, as explained in [8–10],

which completes the design flow from the initial BIP model with priorities to a

correct distributed implementation.

– Finally, we validate the effectiveness of our approach by modelling a distributed

jukebox application and dining philosophers in BIP and conducting experiments on

the generated distributed code. The jukebox application incorporates priorities to

manage demands on reading discs. Our experiments show that the overhead of our

transformations has minimal effect on the benefit of using priorities.

We emphasize that although our focus is on the BIP framework, all results in this

paper can be applied to any model that is specified in terms of a set of components

synchronized by broadcast and rendezvous interactions. We note that our focus in this

paper is on the class of BIP models that are not augmented with timing constraints.

The problem of generating real-time distributed code from BIP models is outside the

scope of this paper.

Organization. The rest of the paper is organized as follows. In Section 2, we present

the basic semantics model of BIP. Then, in Section 3, we describe our transformation

for deriving a model that has no priorities. Our approach for deriving a distributed

model and code is presented in Section 4. Section 5 is dedicated to our case studies and

experimental results, while related work is discussed in Section 6. Finally, we conclude

and discuss future work in Section 7.

2 Basic Semantic Models of BIP

In this section, we present operational global state semantics of BIP [6]. BIP is a com-

ponent framework for constructing systems by superposing three layers of modelling:

Behaviour, Interaction, and Priority.

Atomic Components. We define an atomic component as a transition system ex-

tended with a set of ports and a set of variables. Each transition is guarded by a

predicate on the variables, triggers an update function, and is labelled by a port. The

ports are used for communication among different components and each port is asso-

ciated with a subset of variables of the component.

Definition 1 (Atomic Component) An atomic component B is a labelled transition

system represented by a tuple (Q,X,P, T ) where:

5



– Q is a set of control states.

– X is a set of variables.

– P is a set of communication ports. Each port is a pair (p,Xp) where p is a label

and Xp ⊆ X is the set of variables bound to p. By abuse of notation, we denote a

port (p,Xp) by p.

– T is a set of transitions of the form τ = (q, p, g, f, q′), where q, q′ ∈ Q are control

states, p ∈ P is a port, g is the guard of τ and f is the update function of τ . g is

a predicate defined over the variables in X and f is a function that computes new

values for X according to the previous ones.

We denote the set of valuations ofX byX, and the set of local states of a component

by Q × X. Let (q, v) and (q′, v′) be two states in Q × X, p be a port in P , and v′′p

be a valuation in Xp of Xp. We write (q, v)
p(v′′

p )
−→ (q′, v′) iff τ = (q, p, g, f, q′) ∈

T , g(v) is true, and v′ = f(v[Xp ← v′′p ]), (i.e., v′ is obtained by applying f after

updating variables Xp associated to p by the values v′′p ). When the communication

port is irrelevant, we simply write (q, v)→ (q′, v′). Similarly, (q, v)
p
→ means that there

exists a transition τ = (q, p, g, f, q′) such that g(v) = true; i.e., p is enabled in state

(q, v).

Example 1 Figure 4(a) shows an atomic component B, where Q = {s}, X = {n},

P = {(p, {n})}, and T = {(s, p, g, f, s)}. Here g is always true and f is the identity

function.

Interactions. For a model built from a set of n atomic components {Bi = (Qi, Xi, Pi,

Ti)}
n
i=1, we assume that their respective sets of ports and variables are pairwise dis-

joint; i.e., for any two i 6= j in {1..n}, we require that Pi ∩ Pj = ∅ and Xi ∩Xj = ∅.

Thus, we define the set P =
⋃n

i=1 Pi of all ports in the model as well as the set

X =
⋃n

i=1 Xi of all variables. An interaction a is a triple (Pa, Ga, Fa), where Pa ⊆ P

is a set of ports, Ga is a guard, and Fa is an update function, both defined on the

variables associated by the ports in Pa (i.e.,
⋃

p∈Pa
Xp). By Pa = {pi}i∈I , we mean

that for all i ∈ I, pi ∈ Pi, where I ⊆ {1..n}. We denote by F i
a the projection of Fa on

Xpi .

Priorities. Given a set γ of interactions, a priority between two interactions specifies

which one is preferred over the other. We define such priorities through a partial order

π ⊆ γ × γ. We write aπb if (a, b) ∈ π, which means that a has less priority than b.

Definition 2 (Composite Component) A composite component (or simply com-

ponent) is defined by a set of components, composed by a set of interactions γ and a

priority partial order π ⊆ γ × γ. We denote B
def
= πγ(B1, . . . , Bn) the component ob-

tained by composing components B1, . . . , Bn using the interactions γ and the priorities

π.

Note that if the system does not contain any priority, we may omit π.

Definition 3 (Composite Component Semantics) The behaviour of a composite

component without priority γ(B1, . . . , Bn), where Bi = (Qi, Xi, Pi, Ti) and →i is the

6



s
p

p
n

(a) An atomic
component

s1

p1

p1

n1 s2

p2

p2

n2 s3

p3

p3

n3 s4

p4

p4

n4

a = p1p2

⌈n1 > n2⌋
sw(n1, n2)

b = p2p3

⌈n2 > n3⌋
sw(n2, n3)

c = p3p4

⌈n3 > n4⌋
sw(n3, n4)

(b) A BIP composite component that sorts integers ni,
obtained by gluing 4 atomic components using 3 interac-
tions.

Fig. 4 Atomic and composite components in BIP

transition relation between states of Bi, is a transition system (Q, γ,X,→γ), where

Q = ×n
i=1Qi, X =

⋃n
i=1 Xi and →γ is the least set of transitions satisfying the rule:

a = ({pi}i∈I , Ga, Fa) ∈ γ Ga(v1, . . . , vn)

∀i 6∈ I. (qi, vi) = (q′i, v
′
i) ∀i ∈ I. (qi, vi)

pi(v
′′

pi
)

−→ i (q
′
i, v

′
i), v

′′
pi

= F i
a(v1, . . . , vn)

((q1, v1), . . . , (qn, vn))
a
→γ ((q′1, v

′
1), . . . , (q

′
n, v

′
n))

A state (q, v) of γ(B1, . . . , Bn) corresponds to states (q1, v1), · · · , (qn, vn) of compo-

nents B1, · · · , Bn. We define the behaviour of the composite component

B = πγ(B1, . . . , Bn) as the transition system (Q, γ,X,→π), where →π is the least

set of transitions satisfying the rule:

(q, v)
a
→γ (q′, v′) ∀a′ ∈ γ. aπa

′ =⇒ (q, v) 6
a′

→γ

(q, v)
a
→π (q′, v′)

Intuitively, the first inference rule specifies that a composite component B =

γ(B1, . . . , Bn) can execute an interaction a ∈ γ iff (1) for each port pi ∈ Pa, the

corresponding atomic component Bi can execute a transition labelled by pi, and (2)

the guard Ga of the interaction evaluates to true in the current state. Any interaction

verifying these two conditions is enabled. Execution of the interaction modifies compo-

nents’ variables by first applying update function Fa to associated variables and then

function fi inside each component. The states of components that do not participate

in the interaction stay unchanged. The second inference rule simply filters out inter-

actions which are not maximal with respect to priorities. An interaction can execute

only if no other one with higher priority is enabled.

Example 2 Figure 4(b) illustrates a composite component γ(B1, · · · , B4), where each

Bi is identical to component B in Figure 4(a). The set γ of interactions is {a, b, c}, where

a = ({p1, p2}, n1 > n2, sw(n1, n2)) and function sw swaps the values of its arguments.

