
Noname manuscript No.
(will be inserted by the editor)

Synthesizing Bounded-Time 2-Phase Recovery

Borzoo Bonakdarpour · Sandeep S. Kulkarni

Abstract We focus on synthesis techniques for transforming existing fault-intolerant

real-time programs into fault-tolerant programs that provide phased recovery. A fault-

tolerant program is one that satisfies its safety and liveness specifications as well as

timing constraints in the presence of faults. We argue that in many commonly con-

sidered programs (especially in mission-critical systems), when faults occur, simple

recovery to the program’s normal behavior is necessary, but not sufficient. For such

programs, it is necessary that recovery is accomplished in a sequence of phases, each

ensuring that the program satisfies certain properties. In the simplest case, in the first

phase the program recovers to an acceptable behavior within some time θ, and, in

the second phase, it recovers to ideal behavior within time δ. In this article, we in-

troduce four different types of bounded-time 2-phase recovery, namely ordered-strict,

strict, relaxed, and graceful, based on how a real-time fault-tolerant program reaches

the acceptable and ideal behaviors in the presence of faults. We rigorously analyze the

complexity of automated synthesis of each type: we either show that the problem is

hard in some class of complexity or we present a sound and complete synthesis al-

gorithm. We argue that such complexity analysis is essential to deal with the highly

complex decision procedures of program synthesis.

Keywords: Fault-tolerance, Real-time, Bounded-time recovery, Phased re-

covery, Program synthesis, Program transformation.

A preliminary version of this manuscript appeared in International Conference on Formal
Methods (FM’08 [13] and FM’09 [16]).

B. Bonakdarpour
School of Computer Science, University of Waterloo, 200 University Avenue West, N2L 3G1,
Waterloo, Ontario, Canada
E-mail: borzoo@cs.uwaterloo.ca

S. S. Kulkarni
3115 Engineering Building, Department of Computer Science and Engineering, Michigan State
University, East Lansing, MI 48824, USA
E-mail: sandeep@cse.msu.edu

2

1 Introduction

Achieving correctness is perhaps the most important reason to apply formal meth-

ods in design and development of computing systems. Such correctness turns out to

be a fundamental element in gaining assurance about reliability and robustness of

safety-/mission-critical embedded systems. These systems are often real-time due to

their controlling duties and integrated with physical processes in hostile environments.

Thus, time-predictability and fault-tolerance are two essential properties of programs

that operate in such systems. Nevertheless, reasoning about the correctness of these

properties has always been a challenge, as they have conflicting natures for the following

reasons:

– To guarantee fault-tolerance, one has to deal with the occurrence of unpredictable

faults and delays, so that the program does not violate its safety and eventually

recovers to its legitimate states from where its subsequent behavior is ideal (i.e.,

one that occurs in the absence of faults).

– Meeting real-time constraints requires a program to act in a deterministic and

predictable fashion.

One way to deal with this challenge is to design automated synthesis algorithms that

build fault-tolerant real-time programs that are correct-by-construction. Algorithmic

synthesis of programs in the presence of an adversary has mostly been addressed in the

context of timed controller synthesis (e.g., [18,22,6,7]) and game theory (e.g., [20,23]).

In controller synthesis (respectively, game theory), program and fault transitions can

be modeled as controllable and uncontrollable actions (respectively, in terms of two

players) and the objective is to constrain the actions of a plant (respectively, a player)

at each state through synthesizing a controller (respectively, a wining strategy). The

synthesized constraints ensure that the entire system always meets its safety and/or

reachability properties. However, the notion of fault-tolerance requires other features

that are not typically addressed in controller synthesis and game theory. Bounded-time

recovery, where a program returns to its normal behavior when its state is perturbed by

the occurrence of faults, is one such feature. In this context, a fault-intolerant program

normally lacks this feature and a recovery mechanism must be added to the program,

so that it reacts to faults properly.

In many commonly considered systems, achieving recovery within a certain time-

bound to the ideal behavior in the presence of faults is necessary, but not sufficient and

sometimes not feasible. Our idea to deal with this problem is to ensure that the program

recovers quickly to an acceptable behavior and eventually recovers to its ideal behavior.

An acceptable behavior is one that the system operates in a degraded fashion where

the system cannot exhibit its full functionality for a bounded amount of time. Such a

constraint ensures that the system first goes to a state in which a set of preconditions

for final recovery (e.g., via a system reboot or rollback) is fulfilled. To better motivate

this idea, we present the following example.

1.1 Motivating Example

Consider a one-lane turn-based bridge where cars can travel in only one direction at

any time. The bridge is controlled by two traffic signals, say sig0 and sig1, at the two

ends of the bridge. The signals work as follows. Each signal changes phase from green

3

to yellow and then to red, based on a set of timing constraints. Moreover, if one signal is

red, it will turn green some time after the other signal turns red. Thus, at any time, the

values of sig0 and sig1 show in which direction cars are travelling. The specification

of this system can be easily characterized by a set SPEC bt of bad transitions that

reach states where both signals are not red at the same time. In order to address

the correctness of the system, we identify a system invariant : a set S of states from

where the system behaves correctly. In fact, S characterizes the ideal behavior of the

system. In case of the traffic signals system, one system invariant is the set of states

from where the system always reaches states where at least one signal is red and they

change phases in time. As long as the system’s state is in S, nothing catastrophic will

happen. However, this is not the case when the system is subject to a set of faults.

Let us consider a scenario where the state of the systems is perturbed by occurrence

of a fault that causes the system to reach a state, say s, in ¬S. Although reaching s

may not necessarily violate the system specification, subsequent signal operations can

potentially result in execution of a transition in SPEC bt. For example, when sig0 is

green and sig1 is red, if the responsible timer for changing sig1 from red to green gets

reset due to a circuit problem, sig1 may turn green within some time while sig0 is

also green. Thus, our system is fault-intolerant, as it violates its specification in the

presence of faults.

In order to transform this system into a fault-tolerant one, it is desirable to syn-

thesize a version of the original system, in which even in the presence of faults, the

system (1) never executes a transition in SPEC bt, and (2) always meets the following

bounded-time recovery specification denoted by SPEC br: When the system state is

in ¬S, it must reach a state in S within a bounded amount of time. Although such

a recovery mechanism is necessary in a fault-tolerant real-time system, it may not be

feasible or in some cases sufficient. In particular, one may require a 2-phase recovery

mechanism where the system must initially reach a special set of acceptable states, say

Q, within some time θ, and subsequently recovers to S within δ time units. In our

example, one possibility for Q, say Q1, could be the set of states where all signals

remain red for a long enough time (e.g., in order to ensure that nothing disastrous

happens). Another possibility for Q, say Q2, could include the set of all normal states

of the signal and additional states where the signal remains red for a long enough time.

One of the main results in the paper is that for predicates such as Q1 —where it is

expected that the system will reach a state in Q1 and subsequently leave Q1 to reach

a legitimate state— the complexity of adding 2-phase recovery is high (NP-complete).

By contrast, for predicates such as Q2 —where the legitimate states are a subset of Q2

and it is expected that the revised program never goes from a state in Q2 to a state in

¬Q2— the complexity of adding 2-phase recovery is low (polynomial-time).

1.2 Instances of 2-phase Recovery in Practice

The application of 2-phased recovery can also be found in design and/or verification of

several protocols. For example, in [28], Gouda and Multari have utilized multi-phase

recovery for design of stabilizing window protocol (similar to that used in TCP) as

well as stabilizing handshake protocol. Some of the differences between our work and

their work are as follows: They provide an instance of protocol that provide multi-

phase recovery whereas we focus on automated synthesis of protocols that provide

2-phase recovery. Specifically, the stabilizing window protocol in [28] is an instance of

4

3-phase recovery whereas the stabilizing handshake is an instance of 4-phase recovery.

Another difference is that they focus on untimed versions of multi-phased recovery

(i.e., δ = θ = ∞). By contrast, our algorithms are applicable even if timing constraints

are finite. Moreover, they assume that the intermediate predicates (e.g., predicate Q in

above discussion) are closed. Based on the results in Section 6.2, we observe that such

problems can be solved in polynomial-time. Also, our algorithm can be easily extended

for multi-phased recovery. (Remark 5 in Section 6.1 provides more details about this

claim.).

In [4], Arora presents a tree construction algorithm in a distributed system (e.g., for

mutual exclusion) that provides 2-phase recovery. Specifically, in this protocol, in the

first phase, it is guaranteed that after faults stop occurring, there will be no unrooted

trees. This ensures that every node will have a path to the root of the tree it is involved

in. The second phase is responsible for ensuring that a unique tree is formed. Thus, [4]

is an instance of 2-phase recovery where the intermediate predicate corresponds to ‘no

unrooted trees’. The timing bounds for such recovery are identified in terms of steps

instead of time. Other protocols that provide multi-phase recovery include [25,27,21].

Finally, consider a system that controls the pressure of a boiler. The boiler should

normally operate within 10-20 atmospheres. It can also operate safely in 20-40 atmo-

spheres, but only for a short time. Faults can suddenly change the pressure to over

40 atmospheres. Recovery should be carried out, so that the boiler does not expe-

rience sudden reduction of pressure. To this end, two valves are provided to reduce

the pressure. One valve responds quickly, but reduces the pressure slowly. A second

valve reacts slowly, but reduces the pressure quickly. Thus, the first phase of recovery

involves opening the first valve to reduce the pressure as soon as possible even with

a small volume. When the system reaches an “acceptable” level of 20-40, during the

second phase, the second valve gets open to further reduce the pressure to 10-20. In

fact, any recovery mechanism that has to be carried out in multiple steps where each

step ensures a set of constraints can be modeled by our notion of 2-phase recovery.

1.3 Contributions

We model a recovery constraint by a bounded-time response property. This property is

of the form:

(A 7→≤α B),

i.e., starting from any state in A, the program reaches a state in B within α time units.

Following the above example, we identify three recovery constraints: (1) (¬S 7→≤δ S),

(2) (¬S 7→≤θ Q), and (3) (Q 7→≤θ S). We distinguish different variants for such 2-phase

recovery problem based on a combination of these constraints:

– The scenario discussed above can be expressed in terms of constraints of the form:

(¬S 7→≤θ Q) ∧ (Q 7→≤δ S),

i.e., starting from any state in ¬S, the program first recovers to Q (acceptable

behavior) in time θ and subsequently from each state in Q, it recovers to states in

S (ideal behavior) in time δ. We denote this variation as strict 2-phase recovery.

– Another variation is:

5

(¬S 7→≤θ (Q− S)) ∧ (Q 7→≤δ S),

i.e., the program first recovers to (Q − S) in time θ and subsequently from each

state in Q, it recovers to S in time δ. We denote this variation as ordered-strict

2-phase recovery. One motivation for such a requirement is that we first record

the occurrence of the fault before ideal behavior can resume. Thus, the program

behavior while recording the fault (e.g., notifying the user) is strictly different from

its ideal behavior.

– Third possible variation is:

(¬S 7→≤θ Q) ∧ (¬S 7→≤δ S),

i.e., the program recovers to Q (acceptable behavior) in time θ and it recovers to

states in S (ideal behavior) in time δ. We denote this variation as relaxed 2-phase

recovery. One motivation for such a requirement is to provide a tradeoff for the

designer. In particular, if one can obtain a quick recovery to Q, then one can utilize

the remaining time budget in recovering to S. Observe that such tradeoff is not

possible in strict 2-phase recovery.

– Fourth possible variation is

(Q 7→≤δ S) ∧ (¬S 7→≤θ S),

i.e., if the program is perturbed to Q, then it recovers to S in time δ and if the

program is perturbed to any state, then it recovers to a state in S in time θ.

We denote this variation as graceful 2-phase recovery. One motivation for such

requirements is a scenario where (1) faults that perturb the program to Q only are

more common and, hence, a quick recovery (small δ) is desirable in restoring the

ideal behavior, and (2) faults that perturb the program to ¬Q are rare and, hence,

slow recovery (large θ) is permissible.

We analyze the complexity of synthesizing these four variations of 2-phase recovery.

Although synthesis algorithms are generally known to be intractable, it has been shown

that their complexity can be overcome through rigorous complexity analysis of specific

classes of properties. Such analysis identifies bottlenecks of synthesis which leads to

devising intelligent heuristics. Previously, we have shown that by efficient implemen-

tation of these heuristics, we can effectively synthesize large fault-tolerant distributed

programs [12,15], where the corresponding synthesis problem is NP-complete in the

size of state space of the intolerant program.

The main contributions of the paper are as follows (Appendix A presents a summary

of results in a graphical fashion):

– We formally define and classify different types of bounded-time 2-phase recovery

in the context of fault-tolerant real-time programs.

– Regarding synthesizing strict and relaxed 2-phase recovery, we show that

– The general problems are NP-complete.

– The problems remain NP-complete even if S ⊆ Q and δ = ∞.

– The problems remain NP-complete even if θ = ∞ and δ = ∞.

– The problems can be solved in polynomial-time if S ⊆ Q and θ = ∞.

– the problem can be solved in polynomial-time, if it is required that Q must be

closed, i.e., the synthesized program cannot begin in a state in Q and reach a

state outside Q.

6

– Regarding synthesizing ordered-strict 2-phase recovery, we show that the problem

remains NP-complete even if S ⊆ Q, θ = ∞, and δ = ∞.

– Regarding synthesizing graceful 2-phase recovery, we show that the problem can

always be solved in polynomial-time.

We emphasize that all complexity results are in the size of the input program’s region

graph [2] (i.e., a time-abstract finite bisimulation of a real-time program). In the worst

case, the size of the region graph can be exponential in the size of the timed automata.

A sketch for the algorithm for constructing the region graph (from [2]) is presented in

Section 6.

Organization of the paper. The rest of the paper is organized as follows. Section 2

is dedicated to define real-time programs and specifications. In Section 3, we formally

define the different variations of bounded-time 2-phase recovery. In Section 4, we define

the problem statement for synthesizing 2-phase recovery. In Section 5, we show that in

general, the complexity of synthesis of strict, ordered-strict, and relaxed 2-phase recov-

ery is NP-complete. We also consider a set of subproblems that remain NP-complete

and those that can be solved in polynomial-time. Our more sophisticated sufficient

conditions on synthesizing strict and relaxed 2-phase recovery in polynomial-time are

presented in Section 6. Graceful 2-phase recovery is studied in Section 7. Related work

is discussed in Section 8. Finally, we make concluding remarks and discuss future work

in Section 9. Appendix A presents a summary of results in a graphical fashion.

