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Abstract—We propose a new metric for effectively and accu-
rately evaluating the performance of self-stabilizing algorithms.
Self-stabilization is a versatile category of fault-tolerance that
guarantees system recovery to normal behavior within a finite
number of steps, when the state of the system is perturbed by
transient faults (or equally, the initial state of the system can
be some arbitrary state). The performance of self-stabilizing
algorithms is conventionally characterized in the literature
by asymptotic computation complexity. We argue that such
characterization of performance is too abstract and does
not reflect accurately the realities of deploying a distributed
algorithm in practice. Our new metric for characterizing the
performance of self-stabilizing algorithms is the expected mean
value of recovery time. Our metric has several crucial features.
Firstly, it encodes accurate average case speed of recovery.
Secondly, we show that our evaluation method can effectively
incorporate several other parameters that are of importance
in practice and have no place in asymptotic computation
complexity. Examples include the type of distributed scheduler,
likelihood of occurrence of faults, the impact of faults on speed
of recovery, and network topology. We utilize a deep analysis
technique, namely, probabilistic model checking to rigorously
compute our proposed metric. All our claims are backed by
detailed case studies and experiments.

Keywords-Self-stabilization; Performance evaluation; formal
methods

I. INTRODUCTION

Self-stabilization [8], [9], [22] is a versatile technique for
forward fault recovery. When the system is hit by faults
and driven to some arbitrary state [24], it is guaranteed to
recover proper behavior within a finite number of execution
steps. Once the system reaches such good behavior, typically
specified by a set of legitimate states, it remains in this set
thereafter in the absence of new faults. The past decades
saw the initial concept maturing and spanning various prob-
lems [7], [6], [3], [1], and networks [10], [5], [18], [21].

The performance of a self-stabilizing algorithm is usually
characterized by how fast it recovers good behavior. The
conventional metric to evaluate the performance is asymp-
totic computational complexity in terms of the number of
rounds [11] (i.e., the shortest computation in which each
process executes at least one step), or waiting time (i.e., the
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number of global actions that has to be executed). Thus, one
can express the performance of a self-stabilizing algorithm
as the worst case number of, e.g., rounds in terms of the
big O notation of a parameter of the distributed system. For
instance, if the topology of a distributed system is a tree,
then the performance could be a polynomial of /& rounds,
where h is the height of the tree.

We argue that such characterization of performance is
too abstract and does not reflect accurately the realities of
deploying a distributed self-stabilizing algorithm in practice.
More specifically, the asymptotic computational complexity
abstracts away factors that can be potentially crucial in
practice (constants and smaller polynomials may matter,
but most importantly the worst case complexity may be
irrelevant in practice). We believe that these abstractions
make asymptotic computational complexity a less attrac-
tive metric for analyzing the actual performance of self-
stabilizing algorithms.

On the other hand, practical performance evaluation of
self-stabilizing algorithms typically uses simulation [13],
[19], [18], [1], but most approaches consider running the
algorithm from an initial random state, which is known to
introduce significant bias [1] and also raises the question of
case coverage since only a very small portion of possible
states are encountered in a typical simulation run.

With this motivation, in this paper, we propose a new
metric that characterizes the average recovery speed of a
self-stabilizing algorithm independently of the underlying
network topology and communication technology (e.g.,,
shared memory vs. message passing). The new metric is
technically the statistical expected mean value of the number
of recovery execution steps. This expected value is computed
based on the sum of probabilities for n-step reachability of
legitimate states for all possible values of n; i.e., the number
of execution steps to reach a legitimate state from each
arbitrary state. Our technique to compute the probability
of n-step reachability and subsequently the expected mean
value of recovery speed is based upon automated push-
button probabilistic model checking [23]. A probabilistic
model checker takes the model of a (deterministic or non-



deterministic) system and a set of probabilistic temporal
properties as input and automatically proves whether the
model satisfies the properties. In the context of our problem,
a probabilistic temporal property is of the form ‘whether
the probability of reachability of legitimate states from an
arbitrary state within n execution steps is greater than a
certain value’. Equally, one can compute the probability of
n-reachability of legitimate states from an arbitrary state,
which modern probabilistic model checkers can do. Obvi-
ously, computing this probability implies the computation
of the expected mean value of recovery speed. The average
recovery speed computed using this technique represents the
overall performance of an algorithm and can be used as a
basis for comparing the performance of different algorithms
proposed to solve the same problem in a more realistic
fashion. We note that our method is scalable proportional
to probabilistic model checking.