Interactions b and c are defined in a similar fashion. Interaction a is enabled when

ports p1 and p2 are enabled and the value of n1 (in B1) is greater than the value of

n2 (in B2). Thus, the composite component B sorts variables n1 · · ·n4, such that n1

contains the smallest and n4 contains largest values.

7



It may be desirable to always execute interaction a when possible. This can be done

by adding the two priority rules bπa and cπa. We denote the obtained component by

πγ(B1, . . . , B4). We will use this example to illustrate the transformations presented

in this paper.

We now introduce the notion of conflicting interactions. Intuitively, two interactions

a1 and a2 are weakly conflicting iff they share a common component.

Definition 4 (Weak Conflict) Two interactions a1 and a2 are weakly conflicting

(denoted a1 ⊕ a2) iff there exist two ports p and q in some component B such that

p ∈ Pa1 and q ∈ Pa2 .

This kind of conflict is called weak because its constraint is weaker than the defini-

tion of conflicting interactions in [9] that we call here a strong conflict. Two interactions

are strongly conflicting iff they share a component B and either (1) they share a

common port in B, or (2) there exist two ports, each in a distinct interaction, such that

these two ports label two conflicting transitions (i.e., transitions that originate from

the same state). Clearly, a strong conflict implies a weak conflict, but the converse is

not true.

3 Deprioritizing a BIP Model

In this section, we describe our approach to transform a BIP model B into an equivalent

model without priorities, denoted B̃. Intuitively, our transformation proceeds as follows:

1. First, it replaces each atomic component in B by a functionally equivalent

send/receive atomic component, where atomicity of transitions and interactions is

broken. This first transformation, already used in [5,8,9] separates the synchroniza-

tion from internal computation on component transitions and enables concurrent

execution of atomic components.

2. Then, it inserts manager components for handling interactions. These managers

detect enabledness of interactions and schedule them for execution according to

priority rules. Managers interact with each other through multi-party interactions

in order to maintain a consistent view on the state of the system.

This section is organized as follows. Subsection 3.1 describes the first step of the

transformation (breaking atomicity). Subsections 3.2 and 3.3 present the second step

of the transformation (inserting and connecting manager components). Subsection 3.4

demonstrates the correctness of our approach, while Subsection 3.5 discusses binary

versus n-ary interactions.

3.1 Breaking Atomicity

The transformation of atomic components splits each transition into two consecutive

steps: (i) an offer that publishes the current state of the component, and (ii) a notifica-

tion that triggers the update function. The intuition behind this transformation is that

the offer transition corresponds to sending information about component’s intention to

interact with the other components. The notification transition receives the response

8



s⊥s

p xp := true

o

p
nxp

o

Fig. 5 Transformed version of one atomic component from Figure 4(b)

from the scheduler components (described later), once some interaction has been com-

pleted. Local update functions can then be executed concurrently and independently

by components upon receiving a notification.

The offer transition publishes its enabled ports through a special port named o.

Enabled ports are encoded through a list of Boolean variables. After the computation

of the local function, this list is updated to the ports that are enabled at the next

control state. Notification transitions are triggered by corresponding ports from the

original atomic component.

Definition 5 (Transformed atomic components) Let B = (Q,X,P, T ) be an

atomic component. The corresponding transformed atomic component is

B⊥ = (Q⊥, X⊥, P⊥, T⊥), such that:

– Q⊥ = Q ∪ {⊥s |s ∈ Q}.

– X⊥ = X ∪ {xp}p∈P , where each xp is a Boolean variable indicating whether port

p is enabled.

– P⊥ = P ∪ {o}, where o is an offer port. All variables in X⊥ are associated to o

(i.e., Xo = X⊥).

– For each transition τ = (q, p, g, f, q′) ∈ T , we include the following two transitions

in T⊥:

1. offer τ
q
o = (⊥q, o, go, fo, q), where go = true and fo is the identity function,

and

2. notification τ
q
p = (q, p, gp, fp,⊥q′), where gp = true and fp applies fτ on X

and for each port r ∈ P , it sets xr to true if τ ′ = (q′, r, g′, f ′, q′′) ∈ T for some

q′′ and g′ is true. Otherwise, xr is set to false.

In Definition 5, states {⊥s |s ∈ Q} from where the component sends offers, are

called busy or unstable states. States Q, from where the component is waiting to receive

a notification, are called stable states.

Example 3 Figure 5 shows the transformed version of the atomic component shown in

Figure 4(a). Initially, the component is in busy state ⊥s and the value of xp is true;

i.e., the component is willing to interact on port p. Then, it sends an offer through port

o containing the current values of xp and n and reaches stable state s. The reception of

a notification corresponds to the p-labelled transition that brings back the component

to the initial busy state.

3.2 Interaction Managers

The set of managers are introduced to execute interactions according to the global

semantics of the original BIP model described in Section 2. To this end, a manager

9



port variables description

oai {xa
pi
} ∪Xa

pi

receives offers from atomic component
Bi

ι ∅
change status to enabled or disabled
(internal port)

starta ∅ triggers interaction execution

na {Xa
pi
}

notifies atomic components upon exe-
cution

disa ∅
signals disabled status to other man-
agers

⊕a {bai }
gets notified about execution of a
weakly conflicting interaction by other
managers

⊕disa {bai }
similar to port ⊕a, but for interactions
with higher priority

Table 1 Ports of a manager component

component for an interaction a has to (i) detect enabledness of a by listening to offers

sent by atomic components, (ii) trigger the execution of a, (iii) notifies atomic compo-

nents as well as the other conflicting managers, whenever the interaction is executed.

Observe that if two interactions are weakly conflicting, then executing one can

change the status of the other. For instance, let a and b be two interactions, such that

a⊕b; i.e., they share some component B. Obviously, executing a triggers a transition in

component B. This transition can result in changing the status of interaction b. That

is, until component B completes its local execution and sends a new offer, the status

of enabled ports and values of variables in B can change.

Definition 6 (Interaction Manager) Let a ∈ γ be an interaction, where Pa =

{pi}i∈I . The interaction manager Ma is an atomic component Ma = (Q,X,P, T )

defined as follows:

– The set of control states is Q = {undef , en, dis, exc}. Intuitively, in state undef

(undefined), the manager does not have enough information to decide whether or

not interaction a is enabled. This is normally because some offers have not been

received yet. In states en (enabled) and dis (disabled), the manager knows that a

is enabled or disabled, respectively. In state exc (executing), the interaction a is

executing.

– The set of variables is X = {bai }i∈I ∪
{

{xapi
} ∪ Xa

pi

}

pi∈a
. For every component

Bi, the manager holds a Boolean variable bai which is true iff component Bi is in a

stable state, that is, waiting for a notification. For every port pi ∈ a, the manager

holds respectively, a Boolean variable xapi
which indicates the status of the port

(i.e., enabled or disabled) and variables Xa
pi

that is, data associated to the port pi.

– The set of ports P and their associated variables is presented in Table 1.

– The set of transitions T and their intuitive meaning is presented in Table 2.

Example 4 Figure 6 shows the manager component for interaction a in Figure 4(b).

It contains variables ba1 and ba2 since interaction a involves components B1 and B2.