2 Preliminaries

In our framework, real-time programs are specified in terms of their state space and

their transitions [3,2]. The definition of specification is adapted from Alpern and

Schneider [1] and Henzinger [29].

2.1 Real-Time Program

Let V = {v1, v2 · · · vn}, n ≥ 1, be a finite set of discrete variables and X =

{x1, x2 · · ·xm}, m ≥ 1, be a finite set of clock variables. Each discrete variable vi,

1 ≤ i ≤ n, is associated with a finite domain Di of values. Each clock variable xj ,

1 ≤ j ≤ m, ranges over nonnegative real numbers (denoted R≥0). A location is a

function that maps discrete variables to a value from their respective domain. A clock

valuation is a function ν : X → R≥0 that assigns a real value to each clock variable. A

clock constraint over the set X of clock variables is a Boolean combination of formulas

of the form x � c or x− y � c, where x, y ∈ X, c ∈ Z≥0, and � is either < or ≤. We

denote the set of all clock constraints over X by Φ(X).

For τ ∈ R≥0, we write ν + τ to denote ν(x) + τ for every clock variable x in X.

Also, for λ ⊆ X, ν[λ := 0] denotes the clock valuation that assigns 0 to each x ∈ λ

and agrees with ν over the rest of the clock variables in X. A state (denoted σ) is a

pair (s, ν), where s is a location and ν is a clock valuation for X. Let u be a (discrete

or clock) variable and σ be a state. We denote the value of u in state σ by u(σ). A

transition is an ordered pair (σ0, σ1), where σ0 and σ1 are two states. Transitions are

classified into two types:

7

– Immediate transitions: (s0, ν) → (s1, ν[λ := 0]), where s0 and s1 are two locations,

ν is a clock valuation, and λ is a set of clock variables, where λ ⊆ X.

– Delay transitions: (s, ν) → (s, ν + δ), where s is a location, ν is a clock valuation,

and δ ∈ R≥0 is a time duration. Note that a delay transition only advances time

and does not change the location. We denote a delay transition of duration δ from

state σ by (σ, δ).

Thus, if ψ is a set of transitions, we let ψs and ψd denote the set of immediate and

delay transitions in ψ, respectively.

Definition 1 (real-time program) A real-time program P is a tuple 〈SP , ψP 〉,

where SP is the state space (i.e., the set of all possible states), and ψP is a set of

transitions such that ψP ⊆ SP × SP .

Definition 2 (state predicate) Let P = 〈SP , ψP 〉 be a real-time program. A state

predicate S of program P is any subset of SP , such that if ϕ is a constraint involving

clock variables in X, where S ⇒ ϕ, then ϕ ∈ Φ(X), i.e., clock variables are only

compared with nonnegative integers.

By closure of a state predicate S in a set ψP of transitions, we mean that (1) if an

immediate transition originates in S, then it must terminate in S, and (2) if a delay

transition with duration δ originates in S, then it must remain in S continuously, i.e.,

intermediate states where the delay is in interval (0, δ] are all in S.

Definition 3 (closure) A state predicate S is closed in program P = 〈SP , ψP 〉 (or

briefly ψP) iff

(∀(σ0, σ1) ∈ ψs
P : ((σ0 ∈ S) ⇒ (σ1 ∈ S))) ∧

(∀(σ, δ) ∈ ψd
P : ((σ ∈ S) ⇒ ∀ǫ | ((ǫ ∈ R≥0) ∧ (ǫ ≤ δ)) : σ + ǫ ∈ S)).

2.1.1 Example

We use a one-lane bridge traffic controller program to describe the concepts and al-

gorithms in this paper. To concisely write the transitions of a program, we use timed

guarded commands. A timed guarded command (also called timed action) is of the form

L :: g
λ
−→ st , where L is a label, g is a state predicate, st is a statement that describes

how the discrete variables are updated, and λ is a set of clock variables that are reset

by execution of L. Thus, L denotes the set of transitions {(s0, ν) → (s1, ν[λ := 0]) | g is

true in state (s0, ν), and s1 is obtained by changing s0 as prescribed by st}. A guarded

wait command (also called delay action) is of the form L :: g −→ wait, where g identi-

fies the set of states from where delay transitions with arbitrary durations are allowed

to be taken as long as g continuously remains true.

The one-lane bridge traffic controller program (denoted T C) has two discrete vari-

ables sig0 and sig1 with domain {G, Y,R}. Moreover, for each signal i ∈ {0, 1}, T C

has three clock variables xi, yi, and zi acting as timers to change signal phase. When a

signal turns green, it turns yellow within 1 and 10 time units. Subsequently, the signal

may turn red between 1 and 2 time units after it turns yellow. Finally, when the signal

is red, it may turn green within 1 time unit after the other signal becomes red. Both

signals operate identically. The traffic controller program is as follows for i ∈ {0, 1}:

8

T C1i :: (sigi = G) ∧ (1 ≤ xi ≤ 10)
{yi}
−−−→ (sigi := Y);

[]

T C2i :: (sigi = Y) ∧ (1 ≤ yi ≤ 2)
{zi}
−−−→ (sigi := R);

[]

T C3i :: (sigi = R) ∧ (zj ≤ 1)
{xi}
−−−→ (sigi := G);

[]

T C4i :: ((sigi = G) ∧ (xi ≤ 10)) ∨

((sigi = Y) ∧ (yi ≤ 2)) ∨

((sigi = R) ∧ (zj ≤ 1)) −−−→ wait;

where j = (i+ 1) mod 2 and the operator [] denotes non-deterministic choice of exe-

cution. Notice that the guard of T C3i depends on z timer of signal j. For simplicity, we

assume that once a traffic light turns green, all cars from the opposite direction have

already left the bridge.

2.2 Specification

Definition 4 (computation) A computation of P = 〈SP , ψP 〉 (or briefly ψP) is a

finite or infinite timed state sequence of the form:

σ = (σ0, τ0) → (σ1, τ1) → · · ·

iff the following conditions are satisfied: (1) ∀j ∈ Z≥0 : (σj , σj+1) ∈ ψP , (2) if σ

reaches a terminating state σf where there does not exist a state σ such that (σf , σ) ∈

ψs
P , then we let σ stutter at σf , but advance time indefinitely, and (3) the sequence

τ0, τ1, · · · (called the global time), where τi ∈ R≥0 for all i ∈ Z≥0, satisfies the following

constraints:

1. (monotonicity) for all i ∈ Z≥0, τi ≤ τi+1,

2. (divergence) if σ is infinite, for all t ∈ R≥0, there exists j ∈ Z≥0 such that τj ≥ t,

and

3. (consistency) for all i ∈ Z≥0, (1) if (σi, σi+1) is a delay transition (σi, δ) in ψd
P ,

then τi+1 − τi = δ, and (2) if (σi, σi+1) is an immediate transition in ψs
P , then

τi = τi+1.

The consistency constraint requires that all clock variables advance with the same

rate in conformance to a global clock. We distinguish between a terminating computa-

tion and a deadlocked finite computation. Precisely, when a computation σ terminates

in state σf , we include the delay transitions (σf , δ) in ψd
P for all δ ∈ R≥0, i.e., σ can

be extended to an infinite computation by advancing time arbitrarily. On the other

hand, if there exists a state σd, such that there is no outgoing (delay or immediate)

transition from σd, then σd is a deadlock state.

Let P = 〈SP , ψP 〉 be a program. A specification (or property), denoted SPEC , for

P is a set of infinite computations of the form (σ0, τ0) → (σ1, τ1) → · · · , where σi ∈ SP
for all i ∈ Z≥0. Following Henzinger [29], we require that all computations in SPEC

satisfy time-monotonicity and divergence. We now define what it means for a program

to satisfy a specification.

9

Definition 5 (satisfies) Let P = 〈SP , ψP 〉 be a program, S be a state predicate,

and SPEC be a specification for P. We write P |=S SPEC and say that P satisfies

SPEC from S iff (1) S is closed in ψP , and (2) every computation of P that starts

from S is in SPEC .

Definition 6 (invariant) Let P = 〈SP , ψP 〉 be a program, S be a state predicate,

and SPEC be a specification for P. If P |=S SPEC and S 6= {}, we say that S is an

invariant of P for SPEC .

Whenever the specification is clear from the context, we will omit it; thus, “S is

an invariant of P” abbreviates “S is an invariant of P for SPEC ”. Note that Defini-

tion 5 introduces the notion of satisfaction with respect to infinite computations. In

case of finite computations, we characterize them by determining whether they can be

extended to an infinite computation in the specification.

Definition 7 (maintains) We say that program P maintains SPEC from S iff (1)

S is closed in ψP , and (2) for all computation prefixes α of P that start in S, there

exists a computation suffix β such that αβ ∈ SPEC . We say that P violates SPEC

from S iff it is not the case that P maintains SPEC from S.

We note that if P satisfies SPEC from S, then P maintains SPEC from S as well,

but the reverse direction does not always hold. We, in particular, introduce the notion of

maintains for computations that a (fault-intolerant) program cannot produce, but the

computation can be extended to one that is in SPEC by adding recovery computation

suffixes, i.e., α may be a computation prefix that leaves S, but β brings the program

back to S (see Section 3 for details).

In order to express time-related behaviors of real-time programs (e.g., deadlines and

recovery time), we focus on a standard property typically used in real-time computing

known as the bounded response property. A bounded response property, denoted P 7→≤δ

Q, where P and Q are two state predicates and δ ∈ Z≥0, is the set of all computations

(σ0, τ0) → (σ1, τ1) → · · · in which, for all i ≥ 0, if σi ∈ P , then there exists j, j ≥ i,

such that (1) σj ∈ Q, and (2) τj − τi ≤ δ, i.e., it is always the case that a state in P is

followed by a state in Q within δ time units.

The specifications considered in this paper are an intersection of a safety specifica-

tion and a liveness specification [1,29]. In this paper, we consider a special case where

safety specification is characterized by a set of bad immediate transitions and a set of

bounded response properties.

Definition 8 (safety specification) Let SPEC be a specification. The safety spec-

ification of SPEC is the union of the sets SPEC
bt

and SPEC
br

defined as follows:

1. (timing-independent safety) Let SPEC bt be a set of immediate bad transitions.

We denote the specification whose computations have no transition in SPEC bt by

SPEC
bt
.

2. (timing constraints) We denote SPEC
br

by the conjunction
∧m

i=0
(Pi 7→≤δi Qi),

for state predicates Pi and Qi, and, response times δi.

Throughout the paper, SPEC
br

is meant to prescribe how a program should carry out

bounded-time phased recovery to its normal behavior after the occurrence of faults.

We formally define the notion of recovery in Section 3.

10

Definition 9 (liveness specification) A liveness specification of SPEC is a set of

computations that meets the following condition: for each finite computation α, there

exists a computation β such that αβ ∈ SPEC .

Remark 1 In our synthesis problem in Section 4, we begin with an initial program that

satisfies its specification (including the liveness specification). We will show that our

synthesis techniques preserve the liveness specification. Hence, the liveness specification

need not be specified explicitly.

2.3 Example (cont’d)

Continuing our traffic controller example, the set SPEC btT C
of immediate bad transi-

tions include transitions where no signal is red in the target states.

SPEC btT C
= {(σ0, σ1) | (sig0(σ1) 6= R) ∧ (sig1(σ1) 6= R)}.

Invariant ST C. One invariant for the program T C is the following state predicate:

ST C = ∀i ∈ {0, 1} : [(sigi = G) ⇒ ((sigj = R) ∧ (xi ≤ 10) ∧ (zi > 1))] ∧

[(sigi = Y) ⇒ ((sigj = R) ∧ (yi ≤ 2) ∧ (zi > 1))] ∧

[((sigi = R) ∧ (sigj = R))

⇒ ((zi ≤ 1) ⊕ (zj ≤ 1))],

where j = (i+1) mod 2 and ⊕ denotes the exclusive or operator. It is straightforward

to see that T C satisfies SPEC
btT C

from ST C .

3 Fault Model and Fault-Tolerance

Our fault model and the notion of fault-tolerance is adapted from the work by Arora

and Gouda [5] extended to the context real-time systems in [11].

3.1 Fault Model

The faults that a program is subject to are systematically represented by transitions.

A class of faults f for program P = 〈SP , ψP 〉 is a subset of immediate and delay tran-

sitions of the set SP × SP . We use ψP []f to denote the transitions obtained by taking

the union of the transitions in ψP and the transitions in f . We emphasize that such

representation is possible for different types of faults (e.g., stuck-at, crash, fail-stop,

timing, performance, Byzantine, message loss, etc.), nature of the faults (permanent,

transient, or intermittent), or the ability of the program to observe the effects of the

faults.

Definition 10 (fault-span) We say that a state predicate T is an f -span (read as

fault-span) of P = 〈SP , ψP 〉 from S iff the following conditions are satisfied: (1) S ⊆ T ,

and (2) T is closed in ψP []f .

Observe that for all computations of P = 〈SP , ψP 〉 that start from states where S

is true, T is a boundary in the state space of P up to which (but not beyond which) the

state of P may be perturbed by the occurrence of the transitions in f . Subsequently,

as we defined the computations of P, one can define computations of program P in the

presence of faults f by simply substituting ψP with ψP []f in Definition 4.

11

ordered-strict strict relaxed graceful

Q1 Q− S Q Q S

Q2 Q Q ¬S Q

Table 1 The four types of 2-phase recovery.

3.1.1 Example (cont’d)

T C is subject to clock reset faults due to circuit malfunctions that reset z0 and/or z1.

These actions are represented by the following guarded commands.

F0 :: ST C
{z0}
−−−→ skip;

F1 :: ST C
{z1}
−−−→ skip;

It is straightforward to see that in the presence of F0 and F1, T C may violate SPEC
btT C

.

For instance, if F1 occurs when T C is in a state of ST C where (sig0 = sig1 = R)∧(z0 ≤

1) ∧ (z1 > 1), in the resulting state, we have (sig0 = sig1 = R) ∧ (z0 ≤ 1) ∧ (z1 = 0).

