
Automated Program Maintenance for Automotive CPS∗

Sandeep S. Kulkarni Borzoo Bonakdarpour

March 10, 2008

1 Introduction
With advances in automotive, computing and
networking technology, it would be possible
to provide several services –some envisioned
already such as driverless car and some not
yet anticipated. Such automotive cyber phys-
ical system would integrate computing, com-
munication, and provide capability to monitor
(e.g., speed, road condition, etc.) and mod-
ify entities in the physical world. One of the
important issues in such systems is mainte-
nance. The focus of this paper is on provid-

ing assurance in software maintenance due to
changes in requirements, changes or faults in
hardware, bugs, and so on. We identify dif-
ferent requirements and technical challenges
in these automotive CPS and identify possi-
ble milestones that can be reached in the near
future.

2 Requirements of Auto-
motive Cyber-Physical
Systems

Promising applications. One example
for software maintenance comes from the re-
cent recall of Ford Mustang due to a software
problem in side front-airbags. In particular,
this recall was caused due to internal testing
that demonstrated a possibility of injury to
a small passenger. Currently, such software
maintenance is very expensive for the manu-
facturer and cumbersome to customers, as it
requires the vehicle to be serviced at a dealer.

∗Department of Computer Science and Engineer-
ing, Michigan State University, East Lansing MI
48824, {sandeep, borzoo}@cse.msu.edu, Phone 1 517
355 2387

The future research in automotive CPS has
the potential to reduce the cost of such main-
tenance for both parties. With appropriate se-
curity mechanisms in place and the advances
in vehicular networking, the required mainte-
nance code could be delivered to the customer
more easily, e.g., at a gas station.

Another instance where software mainte-
nance may be necessary also includes poten-
tial hardware failures. We expect that in some
cases such hardware could be monitored and
replacement would occur only if the hard-
ware degrades. However, for such an ap-
proach to work, it would be necessary to mod-
ify the software to include additional monitor-
ing. Without such software, it may be neces-
sary to change hardware in many automobiles
although in most cases, that hardware would
not fail in the lifetime of the vehicle. While
software maintenance in the above two cases is
for safety reasons, we believe that such main-
tenance would also be desirable for improved
functionality. As an illustration, consider the
example of a driverless car that is assisted by
sensors on the side of the road. As new sensors
are developed, it may be necessary to modify
the software in the car to utilize them.

In addition to the above scenarios, if soft-
ware maintenance for automotive CPS is
made easy and cost-efficient then it opens up
several new possibilities (including possible
revenue streams) where existing hardware is
re-tasked based on user requirements. Exam-
ples of such scenarios include improvements
to auxiliary systems (e.g., entertainment sys-
tems) or upgrading a smart cruise control to
a smarter cruise control. These scenarios dif-
fer from the previous ones in that they are
optional and potentially value-added and not

1



safety-critical.

Providing assurance during software
maintenance. One requirement in such
software maintenance is assurance that it
would not violate existing properties of the
system including safety properties. Especially
when the maintenance is done due to iden-
tification of new faults, this requirement is
especially important in that the maintenance
may permit additional behaviors when faults
occur. We have to guarantee that these ad-
ditional behaviors meet safety properties and
user expectations, some of which can be spec-
ified in terms timing constraints, status of
different signals on the dashboard etc. An-
other requirement is security, i.e., ensuring
that maintenance changes come from an au-
thorized source and are performed at a time
when it would not affect safety, e.g., when the
engine is turned off. This position paper does
not discuss the security aspect in detail but
rather focuses on the assurance aspect only.

To provide assurance about the revised soft-
ware, it is desirable to use automated tech-
niques to ensure that the transformed pro-
gram is correct by construction. Such auto-
mated methods for revising existing programs
are desirable for engineers during design, de-
velopment, and maintenance phases of the
software life cycle. In an (automotive) CPS,
since this would obviate the need for engi-
neers/programmers to get manually involved
in complex structures of the CPS and it would
guarantee that the revised code would pre-
serve existing properties in addition to the
new desired properties.