The manager contains two offer ports oa1 and oa2 . Port o
a
i , i ∈ {1, 2}, is associated with

variables (1) xapi
, which indicates the status of port pi in Bi, and (2) na

i , that are

local copies of variables ni associated to ports pi in Figure 4(b). All these variables

10



Transition Guard / Function Description

undef
oai−→ undef - / bai := true receive offer from Bi

undef
ι

−→ en
Ga ∧

∀i ∈ I. (bai ∧ xa
pi
) / -

change state to enabled

undef
ι

−→ dis
(∀i ∈ I.bai )∧(¬Ga∨∃i ∈

I.¬xa
pi
) / -

change state to disabled

en
starta→ exc

- / {bai } := false;
{Xa

pi
}:=Fa({Xa

pi
})

execute interaction, apply update
function.

exc
na→ undef - / -

notifies atomic components on
execution

dis
disa→ dis - / - signals disabled state

dis
⊕a→ undef

undef
⊕a→ undef

en
⊕a→ undef

- / -
gets notified about execution of a
weakly conflicting interaction

dis
⊕disa→ undef - / -

gets notified about execution of a
higher priority weakly conflicting
interaction

Table 2 Transitions of a manager component

undefdisdisa

exc

en

na⊕a oi
ba
i

:= true

⌈(ba
1 ∧ xa

p1
)∧

(ba
2 ∧ xa

p2
)∧

(na
1 > na

2 )⌋

ι

⊕a

⌈(ba
1 ∧ ba

2 )∧

(¬xa
p1

∨¬xa
p2

∨na
1 ≤ na

2 )⌋
ι

⊕a

⊕disa

starta

ba
1 := false

ba
2 := false

sw(na
1 , na

2 )

xa
p1 na

1

oa
1

xa
p2

na
2oa

2 na

ba
1

ba
2

⊕a ⊕disa disa starta

Fig. 6 The manager component for interaction a between components B1 and B2 in Figure
4(b).

are refreshed upon receiving an offer through ports oai . The transition from undef to

en guarded by (ba1 ∧ xap1
) ∧ (ba2 ∧ xap2

) ∧ (na
1 > na

2) switches from undefined to enabled

state. The two first conjuncts ensures that (1) B1 and B2 are in stable state, and (2)

p1 and p2 are enabled. The latter conjunct corresponds to the guard of interaction a in

Figure 4(b). Likewise, the transition from undef to dis is possible only when B1 and

B2 are in stable state and the interaction a is disabled. The update function associated

to τstart sets ba1 and ba2 to false and then swaps the variables na
1 and na

2 . Both na
1 and

na
2 are associated to the notification port na, so their new values are sent back to the

component.

11



3.3 Connecting Managers

The transformed atomic components and interaction managers are interconnected using

three types of interactions: (i) offer interactions, where components send their enabled

ports to corresponding managers, (ii) notification interactions, where managers notify

components after execution of an interaction, and (iii) schedule interactions, where

priority rules are handled.

We now formally define the deprioritized model, by specifying how we connect the

components defined so far. Let γ(i) denote the set of all interactions in γ that involve

component Bi.

Definition 7 (Deprioritized model) Given a model B = πγ(B1, · · · , Bn), with γ =

{a1 · · · am}, we define its deprioritized version as B̃ = γ̃(B⊥
1 , · · · , B⊥

n , Ma1 , · · · ,Mam),

where B⊥
i is obtained from Bi as explained in definition 5, Maj is obtained from aj as

explained in definition 6, and γ̃ contains the following interactions:

– Offer interactions. For each i ∈ {1 · · ·n}, γ̃ contains interaction offi, where

Poffi = {oi}∪
⋃

a∈γ(i){o
a
i }. For each interaction a ∈ γ(i), the update function Foffi

sets the values of variables {xapi
}∪Xa

pi
to the values of {xp}∪Xp associated to oi,

where p is the of port Bi involved in a. An offer interaction has no guard and only

copies data from the sender component to the manager.

– Notification interactions. For each interaction a ∈ γ, where a = {pi}i∈I , γ̃

contains the interaction nota, such that Pnota = na ∪ {pi}i∈I . This interaction

notifies each component which port has been selected. The update function Fnota

copy back data to each component Bi involved in a. That is, the values of Xpi (in

Bi) are set to the values of Xa
pi

(from Ma).

– Schedule interactions. For each interaction a ∈ γ, γ̃ contains the interaction ã:

Pã = {starta}

∪ {⊕c|c⊕ a, c 6> a}

∪ {disc|c⊕ a, aπc}

∪ {⊕disc|c⊕ a, aπc}

This interaction has no guard. For each interaction c weakly conflicting with a, the

update function Fã sets variable bci of the manager Mc to false through the port

⊕c (or ⊕disc) if {a, c} ⊆ γ(i). In other words, interaction starta informs manager

Mc that the components causing the weak conflict with a have moved and are not

in their stable state anymore. This information maintains coherence between the

bci variable in each manager Mc and the actual state of component Bi.

Example 5 Figure 7 presents the deprioritized model from Figure 4(b). Note that the

port names have been shortened for space reasons (e.g., sa and da stand for starta and

disa respectively). For offer and notification interactions, we interpret a triangle port as

a send port (i.e., for sending offers) and bullet port as a receive port (i.e., for receiving

offers). Note that offers and notifications only copy variables between components and

managers.

If we assume priorities bπa and cπa for the model in Figure 4(b), we obtain the

following schedule interactions: a has no higher priority interaction and is weakly con-

flicting with b, thus Pã = {starta,⊕b}. Executing ã will set variable bb2 to false in Mb,

12



o1 p1

B⊥1

o2 p2

B⊥2

o3 p3

B⊥3

o4 p4

B⊥4

Ma

na
oa
1 oa

2

⊕a⊕d
a dasa

Mb
nb

ob
2 ob

3

⊕b ⊕d
b

db
sb

Mc

nc
oc
3 oc

4

⊕c ⊕d
c dc sc

ã
b̃ c̃

Fig. 7 Deprioritized version of model from Figure 4(b).

since B2 will become busy. Interaction b has less priority than a and is weakly conflict-

ing with both a and c, thus P
b̃
= {startb,⊕disa,⊕c}. Interaction c has less priority

than a and is weakly conflicting with b, thus Pc̃ = {startc, disa,⊕b}.

Reducing the number of added components. Since our transformation builds a

manager for each interaction, the number of manager components in the deprioritized

model is equal to the number of interactions in the input model. This number can be

reduced bymerging components with the method presented in [12]. Given a user-defined

partition of components, merging consists in generating for each class of the partition a

single component which is strongly bisimilar to their product. Merging components may

improve performance of the obtained system by suppressing communication between

the merged components. It may also deteriorate performance. For example, suppose

that two components can execute in parallel. Merging these components, may result

in degrading their performance to sequential execution in the product component. A

guideline for merging components in the context of this article is provided at the end

of Section 5.

3.4 Correctness

We now show that the 2-step transformation presented in Subsections 3.1-3.3 preserves

the semantics of the original BIP model. By preserving the original semantics, we mean

ensuring observational equivalence between the original model and the transformed

model. This is proved in Theorem 1.

Let B = πγ(B1, · · · , Bn) be a BIP model and B̃ = γ̃(B⊥
1 , · · · , B⊥

n ,Ma1 , · · · ,Mam)

be its deprioritized version. We denote q = (q1, · · · , qn) a state ofB and q̃ = (q̃1, · · · , q̃n,

s1, · · · , sm) a state of B̃. We show that B̃ is observationally equivalent to B.

