
Towards Reusing Formal Proofs for Verification of
Fault-Tolerance1

Borzoo Bonakdarpour, Sandeep S. Kulkarni

Department of Computer Science and Engineering,
Michigan State University,

East Lansing, MI 48824, USA
Email: {borzoo, sandeep}@cse.msu.edu

http://www.cse.msu.edu/˜{borzoo,sandeep}

Abstract. In this paper, we concentrate on mechanical verification of synthesis
algorithms that add multitolerance to fault-intolerant programs using the theorem
prover PVS. Multitolerance is desirable when a program is subject to different
classes of faults and for each class, a different level of fault-tolerance has to
be guaranteed. With this verification, we formally prove the correctness of the
synthesis algorithms, which in turn shows that that any program synthesized by
them is indeed correct-by-construction. We effectively reuse formal proofs of our
previous work on a fixpoint theory on finite sets and a fault-tolerance theory de-
veloped for the case where programs are subject to a single class of faults. We
believe manual reuse of proofs may suggest ways to automate them for verifica-
tion of similar types of synthesis algorithms.

Keywords: Mechanical verification, Theorem proving, PVS, Program transfor-
mation, Program synthesis, Fault-tolerance, Multitolerance.

1 Introduction
Formal verification is considered a necessity as a means to gain confidence on correct-
ness of systems. Gaining this confidence is more crucial when the system at hand is
required to satisfy a set of high assurance properties. In such systems (e.g., mission-
critical systems), fault-tolerance is a crucial part, in which a failure may lead the en-
tire system to a catastrophic outcome. Hence, one needs strong confidence on fault-
tolerance properties of a given system and, hence, formal verification of such systems
(e.g., using theorem proving techniques) is inevitable.

In the literature, the focus has mostly been on verification of concrete fault-tolerant
systems in two broad categories. The first category addresses formal verification of
fault-tolerant synchronous/asynchronous circuits and architectures (e.g., [1–3]). The
second category covers formal verification of a wide range of fault-tolerant proto-
cols. For instance, Owre et al [4] present a survey on formal verification of a fault-
tolerant digital-flight control systems. Mantel and Gärtner verify the correctness of a
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fault-tolerant broadcast protocol [5]. Qadeer and Shankar [6] mechanically verify the
self-stability property of Dijkstra’s mutual exclusion token ring algorithm [7]. Kulkarni,
Rushby, and Shankar [8] verify the same algorithm by exploiting the theory of detectors
and correctors [9].

In the aforementioned work, since the authors focus on verification of concrete sys-
tems, formal proofs of verification of one systems cannot be easily reused to verify
the correctness of other systems. More recently, in [10, 11], we verified the correctness
of the synthesis algorithms proposed in [12] that add fault-tolerance to fault-intolerant
programs using the theorem prover PVS. By this verification, not only we mechanically
prove the correctness of the algorithms, but also we show that any program synthesized
by these algorithms is indeed correct-by-construction. More importantly, since these
algorithms are the basis for their extensions to deal with occurrence of faults from dif-
ferent classes [13] and for synthesizing distributed [14] and real-time [15] programs,
it is expected that formal specification and verification of the synthesis algorithms pre-
sented in [10,11] are reusable in developing specification and verification of algorithms
in [13–15].

In this paper, we focus on the problem of verifying synthesis algorithms that add
multitolerance [13] to fault-intolerant programs using PVS 2. Towards this end, we
generalize the formal specification of our fault-tolerance theory developed in [10,11] so
that it takes the notion of different classes of faults into account. Moreover, we manu-
ally reuse the formal proofs developed for verification of the algorithms that add fault-
tolerance with respect to a single class of faults to prove the correctness of algorithms
in [13] that add multitolerance to programs that are subject to multiple classes of faults.
We believe that manual reuse of formal proofs suggests ways to develop automated
proofs for similar types of algorithms, especially those involve fixpoint calculations.