Another advantage of our technique is that it can elegantly
take into account other parameters vital to evaluation of
the performance of a self-stabilizing algorithm by simply
incorporating them when building the model of an algo-
rithm. Examples of these parameters include the impact of
underlying scheduler and the likelihood of occurrence of
faults. While the former can significantly change the way an
algorithm behaves during recovery, the latter determines the
number of states and the probability of reaching states from
where recovery is fast or slow. This number and probability
can significantly impact the expected mean value of the
speed of recovery. To the best of our knowledge, such
analysis has not been addressed in the literature of self-
stabilization.

In order to back our claims, we conducted thorough exper-
iments using the PRISM model checker [16] and three well-
known self-stabilizing algorithms for solving distributed
Propagation of Information with Feedback (PIF) in rooted
trees. Our experiments clearly show that an algorithm that
has the best asymptotic performance does not perform the
best under all possible scenarios. Thus, in order to imple-
ment and deploy a self-stabilizing algorithm in practice, one
has to asses the environment and likelihood of its faults to
make the best choice of algorithm. In other words, our results
show that the big O notation by itself is not a good metric
for deployment of self-stabilizing algorithms in real world.

We believe that our new metric and automated technique
provide valuable insights on behavior and performance of
self-stabilizing algorithms crucial for practical system de-
ployment. To demonstrate the application of such insights,
we also show that the performance metric output can be of
significant help in implementation, as we derive a general
technique (called state encoding) that automatically im-
proves (sometimes in considerable proportions) the perfor-
mance of the implementation without changing the behavior
of the protocol.

Organization: The rest of the paper is organized as
follows. In Section II, we recap the preliminary concepts

such as the formal definition of distributed systems, prob-
abilistic model checking, and self-stabilization. Our perfor-
mance evaluation method is described in Section III, while
Section IV elaborates on its benefits. We analyze our exper-
imental results in Section V. State encoding is discussed
in Section VI. Finally, we make concluding remarks in
Section VII.

II. PRELIMINARIES

In this section, we describe the preliminary concepts on
distributed systems, probabilistic model checking, and self-
stabilization.

A. Distributed Systems

We model a distributed system as a simple self-loopless
static undirected graph G = (V, E), where V is a finite set
of vertices representing processes and E is a finite set of
edges representing bidirectional communication, such that
for all (p,q) € E, we have p,q € V. In this case, p and ¢
are called neighbors. The set of all neighbors of a process
p is denoted by N (p).

The communication between processes are carried out
using locally shared variables. Each process owns a finite
set of locally shared variables, henceforth, referred to as
variables. Each variable ranges over a fixed domain and the
process can read and write them. Moreover, a process can
also read variables of its neighbors in one atomic step. The
state of a process is defined by a mapping from each variable
to a value in its finite domain'. A process can change its state
by executing its local algorithm. The local algorithm of a
process is described using a finite set of Dijkstra’s guarded
commands (also called actions) of the form:

(label) :: (guard) — (statement)

The guard of an action at process p is a Boolean expression
involving a subset of variables of p and its neighbors. The
statement of an action of p updates a subset of variables of p.
That is, in addition to reading and writing its own variables,
a process can as well read its neighbors’ variables.
Example: We utilize the following as a simple run-
ning example for the sake of illustration and describing
the concepts. Consider a system that consists of only one
process. This process has a variable x that ranges over
domain {0, 1,2, 3}. The process actions are the following:

z=0 — print (* ‘safe’’)
r=1 — z:=0
r=2 — r:=1
r=3 — T:=2
r=3 — z:=1
r=3 — z:=0

I'We note that finiteness of processes, variables, and domains is due the
fact that our approach in this paper is based on model checking, which is
most effective in the context of finite models.



A global state s of a distributed system is an instance
of the local state of its processes. We denote the set
of all states of a distributed system G by S (called its
state space). The concurrent execution of the set of all
local algorithms defines a distributed algorithm. We say
that an action of a process p is enabled in a state s if
and only if its guard is true in s. By extension, process
p is said enabled in s if and only if at least one of
its actions is enabled in s. An action can be executed
only if its guard is enabled. If atomic execution of an
action in state s results in state s’, we call (s, s') a transition.

Definition 1 (Computation): A computation of a dis-
tributed system is a maximal sequence of states o =
S081 - .., such that for all 7 > 0, each pair (s;,s;41) is
a transition. Maximality of a computation means that the
computation is either infinite or eventually reaches a terminal
state; i.e., a state where no action is enabled. ]

B. Probabilistic Model Checking

In order to reason about distributed systems, we focus on
their state space and set of transitions. Let AP be a set of
atomic propositions.