The observable actions of B are the interactions γ. The observable actions of B̃

are only the schedule interactions, that is {ã|a ∈ γ}. The remaining interactions in

B̃, namely offers offi and notifications nota, are unobservable and are denoted β. We

denote q̃
β
→ q̃′ if a β action brings the system from state q̃ to state q̃′.

Proposition 1
β
→ is terminating.

Proof Each β action involves at least a component. Each component can take part in

at most 2 β actions, 1 notification and 1 offer, then no other β action is possible until

an ã action is executed. Thus at most 2n consecutive β-steps are possible. ⊓⊔

13



Proposition 2 From any reachable state q̃ of B̃,
β
→ is confluent.

Proof In any reachable state, if a manager reaches the state exc then the corresponding

notification interaction is enabled, since schedule interactions and boolean variables bi
ensure that each component may receive only one notification after each offer. Similarly,

if any component reaches an unstable state, then the corresponding offer interaction is

enabled.

Offer interactions are independent since they do not share any port nor change a

common variable. Thus, the order of their execution does not change the final state.

Notification interactions (that correspond to interactions of the original model,

augmented by a notification port) enabled from a reachable state are not conflicting

since schedule interactions handle weak conflicts. Thus, notification interactions are

independent and their order of execution does not change the final state. We can

conclude that
β
→ is confluent. ⊓⊔

From proposition 1 and 2, for each reachable state q̃ of B̃, there is a unique state

denoted [q̃] such that q̃
β∗

→ [q̃] and [q̃]
β

6→.

We recall the definition of observational equivalence of two transition systems A =

(QA, P ∪ {β},→A) and B = (QB , P ∪ {β},→B). It is based on the usual definition

of weak bisimilarity [22], where β-transitions are considered unobservable. The same

definition is trivially extended for atomic and composite BIP components.

Definition 8 (Weak Simulation) A weak simulation over A and B, denoted A ⊂ B,

is a relation R ⊆ QA×QB , such that we have ∀(q, r) ∈ R, a ∈ P : q
a
→A q′ =⇒ ∃r′ :

(q′, r′) ∈ R ∧ r
β∗aβ∗

→ B r′ and ∀(q, r) ∈ R : q
β
→A q′ =⇒ ∃r′ : (q′, r′) ∈ R ∧ r

β∗

→B r′

A weak bisimulation over A and B is a relation R such that R and R−1 are both

weak simulations. We say that A and B are observationally equivalent and we write

A ∼ B if for each state of A there is a weakly bisimilar state of B and conversely. We

consider the correspondence between observable actions of B and B̃ as follows. To each

interaction a ∈ γ, where γ is the set of interactions of B, we associate the schedule

interaction ã of B̃.

Theorem 1 B ∼ B̃.

Proof We define the relation R between the states of B and the states of B̃ as follows:

the couple (q̃, q) is in the relation R if the states of atomic components B⊥
1 , · · · , B⊥

n in

[q̃] are the same as in q. Formally, we have (q̃, q) ∈ R if [q̃] = (q1, · · · , qn, s1, · · · , sm)

and q = (q1, · · · , qn). We show that R is an observational equivalence by proving the

next three assertions:

(i) If (q̃, q) ∈ R and q̃
β
→ r̃ then (r̃, q) ∈ R.

(ii) If (q̃, q) ∈ R and q̃
ã
→ r̃ then ∃r : q

a
→ r and (r̃, r) ∈ R.

(iii) If (q̃, q) ∈ R and q
a
→ r then ∃r̃ : q̃

β∗ã
−→ r̃ and (r̃, r) ∈ R.

The point (i) comes from the definition of R.

(ii) If the interaction ã is enabled, then manager Ma is in state en, which implies

that at equivalent state q:

– All ports of a are enabled and the guard Ga is true, since the guard of the τen

transition is true

14



Ma B⊥2 Mb

offa
2

ã bb
2 := F

offb
2

bb
2 = T

Fig. 8 A scenario leading to inconsistency between managers

– No higher priority interaction is enabled since ã is enabled only when managers

corresponding to such interactions are in state dis.

Thus we have q
a
→ r, and the reader can easily check that (r̃, r) ∈ R.

(iii) From q̃ we can reach [q̃] by using only β transitions. In state [q̃], since every

atomic component has sent an offer, the state of each manager will be either en or dis,

according to the status of the corresponding interaction at state q in B. Then since a is

enabled at state q, Ma is in state en at state [q̃]. If there is any interaction b with higher

priority than a, then it is disabled in state q, thus the manager Mb is in state dis at

state [q̃]. Thus ã is enabled at state [q̃] and we have q̃
β∗ã
−→ r̃. Executing the notification

interaction na and the offer interactions from components involved in a lead B̃ in a

state where atomic components have the same state as in r. Thus (r̃, r) ∈ R. ⊓⊔

3.5 Binary Versus n-ary Offers and Notifications

In a realistic distributed implementation, the offer and notification interactions may be

implemented using a primitive ensuring synchronization of the receivers (e.g., atomic

multicast). However, if such a primitive is not available, we have to refine our B̃ model,

so that it resolves the issue in asynchronous networks as well. To this end, we can either

use the method presented is section 4, or replace each notification and each offer by

a set of binary interactions of the type {sender, receiver}. The latter option, which

is studied in this subsection, requires to duplicate offer ports in atomic components

and notification ports in managers, as well as the corresponding transitions, so that a

previously n-ary offer (or notification) is transformed into a sequence of binary offers

(or notifications). This transformation adds new transient states where offers (or no-

tifications) have been sent to a part of the recipients, and remain to be sent for the

others.

Notice that desynchronization of the notifications has no effect on the behaviour

of each component since atomic components perform independent computation after

receiving the notification. On the contrary, synchronization of offers’ receivers ensures

that the values of bi variables are consistent among managers. This is, in fact, a crucial

requirement to ensure correctness of our construction. As an example, consider the

scenario presented in Figure 8. This scenario presents interactions between Ma, B
⊥
2 ,

and Mb from the model in Figure 7, with desynchronized offers. Once B⊥
2 has sent its

offer to Ma, this latter one switches to enabled state, interaction ã becomes enabled,

and is executed. Then, Mb receives the offer from B⊥
2 and sets bb2 to true, which is an

inconsistency, as the offer from B⊥
2 has already been consumed by a.

15



To prevent this inconsistency, we enforce synchronization of the offers by adding a

guard to each schedule interaction. Let a be an interaction, we defined ã = (Pã, Gã, Fã)

and we define ãSR = (Pã, G
SR
ã , Fã) as:

G
SR
ã =

∧

c⊕a

∧

{a,c}⊂γ(Bi)

b
c
i

This guard checks that, for each interaction c weakly conflicting with a, and each

component Bi that is involved in both a and c, the value of bci is true. It means that

the manager Mc has received the offer from Bi.

We denote B̃SR by the model built from B̃, where we replace each offer and each

notification by a set of binary interactions, and, we replace each schedule interaction

ã by the interaction ãSR.

Theorem 2 Let B be a BIP model. B̃SR is observationally equivalent to B̃.

Proof We define an equivalence between states of B̃SR and B̃ by giving the following

application. From a state of B̃SR, we build a state of B̃ by considering the transient

states that are active in B̃SR. If an atomic component of B̃SR is in a transient state

introduced by the transformation of a n-ary offer into binary offers, we consider the

offer as unsent. More precisely, in the built state of B̃, components involved in this offer

are set to the state where the offer interaction is enabled. If a manager of B̃SR is in

a transient state introduced by the transformation of a n-ary notification into binary

notifications, we consider the notification as sent. More precisely, in the built state of

B̃, components involved in this notification are set to the state reached after executing

the notification interaction.