From this state, immediate execution of timed actions T C30 and then T C31 results in

a state where (sig0 = sig1 = G), which is clearly a violation of the timing independent

safety specification.

3.2 Phased Recovery and Fault-Tolerance

Now, we define the different types of 2-phase recovery properties discussed in Section

1.

Definition 11 (2-phase recovery) Let P = 〈SP , ψP 〉 be a real-time program with

invariant S, Q be an arbitrary intermediate recovery predicate, f be a set of faults, and

SPEC be a specification (as defined in Definitions 8 and 9). We say that P provides

(ordered-strict, strict, relaxed or graceful) 2-phase recovery from S and Q with recovery

times δ, θ ∈ Z≥0, respectively, iff 〈SP , ψP []f〉 maintains SPEC
br

≡ (¬S 7→≤θ Q1) ∧

(Q2 7→≤δ S) from S, where, depending upon the type of the desired 2-phase recovery,

Q1 and Q2 are instantiated as shown in Table 1. We call θ and δ intermediate recovery

time and recovery time, respectively.

We are now ready to define what it means for a program to be fault-tolerant. Intu-

itively, a fault-tolerant program satisfies its safety, liveness, and timing constraints in

both absence and presence of faults. In other words, the program masks the occurrence

of faults in the sense that all program requirements are persistently met in the absence

and presence of faults1.

Definition 12 (fault-tolerance) Let P = 〈SP , ψP 〉 be a real-time program with

invariant S, f be a set of faults, and SPEC be a specification as defined in Definitions

1 In [11], we introduced different levels of fault-tolerance for real-time programs. Our notion
of fault-tolerance in this paper is equivalent to the hard-masking level of fault-tolerance as
defined in [11]. Hard-masking is strongest level of fault-tolerance and weaker levels are possible
by omitting the requirement of satisfying safety, liveness, timing constraints, or a combination
of them in the presence of faults.

12

8 and 9. We say that P is f-tolerant to SPEC from S, iff (1) P |=S SPEC , (2) there

exists T such that T is an f -span of P from S and 〈SP , ψP []f〉 maintains SPEC from

T , and (3) 〈SP , ψP []f〉 satisfies T 7→≤∞ S from T .

Notation. Whenever the specification SPEC and the invariant S are clear from the

context, we omit them; thus, “f -tolerant” abbreviates “f -tolerant to SPEC from S”.

3.2.1 Example (cont’d)

When faults F0 or F1 (defined in Subsection 3.1) occur, the program T C has to ensure

that nothing catastrophic happens and also recover to its normal behavior. Thus, we

would like the fault-tolerant version of T C to reach a state where both signals remain

red for a long enough time or where regular operation is resumed. In particular, we let

the (for example) strict 2-phase recovery specification of T C be the following:

SPEC
brT C

≡ (¬ST C 7→≤3 QT C) ∧ (QT C 7→≤7 ST C),

where QT C = ∀i ∈ {0, 1} : (sigi = R) ∧ (zi > 1). The response times in SPEC
brT C

are just two arbitrary numbers to express the duration of the two phases of recovery.

4 Problem Statement

Given are a fault-intolerant real-time program P = 〈SP , ψP 〉, its invariant S, a set f

of faults, and a specification SPEC such that P |=S SPEC . Our goal is to synthesize

a real-time program P ′ = 〈SP′ , ψP′〉 with invariant S′, such that P ′ is f -tolerant to

SPEC from S′. We require that our synthesis methods obtain P ′ from P by adding

fault-tolerance to P without introducing new behaviors in the absence of faults. To

this end, we first define the notion of projection. Projection of a set ψP of transitions

on state predicate S consists of immediate transitions of ψs
P that start in S and end

in S, and delay transitions of ψd
P that start and remain in S continuously.

Definition 13 (projection) Projection of a set ψ of transitions on a state predicate

S (denoted ψ|S) is the following set of transitions:

ψ|S = {(σ0, σ1) ∈ ψs | σ0, σ1 ∈ S} ∪

{(σ, δ) ∈ ψd | σ ∈ S ∧ (∀ǫ | ((ǫ ∈ R≥0) ∧ (ǫ ≤ δ)) : σ + ǫ ∈ S)}.

Observe that in the absence of faults, if S′ contains states that are not in S then P ′

may include computations that start outside S. Hence, we require that S′ ⊆ S. More-

over, if ψ
′

P |S′ contains a transition that is not in ψP |S′ then in the absence of faults,

P ′ can exhibit computations that do not correspond to computations of P. Therefore,

we require that ψP′ |S′ ⊆ ψP |S′. Finally, we require that the given fault-intolerant pro-

gram has built-in clock variable for each bounded response property involved in 2-phase

recovery specification SPEC
br
. This assumption is needed by synthesis algorithms to

measure the time elapsed since respective state predicates has become true.

Assumption 1 Let P = 〈SP , ψP 〉 be a real-time program and let (A 7→≤α B),

α 6= ∞ be a recovery property. If P satisfies (A 7→≤α B) or if the recovery property

(A 7→≤α B) is to be added to P by a synthesis algorithm, we assume that P has a

clock variable that gets reset whenever (A ∧ (¬B)) becomes true.

13

Remark 2 If P is to be revised to add several properties of the form (A1 7→≤α1
B1),

(A2 7→≤α2
B2), ..., then the clock variable that gets reset for these properties may be

(but is not required to be) the same. Also, the variable that gets reset for (A 7→≤α B)

could be reset in other scenarios. However, it must get reset when the program state

is changed from a state in ¬((A ∧ (¬B))) to a state in (A ∧ (¬B)). Note that these

transitions essentially ‘start’ the clock on the corresponding leads-to property. If the

timing constraints are ∞ then such a clock variable is not needed since we do not need

to compute precise delays. The reason for this assumption is the algorithm in [10] to

compute delays assumes the existence of such a clock variable.

Problem Statement 1 Given a program P = 〈SP , ψP 〉, invariant S, specification

SPEC , and set f of faults such that P |=S SPEC and satisfies Assumption 1, identify

P ′ = 〈SP′ , ψP′〉 and S′ such that:

(C1) S′ ⊆ S,

(C2) ψP′ | S′ ⊆ ψP |S′, and

(C3) P ′ is f -tolerant to SPEC from S′.

The above problem statement can be instantiated for all four types of 2-phase re-

covery. Notice that conditions C1 and C2 in Problem Statement 1 precisely express

the notion of behavior restriction in the sense of language inclusion used in controller

synthesis and game theory. Moreover, constraint C3 implicitly implies that the synthe-

sized program is not allowed to exhibit new finite computations, which is known as the

non-blocking condition. It is easy to observe that unlike controller synthesis problems,

our notion of maintains (cf. Definition 7) embedded in condition C3 allows the output

program to exhibit recovery computations that input program does not have.

5 Complexity Analysis for Ordered-Strict, Strict and Relaxed 2-Phase Recovery

In this section, first, in Theorem 1, we show that, in general, the problem of synthesizing

fault-tolerant real-time programs that provide relaxed 2-phase recovery is NP-complete

in the size of locations of the given fault-intolerant real-time program. Subsequently, in

Corollary 1, we utilize this result to show that the problem remains NP-complete even

if S ⊆ Q and δ = ∞. Then, in Theorem 2, we show that the problem of synthesizing

fault-tolerant programs that provide strict 2-phase recovery is NP-complete even if

S ⊆ Q and δ = ∞. Afterwards, in Theorems 3 and 4, we show that the problem

of synthesizing fault-tolerant real-time programs that provide strict or relaxed 2-phase

recovery can be solved in polynomial time if S ⊆ Q and θ = ∞. In Theorem 5, we

show that the problem remains NP-complete even if θ = ∞ and δ = ∞. This implies

that the problem of synthesizing programs that provide ordered-strict 2-phase recovery

is NP-complete even if S ⊆ Q, θ = ∞ and δ = ∞ (cf. Theorem 6).

To show our first result relating the complexity of relaxed 2-phase recovery, we de-

scribe an instance of this problem, next. We also describe the simplified 2-path problem

that we use to demonstrate NP-completeness of relaxed 2-phase recovery.

Instance. A real-time program P = 〈SP , ψP 〉 with invariant S, a set of faults

f , and a specification SPEC , such that P |=S SPEC , where SPEC
br

≡ (¬S 7→≤θ

Q) ∧ (¬S 7→≤δ S) for state predicate Q and δ, θ ∈ Z≥0.

14

The decision problem (R2P). Does there exist an f -tolerant program P ′ =

〈SP′ , ψP′〉 with invariant S′ such that P ′ and S′ meet the constraints of Problem

Statement 1 when instantiated with relaxed 2-phase recovery?

We now show that the R2P problem is NP-complete by reducing the 2-path problem

[24] to R2P.

The simplified 2-path problem (2PP). Given are a digraph G = 〈V,A〉, where

V is a set of vertices and A is a set of arcs, and three distinct vertices v1, v2, v3 ∈ V .

Decide whether G has a simple (v1, v3)-path that also contains vertex v2 [8].

Theorem 1 The problem of transforming a fault-intolerant real-time program into a

fault-tolerant program that provides relaxed 2-phased recovery is NP-complete in the

size of locations of the fault-intolerant program.

Proof Since proving membership to NP is trivial, we only show that the problem is

NP-hard.

Mapping. Given an instance of the 2PP problem (i.e., G = 〈V,A〉, v1, v2, and v3),

we first present a polynomial-time mapping from the 2PP instance to an instance of

the R2P problem (i.e., P = 〈SP , ψP 〉, S, f , and SPEC) as follows (see also Figure 1):

– (clock variables) X = {x}.

– (locations) locP = {sv | v ∈ V } ∪ {sl}.

– (state space) SP = {(s, ν)|s ∈ locP ∧ ν(x) ≥ 0}.

– (program transitions) ψP =

{(su, x = 1) → (sv, x := 0) | (u, v) ∈ A ∧ u 6= v3} ∪

{(sv3 , x = |A|+ 1) → (sl, x := 0)} ∪

{(sl, x = 1) → (sl, x := 0)}.

– (invariant) S = {(sl, ν) | ν(x) ≤ 1}.

– (fault transitions) f = {(sl, x ≥ 0) → (sv1 , x := 0)}.

– (safety specification) SPEC bt = SP × SP − (ψP ∪ f) and

SPEC
br

≡ (¬S 7→≤θ Q) ∧ (¬S 7→≤δ S),

where Q = {(sv2 , ν1), (sl, ν2) | ν1(x), ν2(x) ≤ 1}, δ = ∞, and θ = |A|.

An intuitive description of the above mapping is as follows. First, we include one

clock variable x in P. (Observe that the role of variable x in above transitions satisfies

Assumption 1.) The locations of P consists of all vertices in V and an additional vertex

sl. The state space of the program is obtained by considering all possible values in R≥0

for x at all locations. The program invariant S merely includes states where the location

is sl. The set of program transitions consists of:

1. all arcs in A except arcs that originate at v3,

2. a transition from sv3 to sl, and

3. a self-loop at sl.

Inclusion of the self-loop guarantees that all program computations are infinite. Ex-

clusion of arcs that originate from sl ensures the closure of S. Furthermore, the delay

on the transitions that correspond to the arcs of the original graph is 1. And, the de-

lay on the transition from sv3 to sl is |A| + 1. Hence, to meet the timing constraint

(¬S 7→≤θ Q), the program must reach sv2 and not sl. Finally, we let SPEC bt be the

15

f

fault-span

invariant state

S)-state

Q-state

program transition

fault transition

recovery path

sv3sv2sv1 sl
x=|A|+1

x:=0
x:=0

x=1

x:=0

? ?

Fig. 1 Mapping the 2-path problem to synthesizing relaxed 2-phase recovery.

set of all transitions except those identified above. Thus, the program cannot use other

(new) transitions to satisfy the recovery constraints, as they would violate timing in-

dependent safety.

Reduction. Given the above mapping, we now show that 2PP has a solution iff the

answer to the R2P problem is affirmative:

– (⇒) Let the answer to 2PP be a simple path Π that originates at v1, ends at

v3, and contains v2. We claim that in the structure shown in Figure 1, the set of

program transitions ψP′ obtained by taking only the transitions corresponding to

the arcs along Π, plus the transition (sv3 , x = |A|+ 1) → (sl, x := 0), and the self-

loop at sl satisfies the constraints of Problem Statement 1 when instantiated with

relaxed 2-phase recovery. We prove our claim as follows. Notice that (1) S′ = S, (2)

ψP′ |S′ ⊆ ψP |S′, and (3) P ′ is fault-tolerant to SPEC from S′. The latter holds

because:

(i) In the absence of faults, by starting from the invariant S′, all computations of

ψP′ are infinite.

(ii) In the presence of faults, P ′ |=S′ SPEC
br
, since P ′ |=S′ SPEC

bt
, and, Π is a

simple path that reaches Q and S in the desired timing constraints.

– (⇐) Let the answer to the R2P problem be P ′ = 〈SP′ , ψP′〉 with invariant S′.

Since S′ must be nonempty, S′ = {(sl, ν)|ν(x) ≤ 1}. Now, consider a computation

prefix of P ′ that starts from S′ and the fault transition (sl, sv1) perturbs the state

of P ′. Since P ′ is fault-tolerant, it must satisfy the bounded response properties

¬S′ 7→≤θ Q and ¬S 7→≤δ S
′. Hence, there should exist a computation prefix σ

that originates at {sv1} and reaches Q = {sv2 , sl}. However, based on the above

construction, reaching sl within time θ is impossible. Hence, σ must reach sv2 .

Moreover, σ must also visit S′ and, hence, location sl. To this end, based on the

above construction, σ must also reach sv3 . Since there is only a self-loop transition

in sl, starting from sv1 , σ must first visit sv2 , then sv3 and finally sl. Let σp be

the prefix of σ that terminates in sv3 . Observe that in σp a state cannot be visited

more than once; i.e., the prefix does not include cycles. If this is not the case

16

then there exists a computation of the synthesized program that never reaches sv3 .

Furthermore, consider any transition in σp that changes location from svi to svj .

Based on the definition of above safety specification, this transition must reset x.