Definition 2 (Markov Chain): A discrete-time Markov
chain (DTMC) is a tuple D = (S, SY, P, L), where

« S is the finite state space

e SY C S is the set of initial states

e P:S5xS8 —]0,1] is a function such that for all s € S,

we have
Z P(s,s") =1
s'esS

o L:S — 247 is a labeling function assigning to each
state a set of atomic propositions. ]

It is straightforward to see that one can represent a
distributed algorithm as a Markov chain. In a Markov
chain, the fact that P(s,s’) # 0 for two states s,s' € S
stipulates there is a transition from s to s that can
be executed with some probability. We emphasize that
representing a distributed algorithm in our framework based
on a Markov chain does not make our approach in this
paper suitable for only probabilistic distributed algorithms
(e.g., [15]). In particular, if a distributed algorithm is not
probabilistic, then it can be modeled as a Markov chain,
where the probability of all outgoing transitions from
each state are equal. Thus, the definition of computation
in a Markov chain is identical to the one presented in
Subsection II-A.

Example: The Markov chain of the example presented
in Subsection II-A is shown in Figure 1. Each state is
labeled by the value of variable z. Each transition is
annotated by the probability of its occurrence. In particular,

Figure 1. Markov chain of the guarded commands in Subsection II-A.

the probability of outgoing transitions from states 0, 1,
and 2 are 1, as these transitions are the only outgoing
transitions. All outgoing transitions from state 3 have
probability % since the corresponding guarded command
program is non-deterministic but also non-probabilistic.
Hence, these transitions should execute with the same
probability. Of course, such non-determinism also depends
on the scheduler. We will explain the role of scheduler in
Section IV.

Probabilistic model checking is based on the definition
of a probability measure over the set of paths that satisfy
a given property specification. Our specification language
in this paper is the Probabilistic Computation Tree Logic
(PctL). This logic is especially designed for reasoning
about reliability.

Definition 3 (PCTL Syntax): Formulas in PCTL [14] are
inductively defined as follows:

pu=p| |1 Ve | Pux(erU" p2)

where p € AP, ~€ {<,<,>,>} is a comparison operator,
and \ is probability threshold. The sub-formula @1 U" @5 is
the classic (bounded/unbounded) “until” operator. ]

Definition 4 (PCTL Semantics): Let ¢ = sps1 ... be an
infinite computation, ¢ be a non-negative integer, and |= de-
note the satisfaction relation. Semantics of PCTL is defined
inductively as follows:

7,1 = true
g,iEp iff p € L(s;)
7,1 = —p iff 7,0 e

Gl =1 Vg iff (@i ¢1) vV (@0 F )
G, i = o1 UM oy iff
Fk>i:(k—i=h)A(T,kEp2) A
Viti<j<k:7,jFE ¢1.
In addition, @ = ¢ holds iff @,0 | ¢ holds. Finally, for
a state s, we have s =P e iff the probability of taking
a path from s that satisfies ¢ is ~ A. |

Following Definition 4, we use the usual abbreviation
Op = (trueld @) for “eventually” formulas. Moreover,
Op = =O— is the classical “globally” path formula.



Example: 1t is straightforward to see that the Markov
chain in Figure 1 satisfies the following PCTL properties:
e Poa(z=3)= O3(z =0)
o P>1O0(x = 0), which is
P>1(1<2<3)U(x=0)

logically equal to

Definition 5: Let D = (S, S°,P, L) be a Markov chain.
A state predicate is a subset of S. |

Observe that a state predicate is a PCTL formula con-
structed by only atomic propositions and Boolean operators
- and V.

C. Self-stabilization

Intuitively, a self-stabilizing system is one that if its
execution starts from any arbitrary state, then it always
reaches a good behavior within a finite number of steps
(called the convergence property) and after convergence, it
behaves normally unless its state is perturbed by transient
faults (called closure property). The so called “good
behavior” is normally modeled by a state predicate called
legitimate states. Since a self-stabilizing system can start
executing from any arbitrary state, in the context of Markov
chains, we assume that S = S?; i.e., an initial state can be
any state in the state space. We formally define the notion
of legitimate states using PCTL as follows.