Since the core of synthesis algorithms for adding both fault-tolerance and multitol-
erance is fixpoint calculation, we effectively apply the fixpoint theory developed in [10].
This theory is developed for the case where domain and range of functions whose fix-
points are needed are finite sets. This specialized theory (which is reusable elsewhere)
has a special interpretation in fault-tolerant computing for calculating largest invariants
and smallest sets of states from where fault-tolerant requirements cannot be guaranteed.
Organization of the paper. We present formal definitions of programs, specifications,
faults, and fault-tolerance in Section 2. Then, we state the problem of mechanical verifi-
cation of synthesis of fault-tolerance in Section 3. In Section 4, we review our previous
work on a fixpoint theory on finite sets and a fault-tolerance theory in PVS. Then, in
Section 5, we present formal specification and verification of automated synthesis of
multitolerance.

2 Modeling a Fault-Tolerance Framework

In this section, we present formal definitions of programs, specifications, faults, and
fault-tolerance in PVS. These definitions are independent of platform and architecture.

2 The URL http://www.cse.msu.edu/˜borzoo/pvs contains the PVS specifications
and formal proofs.



2.1 Program
Since we do not consider concrete systems, in our framework, the notion of state is
abstract and, in PVS, modeled by an Uninterpreted Type. Likewise, a transition is
modeled as an ordered pair of states, which is also an uninterpreted type. Furthermore,
we assume that the number of states and transitions is finite.

A program p is a finite set of transitions in its state space. The state space of p,
Sp, is the set of all possible states of p, which is modeled as the fullset over the type of
states in PVS. The type Action denotes finite sets of transitions. Hence, p is defined as a
constant of type Action. A state predicate of p is a subset of Sp. In PVS, we model state
predicates by the type StatePred, which is sets of finite sets over states. The closure
of a state predicate S in program p is formally specified as follows: closed (S, p) =
∀s0, s1 | (s0, s1) ∈ p : (s0 ∈ S ⇒ s1 ∈ S). A sequence of states, 〈s0, s1, ...〉, is a
computation with respect to a set Z of transitions iff any pair of two consecutive states
is a transition in Z. We formalize this by a Dependent Type as follows:

Computation(Z) : TYPE =
{c : sequence[state] | (∀i | i ≥ 0 : (ci, ci+1) ∈ Z)}

where sequence[state] : N → state and Z is any finite set of type Action. Furthermore,
a computation prefix is formally specified as follows:

prefix (Z, j) : TYPE =
{c : sequence[state] | (∀i | i < j : (ci, ci+1) ∈ Z)}

Due to convenience, we deliberately model computation prefixes by infinite sequences
in which only a finite part is used. The projection of program p on state predicate S
consists of transitions of p that start in S and end in S:

p | S = {(s0, s1) | (s0, s1) ∈ p ∧ (s0, s1 ∈ S)}.

2.2 Specification
Following Alpern and Schneider [16], a specification consists of a safety specification
and a liveness specification. We let the the safety specification Σbt be a set of bad
transitions, which is formally specified by a constant of type Action. Given program p,
state predicate S, and specification Σbt, we say that p satisfies Σbt from S iff (1) S is
closed in p, and (2) no computation of p that starts from a state in S contains a transition
in Σbt. If this is not the case, we say that p violates Σbt. If p satisfies Σbt from S and
S 6={}, we say that S is an invariant of p. Since we do not deal with a specific program,
in PVS, we model an invariant by an arbitrary state predicate that is closed in p.

2.3 Faults and Fault-Tolerance
The faults that a program is subject to are systematically represented by a finite set of
transitions [9, 17], which is modeled by a constant of type Action. We model a compu-
tation of program p in presence of faults f as c : Computation(p ∪ f).
Also, we formally specify the fault-span of p from S as follows:

FaultSpan(T, S, p ∪ f) = ((S ⊆ T ) ∧ (closed (T, p ∪ f))).
Observe that for all computations of p that start at states where S is true, T is a boundary
in the state space up to which the state of p may be perturbed by the transitions in f .