Hence, if any location, say svi is visited more than once separately (i.e., ignoring

the situation where the location remains unchanged due to delay transitions) then

the state (svi , x = 0) is visited more than once. (Note that since new clock variables

are not added, this region cannot be further subdivided.) Since the above discussion

prevents repetition of such a state, it follows that a location cannot be repeated

more than once in σp. Thus, the path, say Π, whose vertices and arcs correspond

to state and transitions in σp, is a simple path and the answer to 2PP.

Observe that based on the above proof, the problem remains NP-complete even if

the instance of R2P satisfies the constraint S ⊆ Q and δ = ∞.

Corollary 1 The problem of transforming a fault-intolerant real-time program into a

fault-tolerant program that provides relaxed 2-phased recovery is NP-complete in the

size of locations of the fault-intolerant program even if S ⊆ Q and δ = ∞.

Remark 3 Note that the above corollary implies that the problem is NP-complete for

the case where it is given that S ⊆ Q and δ = ∞ as well as for the case where

this condition is not specified. In particular, the discussion above the corollary shows

that the problem of transforming a fault-intolerant real-time program into a fault-

tolerant program that provides relaxed 2-phased recovery is NP-complete if S ⊆ Q

and δ = ∞. Moreover, from Theorem 1, it is clear that the problem of transforming a

fault-intolerant program into a fault-tolerant program that provides relaxed 2-phased

recovery is NP-complete in the more general case.

Next, we show that the problem of transforming a fault-intolerant real-time pro-

gram into a fault-tolerant program that provides strict 2-phase recovery is also NP-

complete. While a proof similar to that of Theorem 1 can be obtained for this, we

utilize Corollary 1 to obtain this result more easily. In particular, Corollary 1 shows

that the problem providing relaxed 2-phase recovery is NP-complete even if δ = ∞.

And, if δ = ∞ then we can show that it is possible to reduce the problem of providing

relaxed 2-phased recovery to the problem of adding strict 2-phased recovery. To show

this, we make the following observations.

Observation 1

(¬S 7→≤θ Q) ∧ (¬S 7→≤∞ S)

⇒

(¬S 7→≤θ Q) ∧ (Q 7→≤∞ S)

Proof This result follows from the fact that if (¬S 7→≤∞ S) then (Q 7→≤∞ S).

Observation 2

(¬S 7→≤θ Q) ∧ (Q 7→≤∞ S)

⇒

(¬S 7→≤θ Q) ∧ (¬S 7→≤∞ S)

Proof This result follows from the fact that the unbounded response relation is tran-

sitive, i.e., if (¬S 7→≤θ Q) and (Q 7→≤∞ S), then (¬S 7→≤∞ S).

17

Based on these two observations, if δ = ∞ then a solution for relaxed 2-phased

recovery can be used to solve the strict 2-phased recovery and vice versa.

Theorem 2 The problem of transforming a fault-intolerant real-time program into a

fault-tolerant program that provides strict 2-phased recovery is NP-complete in the size

of locations of the fault-intolerant program even if S ⊆ Q and δ = ∞

Proof This proof follows from Observations 1, 2 and Corollary 1.

Finally, since a specialized instance of strict 2-phased recovery is NP-complete, the

general problem is at least NP-hard. Moreover, since membership in NP is straightfor-

ward, we have:

Corollary 2 The problem of transforming a fault-intolerant real-time program into a

fault-tolerant program that provides strict 2-phase recovery is NP-complete in the size

of locations of the fault-intolerant program.

Since the problem of relaxed and strict 2-phased recovery is NP-complete even if

δ = ∞, a natural question is ‘What happens if θ = ∞’. Next, we show that if S ⊆ Q

and θ = ∞, then the problem of synthesizing relaxed and strict 2-phased recovery can

be solved in polynomial-time in the size of locations of the given intolerant program.

Theorem 3 The problem of transforming a fault-intolerant real-time program into a

fault-tolerant program that provides relaxed 2-phased recovery can be solved in polyno-

mial time in the size of locations of the fault-intolerant program if S ⊆ Q and θ = ∞.

Proof If S ⊆ Q, then (¬S 7→≤δ S) ⇒ (¬S 7→≤∞ Q). It follows that our problem

of providing relaxed 2-phased recovery can be reduced to adding (¬S 7→≤δ S). Since

adding one such bounded response property can be achieved in polynomial-time in the

size of the locations of the given program [10], the theorem holds2.

Theorem 4 The problem of transforming a fault-intolerant real-time program into a

fault-tolerant program that provides strict 2-phased recovery can be solved in polynomial

time in the size of locations of the fault-intolerant program even if S ⊆ Q ∧ θ = ∞

Proof Since synthesizing this type of strict 2-phase recovery can be reduced to synthe-

sizing graceful 2-phase recovery, we prove this theorem as a corollary of Theorem 14

in Section 7 that identifies the complexity of graceful 2-phased recovery. We note that

this theorem will not be used to prove any other theorem until Theorem 14 to avoid

circular reasoning.

Since the problem of synthesizing strict and relaxed 2-phased recovery can be solved

in polynomial-time if S ⊆ Q and θ = ∞, the natural question is whether the complexity

of the problem changes if only one of the two conditions is satisfied. From Corollary 1,

it follows that if only S ⊆ Q is satisfied then the problem is NP-complete. For the case

where θ = ∞, we show the following.

Theorem 5 The problem of transforming a fault-intolerant real-time program into a

fault-tolerant program that provides relaxed 2-phased recovery is NP-complete in the

size of locations of the fault-intolerant program even if θ = ∞ and δ = ∞.

2 In [10], we presented the algorithm Add BoundedResponse for adding a single bounded
response property to a given real-time program. We will provide an outline of this algorithm
in Section 6.

18

Proof Once again, the membership in NP is straightforward. Hence, we only show that

the problem is NP-hard. The proof is similar to that of Theorem 1. However, certain

changes have to be made due to the fact that θ needs to be ∞. We denote the problem

of relaxed 2-phased recovery with θ = ∞ and δ = ∞ as R2Puntimed . We reduce the

2PP problem to R2Puntimed .

Mapping. Given an instance of the 2PP problem (i.e., G = 〈V,A〉, v1, v2, and v3),

we first present a polynomial-time mapping from the 2PP instance to an instance of

the R2Puntimed problem (i.e., P = 〈SP , ψP 〉, S, f , and SPEC) as follows (the main

differences with that of Proof of Theorem 1 are listed in sens-serif):

– (clock variables) X = {},

– (state space) SP = {sv | v ∈ V } ∪ {sl}.

– (program transitions) ψP = ({(su, sv) | (u, v) ∈ A} ∪ {(sv3 , sl) ∪ {(sl, sl)}

−{(sv3 , su) | u ∈ V − {v3}},

– (invariant) S = {sl}.

– (fault transitions) f = {(sl, sv1}.

– (specification) SPEC bt = SP × SP − (ψP ∪ f) and SPEC
br

≡ (¬S 7→≤θ Q) ∧

(¬S 7→≤δ S), where Q = {sv2}, δ = ∞, and θ = ∞.

Thus, the main changes are as follows. Since there is no finite bound on the time to

reach Q or S, there is no need for the clock variable. Hence, state space, program and

fault transitions and invariant are changed to reflect that. Additionally, Q is changed

to only include state sv2 .

Reduction. Given the above mapping, we now show that 2PP has a solution iff the

answer to R2Puntimed problem is affirmative.

– (⇒) Let the answer to the 2PP be a simple path Π that originates at v1, ends

at v3, and contains v2. For this case, the corresponding argument from Theorem 1

shows that the answer to R2Puntimed problem is affirmative.

– (⇐) Let the answer to the R2Puntimed problem be P ′ = 〈SP′ , ψP′〉 with invariant

S′. Since S′ must be nonempty, S′ = {sl}. Now, consider a computation prefix of

P ′ that starts from S′ and the fault transition (sl, sv1) perturbs the state of P ′.

Based on the constraints of R2Puntimed , P
′ must reach sv2 and sl. Moreover, if P ′

reaches sl first, then it cannot reach sv2 since there is only a self-loop transition

at sl. Hence, P ′ must first reach sv2 . Now, consider the computation of P ′ that

begins from sv1 and reaches sl. Clearly, it reaches sv2 first and then sv3 . Also, this

sequence cannot have a repeated state, as that would violate the guarantee that P ′

reaches S′. Hence, the path obtained from this computation is a simple path, i.e.,

the answer to the corresponding 2PP problem is affirmative.

Since the result in Theorem 5 applies for the case where δ = ∞, based on Obser-

vations 1 and 2, we have:

Corollary 3 The problem of transforming a fault-intolerant real-time program into a

fault-tolerant program that provides strict 2-phased recovery is NP-complete in the size

of locations of the fault-intolerant program even if θ = ∞ and δ = ∞.

For the case where one desires ordered-strict 2-phased recovery, it is required that

the program reaches Q− S before it reaches S. Hence, from Corollary 3, we have

19

Theorem 6 The problem of transforming a fault-intolerant real-time program into a

fault-tolerant program that provides ordered-strict 2-phased recovery is NP-complete in

the size of locations of the fault-intolerant program even if S ⊆ Q, θ = ∞ and δ = ∞.

To summarize the results from this section, we considered the complexity of strict,

relaxed and ordered-strict 2-phased recovery. We showed that the general problem is NP-

complete. For possible polynomial-time solutions, we considered three factors: S ⊆ Q,

θ = ∞ and δ = ∞. For ordered-strict 2-phased recovery, the problem remains NP-

complete even if all three conditions are satisfied. For relaxed and strict, the problem can

be solved in polynomial-time if the first two constraints (S ⊆ Q, θ = ∞) are satisfied.

However, if any other combination of two constraints is satisfied, the problem remains

NP-complete. In Section 6, we consider additional constraints under which the problem

of synthesizing strict and relaxed 2-phased recovery can be solved in polynomial-time.

6 Polynomial-Time Solution for Strict and Relaxed 2-Phase Recovery with

Closure of Q

In this section, we present another sufficient condition under which one can devise a

polynomial-time sound and complete solution to the problem of transforming a fault-

intolerant real-time program into a fault-tolerant program that satisfies strict (respec-

tively, relaxed) 2-phased recovery. In particular, we show that if Q is required to be

closed in the synthesized program, then the problem of strict and relaxed 2-phase re-

covery can be solved in polynomial-time. Towards this end, we present an algorithm

Add StrictPhasedRecovery in Subsection 6.1 and Add RelaxedPhasedRecovery in Subsec-

tion 6.2. For simplicity of presentation, we assume that S ⊆ Q while describing these

algorithms. Subsequently, in Subsection 6.3, we show that these results remain valid

even if S is not a subset of Q. Finally, in Subsection 6.4, we provide an interpretation

for the closure of Q.

6.1 Synthesizing Strict 2-Phase Recovery with S ⊆ Q and Closure of Q

In this subsection, we propose the algorithm Add StrictPhasedRecovery to validate the

following claim:

Claim Let P = 〈SP , ψP 〉 be a program with invariant S and recovery specification

SPEC
br

≡ (¬S 7→≤θ Q) ∧ (Q 7→≤δ S). There exists a polynomial-time sound and

complete solution to Problem Statement 1 in the size of the region graph of P, if

(S ⊆ Q) ∧ (Q is closed in ψP′).

Algorithm sketch. Intuitively, our algorithm works as follows. In Step 1, we trans-

form the input program into a region graph [2] (described below). In Step 2, we isolate

the set of states from where SPEC
bt

may be violated. In Steps 3 and 4, we ensure

that any computation of P ′ that starts from a state in ¬S′ −Q (respectively, Q− S′)

reaches a state in Q (respectively, S′) within θ (respectively, δ) time units. In Step 5,

we ensure the closure of fault-span and deadlock freedom of invariant. We repeat Steps

3-4 until a fixpoint is reached. Finally, in Step 6, we transform the resultant region

graph back into a real-time program.

20

1 < x < 2

x = 0

a = 2 a = 2 a = 2

x = 1

a = 2a = 2

x = 2

a = 2

x > 2

0 < x < 1

Fig. 2 An example of a region graph.

Assumption 2 Let α = (σ0, τ0) → (σ1, τ1) → · · · (σn, τn) be a computation prefix

where σ0, σn ∈ S and σi 6∈ S for all i ∈ {1..n− 1}. Only for simplicity of presentation,

we assume that the number of occurrence of faults in α is one. Precisely, we assume

that in α, if (σ0, σ1) is a fault transition, then no faults occur outside the program

invariant. In our previous work [11], we have shown how to deal with cases where

multiple faults occur in a computation when adding bounded response properties. The

same technique can be applied while preserving soundness and completeness of the

algorithm Add StrictPhasedRecovery in this paper. We discuss this extension in Remark

4 after the Add StrictPhasedRecovery algorithm. Furthermore, notice that the proofs

of Theorems demonstrating NP-hardness of ordered-strict, strict and relaxed 2-phased

recovery depend only on the occurrence of one fault.

Region Graph. Real-time programs can be analyzed with the help of an equivalence

relation of finite index on the set of states [2]. Given a real-time program P, for each

clock variable x ∈ X, let cx be the largest constant in clock constraint of transitions

of P that involve x, where cx = 0 if x does not occur in any clock constraints of P.

We say that two clock valuations ν, µ are clock equivalent if (1) for all x ∈ X, either

⌊ν(x)⌋ = ⌊µ(x)⌋ or both ν(x), µ(x) > cx, (2) the ordering of the fractional parts of

the clock variables in the set {x ∈ X | ν(x) < cx} is the same in µ and ν, and (3) for

all x ∈ X where ν(x) < cx, the clock value ν(x) is an integer iff µ(x) is an integer. A

clock region ρ is a clock equivalence class. Two states (s0, ν0) and (s1, ν1) are region

equivalent, written (s0, ν0) ≡ (s1, ν1), if (1) s0 = s1, and (2) ν0 and ν1 are clock

equivalent. A region r = (s, ρ) is an equivalence class with respect to ≡, where s is a

location and ρ is a clock region. We say that a clock region β is a time-successor of

a clock region α iff for each ν ∈ α, there exists τ ∈ R≥0, such that ν + τ ∈ β, and

ν + τ ′ ∈ α∪ β for all τ ′ < τ . Figure 2 shows the region graph of the following guarded

command for clock variable x and discrete variable a:

(a = 2) ∧ (x ≥ 2)
x:=0
−−−→ skip;

Using the region equivalence relation, we construct the region graph of P = 〈SP , ψP 〉

(denoted R(P) = 〈Sr
P , ψ

r
P 〉) as follows. Vertices of R(P) (denoted Sr

P) are regions.