Definition 6 (Self-stabilization): Let D = (S,S° P, L)
be a Markov chain, representing a distributed algorithm,
and LS be a state predicate. We say D is self-stabilizing
for legitimate states LS iff the following two conditions
hold:

e (Closure) For each state s € LS, if there exists a state
s’ such that P(s,s’) # 0, then s’ € LS; i.e., execution
of a transition in LS results in a state in LS.

o (Convergence) We have P~;JOLS; i.e., starting from
any arbitrary state, the probability of reaching the
legitimate states is always 1, and D has no cycles in
=LS. [ |

In Definition 6, the convergence property is also called
recovery and a computation that starts from a state in ~LS
and reaches a state in LS is called a recovery path.

Example: 1t is straightforward to see that the Markov
chain in Figure 1 is self-stabilizing for LS = (z = 0).

III. EVALUATION METHOD BASED ON PROBABILISTIC
MODEL CHECKING

In this section, we describe our method for evaluating
the performance of self-stabilizing algorithms. First, in Sub-
section III-A, we describe the shortcomings of the conven-
tional approaches to characterize the performance of self-
stabilizing algorithms. Then, Subsection III-B presents an

intuitive description of our approach, while Subsection III-C
elaborates on our evaluation technique in formal terms.

A. Shortcomings of Conventional Approaches

The conventional metric to evaluate the performance
of a self-stabilizing algorithm is asymptotic computational
complexity in terms of rounds, cycles, or recovery time:

e A round [11] is a shortest computation fragment in
which each process executes at least one step.

e A cycle is a shortest computation fragment in which
each process executes at least one complete iteration
of its repeatedly executed list of commands.

e Recovery time (also called stabilization time) is the
number of global actions that has to be executed from
an arbitrary state to a legitimate state.

Thus, one can characterize the performance of a self-
stabilizing algorithm as the worst case number of rounds in
terms of the big O notation of a parameter of the distributed
system. For example, if the topology of a distributed system
is a tree, then the performance could be O(h?) rounds, where
h is the height of the tree. We argue that such characteriza-
tion of performance is too abstract and does not reflect all the
realities of deploying a distributed algorithm in practice. For
example, the asymptotic computational complexity abstracts
away the following parameters that can be potentially crucial
in practice:

o The constants removed in computing O can be large

enough to affect the performance of the algorithm.

o The smaller polynomials removed in computing O can
be large enough to have significant impact on the
performance of the algorithm.

o The worst case complexity may rarely occur.

We believe these abstractions make the asymptotic com-
putational complexity a less attractive metric to analyze the
performance of self-stabilizing algorithms.

B. Sketch of Our Approach

In order to address the aforementioned issues, we ad-
vocate computing the average case performance in terms
of recovery time by taking into account the characteristics
of each state outside the set of legitimate states of a self-
stabilizing algorithm. To this end, we utilize state exploration
and, hence, model checking. In particular, given a self-
stabilizing algorithm, we take the following steps:

1) We compute the probability of reachability of legit-
imate states for each state outside legitimate states
within h number of steps.

2) Then, we compute the expected mean value of recov-
ery time for each state outside the set of legitimates
states.

3) Finally, we calculate the expected mean value of
recovery time for the set of non-legitimate states.

It is straightforward to see that the result of the last step
characterizes how fast a self-stabilizing algorithm recovers.



Moreover, this metric encodes average case analysis, which
is a more fair measure for performance analysis. One
can use this metric to compare the performance of two
self-stabilizing algorithms. The remainder of this section
describes how we employ probabilistic model checking
techniques to rigorously compute the expected mean value
of recovery time.

C. Detailed Description

Let D = (S, S° P, L) be a Markov chain with legitimate
states LS and s be state in = LS. Following Definition 4,
the PCTL property

P>, (s = O"LS)

holds in D, if starting from s the probability of reaching LS
in h steps is greater than or equal to p.

In order to analyze the speed of recovery of a self-
stabilizing algorithm, we consider the other side of the coin
by computing the probability of truthfulness of the following
expression

(s = O"LS)

for each state s € = LS. Let 11 be the probability distribution
on recovery paths and R(s) denote the length of recovery
path that starts from s. One can compute the probability of
existence of recovery paths of length at most /N from state
s as follows:

P{R(s) < N} = Z{M(E: s051---) |
(so=5) A (FEO"LS) A (R<N)} (1)
Example:  For the Markov chain in Figure 1, the

probability of recovery of length at most 2 from state 3 to
state 0 is: 1/34+1/3 =2/3.