We now define describe what we mean by different levels of fault-tolerance. Intu-
itively, a failsafe program, does not violate its safety specification in the presence of
faults. Formally, we say that p is failsafe f -tolerant to Σbt from S iff two conditions



hold: (1) p satisfies Σbt from S, and (2) there exists T such that T is a fault-span of p
from S, and no computation prefix of p ∪ f that starts in T has a transition in Σbt. A
nonmasking program may temporarily violate safety, but it must recover to the invariant
by taking a bounded number of transitions. Formally, we say p is nonmasking f -tolerant
to Σbt from S iff the following conditions hold: (1) p satisfies Σbt from S, and (2) every
computation of p ∪ f that starts from any state of the state space contains a state of S.
Intuitively, a masking program guarantees that if faults occur, the program continues
to satisfy its safety specification. Moreover, we are ensured that after the occurrence
of faults, the program eventually recovers to the invariant. Formally, we say that p is
masking f -tolerant to Σbt from S iff the following conditions hold: (1) p satisfies Σbt

from S, and (2) there exists T such that T is an f -span of p from S, no computation
prefix of p ∪ f that starts in T has a transition in Σbt, and every computation of p ∪ f
that starts from a state in T contains a state of S.

In [12], the liveness specification is modeled implicitly. That is, a failsafe fault-
tolerant program does not deadlock in the absence of faults. On the other hand, non-
masking and masking programs do not deadlock in both the absence and presence of
faults.

3 Problem Statement
Given are a program p with invariant S, a class of faults f , and safety specification Σbt

such that p satisfies Σbt from S. The goal is to find a program p′ with invariant S′ such
that p′ is f -tolerant to Σbt from S′. Observe that:

1. If S′ contains states that are not in S then, in the absence of faults, p′ may include
computations that start outside S. Since we require that p′ satisfies Σbt from S′, it
implies that p′ is using a new way to satisfy Σbt in the absence of faults.

2. If p′ | S′ contains a transition that is not in p | S ′ then p′ can use this transition in
order to satisfy Σbt in the absence of faults.

Thus, the synthesis problem is as follows.
Synthesis problem. Given p, S, f , and Σbt such that p satisfies Σbt from S. Identify
p′, S′, such that:

(C1) S
′

⊆ S

(C2) p
′

| S
′

⊆ p | S
′

(C3) p′ is f -tolerant to Σbt from S′. �

We say that an algorithm for the synthesis problem is sound iff for any given input,
its output, namely p′ and S′, satisfies the synthesis problem. Our goal is to mechanically
verify that the proposed algorithms in [13] are indeed sound.

4 Review of Previous Results
In this section, we recap our results (presented in [10, 11]) on mechanical verification
of synthesis algorithms proposed in [12] using PVS. More specifically, in Subsection
4.1, we review a theory for fixpoint calculations on finite sets. In subsections 4.2, 4.3,
and 4.4, we reiterate our results on verification of synthesis algorithms for addition of
failsafe, nonmasking, and masking fault-tolerance, respectively.



4.1 A Theory of Fixpoint Calculations
A fixpoint of a function f : X → X is any value x0 ∈ X such that f(x0) = x0. In
the context of finite sets, both domain and range of f are finite sets of finite sets. In this
section, the variables i and k range over natural numbers. The variable x is any finite
set of any uninterpreted type (e.g., states) and variable b is any member of such finite
set.
Largest fixpoint calculation. Let DecFunc be the type of functions g such that g :
{A : finiteset} → {B : finiteset | B ⊆ A}. In other words, g(x) ⊆ x, for all finite
sets x. Let Dec(i, x)(g) be a recursive function that removes the elements of the initial
set x returned by the function g of type DecFunc at every step:

Dec(i, x)(g) =

{

Dec(i − 1, x)(g) − g(Dec(i − 1, x)(g)) if i 6= 0;
x if i = 0

In this setting, we define the largest fixpoint as follows:

LgFix (x)(g) = {b | ∀k : b ∈ Dec(k, x)(g))}.

Theorem 4.1. g(LgFix (x)(g)) = ∅. ut
Theorem 4.2. LgFix (x)(g) = LgFix (LgFix (x)(g))(g). ut
Smallest fixpoint calculation. Let IncFunc be the type of functions r such that r :
{A : finiteset} → {B : finiteset | A ∩ B = ∅}. In other words, x ∩ r(x) = ∅, for all
finite sets x. Let Inc(i, x)(r) be a recursive function that adds elements returned by the
function r of type IncFunc to the initial set x at every step:

Inc(i, x)(r) =

{

Inc(i − 1, x)(r) ∪ r(Inc(i − 1, x)(r)) if i 6= 0;
x if i = 0

Similarly, we define the smallest fixpoint as follows:

SmFix(x)(r) = {b | ∃k : b ∈ Inc(k, x)(r)}.