In order to have observational equivalence for this state equivalence, we map each

n-ary offer to the last binary offer of the corresponding sequence and each n-ary no-

tification to the first binary notification of the corresponding sequence. Other binary

offers and notifications are unobservable. It is clear that any unobservable action in

B̃SR does not change the equivalent state in B̃.

If a schedule interaction ãSR is enabled in B̃SR, the guard GSR
ã ensures that all

components involved in this interaction have executed all possible binary offers. That is,

ã is possible in the equivalent state of B̃. Execution of the schedule interaction brings

the two systems in equivalent states. By definition of equivalent states and visible

interactions, if a visible offer or notification is enabled in B̃SR, then the corresponding

offer or notification is also enabled in B̃. Again execution of these interactions brings

the two systems in equivalent states.

Finally, if a schedule interaction, or notification interaction is possible in B̃, then

the definition of equivalent states ensures that these interactions are also possible in

any equivalent state of B̃SR. If an offer interaction is possible in B̃, it may not be

directly possible in B̃SR, but can be reached by executing (if needed) the unobservable

notification to the component sending the offer and then the unobservable offers from

that component. ⊓⊔

4 Building a Distributed Model: The 3-Tier Architecture

Once we construct a model with no priorities as prescribed in Section 3, one can apply

the technique presented in [8–10] to generate distributed code. We now briefly recap

16



B
⊥

1 B
⊥

2 B
⊥

3 B
⊥

4

Part copied

from deprior-

itized model

M
⊥

a

o

M
⊥

b

o

M
⊥

c

o

Components

tier

IP1

nã
n

b̃

ra rb

IP2

nc̃

Interaction

Protocol

CRP
Conflict

Resolution

Protocol ok f ok f ok f

Fig. 9 Distributed version of the deprioritized model from Figure 7.

this technique. Distributed code generation is accomplished in two steps. First, from

a given BIP model (e.g., a deprioritized BIP model), we generate another BIP model

that only incorporates asynchronous message passing as interactions (denoted SR-BIP,

where SR stands for send-receive). Then, we transform the SR-BIP model into a set

of executables – one per atomic component – that communicate using asynchronous

message passing primitives such as MPI or TCP sockets.

4.1 BIP to SR-BIP Transformation

Recall that distributed execution of interactions may introduce conflicts even if we do

not consider priorities. Thus, our target SR-BIP model in a transformation should have

the following three properties: (1) preserving the behaviour of each atomic component,

(2) preserving the behaviour of interactions, and (3) resolving conflicts in a distributed

manner. Moreover, we require that interactions in the target model are asynchronous

message passing.

We design our target BIP model based on the three tasks identified above, where

we incorporate one tier for each task. Since several distributed algorithms exist in the

literature for conflict resolution, we design the tier corresponding to conflict resolution

so that it provides appropriate interfaces with minimal restrictions. As a running exam-

ple, we use the part of the model presented in Figure 7 formed by γsched(Ma,Mb,Mc)

where γsched = {ã, b̃, c̃} to describe the concepts of our transformation. The distributed

version of γsched(Ma,Mb,Mc) is presented in Figure 9. Our 3-tier architecture consists

of the following.

Components Tier. Let B̃ = γ̃(B⊥
1 · · ·B

⊥
n ,Ma1 · · ·Mam) be a deprioritized BIP

model. The component tier includes components:

17



– M⊥
a1
· · ·M⊥

am
(i.e., manager components obtained by the transformation explained

in Subsection 3.1 to break atomicity), and

– B⊥
1 · · ·B

⊥
n are copied from the deprioritized model, since they have already been

transformed by the deprioritization.

Recall that the send-port offer (o) publishes the list of enabled ports in the com-

ponent for the upper tier (i.e., the interaction protocol). These ports are active ports,

meaning that the holder component can send messages through them. Send ports are

shown by triangles in Figure 9. Each port p of the original component becomes a

receive-port p through which the component is notified to execute the transition la-

belled by p once the upper tiers resolve conflicts and decide on which components can

execute on what port. Receive ports are passive, meaning that the holder component

gets blocked on them until a message arrives. Receive ports are shown by bullets in

Figure 9.

Interaction Protocol. This tier consists of a set of components each hosting a

set of interactions from the deprioritized BIP model. Conflicts between interactions

included in the same component are resolved by that component locally. For instance,

interactions ã and b̃ in Figure 7 are grouped into component IP1 in Figure 9. Thus,

the conflict between ã and b̃ is handled locally in IP1. On the contrary, the conflict

between b̃ and c̃ has to be resolved using the third tier of our model (i.e., conflict reso-

lution protocol). The interaction protocol also evaluates the guard of each interaction

and executes the code associated with an interaction that is selected locally or by the

upper tier. The interface between this tier and the component tier provides ports for

receiving enabled ports from each component and notifying the components on per-

mitted port for execution (ports nã, nb̃
, and nc̃).

Conflict Resolution Protocol. This tier accommodates an algorithm that solves

the committee coordination problem [14] to resolve conflicts between interactions hosted

in separate interaction protocol components. In this problem, a committee consists of a

set of professors (i.e., components) and committee meetings (i.e., rendezvous synchro-

nization) have to convene, so that each professor participates in at most one committee

meeting at a time. Committee coordination is a classic problem of distributed mutual

exclusion.

Consider the external conflict between interactions b̃ and c̃. This conflict is referred

to the conflict resolution protocol and is resolved by the central component CRP in

Figure 9. We emphasize that the structure of components in this tier solely depends

upon the augmented committee coordination algorithm. Incorporating a centralized

algorithm results in one component CRP as illustrated in Figure 9. Other algorithms,

such as ones that use a circulating token [2] or dining philosophers [3,14] result in dif-

ferent structures in this tier and are presented in [10]. The interface between this tier

and the Interaction Protocol involves ports for receiving requests to reserve an interac-

tion (labelled r) and responding by either success (labelled ok) or failure (labelled f).

For the token ring and dining philosophers the conflict resolution protocol contains one

component for each interaction. In the token ring version, a token circulates through

all components. Only the component having the token may respond an ok message. In

the dining philosophers version, if two interactions are conflicting, the corresponding

components are neighbors and share a fork. Only the component having all the forks

from his neighbors may respond an ok message.

18



D1

load unload

D2

load unload

D3

load unload

D4

load unload

J1

load unload

data

read

R1

read

R2

J2

load unload

data

read

R3

read

R4

Fig. 10 BIP Model for the jukebox example.

4.2 Distributed Code Generation

Given an SR-BIP model, generating distributed code is a straightforward task. First,

each component needs to initialize communication connections with respect to the

platform communication primitives library. For instance, in case of TCP sockets, this

step establishes connection-oriented stream sockets between components that need to

send and receive messages to each other. Then the transition system representing the

behavior of the component is used to generate execution loop code as follows. The code

first tries to execute transitions labeled by send-ports. In this case, the generated code

calls a communication primitive that sends a message, for instance, the TCP primitive

send(). The recipient of this message is given by the Send/Receive interaction that is

bound to the send-port. If no transition labeled by a send port or an internal port

(such as ι in manager components) is enabled, the generated code calls a primitive

that blocks and waits for messages from other components, for instance, the TCP

primitive select(). Then, the code for transitions labeled by receive-ports is executed.