One can also compute the expected mean value of R(s),
that is, the average length of all recovery paths that start
from state s. Again, this value can be computed by direct
summation as follows:

E{R(s)} = > {u@=s0s1...)xh |
(so=5) A (T O"LY)} )

Example:  For the Markov chain in Figure 1, the
expected mean value of recovery steps for state 3 is
1 1 1
IX-+2x-+3x-=2
3 + 3 + 3

Observe that unlike the conventional characterization of
self-stabilizing systems, where the system can start executing
from all initial states with the same probability (or equally,
faults can perturb the system to any state with the same
probability), we argue that in practice this is not the case.
Thus, we associate a probability p(s) to each state s € —LS,
such that

Subsequently, the mean expected value of recovery steps
for a self-stabilizing algorithm represented by a Markov
chain D is the following:

E(R(D)} = Y_{E{R(s)} x p(s) | s € ~LS} (3)

Unlike classic asymptotic complexity analysis, Equation 3
explicitly takes into account several parameters that are of
importance in both theory and practice for analyzing the
efficiency of self-stabilization. These factors include the
likelihood of arbitrary initializations and the number of
states in — LS, from where recovery is fast (respectively, is
slow).

Example: For the Markov chain in Figure 1, assuming
equal probability for all non-legitimate states, the expected
mean value of recovery is

1 1 1
1><3+2><3+2><3—1.66

It is easy to see that if faults with non-uniform probability
distribution perturb the state of the system, the expected
mean value of recovery steps can dramatically change.
For instance, if the fault that reaches state 3 occurs with
probability 90% and states 2 and 1 are reached by probability
5%, then the expected mean value of recovery steps is

5 5 90
Ix 2 +2x 2 42%x 2 105
“ 700 T4 100 7% 100

Our performance metric can be, henceforth, applied to
compare the performance of two self-stabilizing algorithms
(i.e., by comparing their expected mean value of recovery
steps). Formally:

Given D1 = (S(), S?,Pl, Ll) and DQ = (SQ, SS,PQ, L2>,
we say that Dq outperforms Do iff

E{R(D1)} < E{R(D2)}

IV. OTHER BENEFITS OF OUR APPROACH

In this section, we elaborate on the benefits of using
our metric to determine the performance self-stabilizing
algorithms in addition to rigorous average case analysis.
We classify these benefits in terms of the parameters that
our metric can take into account.

Impact of scheduler: Formally, a scheduler (also
called a daemon) is a predicate that defines a set of
admissible computations. In our formulation, we did not
consider a scheduler, but there exist several types of
schedulers [12]. The most liberal scheduler, is a distributed
unfair scheduler, where ‘distributed’ means that any subset
of enabled processes may be scheduled for execution at
any given time and ‘unfair’ means that if a process p is
continuously enabled, then p may never be chosen by the
scheduler unless p is the only enabled process. A central



scheduler is one that executes only one action among all
enabled actions; i.e., actions of processes are executed in an
interleaving fashion. A strongly fair scheduler eventually
chooses an action that is continuously enabled. A weakly
fair scheduler eventually chooses an action of a process p,
if p is continuously enabled. Observe that in practice, a
central scheduler resembles the scheduler of a uni-processor
system and a distributed scheduler embodies the scheduler
of a multi-processor or multi-core system. Moreover, a fair
scheduler is one that implements some aging algorithm. All
these types of schedulers may rule out some computations,
which, in turn, may change the mean expected value of
recovery time of an algorithm. In order to incorporate the
impact of a scheduler on performance analysis, one can
generate the Markov chain of a set of guarded commands
by enforcing scheduling predicates. For instance, if in
a state, several actions are enabled, then a distributed
scheduler may potentially execute any combination of the
enabled actions. Such combinations can be captured in the
resulting Markov chain in a straightforward fashion. We
note that the scheduler itself can also be probabilistic. For
instance, a scheduler of a uni-processor or multi-core system
may enforce certain policies by assigning non-uniform
probability of execution of actions (e.g., the scheduler
gives higher priority to recovery actions). Such cases can
elegantly be woven into our framework.

Likelihood of occurrence of faults or initialization:

A serious drawback of asymptotic performance analysis
is that it completely abstracts away the fact that arbitrary
initializations and faults often do not occur with uniform
probability in practice. In fact, non-uniform probability
distribution of faults, may significantly change the
performance of a self-stabilizing algorithm. Observe that
Equation 3, addresses this shortcoming of asymptotic
performance evaluation. This means that if faults that reach
states from where recovery time is longer are not probable,
then the algorithm is more likely to perform much better
than the worst case big O complexity.