Edges of R(P) (denoted ψr
P) are of the form (s0, ρ0) → (s1, ρ1) iff for some clock

valuations ν0 ∈ ρ0 and ν1 ∈ ρ1, (s0, ν0) → (s1, ν1) is a transitions in ψP .

We now describe the algorithm Add StrictPhasedRecovery in detail:

– (Step 1) First, we use the above technique to transform the input program P =

〈SP , ψP 〉 into a region graph R(P) = 〈Sr
P , ψ

r
P 〉. To this end, we invoke the proce-

21

dure ConstructRegionGraph as a black box (Line 1). We let this procedure convert

state predicates and sets of transitions in P (e.g., S and ψP) to their corresponding

region predicates and sets of edges in R(P) (e.g., Sr and ψr
P). Precisely, a region

predicate Ur with respect to a state predicate U is the set Ur = {(s, ρ) | ∃(s, ν) :

((s, ν) ∈ U ∧ ν ∈ ρ)}.

– (Step 2) In order to ensure that the synthesized program does not violate SPEC
bt
,

we identify the set ms of regions from where a computation may reach a transition

in SPEC bt by taking fault transitions alone (Line 2). Next (Line 3), we compute

the set mt of edges, which contains:

1. edges that directly violate safety (i.e., SPEC r
bt), and

2. edges whose target region is in ms (i.e., edges that lead a computation to a

state from where safety may be violated by faults alone).

Since the program does not have control over occurrence of faults, we remove the

set ms from the region predicate T r
1 , which is our initial estimate of the fault-span

(Line 4). Likewise, in Step 3, we will remove mt from the set of program edges ψr
P

when recomputing program transitions.

– (Step 3) In this step, we add recovery paths to R(P) so that R(P) satisfies

¬S′ 7→≤θ Q and Q 7→≤δ S
′. To this end, we first recompute the set ψP1

of program

edges (Line 7) by including:

1. existing edges that start and end in Sr
1 , and

2. new recovery edges that originate from regions in T r
1 −Q

r (respectively, Qr−Sr
1)

and terminate at regions in T r
1 (respectively,Q) such that the time-monotonicity

condition is met.

We exclude the set mt from ψr
P1

to ensure that these recovery edges do not violate

SPEC
bt
. Notice that the algorithm allows arbitrary clock resets during recovery.

If such clock resets are not desirable, one can rule them out by including them as

bad transitions in SPEC bt.

After adding recovery edges, we invoke the procedure Add BoundedResponse (Line

8) with parameters T r
1 − Qr, Qr, and θ to ensure that R(P) indeed satisfies

the bounded response property ¬S 7→≤θ Q. The properties of the procedure

Add BoundedResponse (first proposed in [10]) are the following:

– By Assumption 1, there is a variable that is reset when the program reaches a

state in ¬S∧¬Q. Let t1 denote that variable. Clearly, when the program moves

from a state in Q to a state in T1 − Q, t1 is reset to 0. Add BoundedResponse

utilizes this clock variable to compute delay required to reach a state in Q.

– for each state σ in T1 − Q, it includes the set of transitions that participate

in forming the computation that starts from σ and reaches a state in Q with

smallest possible time delay, if the delay is less than θ, and

– the regions made unreachable by this procedure (returned as the set ns) cannot

be present in any solution that satisfies ¬S1 7→≤θ Q.

The procedure may optionally include additional computations, provided they pre-

serve the corresponding bounded response property. Thus, since there does not exist

a computation prefix that maintains the corresponding bounded response property

from the regions in ns, in Line 9, the algorithm removes ns from T r
1 .

– (Step 4) Similar to Step 3, in Line 10, the algorithm utilizes clock variable, say

t2, which gets reset when Q − S1 becomes true and ensures that R(P) satisfies

Q 7→≤δ S1.

22

Algorithm 1 Add StrictPhasedRecovery

Input: A real-time program P = 〈SP , ψP 〉 with invariant S, fault transitions f , bad transi-
tions SPEC bt, intermediate recovery predicate Q s.t. S ⊆ Q, recovery time δ, and inter-
mediate recovery time θ.

Output: If successful, a fault-tolerant real-time program P ′ = 〈SP′ , ψ
P′ 〉.

1: 〈Sr
P
, ψr

P
〉, Sr

1
, Qr , fr, SPEC r

bt := ConstructRegionGraph(〈SP , ψP
〉, S, Q, f , SPEC bt);

2: ms := {r0 | ∃r1, r2 · · · rn : (∀j | 0≤j<n : (rj , rj+1) ∈ fr) ∧ (rn−1, rn) ∈ SPEC r
bt};

3: mt := {(r0, r1) | (r1 ∈ ms) ∨ ((r0, r1) ∈ SPEC r
bt)};

4: T r
1

:= Sr
P

−ms;
5: repeat

6: T r
2
, Sr

2
:= T r

1
, Sr

1
;

7: ψr
P1

:= ψr
P
|Sr

1
∪ {((s0, ρ0), (s1, ρ1)) | (s0, ρ0) ∈ (T r

1
−Qr) ∧ (s1, ρ1) ∈ T r

1
∧

∃ρ2 | ρ2 is a time-successor of ρ0 : (∃λ ⊆ X : ρ1 = ρ2[λ := 0])} ∪
{((s0, ρ0), (s1, ρ1)) | (s0, ρ0) ∈ (Qr − Sr

1
) ∧ (s1, ρ1) ∈ Qr ∧

∃ρ2 | ρ2 is a time-successor of ρ0 : (∃λ ⊆ X : ρ1 = ρ2[λ := 0])} − mt ;
8: ψr

P1
, ns := Add BoundedResponse(〈Sr

P
, ψr

P1
〉, T r

1
−Qr, Qr , θ);

9: T r
1

:= T r
1

− ns;
10: ψr

P1
, ns := Add BoundedResponse(〈Sr

P , ψ
r
P1

〉, Qr − Sr
1
, Sr

1
, δ);

11: T r
1
, Qr := T r

1
− ns, Qr − ns;

12: while (∃r0, r1 : r0∈T r
1

∧ r1 6∈T r
1

∧ (r0, r1)∈fr) do

13: T r
1
:= T r

1
− {r0};

14: end while

15: while (∃r0∈(Sr
1
∩ T r

1
) : (∀r1 | (r1 6= r0 ∧ r1 ∈ Sr

1
) : (r0, r1) 6∈ ψr

P1
)) do

16: Sr
1
:= Sr

1
− {r0};

17: end while

18: if (Sr
1
= {} ∨ T r

1
= {}) then

19: print ‘‘no fault-tolerant program exists’’; exit;
20: end if

21: until (T1 = T2 ∧ S1 = S2)
22: 〈SP′ , ψ

P′ 〉, S
′, T ′ := ConstructRealTimeProgram(〈Sr

P
, ψr

P1
〉, Sr

1
, T r

1
);

23: return 〈SP′ , ψ
P′ 〉, S

′, T ′;

– (Step 5) Since we remove the set ns of regions from T r
1 , we need to ensure that

T1 is closed in f . Thus, we remove regions from where a sequence of fault edges

can reach a region in ns (Lines 12-14). Next, due to the possibility of removal of

some regions and edges in the previous steps, the algorithm ensures that the region

graph 〈Sr
P , ψ

r
P1

〉 does not have deadlock regions in the region invariant Sr
1 (Lines

15-17). Precisely, we say that a region (s0, ρ0) of region graph R(P) = 〈Sr
P , ψ

r
P 〉 is

a deadlock region in region predicate Ur iff for all regions (s1, ρ1) ∈ Ur, there does

not exist an edge of the form (s0, ρ0) → (s1, ρ1) ∈ ψr
P . Deadlock freedom in the

region graph is necessary, as the constraint C4 in the Problem Statement 1 does

not allow the algorithm to introduce new finite or time-divergent computations

to the input program. If the removal of deadlock regions and regions from where

the closure of fault-span is violated results in empty invariant or fault-span, the

algorithm declares failure (Lines 18-20).

– (Step 6) Finally, upon reaching a fixpoint, we transform the resulting region graph

〈Sr
P , ψ

r
P1

〉 back into a real-time program P ′ = 〈SP′ , ψP′〉 by invoking the proce-

dure ConstructRealTimeProgram. In fact, the program P ′ is returned as the final

synthesized fault-tolerant program. Note that since a region graph is a time-abstract

bisimulation [2], we will not lose any behaviors in the reverse transformation.

23

Remark 4 The algorithm Add StrictPhasedRecovery deals with the case where only

a single fault occurrence is considered. For the case where multiple faults (with a

known bound on the maximum number of faults) occur, we need to make changes to

Add BoundedResponse to take multiple faults into account. Specifically, in Step 3 of the

above algorithm, we noted that Add BoundedResponse computes the shortest possible

delay from every region to reach the destination predicate (i.e., predicate B in (A 7→≤θ

B)). This delay computation needs to be changed if multiple faults can occur. To

achieve this, intuitively, we consider ‘layers’ of region graph. The top layer corresponds

to the case where one fault has occurred. The next lower layer corresponds to the case

where two faults have occurred and so on. The bottom layer corresponds to the case

where N faults have occurred where N is the maximum number of permitted faults.

For simplicity of presentation, in the subsequent discussion let N = 2 thereby limiting

the number of layers to 2. Computing delay in the bottom layer is straightforward since

no new faults can occur. Now, for the top layer, if a fault can take the program from

region R1 to region R2, we include an edge from ‘R1 from top layer’ to ‘R2 from bottom

layer’. Now, computing delays in top layer needs to incorporate such fault transitions

into account. Specifically, delay associated with ‘R1 from top layer’ must be at least

equal to the delay associated with ‘R2 from bottom layer’ + ‘delay associated with the

fault transition (if any)’. With these changes to Add BoundedResponse, it is possible to

permit multiple faults in Add StrictPhasedRecovery. The details of the changes required

to modify Add BoundedResponse to deal with multiple faults can be found in [11]. Also,

[11] also shows that in most cases, if the bound N is not known then computing adding

bounded response property is not possible.

We now show that the algorithm Add StrictPhasedRecovery is sound in the sense

that any program that it synthesizes is correct-by-construction. We also show that the

algorithm is complete in the sense that if it fails to synthesize a solution then no other

correct solution exists.

Theorem 7 The Algorithm Add StrictPhasedRecovery is sound.

Proof We show that the algorithm satisfies the constraints of Problem Statement 1.

Let t1 and t2 denote the variables used by Add BoundedResponse by Assumption 1 (cf.

Lines 8 and 10). We proceed as follows:

1. (Constraints C1 and C2) By construction, correctness of these constraints trivially

follows.

2. (Constraint C3) We distinguish two subgoals based on the behavior of P ′ in the

absence and presence of faults:

– We need to show that in the absence of faults, P ′ |=S′ SPEC . To this end,

consider a computation σ of ψ
′

P that starts in S′. Since the values of t1 and t2
are of no concern inside S′, from C1, σ starts from a state in S, and from C2,

σ is a computation of ψP . Moreover, since we remove deadlock states from S′

(cf. Lines 15-17), if σ is infinite in P, then it is infinite in P ′ as well. It follows

that σ ∈ SPEC . Hence, every computation of ψP′ that starts from a state in

S′ is in SPEC . Also, by construction, S′ is closed in ψP′ . Furthermore, for

all open regions, say r0, in S
′r, there exists an outgoing edge, say (r0, r1), for

some r1 ∈ S′r where r0 6= r1. Since the intolerant program exhibits no time-

convergent behavior, such an edge can only terminate at a different clock region,

which in turn advances time by an integer. This implies that in the absence of

24

faults, our algorithm does not introduce time-convergent computations (Zeno

behaviors) to P ′ and, hence, P ′ |=S′ SPEC .

– Notice that by construction, T ′ is closed in ψP′ []f (cf. Lines 12-14). Now, we

need to show that every computation of ψP′ []f that starts from a state in

T ′ reaches a state in Q and subsequently a state in S′ within θ and δ time

units, respectively. Consider a computation σ = (σ0, τ0) → (σ1, τ1) → · · · of

ψP′ []f that starts from a state in T ′. If σ0 ∈ S′ a single fault transition may

take σ to T ′ − S′ and by Assumption 2, none of the subsequent transitions

in σ are in f . Thus, σ1 = (σ1, τ1) → (σ2, τ2) → · · · is a computation of ψP′

where σ1 ∈ T ′−S′. In the algorithm, when the repeat-until loop terminates, by

construction, (1) σ1 reaches a state, say σk, in Q where τk − τ1 ≤ θ (cf. Lines

7-8), and (2) from σk, σ reaches a state in S′ within δ (cf. Line 10). This also

implies that in the presence of faults as well, our algorithm does not introduce

time-convergent computations to P ′, as σ eventually reaches a state in S′.

Theorem 8 The Algorithm Add StrictPhasedRecovery is complete.

Proof The proof of completeness is based on the observation that if any state is re-

moved, then it must be removed, i.e., there is no fault-tolerant program that meets the

constraints of Problem Statement 1 and includes this state. For example, in the com-

putation of ms, if (σ0, σ1) is a fault transition and violates safety then state σ0 must be

removed (i.e., is made unreachable). Likewise, ms includes states from where execution

of faults alone violates safety. Hence, they must be removed. In Line 7, we compute

the input program that includes all possible transitions that may be used in the final

program. Due to constraint C2 of the Problem Statement 1, any transition that begins

in the invariant must be a transition of the fault-intolerant program. Due to closure of

Q in the sufficient condition, any transition from Q (precisely Q− S since states in S

are already handled) must end in Q. And, due to closure of fault-span, any transition

that begins in T (precisely T −Q) must end in T . Thus, the transitions computed in

Line 7 are maximal. Furthermore, using the property of Add BoundedResponse, if any

state is removed in spite of considering all possible transitions that could be potentially

used, then that state must be removed (i.e., states in ns). In other words, states in ns

must be removed since one of the bounded response properties cannot be met from

those states.