Theorem 4.3. r(SmFix (x)(r)) = ∅. ut
Theorem 4.4. SmFix (x)(r) = SmFix(SmFix (x)(r))(r). ut

4.2 Specification and Verification of Synthesis of Failsafe Tolerance
The essence of adding failsafe tolerance is to remove (from invariant) the states from
where the safety specification may be violated via one or more fault transitions. This
removal is in fact a smallest fixpoint calculation. We, then, compute the invariant of
the failsafe program by removing the deadlock states which is in turn a largest fixpoint
calculation. In this section, the variables s, s0, s1 range over states. Let ms be the set of
states from where safety may be violated via one or more fault transitions. Formally,

ms : StatePred = SmFix(msInit)(RevReachStates), where
msInit : StatePred = {s0 | ∃ s1 : (s0, s1) ∈ f ∧ (s0, s1) ∈ Σbt}
RevReachStates(rs : StatePred) : StatePred =

{s0 | ∃ s1 : s1 ∈ rs ∧ (s0, s1) ∈ f ∧ s0 /∈ rs}.
Judgement 4.5. RevReachStates is of type IncFunc. ut



Let mt be the set of program transitions whose target states are in ms or transitions that
directly violate safety:

mt : Action = {(s0, s1) | (s1 ∈ ms ∨ (s0, s1) ∈ Σbt)}.
The set of deadlock states of state predicate ds with respect to the set Z of transitions
is defined as follows:

DeadlockStates(Z)(ds : StatePred) : StatePred =
{s0 | s0 ∈ ds : (∀s1 | s1 ∈ ds : (s0, s1) /∈ Z)}.

Judgement 4.6. DeadlockStates(Z) is of type DecFunc. ut
The invariant of a failsafe fault-tolerant program is the largest fixpoint of S − ms

after removing the deadlock states:
ConstructInvariant(X, Z) : StatePred = LgFix (X)(DeadlockStates(Z))

where X is a state predicate of type StatePred and Z is a set of transitions of type
Action. The formal definition of the invariant of a failsafe program is as follows:

S′ : StatePred = ConstructInvariant(S − ms, p − mt).
Finally, we define the set of transitions of a failsafe program by removing the transitions
that violate the closure of S ′:

p′ : Action = p − mt − {(s0, s1) | s0 ∈ S′ ∧ s1 /∈ S′}.
Theorem 4.7. S′ ⊆ S. ut
Theorem 4.8. p′|S′ ⊆ p|S′. ut
Theorem 4.9. S′ is closed in p′. Formally, closed (S ′, p′). ut
Theorem 4.10. All computations of p′ that start from a state in S ′ are infinite. Formally,

DeadlockStates(p′)(S′) = ∅. ut
Theorem 4.11. In the presence of faults, no computation prefix of a failsafe program
that starts in S′ violates safety. Formally,

∀j : (∀(c : prefix (p′ ∪ f, j) | c0 ∈ S′) : ∀k | k < j : (ck, ck+1) /∈ Σbt). ut

4.3 Specification and Verification of Synthesis of Nonmasking Tolerance
In order to synthesize a nonmasking program, all we need to do is adding recovery
transitions that start from outside the invariant and end in the invariant. Formally,

S′ : StatePred = S
p′(T : StatePred , p : Action) : Action =

(p | S) ∪ {(s0, s1) | s0 ∈ (T − S) ∧ s1 ∈ S}
p′ = p′(Sp, p).