This code calls a communication primitive for fetching the received data, such as the

TCPprimitive receive().

It is possible to generate multi-threaded implementation as well. To this end, BIP

uses shared memory, mutexes, and semaphores of POSIX library for implementing

send, receive, and select primitives. More precisely, for each atomic component, we

create a shared-memory FIFO buffer, a semaphore, and a mutex. The communication

primitives used in the code are implemented as follows:

– The send primitive: The source component writes the message in the FIFO buffer

of the destination component and increments the value of its semaphore. These

actions are protected by a mutex of the destination component.

– The select primitive: The component waits on its semaphore.

– The receive primitive: The component reads the message from its buffer protected

by its corresponding mutex.

5 Case Studies

5.1 Distributed Jukebox

In this section, we use a jukebox example to illustrate our deprioritization transfor-

mation and conduct experiments to study the effectiveness of our method (see the

models in Figures 10 and 11). This model represents a system, where a set of readers

(R1, . . . , R4) need to access the data located on discs (D1, . . . , D4). A reader may need

19



J D

unload

load data

current

to load
if (to load== ∅)
to load={1,2,3,4}

to load =to load
- current

data

load unload

unload

load

id

unload load

⌈id ∈ to load⌋
current=id

read
to read = next()

to read
read R

⌈current == to read⌋

Fig. 11 Behaviour of jukebox components and interactions.

any disc. Access to the discs is managed by jukebox components (J1, J2) that can load

any disc to make it available for reading. Each pair (Di, Jk), i ∈ {1 · · · 4} and k ∈ {1, 2},

has two interactions: (1) a loadi,k interaction for loading the disc in the jukebox and

an unloadi,k interaction for unloading it. Each reader Rj is connected to a jukebox

through a readj interaction. During the test, we simulate execution of interactions by

adding an artificial 10ms wait for load/unload and a 50ms wait for read.

Figure 11 presents the behaviour of atomic components and the data transfer on

interactions. To ensure that all discs are eventually loaded, each jukebox keeps a list of

discs to load, namely to load. Each time a disc is loaded, it is removed from the list by

the load transition in the jukebox component. The guard of a load interaction prevents

the disc to be loaded if it is not on the list. When the to load list becomes empty, it

is reinitialized to the set of all discs by the unload interaction. The variable current

contains the identity (i.e., 1 . . . 4) of the disc currently loaded in the jukebox, and is

updated by the load interaction. In order to ensure that the reader gets the correct

data, a guard on the {read , data} prevents the interaction if the disc in the jukebox

(current) is not the one to be read (to read). Each reader has a sequence of discs to

read. The variable to read contains the id of the next disc to be read. This value is

updated after each read.

We consider two versions of the model. The first model, denoted B∅, does not

contain priorities. The second model, denoted Bπ, is the model B∅ augmented with

two types of priorities:

– Priorities to enforce progress. For this particular model, we assume that

progress is done whenever a read interaction takes place. In the B∅ model, an

infinite sequence of load/unload interactions is a valid behavior. To avoid this,

we give priority to the read interactions over the unload interactions. Formally, it

corresponds to the sets of priorities {unloadi,1 π readj | i ∈ {1, · · · , 4}, j ∈ {1, 2}}

and {unloadi,2 π readj | i ∈ {1, · · · , 4}, j ∈ {3, 4}}, for each jukebox. This ensures

that any enabled read interaction will be executed before the disc is unloaded.

– Priorities to speed up execution. By inspecting the discs requested by the

readers, we know that some discs are more often needed than others. Thus, we give

higher priority to the corresponding load interactions. Here, we give higher priority

20



to Disc 1 in Jukebox 1 by adding the following set of priorities: {loadi,1 π load1,1 |

i ∈ {2, 3, 4}}.

For both versions B∅ and Bπ, we generate the corresponding deprioritized models

B̃∅ and B̃π. Note that we apply the deprioritization to B∅, even if it does not contain

priority, in order to measure the overhead induced by this transformation. For each

of the models B∅, B̃∅ and B̃π, we generate a distributed implementation by using the

transformation presented in Section 4 [10]. For the B∅ model, this transformation is

applied to the entire model. For the B̃∅ and B̃π models, the transformation is applied

only to the managers and schedule interactions. Note that an interaction from B∅

corresponds to a schedule interaction from B̃∅.

The distributed model obtained is parametrized by (1) a partition of the interaction

and (2) a conflict resolution protocol. For the B∅ model, we consider a partition of the

original interactions. For the deproritized models, we consider the partition obtained

by taking the corresponding schedule interactions. We consider the following three

different partitions to conduct our experiments:

– P1 is the partition obtained by grouping all interactions. It results in a distributed

model with only one interaction protocol component.

– P2 is the partition obtained by grouping all interactions that involve a given sched-

uler. Thus, we have two interaction protocol components: IP1 and IP2. IP1 is

responsible for the interactions (or the schedule interactions corresponding to)

{read i}i=1,2 and {load i,1, unload i,1}i=1..4. IP2 is responsible for the remaining

interactions. Since there are conflicts between interactions that are not in the same

interaction protocol components (e.g., between load1,1 and load1,2 that both need

disc 1), this partition needs external conflict resolution.

– P3 is the partition obtained by building a separate interaction protocol component

for each interaction. Again, this partition needs external conflict resolution.

For partitions P2 and P3, we use the three conflict resolution protocols presented

in [10], namely centralized (CT), token ring (TR), and dining philosopher (DP). For

each setting, we generate a distributed version of B∅, B̃∅, and B̃π. For each version, we

count the number of read interactions that occur during 60s. The results are presented

in Figure 12.

Overhead. We evaluate the overhead of deprioritization by comparing the number of

read interactions for distributed executions of models B∅ and B̃∅. In the distributed

version of B̃∅ , interaction code is executed by managers, thus executing one interaction

does not block the others. In the distributed version of B∅, interaction code is executed

within interaction protocol components. This restricts parallelism since executing one

interaction blocks all other interactions handled by the same interaction protocol com-

ponent. Since the computation load (i.e., 10ms for load and 50ms for read) is placed in

the interaction code, it is fair to compare performance of B∅ and B̃∅ only for partition

P3, where in both cases each component handles at most one interaction. When using

the centralized conflict resolution protocol (CT), the deprioritized model does more

read interactions. However, with the token ring (TR) and dining philosophers (DP),

we can see that our transformation incurs a great overhead. This can be explained by

the number of concurrent processes: the execution of B̃∅ needs 20 more processes (i.e.,

the managers) than execution of B∅. For the setting P3/TR and P3/DP, the number

21



0
100
200
300
400
500
600
700
800
900

P1 P2

CT

P2

TR

P2

DP

P3

CT

P3

TR

P3

DP

N
u
m
b
er

o
f
r
e
a
d

in
te
ra
ct
io
n
s
d
u
ri
n
g
6
0
s

3-layer BIP settings

B∅

B̃∅

B̃π

Fig. 12 Performance of different implementations of the Jukebox model.

of processes is 70 for B̃∅ against 50 for B∅, thus we may have some performance limi-

tation due to the platform. Also, the additional tier made of the managers adds some

overhead.