Our algorithm declares failure when either the invariant or fault-span of the syn-

thesized program is equal to the empty set. In other words, our algorithm fails to

find a solution when all states of the fault-intolerant program are illegitimate with re-

spect to Problem Statement 1. Therefore, the algorithm Add StrictPhasedRecovery is

complete.

Theorem 9 The complexity of Algorithm Add StrictPhasedRecovery is in polynomial-

time in the size of the input program’s region graph3.

3 We note that the algorithm for constructing a region graph is in Pspace [2]. In fact, the
reachability problem in real-time programs is Pspace-complete [2]. Thus, the complexity of
our algorithm in the size of the given fault-intolerant program is in Pspace. This analysis holds
for other algorithms presented in latter sections if the paper as well. We also note that a region
graph is not the most efficient data structure to analyze real-time programs. We use region
graphs in this paper, as our goal is complexity analysis and not efficiency in implementation.
For more efficient implementation, one can use symbolic data structures such as zone graphs.

25

Proof This follows from the fact that the complexity of each line is polynomial in the

size of the region graph and that the number of iterations for any loop is polynomial

in the size of the region graph.

Remark 5 The algorithm Add StrictPhasedRecovery can be easily revised for the case

where n-phase recovery is desired. Specifically, if Q1 and Q2 are intermediate predicates

and they are required to be closed in the synthesized program then Line 7 of code needs

to be revised so that we do not include transitions that violate Q1 and transitions that

do not violate Q2. Also, Add RelaxedPhasedRecovery (in Section 6.2) can be extended

in a similar fashion.

6.1.1 Example (cont’d)

We now demonstrate how the algorithm Add StrictPhasedRecovery synthesizes a fault-

tolerant version of T C. In the recovery specification of T C (cf. in Subsection 3.2), the

invariant predicate ST C and intermediate recovery predicate QT C were disjoint. Now,

let the intermediate recovery predicate be:

Qnew = ST C ∪ QT C .

In other words, after the occurrence of faults, the recovery specification requires that

either both signals turn red within 3 time units and then return to the normal behavior

within 7 time units, or, the system reaches a state in ST C within 3 time units. Since,

ST C ⊆ Qnew , we can apply the Algorithm Add BoundedPhasedRecovery to transform

T C into a fault-tolerant program T C′. We note that due to many symmetries in T C

and the complex structure of the algorithm, we only present a highlight of the process

of synthesizing T C′.

First, observe that in Step 2 of the algorithm, ms = {} and mt = SPEC btT C
. In Step

3, consider a subset of T1−Qnew where (sig0 = sig1 = R)∧(z0, z1 ≤ 1). This predicate

is reachable by a single occurrence of (for instance) F0 from an invariant state where

(sig0 = sig1 = R) ∧ (z0 > 1) ∧ (z1 ≤ 1). After adding legitimate recovery transitions

(Line 7), the invocation of Add BoundedResponse (Line 8) results in addition of the

following recovery action:

T C5i :: (sig0 = sig1 = R) ∧ (z0, z1 ≤ 2) ∧ (t1 ≤ 2) −−−→ wait;

for all i ∈ {0, 1}. This action enforces the program to take delay transitions so that

the program reaches a state in Q where (sig0 = sig1 = R) ∧ (z0, z1 > 1). Recall that

the clock variable t1 is used byAdd BoundedResponse to keep track of the time elapsed

since ¬S holds (see Assumption 1).

One may notice that although it is perfectly legitimate to wait up to 3 time units

inside T1−Qnew , as θ = 3, the action T C5 lets the program wait only for 2 time units.

This is because Add BoundedResponse first includes computations with the smallest

possible time delay and then optionally includes additional computations to increase

the level of non-determinism. In this context, additional computations may be con-

structed by the following actions for sig0:

T C60 :: (sig0 = sig1 = R) ∧ (z0, z1 ≤ 1) ∧ (t1 ≤ 1)
{x0}
−−−→ (sig0 := G);

T C70 :: (sig0 = G) ∧ (sig1 = R) ∧

(x0 = 1) ∧ (z0, z1 ≤ 2) ∧ (t1 ≤ 2)
{y0}
−−−→ (sig0 := Y);

T C80 :: (sig0 = G) ∧ (sig1 = R) ∧

(x0 ≤ 1) ∧ (z0, z1 ≤ 2) ∧ (t1 ≤ 2) −−−→ wait;

26

Notice that while executing recovery action T C60 results in reaching another state in

T1 −Qnew , execution of actions T C70 and T C80 result in reaching a state in invariant

ST C , which is clearly in Qnew as well.

Now, consider the case where T C is in a state where (sig0 = G) ∧ (sig1 =

R) ∧ (x0 = 1) ∧ (z0, z1 ≤ 2). In this case, one may argue that T C has the option of

executing action T C31 and reaching a state where sig0 = sig1 = G, which is clearly a

violation of safety specification SPEC
btT C

. However, since we remove the set mt from

ψP1
(Line 7), action T C3i would be revised as follows:

T C3i:: (sigi = R) ∧ (zj ≤ 1) ∧ (sigj = R)
{xi}
−−−→ (sigi := G);

for all i ∈ {0, 1} where j = (i + 1) mod 2. In other words, the algorithm strengthens

the guard of T C1i, such that in the presence of faults, a signal turns green only when

the other one is red.

In Step 4, consider the state predicateQnew−S1T C
= (sig0 = sig1 = R) ∧ (z0, z1 >

1). Similar to Step 3, the algorithm adds recovery paths with the smallest possible time

delay, which is the following action for either i ∈ {0, 1}:

T C9i:: (sigi = sigj = R) ∧ (zi, zj > 1)
{zi}
−−−→ skip;

It is straightforward to verify that by execution of T C9i, the program reaches the invari-

ant ST C from where the program behaves normally. Similar to Step 3, the procedure

Add BoundedResponse may include the following additional actions:

T C10i:: (sigi = sigj = R) ∧ (zi, zj > 1) ∧ (t2 ≤ 7)
{xi}
−−−→ (sigi := G);

T C11i:: (sigi = sigj = R) ∧ (zi, zj > 1) ∧ (t2 ≤ 7)
{yi}
−−−→ (sigi := Y);

T C12i:: (sigi = sigj = R) ∧ (zi, zj > 1) ∧ (t2 ≤ 7) −−−→ wait;

One may notice that action T C11i adds a strange behavior to T C by allowing

a signal to change phase from red to yellow. Our algorithm allows addition of such

recovery action, since it does not violate the safety specification SPEC
btT C

. One may

enforce the algorithm not to add such actions by simply adding the transitions in the

set {(σ0, σ1) | ∃i ∈ {0, 1} : (sigi(σ0) = R) ∧ (sigi(σ1) = Y)} to SPEC btT C
. In

fact, we expect that our synthesis techniques have the potential to identify missing

properties in cases where the specification is incomplete.

In the context of T C, in Step 5, the algorithm removes states from neither the fault-

span nor the invariant, as ns = {}, and, hence, the algorithm finds the final solution

in one iteration of the repeat-until loop.

6.2 Synthesizing Relaxed 2-Phase Recovery with S ⊆ Q and Closure of Q

In this section, we propose the algorithm Add RelaxedPhasedRecovery to validate the

following claim:

Claim Let P = 〈SP , ψP 〉 be a program with invariant S and recovery specification

SPEC
br

≡ (¬S 7→≤θ Q) ∧ (¬S 7→≤δ S). There exists a polynomial-time sound and

complete solution to Problem Statement 1 in the size of the region graph of P, if

(S ⊆ Q) ∧ (Q is closed in ψP′).

27

Algorithm 2 Add RelaxedPhasedRecovery

Input: A real-time program P = 〈SP , ψP 〉 with invariant S, fault transitions f , bad transi-
tions SPEC bt, and SPEC

br
≡ (¬S 7→≤θ Q) ∧ (¬S 7→≤δ S), where Q is an intermediate

recovery predicate, such that S ⊆ Q.
Output: If successful, a fault-tolerant real-time program P ′ = 〈SP′ , ψ

P′ 〉 and invariant S′

such that 〈SP , ψ
′

P
[]f〉 |=S′ SPEC

br
and Q is closed in ψ

P′ .

// This algorithm is obtained by changing the following lines from Algorithm 1

8 : ψr
P1
, ns := Add BoundedResponse(〈Sr

P , ψ
r
P1

〉, Qr − Sr, Sr, δ);

10 : ψr
P1
, ns := transform (Add BoundedResponse(

transform(〈Sr
P , ψ

r
P1

〉), T r
1
−Qr, Qr , θ));

The algorithm Add RelaxedPhasedRecovery (cf. Algorithm 2) is also based on As-

sumption 2. Since this algorithm reuses most of Add StrictPhasedRecovery, we only

identify the differences.

– (Step 1: Initialization) This step is identical to that in Algorithm 1 and it con-

structs the region graph R(P).

– (Step 2) This step is also identical to that in Algorithm 1 and it constructs ms

and mt .

– (Step 3: Adding (Q 7→≤δ S)) In this step, we first recompute the set ψr
P1

of

program edges (Line 7) that is identical to Algorithm 1. Then, we use ψr
P1

on Line

7 to invoke the procedure Add BoundedResponse (from [10]) to add (Q 7→≤δ S). As

mentioned in Subsection 6.1, Add BoundedResponse can also add additional paths

whose length is larger than that of the shortest paths but less than δ. However, for

relaxed 2-phase recovery, addition of such additional paths needs to be performed

after adding the second timing constraint in Line 10.

– (Step 4: Adding (¬S 7→≤γ Q)) For each region r in Qr, we identify wt(r) that

denotes the length of the path from r to a region in Sr. Next, we add the property

(¬S 7→≤γ Q), where the value of γ depends upon the exact state reached in Q.

Since we need to ensure (¬S 7→≤θ Q), γ must be less than θ. And, since we need to

ensure (¬S 7→≤δ S), the time to reach a region r in Qr must be less than δ−wt(r).

To achieve this with Add BoundedResponse, we transform the given region graph

by the function transform, where we replace each region r in Qr by r1 (that is

outside Qr) and r2 (that is in Qr) such that there is an edge from r1 to r2. All

incoming edges from T r
1 − Qr to r now reach r1. All other edges (edges reaching

r from another region in Qr and outgoing edges from r) are connected to r2. The

weight of the edge from r1 to r2 is set to max(0, θ + wt(r) − δ). Now, we call

Add BoundedResponse add (T1 −Q 7→≤θ Q). Notice that the transformation of the

region graph along with invocation of Add BoundedResponse (Line 10) ensures that

any computation of the synthesized program that starts from a state σ0 in ¬S and

reaches a state σ1 in Q − S within θ still has sufficient time to reach a state σ2
in S such that the overall delay between σ0 and σ2 is less than δ. In other words,

the output program will satisfy (T1 − Q 7→≤δ S) no matter what path it takes to

achieve 2-phase recovery. We now collapse region r1 and r2 (created by transform)

to obtain region r. We use transform to denote such collapsing.

– (Step 5 and 6: Repeat if needed or construct synthesized program) These steps are

identical to that in Algorithm 1.

28

We now show that the algorithm Add RelaxedPhasedRecovery is sound, i.e., the

synthesized program satisfies the constraints of Problem Statement 1, and complete,

i.e., the algorithm finds a fault-tolerant program provided one exists.

Theorem 10 The Algorithm Add RelaxedPhasedRecovery is sound.

Proof To prove this theorem, we show that the algorithm Add RelaxedPhasedRecovery

satisfies the constraints of Problem Statement 1 when instantiated with relaxed 2-

phase recovery. Let t1 and t2 denote the variables used by Add BoundedResponse by

Assumption 1 (cf. Lines 8 and 10). We proceed as follows:

1. (Constraints C1 and C2) By construction, correctness of these constraints trivially

follows.

2. (Constraint C3) We distinguish two subgoals based on the behavior of P ′ in the

absence and presence of faults:

– We need to show that in the absence of faults, P ′ |=S′ SPEC . The proof of this

subgoal is identical to that of Theorem 7.

– Notice that by construction, T ′ is closed in ψP′ []f (cf. Lines 12-14). Now,

consider a computation σ = (σ0, τ0) → (σ1, τ1) → · · · of ψP′ []f that starts

from a state in T ′ − S′. We now show that this computation reaches a state in

Q within time θ and reaches a state in S′ within time δ. Based on the properties

of transform, where a region r in Q was partitioned into two regions r1 and

r2, and the soundness of Add BoundedResponse, σ reaches a region r2 in time

θ. Moreover, after collapsing r1 and r2 into the region r, the recovery time to

r is at most θ. It follows that σ reaches a state in Q in time θ. Also, the time

to reach r2 in Line 10 is at most θ. Hence, the time to reach r1 is at most

θ− (θ+wt(r)−δ). Hence, after collapsing r1 and r2 into r, the maximum delay

in reaching r is at most δ − wt(r). Based on the definition of wt(r), time to

reach S′ is at most δ.

Theorem 11 The Algorithm Add RelaxedPhasedRecovery is complete.

Proof The proof of completeness is identical to that of Theorem 8.

Theorem 12 The complexity of Algorithm Add RelaxedPhasedRecovery is in polynomial-

time in the size of the input program’s region graph.

Proof The proof of completeness is similar to that of Theorem 9.

We note that applying Algorithm Add RelaxedPhasedRecovery on T C results in

deriving T C′ identical to the one synthesized in Subsection 6.1.1. This is due to the

fact that in both cases, we assumed S ⊆ Q. If this requirement is eliminated, one can

derive different fault-tolerant programs.

6.3 Synthesizing Strict and Relaxed 2-Phase Recovery with S 6⊆ Q and Closure of Q

In this section, we show that the problem of synthesizing strict and relaxed 2-phase

recovery can be solved in polynomial-time, if Q is required to be closed in the syn-

thesized program even if S ⊆ Q is not satisfied. In particular, we show that the al-

gorithms Add StrictPhasedRecovery and Add RelaxedPhasedRecovery can be applied in

this context by changing their parameters appropriately. To show this for strict 2-phase

recovery, we make the following observation.