We assume that the number of occurrences of faults in a computation is finite:
Axiom 4.12. ∀p : (∀c(p ∪ f) : (∃ n | n ≥ 0 : (∀j | j ≥ n : (cj , cj+1) ∈ p))). ut
Theorem 4.13. S ′ ⊆ S. ut
Theorem 4.14. p′|S′ ⊆ p|S′. ut
Theorem 4.15. S ′ is closed in p′. Formally, closed (S ′, p′). ut
Theorem 4.16. In the presence of faults, any computation of a nonmasking program
that starts from a state in the state space, eventually recovers to the invariant. Formally,

∀c(p′ ∪ f) : (∃ j | j > 0 : cj ∈ S′). ut

4.4 Specification and Verification of Synthesis of Masking Tolerance
The first estimate of a masking program is a failsafe program. Synthesis of a mask-
ing program consists of a loop that keeps recalculating the set of program transitions,
invariant, and fault-span of the program until it reaches a fixpoint.



Initialization. We define the initial invariant and fault-span as follows:
Sinit : StatePred = ConstructInvariant(S − ms, p − mt)
Tinit : StatePred = Sp − ms.

Theorem 4.17. Sinit ⊆ Tinit. ut
Theorem 4.18. Sinit ⊆ S. ut
The loop invariant. Let S2 (respectively, T2) be an intermediate invariant (respec-
tively, fault-span) defined as arbitrary state predicates. Let S1 and T1 be the recomputed
invariant and fault-span in the loop. We define S1 and T1 in terms of state predicates S2

and T2 in three steps:

1. We add recovery transitions that do not violate the safety specification as follows:
S2, T2 : StatePred

p1 : Action = (p | S2) ∪ {(s0, s1) | s0 ∈ (T2 − S2) ∧ s1 ∈ T2} − mt.
2. Then, we recompute the largest fault-span such that faults do not violate the closure

of T1 as follows:
T1 = ConstructFaultspan(TReach), where
ConstructFaultspan(X : StatePred) = LgFix (X)(TNClose)
TNClose(X : StatePred) : StatePred =

{s0 | ∃s1 : s0 ∈ X ∧ (s0, s1) ∈ f ∧ s1 /∈ X}
TReach : StatePred = {s | s ∈ T2 ∧ reachable(S2, T2, p1, s)} where
reachable(S2, T2, p1, s) : StatePred =

∃c(p1) : ((s ∈ T2) ∧ (s = c0) ∧ ∃j : cj ∈ S2).
3. Since S1 must be is a subset of T1, we recalculate the invariant as follows:

S1 : StatePred = ConstructInvariant(S2 ∩ T1)(p1).

Theorem 4.19. (S2 ⊆ S) ⇒ (S1 ⊆ S). ut
Theorem 4.20. S1 ⊆ T1. ut
Theorem 4.21. (p1 | S2 ⊆ p | S2) ⇒ (p1 | S1 ⊆ p | S1). ut
Theorem 4.22. DeadlockStates(p1)(S1) = ∅. ut
Loop termination. We formalize the termination condition of the loop in the verifica-
tion phase. More specifically, we prove that provided (S1 = S2) ∧ (T1 = T2) holds,
p1 is failsafe and provides recovery from every state in fault-span.
Theorem 4.23. (S1 = S2) ⇒ closed (S1, p1). ut
Theorem 4.24. In the presence of faults, no computation prefix of a masking tolerant
program violates safety:

((S1 = S2) ∧ (T1 = T2)) ⇒
∀j : (∀c : prefix(p1 ∪ f, j) | c0 ∈ T1 : ∀k | k < j : (ck, ck+1) /∈ Σbt). ut

Theorem 4.25. (T1 = T2) ⇒ closed (T1, p1 ∪ f). ut
Theorem 4.26. For all states s in the fault-span T1, there exists a computation of p1

that starts from s and reaches the invariant S1. Formally,
((S1 = S2) ∧ (T1 = T2)) ⇒ (∀s | s ∈ T1 : reachable(S1, T1, p1, s)). ut

5 Specification and Verification of Automatic Synthesis of
Multitolerance

In this section, first in Subsection 5.1, we introduce the concept of multitolerance. We
also revise the synthesis problem, as we need to take multiple classes of faults into ac-
count. In Subsection 5.2, we first present how we generalize the definitions presented



in Section 2 to make them appropriate for modeling multitolerance. Then, we present
formal specification and verification of nonmasking-masking multitolerance. Finally,
in Subsection 5.3, we present formal specification and verification of failsafe-masking
multitolerance. We note that since addition of failsafe-nonmasking multitolerance is
shown to be NP-complete [13], there does not exist a corresponding synthesis algo-
rithm.