Insights on impact of adversaries: Since recovery time
may differ from different non-legitimate states, faults that
perturb the system to states from where recovery is slow
are arguably more severe. In other words, severe faults,
whose occurrence will require longer recovery, will degrade
the performance of the system, as the system may spend
more time on recovery than normal execution. Thus, if an
adversary intends to attack the system, it can cause greater
damage by injecting faults that are more severe. Since our
method can effectively identify such faults, one can obtain
useful insights about the system and revise the system, so
that it is more resilient to more severe faults (e.g., using
state encoding and memory redundancy techniques, see
Section VI).
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Figure 2. An execution scenario of PIF

Blindness to network topology and communication:
Another benefit of our approach is its generality with respect
to the underlying network topology and communication
technology. Notice that our approach can be applied on
any self-stabilizing algorithm non-withstanding the input
language (be it guarded commands, I/O automata [17], or
process algebras [2]), type of communication (be it shared
memory or message passing), or network topology (be it
a ring, a tree, or an arbitrary graph). Regardless of the
presentation of an algorithm, we transform the algorithm
into a Markov chain for our analyses. Having said that,
it can be the case that an algorithm exhibits a different
performance for similar topologies with small differences
(e.g., a tree and a chain of processes). These details cannot
be analyzed easily using abstract metrics such as the big O
notation.

Parametric analysis: Although classic model checkers
take a concrete model as input, there have recently been
advances on parametric verification. For instance, using
parametric model checking, one can analyze an algorithm
for arbitrary size trees. Using such methods will allow us
to analyze the performance of algorithms for more general
classes of network topologies.

In Section V, we will present experimental evidence that
touches upon some of the above benefits.

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

In this section, we present our case study on distributed
Propagation of Information with Feedback (PIF) in rooted
trees. Figure 2 shows a simple execution scenario of an
algorithm for PIF for three processes arranged on a line.
Each process has three states: idle, request, and response (de-
noted {id, rq, rp}). In this scenario, initially, all processes
are idle (step 1). Then, the root makes a request (step 2). This
request propagates all the way to the leaf, where a response
is generated (steps 3-4). A process whose all children are
responding also responds, except for root, which becomes
idle (steps 5 and 7). A responding process becomes idle
when its parent is responding (steps 6 and 8).

We focus on three non-probabilistic self-stabilizing algo-
rithms. These algorithms achieve PIF given any arbitrary
state. The first algorithm [4] is snap-stabilizing with perfor-
mance of O(h?) rounds, where h is the height of the rooted
tree of the underlying network. In the sequel, we refer to
this algorithm as Snap1. The second algorithm [4] is snap-
stabilizing with performance of O(1) rounds. In the sequel,
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Figure 3. Mean recovery time for three PIF algorithms

we refer to this algorithm as Snap2. The third algorithm [20]
is an ideal-stabilizing algorithm with performance O(h?).
We refer to this algorithm as Ideal. In all algorithms, the set
of states reachable in the absence of faults from the state
where all processes are in state id identify legitimate states.

A. Implementation

The three aforementioned algorithms are modeled in the
probabilistic model checker PRISM [16] as discrete-time
Markov chains. We use the Reward mechanism of PRISM
to record and reason about the recovery time from each
state. Specifically, the reward “~LS : steps + 17, where
initially steps = 0, specifies that in a computation, when a
state in = LS is reached, the recovery path has an additional
step. Thus, the expected mean value of recovery time can
be computed using the value of steps. PRISM computes
the expected value of steps only for a single initial state
(i.e., Equation 2 in Section III). However, using the Filter
mechanism in PRISM, we can compute the expected value
of steps for a set of initial states, namely, all states in LS
(i.e., Equation 3 in Section III). Likewise, using filters, one
can compute the expected mean value of recovery time, from
certain set of states as well. Examples include, set of states
reached by certain types of faults or faults that occur in
certain processes.

B. Experimental Results

This subsection is organized in a top-down fashion:
we first present our high-level results on comparing the
performance of algorithms and then describe insights
obtained by detailed analysis of the algorithms. We will
employ our insights gained in this section to design a state
encoding scheme that improves the performance of an
algorithm in Section VI

1) Expected mean recovery time: Figure 3 shows the
expected mean value of recovery time of the three PIF
algorithms for different number of processes. As can
be seen, for line topology of lengths 5-10, algorithm
Snap2 exhibits faster recovery time than Ideal and Snap1.
However, algorithm Snap1’s performance seems to diverge
from the other two with a faster pace. This is due to the
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Figure 4. Recovery time skewness of PIF for line 10

fact that in Snap1, as the number of processes increase,
the number of states from where recovery is slow grows
more rapidly than the other two algorithms. Also, observe
that although Snap1 and Ideal have identical asymptotic
performance, Ideal outperforms Snap1 and it does not
diverge as fast as Snap1 as compared to Snap2.