29

Observation 3 Let state predicates S and Q be closed in program P. We have:

P satisfies (¬S 7→≤θ Q) ∧ (Q 7→≤δ S)

iff

Q ∩ S is closed in P and P satisfies (¬S 7→≤θ Q) ∧ (Q 7→≤δ Q ∩ S).

From the above observation, it follows that even if S ⊆ Q is not satisfied, we can uti-

lize algorithm Add StrictPhasedRecovery, where S is instantiated with Q∩S. One appli-

cation of Observation 3 is in providing graceful degradation. To illustrate this, consider

the case where the invariant S is of the form S1∪S2, where S1∩S2 = φ and the program

provides ideal behavior in S1 and behavior with reduced functionality in S2. And, let

Q be a superset of S2. Thus, S ⊆ Q does not hold. When Add StrictPhasedRecovery is

applied in this context, it would mean that after the occurrence of a fault, the program

must provide an acceptable behavior within time θ. And, subsequently, it must provide

reduced functionality within time δ.

Observation 4 Let state predicates S and Q be closed in program P. We have:

P satisfies (¬S 7→≤θ Q) ∧ (¬S 7→≤δ S), where δ ≥ θ

iff

Q ∩ S is closed in P and P satisfies (¬S 7→≤θ Q) ∧ (¬S 7→≤δ Q ∩ S).

From the above observation, if δ ≥ θ, then we can utilize

Add RelaxedPhasedRecovery, where S is instantiated withQ∩S. Due to symmetry of the

above observation in terms of Q and S, if δ ≤ θ, then we can utilize

Add RelaxedPhasedRecovery, where Q is instantiated with Q ∩ S.

Based on Observations 3 and 4, it follows that if Q is required to be closed in

the synthesized program then the problems of synthesizing strict or relaxed 2-phase

recovery can be solved in polynomial-time even if S ⊆ Q is not satisfied.

6.4 Interpretation of Closure of Q

One main observation from the results in Section 5 and Subsections 6.1 and 6.2 is

that the requirement of ‘closure of Q’, where Q is the intermediate recovery predicate,

appears to play a crucial role in reducing the complexity. Thus, one may pose questions

on the intuitive implication of this requirement in practice. There are two ways of

characterizing the intermediate recovery predicate:

– One characterization is that predicate Q identifies an acceptable behavior of the

program. In this case, it is expected that once the program starts exhibiting ac-

ceptable behavior, it continues to exhibit acceptable (or ideal) behavior in future.

In such a characterization, closure of Q is satisfied.

– Another characterization is that the predicate Q identifies a special behavior that

does not occur in the absence of faults. This special behavior can include notification

or recording of the fault, suspension of normal operation for a certain duration,

etc. Thus, in such a characterization, the program reaches Q, then leaves Q and

eventually starts exhibiting its ideal behavior. In such a characterization, closure

of Q is not satisfied.

The results in this paper shows that the complexity of the former characterization

is significantly less than the latter. One instance of latter corresponds to the case where

30

Algorithm 3 Add GracefulPhasedRecovery

Input: A real-time program P = 〈SP , ψP 〉 with invariant S, fault transitions f , bad transi-
tions SPEC bt, and SPEC

br
≡ (¬S 7→≤θ S) ∧ (¬Q 7→≤δ S), where Q is an intermediate

recovery predicate, such that S ⊆ Q.
Output: If successful, a fault-tolerant real-time program P ′ = 〈SP′ , ψ

P′ 〉 and invariant S′

such that 〈SP , ψ
′

P
[]f〉 |=S′ SPEC

br
.

// This algorithm is obtained by changing the following lines from Algorithm 2
7 : ψr

P1
:= ψr

P |Sr
1

∪ {((s0, ρ0), (s1, ρ1)) | (s0, ρ0) ∈ (T r
1
− Sr) ∧ (s1, ρ1) ∈ T r

1
∧

∃ρ2 | ρ2 is a time-successor of ρ0 : (∃λ ⊆ X : ρ1 = ρ2[λ := 0])} −mt ;
10 : ψr

P1
, ns := Add BoundedResponse((〈Sr

P
, ψr

P1
〉), T r − Sr

1
, Sr

1
, θ);

upon occurrence of fault, the program must take an action that records the fault before

ideal behavior is resumed. Specifically, in such an instance, the predicate Q would

correspond to the case where the program is recording the occurrence of fault. Clearly,

in this case, Q is not closed since the program is not expected to record faults during

fault-free behavior. The results in this paper show that complexity for such a problem

is high. Thus, one interpretation of the result about closure of Q is as follows: If Q is

used to characterize acceptable behavior that is reached quickly then the complexity of

adding 2-phase recovery will be low. However, if Q is used to characterize recording of

fault (or other such behavior that does not occur during fault-free behavior) then the

complexity increases substantially.

7 Complexity of Synthesizing Graceful 2-Phase Recovery

In this section, we show a somewhat counter-intuitive result that although the general

problem of synthesizing strict and relaxed 2-phase recovery are NP-complete, the syn-

thesis problem for graceful 2-phase recovery can be solved in polynomial-time in the

size of the input program’s region graph. Towards this end, we present a sound and

complete solution to the Problem Statement 1 when instantiated for graceful 2-phase

recovery. This algorithm also requires Assumption 2 from Subsection 6.2. Without loss

of generality, in this algorithm, we assume that δ ≤ θ. If δ > θ, then graceful 2-phase

recovery corresponds to the requirement (¬S 7→≤θ S).

We now describe the algorithm Add GracefulPhasedRecovery. Since this algorithm

reuses most of Add RelaxedPhasedRecovery, we only identify the differences.

– (Step 1 and 2) These steps are identical to that in Algorithm 2 and they construct

the region graph R(P), ms and mt.

– (Step 3: Adding (Q 7→≤δ S)) In this step, we add recovery paths to R(P) so

that R(P) satisfies (Q 7→≤δ S). The set of edges used in this step (Line 7) differs

from the corresponding step in Add RelaxedPhasedRecovery. In particular, if an edge

originates in Qr
1, it need not terminate in Qr

1. This is due to the fact that Q is not

necessarily closed in graceful 2-phase recovery. Thus, the transitions computed for

ψP1
of program edges are as specified on Line 7.

After adding recovery edges, we invoke the procedure Add BoundedResponse (Line

8) with parameters Qr − Sr, Sr, and δ to ensure that R(P) indeed satisfies

the bounded response property Q 7→≤δ S. Since the value of ns returned by

Add BoundedResponse indicates that there does not exist a computation prefix that

31

maintains the corresponding bounded response property from the regions in ns, in

Line 9, the algorithm removes ns from T r
1 .

– (Step 4: Adding (¬S 7→≤θ S)) This task is achieved by calling

Add BoundedResponse, so that from each state in ¬S, we add a shortest path from

that state to a state in S. Note that the paths from states in Q have a delay of at

most δ. If such a path does not exist from a state in Q then, in Step 2, that state

would have been included in ns and, hence, removed from T r
1 . While the addition of

the second bounded response property is possible for graceful 2-phase recovery, for

reasons discussed after Theorem 13, it is not possible for relaxed 2-phase recovery.

– (Step 5 and 6) These steps are identical to those in Algorithm 2.

Theorem 13 The Algorithm Add GracefulPhasedRecovery is sound and complete.

Proof The proof of soundness is similar to that of Theorems 10. In particular, regarding

soundness, for constraints C1 and C2 as well as the correctness of the synthesized

program in the absence of faults, the same argument as given in Theorem 10 applies.

Regarding satisfaction of timing constraints in the presence of faults, we observe that

the property (Q 7→≤δ S) is satisfied based on the invocation of Add BoundedResponse

on Line 7. If the minimum delay from some state in Q to a state in S was greater than δ,

then such states are removed. Hence, at the second invocation of Add BoundedResponse,

such states are not considered. As a result, adding other shortest paths to S does not

increase the delay from states in Q. It follows that both timing constraints of graceful

2-phase recovery are satisfied.

Regarding completeness, the proof is similar to that of Theorem 10 as well. In

particular, any state removed by Add GracefulPhasedRecovery must be removed in any

solution that meets the timing constraints of graceful 2-phase recovery.

Theorem 14 The complexity of Algorithm Add GracefulPhasedRecovery is in polynomial-

time in the size of the input program’s region graph.

Proof The proof of completeness is similar to that of Theorem 9.

Proof of Theorem 4. This theorem states that the problem of transforming a fault-

intolerant program to a fault-tolerant program that provides strict 2-phase recovery

where S ⊆ Q and θ = ∞ can be solved in polynomial-time. Recall that this problem

requires us to add (¬S 7→≤∞ Q) and (Q 7→≤δ S). Furthermore, since S ⊆ Q, this is

equivalent to adding (¬S 7→≤∞ S) and (Q 7→≤δ S). Observe that this is an instance

of graceful 2-phase recovery. Hence, Theorem 4 follows from Theorem 14.

Next, we discuss the main differences between the two algorithms. We identify the

main reason that permits the solution of graceful 2-phase recovery be in polynomial-

time without closure of Q, but causes the addition of relaxed 2-phase recovery to be

NP-complete. Observe that in Line 10 in Add RelaxedPhasedRecovery, we added re-

covery paths from states in T1 to states in Q. Without closure property of Q, the

paths added for Add RelaxedPhasedRecovery can create cycles with paths added from

Q to S. Such cycles outside S prevent the program from recovering to the invari-

ant predicate within the required timing constraint. To the contrary, in Line 10 in

Add GracefulPhasedRecovery, we added recovery paths from states in T1 to states in S.

These paths cannot create cycles with paths added from Q − S. Moreover, the paths

also do not increase the delay in recovering from Q to S. For this reason, the problem

of Add GracefulPhasedRecovery could be solved in polynomial-time.

32

7.1 Example (cont’d)

To illustrate the application of Add GracefulPhasedRecovery, we change the timing con-

straints to SPEC
brT C

≡ (¬ST C 7→≤7 ST C) ∧ (QT C 7→≤3 ST C). These constraints

require that if the program is perturbed to a state that is outside the invariant ST C ,

then within 7 time units, it recovers to ST C . Moreover, if the fault only perturbs the

program to QT C , then recovery must complete within 3 time units.

The first step of Add GracefulPhasedRecovery is the same as that of

Add RelaxedPhasedRecovery. In the second step (Line 7), we compute transitions that

can be used in adding fault-tolerance. Since QT C need not be closed for

Add GracefulPhasedRecovery, the transitions computed in Line 7 contain additional

transitions where the program begins in a region where Qr
T C is true and ends in a

region where Qr
T C is false. Examples of such transitions include transitions that turn

at most one signal to green or yellow.

Subsequently, we add (QT C 7→≤3 ST C). Recall that variable t1 is used whenever

program executes a transition that begins in a region where Qr
T C is false and ends in

a region where Qr
T C is true (see Assumption 1). In addition, it adds shortest recovery

paths from each state in QT C to a state in ST C . It turns out that the shortest paths

from QT C is not affected by the new transitions included on Line 7. Hence, the program

adds the following action:

T C5i :: (sig0 = sig1 = R) ∧ (z0, z1 > 1)
zi−→ skip;

for all i ∈ {0, 1}. This action ensures that if the program is in a state in QT C−ST C then

it can recover to a state in ST C . The delay involved in this transition is 0. Note that

Add BoundedResponse can add additional transitions that do not violate the required

timing constraints. However, this addition must be done after ensuring the second

timing constraint (Line 10).

Then, the program adds (¬ST C 7→≤7 ST C). To achieve this,

Add BoundedResponse adds the shortest path from every region in T r
1 − Sr

T C to a

region in Qr
T C as long as the length of this path is less than 7. Note that if QT C had

any state from where the minimum delay was more than 3, then such a state would

have been removed while ensuring the first bounded response property. Hence, the de-

lay for the shortest paths from QT C would be at most 3. Subsequently, it can also add

other paths as long as the maximum delay for recovery to Qr
T C does not exceed 3 and

the maximum delay from any state in ¬ST C would not exceed 7.

8 Related Work

Discrete controller synthesis (DCS) was first introduced by Ramadge and Wonham

[37]. The objective in DCS is to find a language C (the controller) for a plant repre-

sented by language P and a specification language S, such that P ∩C ⊆ S. Intuitively,

in DCS, the goal is to constrain the actions of the plant by a controller, such that

the behavior of the controlled plant always meets safety and/or reachability conditions

required in the specification. Controller synthesis has extensively been studied from

different perspectives. Examples include, on-the-fly controller synthesis [41], controller

synthesis with partial observability [32], distributed controller synthesis [38], and opti-

mal supervisory control [31]. Timed controller synthesis was first introduced by Maler,

Pnueli, and Sifakis [34]. This work was later extended in [18,22,6,7]. The problem of

33

synthesizing controllers for bounded response properties is considered in [33]. Our work

in this paper is different from [33] in that we revise a given program in the presence of

faults with respect to bounded response properties, but the authors in [33] synthesize

an automaton that satisfies a set of such properties. Also, our focus is on the impact

of the relation between predicates involved in the bounded response properties on the

complexity of synthesis.

The idea of transforming a fault-intolerant system into a fault-tolerant system using

controller synthesis was first developed by Chao and Lim [19]. Similar to the model

in this paper, Chao and Lim consider faults as a system malfunction and failures

as something that should not occur in any execution. Their control objective is a

set of states that should be reachable by controllable actions or what they define as

recurrent events. Also, Girault and Rutten [26], demonstrate the application of discrete

controller synthesis in automated addition of fault-tolerance in the context of untimed

systems. They model different types of faults (e.g., processor crash, Byzantine faults,

value corruption) by uncontrollable actions in a labeled transition system (LTS). They

show that given a fault-intolerant program as a plant, discrete controller synthesis can

automatically add fault-tolerance to the synchronous product of the plant and the fault

model LTS with respect to invariance and reachability constraints.

We note that the notion of dependability and in particular fault-tolerance involves

features beyond just invariance and reachability. One such feature is bounded-time

recovery, where a program returns to its normal behavior when its state is perturbed

by the occurrence of faults. Recovery is an essential building block in fault-tolerant

systems and it is the focus of this paper. In all the aforementioned papers, and in

particular in [26], which is in spirit close to our work, the recovery mechanism must

be given as input to the DCS algorithm. Thus, the key difference between our work

in this paper and the methods in [26,18,22,6,7,19,34,37,41,32,38,31] is the fact that

we automatically synthesize recovery paths based on the the given 2-phase recovery

specification.