5.1 The Notion of Multitolerance
Let us consider the case where faults from multiple classes, say f1 and f2, occur in a
given program computation. In [13], Kulkarni and Ebnenasir propose the requirement
that the fault-tolerance provided for the class where f1 and f2 occur simultaneously
should be equal to the minimum level of fault-tolerance provided when either f1 or f2

occurs. This is illustrated in the following table reiterated from [13].

Level of Fault-Tolerance Failsafe Nonmasking Masking
Failsafe Failsafe No-Tolerance Failsafe

Nonmasking No-Tolerance Nonmasking Nonmasking
Masking failsafe Nonmasking Masking

In order to simplify modeling of different classes of faults, we consider the union
of all the classes of faults that failsafe (respectively, nonmasking and masking) is to be
provided, denoted by ffailsafe (respectively, fnonmasking and fmasking ). We say that a
program p is multitolerant with respect to ffailsafe , fnonmasking , and fmasking to Σbt

from S iff the following conditions hold:

1. p satisfies Σbt from S in the absence of faults.
2. p is masking fmasking -tolerant to Σbt from S.
3. p is failsafe (ffailsafe ∪ fmasking)-tolerant to Σbt from S.
4. p is nonmasking (fnonmasking ∪ fmasking)-tolerant to Σbt from S.

Thus, we revise the synthesis problem as follows:
Revised synthesis problem. Given p, S, Σbt, ffailsafe , fnonmasking , and fmasking such
that p satisfies Σbt from S. Identify p′ and S′ such that:

(C1) S
′

⊆ S

(C2) p
′

| S
′

⊆ p | S
′

(C3) p′ is multitolerant wrt. ffailsafe , fnonmasking , and fmasking to Σbt from S′.

In this section, our goal is to mechanically verify the soundness of the proposed algo-
rithms in [13] for adding failsafe-masking and nonmasking-masking multitolerance.

5.2 Specification and Verification of Synthesis of Nonmasking-Masking
Multitolerance

In order to formally specify the proposed algorithms in [13], we first define ffailsafe ,
fnonmasking , and fmasking of type of Action. Then, we define fnonmasking masking and
ffailsafe masking as follows:

fnonmasking masking : Action = fmasking ∪ fnonmasking

ffailsafe masking : Action = fmasking ∪ ffailsafe



Since our formal framework in Section 2 is developed for the case where we deal
only with one class of faults, we need to generalize some of the definitions so that they
are able to express the notion of multitolerance as well. In particular, we parameterize
all the definitions that are somehow related to set of faults. For instance, we redefine
msInit , RevReachableSet , and ms as follows:

msInit(anyFault : Action) : StatePred =
{s0 | ∃ s1 : (s0, s1) ∈ anyFault ∧ (s0, s1) ∈ Σbt}

RevReachStates(anyFault : Action)(rs : StatePred) : StatePred =
{s0 | ∃ s1 : s1 ∈ rs ∧ (s0, s1) ∈ anyFault ∧ s0 /∈ rs}

ms(anyFault : Action) : StatePred =
SmFix (msInit(anyFault))(RevReachStates)

All other definitions given in sections 2 and 4 should also be redefined in the same
fashion so that they are not restricted to only one class of faults.

The core of the algorithm for adding nonmasking-masking fault-tolerance is as fol-
lows. It first adds masking fault-tolerance to p with respect to the set fmasking of faults.
Then, it adds one-step recovery to p with respect to the set fnonmasking of faults. We
formally specify the algorithm by reusing the theories presented in Section 4. Note that
add masking (respectively, add nonmasking and add failsafe) is the name of the
imported PVS theory for the corresponding algorithm that adds masking (respectively,
nonmasking and failsafe) fault-tolerance.