2) Recovery time distribution: As mentioned above,
the distribution of recovery time over states determines
the overall recovery time of an algorithm. To analyze the
effect of this distribution, consider Figure 4, which shows
the number of states in —LS in terms of recovery time
distribution of PIF for line 10. The skewness value of a
graph can represent the performance of the algorithm. If
the majority of states are concentrated on lower values of
recovery, then the expected mean value of recovery time
decreases. Moreover, a larger absolute value implies a
better performance for the algorithm. That is, recovery for
a larger number of states is faster. As we can observe, the
skewness of Snap2 is towards the left, which causes the
expected mean value of recovery time to be less than the
other algorithms. The same interpretation can be applied
for comparing Ideal and Snapi1. In particular, skewness
values for Snap2, Ideal, and Snapi1 are 2.26, 1.86, and
0.88, respectively. Hence, Snap2 has the best performance.

3) Impact of fault probability distribution: In practice,
faults occur with a non-uniform probability distribution.
As described in Equation 3, this probability distribution
can significantly affect the performance of a self-stabilizing
algorithm. Our claim is that since there exist states from
where algorithms Snap1 and Ideal show faster recovery
than Snap2, if some faults reach a set of states with
higher probability, then the expected recovery time may
change significantly. Figure 5 validates our claim (Region
1 refers to a state predicate in —LS, from where Snap1
performs better than Snap2). As can be seen, in Figure 5(a)
(respectively, Figure 5(b)), there are cases, where Snap2
underperforms Snap1 (respectively, Ideal). This situation is
more clear in case of Ideal and Snap1 (see Figure 5(c));
i.e., there are more cases where Snap1 outperforms Ideal,
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Figure 5. Impact of fault probability distribution (line 8)

although Ideal has better uniform performance than Snap1
(recall Figure 3). We note that since predicate —LS for
Snap1 and Snap2 are identical and differ from —LS of
Ideal, we cannot compare them in the same graph.

4) Impact of type of and location of faults: Studying the
impact of place of occurrence and type of faults is a part
of sensitivity analysis, which is a crucial step in deploying
distributed systems in practice. Figure 6 compares the overall
expected recovery time with the recovery time when certain
faults with respect to type and location occur, for all three
algorithms for line of size 12. For instance, if the state
of the root process becomes rq in —LS, then in all three
algorithms, the recovery time from these states is less than
the overall expected recovery time of the algorithms. This is
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Figure 6. Comparison of recovery time based on the place and type of of
faults (line 12)

also the case when the state of an intermediate (i.e., non-root
and non-leaf) process becomes 7p. On the contrary, faults
that change the state of intermediate processes to rq are
more severe. This is of course expected, since such faults
initiate two waves of message propagation for stabilization.
This sensitivity analysis provides us with useful insight
to implement more efficient protocols. One approach that
benefits from sensitivity analysis is state encoding described
in the next section.

VI. EMPLOYING STATE ENCODING TO IMPROVE
PERFORMANCE

State encoding consists in assigning bit patterns to abstract
algorithm states. For example, two states s and s’ can be
associated to bits 0 and 1, respectively. Another possibility
is to have bit patterns of size two and mapping 00 to s and
01, 10, and 11 to s". In the first case, there is a bijection
between bit pattern and abstract states. In the second case,
the mapping is injective, but not surjective. The purpose of
such state encoding is twofold:

1) increase the proportion of LS as compared to —LS
states by making states appearing in —LS less likely
to appear (compared to the default choice of a bijec-
tive mapping) if bits can, for instance, randomly get
flipped.

2) decrease the average expected recovery time by mak-
ing states that occur in long recovery time executions
less likely to appear than those belong to short recov-
ery time executions.
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Toot 0 ] 19 700} 162 7 I5 | {01,10,11}] | 14 0 = = -
Process 2 4 1.5 {001, 010,011} 1.36 6 22 {000} 4.94 4 1.5 {100, 101, 110, 111} 1.15
Process 3 2 25 {oo01} 135 10 | 175 {000} 142 2 125 | {010,011, 100, 101,110,111} | 2.10
Leaf 7 1.2 {00} 1.79 0 — — — 7 1.6 {o01,11,10} 1.26
Table 1

STATE ENCODING FOR PIF (LINE OF 4)

Our claim in this section is that the insights gained through
our performance analysis technique, make it possible to
design encodings that can improve the performance of an
algorithm. Note that state encoding is only an implemen-
tation technique and does not change the behavior of the
original algorithm.