Automated addition of single-phase recovery has been studied from different per-

spectives. In [11], we presented an algorithm for addition of fault-tolerance and single-

phase recovery to real-time programs, where multiple faults can occur outside the

program’s normal behavior. One can extend the polynomial-time algorithms presented

in this paper using the technique described in [11] to handle multiple occurrences of

faults. A distributed algorithm for adding single-phase recovery to centralized untimed

programs was introduced in [17], where the state space of the given fault-intolerant pro-

gram is distributed over a network or cluster of workstations. In [14], we showed that

algorithmic addition of single-phase recovery to distributed programs is NP-complete

even in the absence of faults. We present an efficient and effective BDD-based heuristic

in [12] for adding single-phase recovery to distributed programs in the presence of faults.

This technique is implemented in the tool Sycraft [15]. Finally, addition of single-

phase recovery with respect to different classes of faults (known as multi-tolerance) was

studied in [30].

Automata-theoretic approaches for synthesizing controllers and reactive programs

[35] are generally based on the model of two-player games [40]. In such games a program

makes moves in response to the moves of its environment. The program and its envi-

ronment interact through a set of interface variables and, hence, the environment can

only update the interface variables. In our model, however, faults can perturb all pro-

gram variables. Moreover, in a two-player game model, players take turns and the set of

states from where the first player can make a move is disjoint from the set of states from

34

Q1 = Q Q1 = S Q1 = Q− S

Q2 = Q strict graceful ordered-strict

Q2 = ¬S relaxed single phase ordered-relaxed

Table 2 Other types of 2-phase recovery.

where the second player can move [42]. To the contrary, in our work, fault-tolerance

should be provided against faults that can execute from any state. Game-theoretic

methods are based on the theory of tree automata [39]. Such an automaton represents

the specification of a system. A synthesis algorithm checks the non-emptiness of the

automaton, i.e., whether there exists a tree acceptable by the tree automaton. If the

tree automaton is indeed nonempty, then the specification is called realizable and there

exists a model of the synthesized program. Pnueli and Rosner address the problem of

synthesizing synchronous open reactive modules in [35]. They generalize their method

in [36], by proposing a technique for synthesizing asynchronous reactive modules. In

particular, they investigate the problem of synthesizing an asynchronous reactive mod-

ule that includes only one process and interacts with a non-deterministic environment

through Boolean variables. Instances of solving timed games appear in [20,23].

9 Conclusion

In this paper, we focused on complexity analysis of synthesizing bounded-time 2-phase

recovery. This type of recovery consists of two bounded response properties of the form:

(¬S 7→≤θ Q1) ∧ (Q2 7→≤δ S)

We characterized S as an ideal behavior and Q1,2 as acceptable intermediate behaviors

during recovery. Each property expresses one phase of recovery within the respective

time bounds θ and δ in a fault-tolerant real-time program. We formally defined different

scenarios of 2-phase recovery and characterized their applications in real-world systems

(see Table 2). We showed that, in general, the problems of synthesizing ordered-strict,

strict, and relaxed 2-phase recovery are NP-complete in the size of the region graph of

the given intolerant program. However, the problem for strict and relaxed 2-phase re-

covery can be solved in polynomial-time (in the region graph), if S ⊆ Q and θ = ∞, or,

Q is required to be closed in the synthesized program. We also found a surprising result

that the problem of synthesizing graceful 2-phase recovery can be solved in polynomial-

time (in the region graph) even though all other variations are NP-complete. We also

identified other subproblems where the problem remains NP-complete or it can be

solved in polynomial-time. Appendix A presents a summary of results in a graphical

fashion.

Other types of 2-phase recovery are also possible (see Table 2). Other interesting

possible values for Q1 are S and Q − S, and, another interesting possible value for

Q2 is ¬S. Of these, it is straightforward to observe that the proof of NP-completeness

of relaxed 2-phase recovery can be extended to show that synthesizing ordered-relaxed

2-phase recovery is also NP-complete. All the complexity results in this paper are

summarized in Figure 3 along with the corresponding theorems that prove those results.

35

Based on the complexity analysis, we find that the problems of synthesizing strict

and relaxed 2-phase recovery are significantly simpler if the intermediate recovery pred-

icate Q is closed in the execution of the synthesized program. This result implies that if

the intermediate recovery predicate is used for recording the fault, then the complexity

of the corresponding problem is substantially higher than the case where the program

quickly provides acceptable behavior.

One future research direction is to develop heuristics to cope with the NP-complete

instances. Following our experience with synthesizing distributed fault-tolerant pro-

grams [12,15], where the problem is NP-complete in the state space, we believe that

efficient implementation of such heuristics makes it possible to synthesize real pro-

grams in practice. One can also consider the case where a real-time program is subject

to different classes of faults and a different type of tolerance and, hence, a different

recovery mechanism is required for each fault class. Another interesting problem is to

solve the synthesis problem in a compositional fashion. To this end, we are currently

extending the BIP component-based framework [9] to add features for reasoning about

fault-tolerant components and their interactions.

References

1. B. Alpern and F. B. Schneider. Defining liveness. Information Processing Letters, 21:181–
185, 1985.

2. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

3. R. Alur and T. A. Henzinger. Real-time system = discrete system + clock variables.
International Journal on Software Tools for Technology Transfer, 1(1-2):86–109, 1997.

4. A. Arora. Efficient reconfiguration of trees: A case study in methodical design of non-
masking fault-tolerant programs. Science of Computer Programming, 1996.

5. A. Arora and M. G. Gouda. Closure and convergence: A foundation of fault-tolerant
computing. IEEE Transactions on Software Engineering, 19(11):1015–1027, 1993.

6. E. Asarin and O. Maler. As soon as possible: Time optimal control for timed automata.
In Hybrid Systems: Computation and Control (HSCC), pages 19–30, 1999.

7. E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed automata.
In IFAC Symposium on System Structure and Control, pages 469–474, 1998.

8. J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applications. Springer,
2002.

9. A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time components in BIP.
In IEEE International Conference on Software Engineering and Formal Methods (SEFM),
pages 3–12, 2006.

10. B. Bonakdarpour and S. S. Kulkarni. Automated incremental synthesis of timed automata.
In International Workshop on Formal Methods for Industrial Critical Systems (FMICS),
LNCS 4346, pages 261–276, 2006.

11. B. Bonakdarpour and S. S. Kulkarni. Incremental synthesis of fault-tolerant real-time pro-
grams. In International Symposium on Stabilization, Safety, and Security of Distributed
Systems (SSS), LNCS 4280, pages 122–136, 2006.

12. B. Bonakdarpour and S. S. Kulkarni. Exploiting symbolic techniques in automated syn-
thesis of distributed programs with large state space. In IEEE International Conference
on Distributed Computing Systems (ICDCS), pages 3–10, 2007.

13. B. Bonakdarpour and S. S. Kulkarni. Masking faults while providing bounded-time phased
recovery. In International Symposium on Formal Methods (FM), pages 374–389, 2008.

14. B. Bonakdarpour and S. S. Kulkarni. Revising distributed UNITY programs is NP-
complete. In Principles of Distributed Systems (OPODIS), pages 408–427, 2008.

15. B. Bonakdarpour and S. S. Kulkarni. SYCRAFT: A tool for synthesizing fault-tolerant
distributed programs. In Concurrency Theory (CONCUR), pages 167–171, 2008.

16. B. Bonakdarpour and S. S. Kulkarni. On the complexity of relaxed and graceful bounded-
time 2-phase recovery. In International Symposium on Formal Methods (FM), pages
660–675, 2009.

36

17. B. Bonakdarpour, S. S. Kulkarni, and F. Abujarad. Distributed synthesis of fault-tolerant
programs in the high atomicity model. In International Symposium on Stabilization,
Safety, and Security of Distributed Systems (SSS), LNCS 4838, pages 21–36, 2007.

18. P. Bouyer, D. D’Souza, P. Madhusudan, and A. Petit. Timed control with partial observ-
ability. In Computer Aided Verification (CAV), pages 180–192, 2003.

19. K. H. Cho and J. T. Lim. Synthesis of fault-tolerant supervisor for automated manufactur-
ing systems: A case study on photolithography process. IEEE Transactions on Robotics
and Automation, 14(2):348–351, 1998.

20. L. de Alfaro, M. Faella, T. A. Henzinger, R. Majumdar, and M. Stoelinga. The element
of surprise in timed games. In International Conference on Concurrency Theory (CON-
CUR), 2003.

21. M. Demirbas, A. Arora, V. Mittal, and V. Kulathumani. A fault-local self-stabilizing clus-
tering service for wireless ad hoc networks. IEEE Trans. Parallel Distrib. Syst., 17(9):912–
922, 2006.

22. D. D’Souza and P. Madhusudan. Timed control synthesis for external specifications. In
Symposium on Theoretical Aspects of Computer Science (STACS), pages 571–582, 2002.

23. M. Faella, S. LaTorre, and A. Murano. Dense real-time games. In Logic in Computer
Science (LICS), pages 167–176, 2002.

24. S. Fortune, J. E. Hopcroft, and J. Wyllie. The directed subgraph homeomorphism problem.
Theoretical Computer Science, 10:111–121, 1980.

25. S. Gilbert, N. A. Lynch, S. Mitra, , and T. Nolte. Self-stabilizing robot formations over
unreliable networks. TAAS, 4(3), 2009.

26. A. Girault and É. Rutten. Automating the addition of fault tolerance with discrete con-
troller synthesis. Formal Methods in System Design (FMSD), 35(2):190–225, 2009.

27. M. G. Gouda. Multiphase stabilization. IEEE Trans. Softw. Eng., 28(2):200–208, 2002.
28. M. G. Gouda and N. Multari. Stabilizing communication protocols. IEEE Transactions

on Computers, 40(4):448–458, 1991.
29. T. A. Henzinger. Sooner is safer than later. Information Processing Letters, 43(3):135–141,

1992.
30. S. S. Kulkarni and A. Ebnenasir. Automated synthesis of multitolerance. In International

Conference on Dependable Systems and Networks (DSN), pages 209–219, 2004.
31. R. Kumar and V. K. Garg. Optimal supervisory control of discrete event dynamicalsys-

tems. SIAM Journal on Control and Optimization, 33(2):419–439, 1995.
32. F. Lin and W. M. Wonham. Decentralized control and coordination of discrete-event

systems with partial observation. IEEE Transactions On Automatic Control, 35(12),
December 1990.

33. O. Maler, D. Nickovic, and A. Pnueli. On synthesizing controllers from bounded-response
properties. In Computer Aided Verification (CAV), pages 95–107, 2007.

34. O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for timed sys-
tems. In 12th Annual Symposium on Theoretical Aspects of Computer Science (STACS),
pages 229–242, 1995.

35. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Principles of Pro-
gramming Languages (POPL), pages 179–190, 1989.

36. A. Pnueli and R. Rosner. On the synthesis of an asynchronous reactive module. In
International Colloqium on Automata, Languages, and Programming (ICALP), pages
652–671, 1989.

37. P. J. Ramadge and W. M. Wonham. The control of discrete event systems. Proceedings
of the IEEE, 77(1):81–98, 1989.

38. K. Rudie and W. M. Wonham. Think globally, act locally: Decentralized supervisory
control. IEEE Transactions On Automatic Control, 37(11):1692–1708, 1992.

39. W. Thomas. Handbook of Theoretical Computer Science, volume B, chapter 4: Automata
on Infinite Objects, pages 133–192. Elsevier Science Publishers B. V., Amsterdam, 1990.

40. W. Thomas. On the synthesis of strategies in infinite games. In Theoretical Aspects of
Computer Science (STACS), pages 1–13, 1995.

41. S. Tripakis and K. Altisen. On-the-fly controller synthesis for discrete and dense time
systems. In Formal Methods 1999 (FM), pages 233–252, 1999.

42. N. Wallmeier, P. Hütten, and W. Thomas. Symbolic synthesis of finite-state controllers for
request-response specifications. In Implementation and Application of Automata (CIAA),
pages 11–22, 2003.

37

A Graphical Summary of Results for Relaxed and Strict 2-phase Recovery

Relaxed:

P2

Relaxed:

Strict:
P2

Relaxed:

Strict:

Strict:

Relaxed:
Strict:

Relaxed:

P2
Strict:

Relaxed:

P2 Relaxed:

Strict:

P1: Polynomial−time, 1−phase
P2: Polynomial−time, 2−phase

NPC: NP−complete

G: Condition given by the synthesis problem
NG: Condition not given by the synthesis problem

P2

Relaxed:

Strict: Strict:

Relaxed:

P2

NPC NPCNPC
Relaxed:

Strict:

Relaxed:
NPC

Strict:

NPC
Relaxed:

Strict:

Relaxed:

Strict:

Relaxed:
NPC

Relaxed:

Strict:Strict:

Relaxed:

Strict:Strict:

θ = ∞
GNG

Theorem 9

Theorem 12

Theorem 9

Theorem 12 P2, Theorem 4

Theorem 9

Theorem 12

Theorem 9

Theorem 12

P1, Theorem 3 P1, Theorem 3

P1, Similar to

Theorem 3

Q is not closed

Q is closed

Legend

NG G

G

S ⊆ Q

δ = ∞

θ = ∞ θ = ∞ θ = ∞

δ = ∞
G

GG GNG NG NG

NGNG

Theorem 12

Theorem 9 Theorem 9

Theorem 12

NG G

G

P1, Theorem 3

S ⊆ Q

δ = ∞

θ = ∞ θ = ∞ θ = ∞

δ = ∞

θ = ∞

G

GGG GNG NG NG NG

NGNG

Theorem 1

Corollary 2

Corollary 1

Theorem 2

Theorem 5

Corollary 2 Theorem 5

Corollary 1 Corollary 1

Theorem 2

Corollary 1

Theorem 2

P1, Theorem 3

P1, Similar to

Theorem 3

P2, Theorem 4

Fig. 3 Summary of Complexity Results