S′ : StatePred = add masking.S1(fmasking)

Tmasking : StatePred = add nonmasking.S ′(T1(fmasking))

p1 : Action = add masking.p1(fmasking)

Now, we model the part that adds nonmasking fault-tolerance.
p′ : Action = add nonmasking.p′(Tmasking , p1(fmasking))

T ′ = Tmasking

Notice that since a nonmasking program is not required to satisfy safety, we can simply
add one-step recovery regardless of type of faults. Hence, to simplify the verification
of the algorithm, we formalize the multitolerant program by p1(fmasking) and not by
p1(fnonmasking masking).

In order to verify the soundness of the algorithm, we prove that the three constraints
of the revised synthesis problem hold. Indeed, all the theorems stated in Section 4 for
adding masking fault-tolerance hold here with respect to the set fmasking of faults.
Also, we assume that the termination condition of the algorithm for adding masking is
satisfied. While we do not present the detailed formal proofs, we present the intuitive
idea of proofs so that it shows the similarities between the proofs developed in [10] and
the ones for adding multitolerance. In fact, after skolemization or instantiation of the
class of faults, most of the proofs are similar to the corresponding theorems presented
in Section 4.
Theorem 5.1. The first condition of the synthesis problem holds. Formally,

(S2 ⊆ S) ⇒ (S′ ⊆ S).
Proof. The proof is similar to the proof of Theorem 4.20 in the sense that it involves
the same sequence of PVS commands. In particular, in both theorems, we show that the
largest fixpoint of S, namely S ′ is a subset of S. Recall that we defined S2 in Subsection
4.4 for specifying the loop invariant. Indeed, this proof suggests an automated strategy



to prove similar theorems that involve set inclusions along with fixpoint calculations.
ut

Theorem 5.2. The second condition of the synthesis problem holds. Formally,
(p′ | S2 ⊆ p | S2) ⇒ (p′ | S′ ⊆ p | S′).

Proof. The GRIND strategy discharges the theorem. ut

Theorem 5.3. In the presence of fnonmasking faults, any computation of nonmasking-
masking multitolerant program that starts from a state in the state space, eventually
recovers to the invariant. Formally,

∀c(p′ ∪ fnonmasking) : (∃ j | j > 0 : cj ∈ S′).
Proof. This is the only theorem that we prove to show that p′ is nonmasking with
respect to fnonmasking . We reuse the proof of Theorem 4.16. In particular, we use in-
duction to show that after occurrence of faults (cf. Axiom 4.12) the program eventually
reaches a state in the invariant. The sequence of PVS prover commands suggests an au-
tomated proof for similar theorems with the following steps: (1) the basic step is using
induction on the index of states in the computation (2) applying Axiom 4.12, and (3)
instantiating n with the induction step variable. ut

Theorem 5.4. S′ ⊆ T ′.
proof. This theorem is another instance where we need to show that one largest fixpoint
is a subset of another largest fixpoint. The proof involves induction on the steps of
recursive functions that compute the fixpoints. ut

Theorem 5.5. (T ′ = T2) ⇒ closed(T ′, p′ ∪ fmasking).
Theorem 5.6. The program is closed in the invariant. Formally,

(S′ = S2) ⇒ closed(S′, p′).
Proof. The GRIND strategy discharges both theorems 5.5 and 5.6. In fact, it is easy
to observe that since the proof only involves a sequence of definition expansions and
propositional simplifications, we can intelligently take advantage of such cases to de-
velop automated proofs.
Theorem 5.7. For all states s in the fault-span, there exists a computation of p′ that
starts from s and reaches the invariant S ′. Formally,

((S′ = S2) ∧ (T ′ = T2)) ⇒ ∀s | s ∈ T ′ : reachable(S′, T ′, p′, s)
Proof. The sequence of prover commands to prove this theorem is the same as that
of Theorem 4.26. The essence of proof is using induction to show that if there exists a
state s1 ∈ T ′ from where S′ is reachable in k steps then S ′ is also reachable from s0

with k + 1 steps where (s0, s1) is a program transition in p′. In fact, using induction to
show reachability of a state predicate from another state predicate could be the idea to
develop automated proofs for similar types of theorems. ut

Theorem 5.8. All computations of nonmasking-masking program p′ that start from a
state in S′ are infinite. Formally,