Consider a line of four processes for Snap1 algorithm. We
make the following observations (summarized in Table I):

« In case of the root process both states id or rq appear
in = LS, but id appears 2.5 times more. Moreover, the
expected recovery time when the state of root is id is
1.9, while the expected recovery time when the state of
root is rq is 1.5. Thus, assigning more bit patterns to rgq
will results in a smaller-size = LS as well as decreasing
the expected recovery time. A 2-bit state mapping is
the following: {00} — id and {01,10,11} — rq. This
encoding will result in new recovery time E' = 1.62
for state id and E' = 1.4 for state rq.

o The state of the second process can be id, rq, or rp and
all three appear in = LS. However, state rq appears in
6 global states, while the other two appear in 4 global
states. Also, the expected recovery time for states id
and rp is 1.5, while the expected recovery time for
state rq is 2.2. Thus, reducing the occurrences of state
rq should decrease the expected recovery time. Two
bits are necessary to encode three states, but we should
not map two different bit patterns to state rg. Thus,
we use a 3-bit encoding to decrease the proportion
of non-legitimate states as follows: {000} +— rq,
{001,010,011} s id, and {100,101,110,111}
rp. Notice that the choice for the state mapping of states
id and rp is arbitrary.

o In case of the third process, based on the recovery
time and number of states shown in Table I, allocating
more bit patterns to state id would have two opposite
effects: reducing the proportion of non-legitimate states,
but increasing the average expected recovery time. On
the contrary, allocating more bit patterns to state 7p
decreases both the proportion of non-legitimate states
and the expected recovery time. Based on these ob-
servations, we incorporate the state encoding shown in
Table 1.

o The state of the leaf process can be either id or rp.
Based on the number of their appearance in recovery
time, we incorporate the state encoding shown in Ta-
ble I.

[ States [ E [ E’ ] #of Encoded States |
(id, id, rq, id) 20 | 2.66 3
(id,id,rq,rp) || 15 | 1.33 9
(id, rq,zd id) 2.62 | 4.19 1
(id, rq,4d, rp) || 2.31 | 5.20 3
(id, g, rq,4d) || 3.25 | 3.20 1
(id,rq,rq,mp) || 2.5 | 2.20 3
(id,rq,rp,id) || 1.0 1 6
(id, g, rp, p) 15 | 12 18
(id,rp,rq,id) || 15 | 1.99 4
(id,rp,rq,mp) || 1.0 1 12
(rq, id, rq, id) 1.5 1.99 9
(rq,id,rq,rp) || 1.0 1 27
(rq,rp,rq,id) || 2.0 | 2.36 12
(rq, p, T, D) 15 | 1.14 36

Table 11

IMPACT OF ENCODING ON PIF RECOVERY TIME (LINE OF 4)
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Figure 7. Skewness of Snap1 before and after encoding (line 4)

The expected recovery time for each process state after
encoding is denoted by E’ in Table I. Observe that for
some processes, encoding makes recovery slower, but the
technique is globally very effective. To clarify this, consider
the recovery time before and after encoding for each global
state in Table II. By taking into account that each global state
may be replicated, the overall recovery time for algorithm
Snap1 before encoding is E = 2.36 steps, while after
encoding is E' = 1.47 steps. Figure 7 also shows the
skewness graph of Snap1 before (0.81) and after (1.56)
encoding.

VII. CONCLUSION

In this paper, we focused on automated performance
analysis of distributed self-stabilizing algorithms using prob-
abilistic state exploration techniques. We argue that the com-
monly used asymptotic complexity metric — the big O no-




tation — abstracts away many factors crucial to performance
analysis. Moreover, it cannot take into account real-world
constraints such as the likelihood of occurrence of faults. We
proposed a new metric, namely, the mean expected value of
number of global steps to complete stabilization. This metric
can be elegantly measured using off-the-shelf probabilistic
model checkers. We supported our claims by conducting
rigorous experiments on three self-stabilizing algorithms for
distributed Propagation of Information with Feedback (PIF)
in rooted trees. We also showed that the insights gained by
our experiments led to more efficient implementations using
state encoding.

As for future work, there is a diverse set of new research
directions. For instance, one can design parametric model
checking techniques to analyze the performance of algo-
rithms when the exact number of processes is not given.
Automated state encoding based on state exploration is an-
other interesting problem. Yet another challenging problem
is to devise probabilistic synthesis techniques that can revise
an existing protocol to improve its performance.
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