Current state of the art. Based on our
current experience, we believe that such au-
tomated program maintenance for automotive
CPS is feasible in near future. In particular, in
our current work, we have shown the feasibil-
ity of automated program revision for adding
different properties (timing constraints, fault-
tolerance, safety properties, etc.) to existing
programs. Examples of programs (models)
that we have been revised include those for an
altitude switch controller, a cruise controller,

agreement in the context of malicious entities,
as well as several problems in the context of
distributed computing. In fact, our experi-
ence suggests that there is a significant po-
tential to find missing specifications by using
our approach for program revision. In par-
ticular, our approach provides several possible
paths for providing recovery in the presence of
faults. However, it will not add recovery paths
where some safety or timing requirement is vi-
olated. Thus, if a safety or timing requirement
is missing then it would provide that as an op-
tion for adding recovery. Thus, the designer
can identify missing specifications by focus-
ing on undesirable recovery paths that may
be added. Since it is well-known that such
missing specifications can be very expensive
in later stages of the software cycle, we expect
that identifying them at an early stage can be
highly beneficial especially in automotive CPS
where they could cause extensive damage.

3 Challenges to inter-
face/manipulate the
Physical world

Research challenges. While the require-
ments identified in the previous section would
enhance automotive CPS, there are several
technical challenges that have to be met to
realize them. In the context of automation,
we need to model several constraints in the
real world so that the revised program can be
run efficiently in the physical world. In partic-
ular, it would be necessary to model the inter-
action of the software system with the under-
lying hardware, external environment and/or
operating system. Specifically, consider a con-
troller that manages a heating element inside
an automotive CPS that requires that after
the driver changes the temperate setting, the
temperature inside a car is corrected within
a given time. In such a system, the external
factors such as the hardware and environment
will determine the maximum rate of increase
in temperature. This information needs to be
used during automated revision so that the al-

2



gorithms chosen for changing the airflow cor-
respond to the constraints of the underlying
hardware. Likewise, if it is possible to per-
form several tasks concurrently in the given
system, that information needs to be modeled
during program revision.

Another technical challenge is feature-
interaction. In particular, it is anticipated
that some program revisions may conflict with
others. Especially when program revision
is performed for value-added reasons (rather
than safety reasons), users may control the
features they want to include in their system.
Therefore, it is necessary to identify method-
ology that will allow to track conflicts between
different revisions so that users can utilize only
those that are desirable. The use of auto-
mated program revisions can assist in iden-
tifying interaction between such features; in
particular, if it turns out that automated re-
vision is possible for feature f1 and feature f2,
but it is not possible to automatically revise to
have both features then it suggests that there
is a conflict between f1 and f2.

Another technical challenge is that of com-
plexity. Automated program revision is an ex-
pensive operation in terms of time and space
complexity; we need to identify constraints
under which the design of these systems is
efficient and constraints that make the com-
plexity high. This would allow one to identify
those areas where automated program revi-
sion is likely to have the most impact.

Yet another challenge in CPS systems for
such program revision is the need for multi-
tolerance where the system tolerates multi-
ple classes of faults and potentially provides
differential level of services and assurance in
their presence. While such multitolerant sys-
tems have been designed manually in many
contexts, the use of automated techniques in
them is still an open question.

4 Milestones

To realize the potential of the automotive
CPS, we would need to combine techniques

from model-based design, model verifica-
tion/model checking and model revision. In
particular, model based design would simplify
the initial design of the CPS, model verifi-
cation would provide assurance about it and
model revision would allow one to revise the
model to meet new properties that are added
at a latter stage. We believe that model based
design and verification would play a signifi-
cant role in next five years allowing designers
to hide the complexities of the CPS. In about
5-10 years, we expect that it would be pos-
sible successfully revise models and generate
code from them that can be deployed.

Biography

Sandeep Kulkarni received his B.Tech. in
Computer Science and Engineering from In-
dian Institute of Technology, Mumbai, India
in 1993. He received his MS and Ph.D. de-
grees in Computer and Information Science
from Ohio State University, Columbus, Ohio,
USA in 1994 and 1999 respectively. He has
been working at Michigan State University,
East Lansing, US A since August 1999, where
he is currently an associate professor. He is a
member of the Software Engineering and Net-
work Systems (SENS) Laboratory. He is a
recipient of the NSF CAREER award. His
research interests include fault-tolerance, dis-
tributed systems, group communication, se-
curity, self-stabilization, compositional design
and automated synthesis.

Borzoo Bonakdarpour received his B.Sc. in
Computer Engineering from the University of
Esfahan, Iran, in 1999. He received his MS
in Computer Science and Engineering from
Michigan State University in 2004. He is cur-
rently a Ph.D. candidate of Computer Science
and Engineering at Michigan State University
where he is a member of Software Engineer-
ing and Network Systems (SENS) Laboratory.
His research interests include automated syn-
thesis, revision, and verification of distributed
and real-time systems.

3