DeadlockStates(p′)(S′) = ∅
Proof. Similar to the proof of Theorem 4.10, we prove this theorem by simply apply-
ing Theorem 4.1 and instantiating g with DeadlockStates(p′) and x with S′. Indeed,
developing an automated proof only involves identifying the type of fixpoint calculation
and then applying the obvious instantiations. ut

Theorem 5.9. In the presence of fmasking , no computation prefix of a nonmasking-
masking program violates safety. Formally,



((S′ = S2) ∧ (T ′ = T2)) ⇒
∀j : (∀c : prefix(p1 ∪ fmasking , j) | c0 ∈ T ′ : ∀k | k < j : (ck, ck+1) /∈ Σbt)

Proof. Similar to the proof of Theorem 4.11, after applying induction, we show that
no state in ms is reachable even in the presence of fmasking . Once we show that no
state in ms is reachable, we can easily show that no transition in Σbt is also reachable.
This proof suggests the following idea for developing an automated proof for similar
types of theorems. In order to show that a computation never violates safety, first we use
induction. Then we apply a lemma to inductively prove that no computation step reaches
the set of unsafe states (which is a smallest fixpoint). The proof splits in two cases for
set of program transitions and set of fault transitions. Both cases can be discharged
using the GRIND strategy. ut

5.3 Specification and Verification of Failsafe-Masking Multitolerance
The essence of the algorithm for adding failsafe-masking fault-tolerance is as follows.
First, it identifies the fault-span, such that no computation of the multitolerant program
p′ violates safety in the presence of ffailsafe masking . More specifically, the algorithm
identifies the states from where safety may be violated when faults in ffailsafe masking

occur:
ms : StatePred = ms(ffailsafe masking)
mt : Action = mt(ffailsafe masking)

Then, the algorithm ensures that the multitolerant program can recover to its invariant
S′, when the state of the program is perturbed by fmasking :

Tmasking : StatePred = T1(fmasking)
p1 : Action = add masking .p1(fmasking )
S′ : StatePred = add masking .S1(fmasking)

Finally, if faults ffailsafe masking perturb the state of the program to a state s, where s /∈
Tmasking then the algorithm ensures that the safety is maintained. Towards this end, we
add failsafe to p1 with respect to the set ffailsafe masking of faults from (Tmasking−ms):

T ′ : StatePred = ConstructInvariant(Tmasking − ms, p1 − mt)
p′ : Action = p1 − mt−

{(s0, s1) | ((s0, s1) ∈ (p1 − mt)) ∧ (s0,∈ T ′) ∧ (s1 /∈ T ′)}.
Theorem 5.10. (S2 ⊆ S) ⇒ (S′ ⊆ S) ut
Theorem 5.11. (p′ | S2 ⊆ p | S2) ⇒ (p′ | S′ ⊆ p | S′) ut
Theorem 5.12. (S ′ = S2) ⇒ closed (S′, p′).
Theorem 5.13. In the absence of faults, all computations of p′ that start from a state
in S′ are infinite. Formally, DeadlockStates(p′)(S′) = ∅.
Theorem 5.14. For any state s in the fault-span there exists a computation of p1 that
starts from s and reaches the invariant, S1. Formally,

((S′ = S2) ∧ (Tmasking = T2)) ⇒
∀s | s ∈ T ′ : reachable(S′, T ′, p′, s).

Proof. The proof of theorems 5.10 to 5.14 is the same as the proof of corresponding
theorems for adding nonmasking-masking. ut
Theorem 5.15. In the presence of faults, no computation prefix of a failsafe-masking
multitolerant program that starts in S ′ violates safety. Formally,

(T2 ∩ ms = ∅) ⇒ ∀j : (∀c : prefix (p′ ∪ ffailsafe masking , j) :
(c0 ∈ S′) ⇒ ∀k | k < j : (ck, ck+1) /∈ Σbt).



Proof. The proof idea is quite similar to that of Theorem 5.9. However, since safety
may be violated by two classes of faults, namely, ffailsafe and fmasking , the proof tree
requires two case analyses for each class of faults. However, both cases can be dis-
charged similarly using the proof of Theorem 5.9. ut
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