Performance improvement. The distributed execution of B̃π outperforms execution

of B∅ except for partition P1 and partition P3 with the token ring conflict resolu-

tion protocol (TR). Note that there are more conflicts between schedule interactions

than between interactions of the original model because (1) priorities add conflicts be-

tween schedule interactions, and (2) two interactions that are weakly conflicting but

not strongly conflicting (as defined in [10]) from the original model will result in two

strongly conflicting schedule interactions. For the P3/TR setting, where distributed

execution of B∅ is the more efficient, this additional conflicts may explain the worse

performance of B̃π. The other factor is the number of processes, as explained above. In

other cases, the priorities that we added to enforce progress and speed up execution are

useful. In particular, for the settings P3/CT and P3/DP, twice more read interactions

are performed.

5.2 Distributed Dining Philosophers

Our second example is based on the dining philosophers problem. A fragment of the

model is presented in Figure 13. The model contains N philosopher components and

N fork components. Each philosopher Pi first grabs the left fork through interaction

grableft i, then it grabs the right fork through interaction grabright i. Whenever it has

the two forks, it can eat through interaction eat i.

Note that this model contains one deadlock state, that is reached from the initial

state when each philosopher grabs the fork to its left. One way to resolve this deadlock

is by adding the following priorities: grableft i π grabright i−1, for all i in {1, . . . , N}.

This set of priorities ensures that each philosopher can take the fork to its left only if

the philosopher on its left has not taken its left fork yet. This type of priorities can be

obtained automatically [15].

22



idle

grab

grabL

eating
grabR

eat

grabL grabR

eatPi

free

used

eat grab

eat

grab

Fi

free

used

eat grab

eat

grab

Fi+1

eatieati−1 eati+1

grablefti grabrightigrabrighti−1 grablefti+1

Fig. 13 A fragment of the dining philosopher example.

0

2000

4000

6000

8000

10000

12000

3 4 5 6 7N
u
m
b
er

o
f
in
te
ra
ct
io
n
s
d
u
ri
n
g
6
0
s

Number of philosophers

P1

P2/CT

P2/TR

P3/CT

P3/TR

Fig. 14 Total number of interactions executed for different distributed implementations of
the dining philosopher example.

Distributed execution of this model without priorities is not possible since it leads

to a deadlock. Hence, we used the deprioritized model to generate a distributed imple-

mentations for the model, for different settings of the 3-tier transformation. We used

the three following partitions for the schedule interactions:

– P1 contains all schedule interactions from the model.

– P2 contains one class for each philosopher. For philosopher Pi this class contains

the schedule interactions { ˜eati, ˜grablefti, ˜grabrighti}.

– P3 contains one class for each schedule interaction.

We propose the following experiments: for each model containing from 3 to 7

philosophers, we generate the corresponding distributed model. Then, for each of these

models, we compare the performance obtained with each of the partitions presented

above. For partitions P2 and P3, we used both centralized (CT) and token ring (TR)

conflict resolution protocols. The total number of interactions executed during 60s of

execution is presented in Figure 14.

First, increasing the number of philosophers increases the parallelism, and thus

increases the global number of interactions. Moreover, notice that more decentralized

partitions give better performance. Indeed, for each size, the worst performance is

obtained for partition P1 and the best performance is obtained for partition P3. For

23



partition P2, the centralized conflict resolution protocol gives better results than the

token ring protocol, because there are few requests and no need to receive them in

parallel. For partition P3, it is not clear which conflict resolution protocol gives better

results.

More decentralized implementations give rise to many components. In the most

decentralized case, for each interaction we have 3 components: 1 priority manager,

1 interaction protocol component and 1 conflict resolution protocol. However, we can

reduce the number of components bymerging this three components for each interaction

into a single one, as explained at the end of Section 3.3 and in [12]. As a more general

guideline, for each class of the partition, we might merge all managers of interactions

in this class with the corresponding interaction protocol component.

6 Related Work

In this section, we report on the work related to automated code generation for dis-

tributed systems from high-level models. To the best of our knowledge, this paper

presents the first work on automated implementation of distributed application, where

synchronization primitives are regulated by dynamic priority rules. We first discuss

solutions to the committee coordination problem in Subsection 6.1. Then, we present

frameworks for automatic generation of distributed code in Subsection 6.2.

6.1 Algorithms for Solving the Committee Coordination Problem

As mentioned in the introduction, resolving distributed conflicts in the context of our

framework leads us to solving the committee coordination problem [14], where a set

of professors organize themselves in different committees. Two committees that have

a professor in common cannot meet simultaneously. The original distributed solution

to the committee coordination problem assigns one manager to each interaction [14].

Conflicts between interactions are resolved by reducing the problem to the dining or

drinking philosophers problems [13], where each manager is mapped onto a philosopher.

Bagrodia [2] proposes an algorithm where message counts are used to solve synchroniza-

tion and exclusion is ensured by a circulating token. In a follow-up paper [3], Bagrodia

modifies the solution in [2] by using message counts to ensure synchronization and re-

ducing the conflict resolution problem to dining or drinking philosophers. Also, Perez

et al [25] and Parrow et al [24] propose another approach that essentially implements

the same idea using a lock-based synchronization mechanism.

In [20], Kumar proposes an algorithm that replaces the managers by tokens, one for

each interaction, traversing the processes. An interaction executes whenever the corre-

sponding token manages to traverse all involved processes. Another solution without

managers has been provided in [18] based on a randomized algorithm. The idea is that

each process randomly chooses an enabled interaction and sends its choice to all other

processes. If some process detects that all participants in an interaction have chosen

it, then the interaction is executed. Otherwise, this procedure gets restarted.

In [11], the authors propose snap-stabilizing committee coordination algorithms.

Snap-stabilization is a versatile technique allowing to design algorithms that efficiently

tolerate transient faults. The authors show that it is impossible to implement an al-

gorithm that respects both fairness and maximal concurrency amongst meetings or

24



professors. Consequently, they propose two snap-stabilizing algorithms that respect

either fairness or maximal concurrency.

6.2 Automated Generation of Distributed Code

Our previous work in [8–10] focuses on model-based implementation of distributed ap-

plication from BIP models without priorities. This paper complements the techniques

presented in [8–10], that is, our method is an independent transformation for deprior-

itizing BIP models. The output model can then be used to generate distributed code

that embodies the priorities while preserving the functional properties of the original

model. Priorities for component-based models can be synthesized from a high-level

specification using the methods in [15].

LOTOS [17] is a specification language based on process algebra, that encompasses

multiparty interactions. In [28], the authors describe a method of executing a LOTOS

specification in a distributed fashion. This implementation is obtained by constructing

a tree at runtime. The root is the main connector of the LOTOS specification and

its children are the subprocesses that are connected. A synchronization between two

processes is handled by their common ancestor. This approach is not suitable for BIP

where there is no ‘main’ interaction. Also, the idea of a parent to be responsible for en-

suring synchronization makes solutions more centralized than distributed with greater

communication overhead.

Another framework that offers automatic distributed code generation is described

in [27]. The input model consists of composition of I/O automata [21], from which a

Java implementation using MPI for communication is generated. The model, as well as

the implementation, can interact with the environment. However, connections between

I/O automata are less expressive than BIP interactions, as described in [7]. Indeed,

to express an n-ary rendezvous between n I/O automata, one would need to add an

automaton in charge of synchronization, which is not needed in BIP. Another difference

with our work is that the designer has to provide some function that resolves non-

determinism. Finally, the framework in [27] requires the designer to specify low-level

elements of a distributed system such as channels and schedulers.

Finally, [26] provides a distributed implementation method for the Reo frame-

work [1]. In this framework, components are black boxes with input and output ports

synchronized by data-flow connectors. A distributed implementation is obtained by

deploying connectors, according to a user-defined partition, on a set of generic engines,

implemented in Scala. At execution, a consensus algorithm between all the engines

chooses a subset of connectors to be executed, based on the set of currently enabled

ports. Unlike BIP interactions, data-flow connectors in Reo do not provide support

for guard conditions and arbitrary data transfer functions. Moreover, the consensus

algorithm used enforces a global agreement between all engines, whereas in the 3-layer

BIP decisions are taken independently by each engine, or by communication with the

Reservation Protocol.

7 Conclusion

In this paper, we proposed an automated method to derive correct distributed im-

plementation from high-level component-based models encompassing prioritized mul-

25



tiparty interactions. Our method consists of three steps: (1) one transformation to

deprioritize the initial model, which is the main contribution of this paper, (2) a trans-

formation from [8–10] that generates a distributed model from the deprioritized model

by resolving interaction conflicts, and (3) a final transformation from the distributed

model into C++ code. All steps preserve observational equivalence between the input

and output models. We illustrated our approach using non-trivial case studies and

presented encouraging experimental results.

The transformation from [8–10] is parameterized by a partition of the interactions

and a conflict resolution protocol. These parameters have a strong influence on the per-

formance of the obtained implementation since partitioning preconditions parallelism

between interactions and volume of communication. The target platform (number and

speed of processors, network characteristics, etc) is a crucial parameter for building

the partition. In this paper, we conducted our experiments on a multi-core distributed

platform, and experiments gave mixed results. Automatically computing a partition

while ensuring optimal performance for a given platform remains an open problem.

There exist several research directions for future work. First, more rigorous and

deeper case studies and experiments are needed to completely understand the over-

heads introduced by our transformations. Since deprioritization is an independent step

of our method and is isolated from conflict resolution (i.e., step two), one can study the

overhead of each step separately. Another direction is to devise a committee coordina-

tion algorithm for conflict resolution that takes priority issues into account. This allows

us to incorporate such an algorithm directly in our 3-tier model [10]. This approach can

potentially have less overhead than the one presented in this paper. Finally, one can

speed-up distributed execution of models with priorities by detecting disabled interac-

tions as early as possible. Such detection can benefit from knowledge-based methods

(e.g., [4]). Another interesting line of work is model-based development of distributed

applications that are subject to timing constraints.

References

1. F. Arbab. Reo: a channel-based coordination model for component composition. Mathe-
matical Structures in Computer Science, 14(3):329–366, 2004.

2. R. Bagrodia. A distributed algorithm to implement n-party rendevouz. In Foundations of
Software Technology and Theoretical Computer Science, Seventh Conference (FSTTCS),
pages 138–152, 1987.

3. R. Bagrodia. Process synchronization: Design and performance evaluation of distributed
algorithms. IEEE Transactions on Software Engineering (TSE), 15(9):1053–1065, 1989.

4. A. Basu, S. Bensalem, D. Peled, and J. Sifakis. Priority scheduling of distributed systems
based on model checking. In Computer Aided Verification (CAV), pages 79–93, 2009.

5. A. Basu, P. Bidinger, M. Bozga, and J. Sifakis. Distributed semantics and implementa-
tion for systems with interaction and priority. In Formal Techniques for Networked and
Distributed Systems (FORTE), pages 116–133, 2008.

6. A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time components in BIP.
In Software Engineering and Formal Methods (SEFM), pages 3–12, 2006.

7. S. Bliudze and J. Sifakis. A notion of glue expressiveness for component-based systems.
In Concurrency Theory (CONCUR), pages 508–522, 2008.

8. B. Bonakdarpour, M. Bozga, M. Jaber, J. Quilbeuf, and J. Sifakis. Automated conflict-
free distributed implementation of component-based models. In IEEE Symposium on
Industrial Embedded Systems (SIES), pages 108 – 117, 2010.

9. B. Bonakdarpour, M. Bozga, M. Jaber, J. Quilbeuf, and J. Sifakis. From high-level
component-based models to distributed implementations. In ACM International Con-
ference on Embedded Software (EMSOFT), pages 209–218, 2010.

26



10. B. Bonakdarpour, M. Bozga, M. Jaber, J. Quilbeuf, and J. Sifakis. A framework for au-
tomated distributed implementation of component-based models. Distributed Computing,
2012. To appear.

11. B. Bonakdarpour, S. Devismes, and F. Petit. Snap-stabilizing committee coordination.
In IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages
231–242, 2011.

12. M. Bozga, M. Jaber, and J. Sifakis. Source-to-source architecture transformation for
performance optimization in bip. Industrial Informatics, IEEE Transactions on, 6(4):708
–718, nov. 2010.

13. K. M. Chandy and J. Misra. The drinking philosophers problem. ACM Transactions on
Programming Languages and Systems (TOPLAS), 6(4):632–646, 1984.

14. K. M. Chandy and J. Misra. Parallel program design: a foundation. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1988.

15. C.-H. Cheng, S. Bensalem, Y.-F. Chen, R. Yan, B. Jobstmann, H. Ruess, C. Buckl, and
A. Knoll. Algorithms for synthesizing priorities in component-based systems. In Automated
Technology for Verification and Analysis (ATVA), pages 150–167, 2011.

16. G. Gössler and J. Sifakis. Composition for component-based modeling. Science of Com-
puter Programming, 55(1-3):161–183, 2005.

17. ISO/IEC. Information Processing Systems – Open Systems Interconnection: LOTOS, A
Formal Description Technique Based on the Temporal Ordering of Observational Behav-
ior, 1989.

18. Y.-J. Joung and S. A. Smolka. Strong interaction fairness via randomization. IEEE
Transactions on Parallel and Distributed Systems, 9(2):137–149, 1998.

19. M. Jurdzinski. Small progress measures for solving parity games. In Symposium on
Theoretical Aspects of Computer Science (STACS), pages 290–301, 2000.

20. D. Kumar. An implementation of n-party synchronization using tokens. In IEEE Inter-
national Conference on Distributed Computing Systems (ICDCS), pages 320–327, 1990.

21. N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, San Mateo, CA, 1996.
22. R. Milner. Communication and concurrency. Prentice Hall International (UK) Ltd.,

Hertfordshire, UK, 1995.
23. N. Mittal and P. K. Mohan. A priority-based distributed group mutual exclusion algorithm

when group access is non-uniform. Journal of Parallel Distributed Computing, 67(7):797–
815, 2007.

24. J. Parrow and P. Sjödin. Multiway synchronizaton verified with coupled simulation. In
International Conference on Concurrency Theory (CONCUR), pages 518–533, 1992.

25. J. A. Pérez, R. Corchuelo, and M. Toro. An order-based algorithm for implementing
multiparty synchronization. Concurrency and Computation: Practice and Experience,
16(12):1173–1206, 2004.

26. J. Proença. Synchronous Coordination of Distributed Components. PhD thesis, Faculteit
der Wiskunde en Natuurwetenschappen, May 2011.

27. J. A. Tauber, N. A. Lynch, and M. J. Tsai. Compiling IOA without global synchronization.
In Symposium on Network Computing and Applications (NCA), pages 121–130, 2004.

28. G. von Bochmann, Q. Gao, and C. Wu. On the distributed implementation of LOTOS.
In Formal Techniques for Networked and Distributed Systems (FORTE), pages 133–146,
1989.

27


