
Primality Testing

by

Benjamin Chen

Waterloo, Ontario, Canada, 2022

© Benjamin Chen 2022

Table of Contents

1 Introduction 1

1.1 Näıve Primality Test - Trial Division . 2

1.1.1 Implementation . 2

1.2 Näıve Primality Test Improved . 3

1.2.1 Implementation . 4

1.3 Wilson’s Theorem . 5

1.3.1 Implementation . 5

1.4 The Fermat Test . 5

1.4.1 Proof of Correctness . 7

1.4.2 Implementation . 8

1.5 Strong Pseudoprimality Test . 8

1.5.1 Proof of Correctness . 10

1.5.2 Implementation . 12

References 14

ii

Chapter 1

Introduction

We first give a definition of prime numbers and composite numbers. [2]

Definition 1. For a, b ∈ Z we say that a divides b (or that a is a factor of b, or
that b is a multiple of a, and we write a

∣∣b, when b = ak for some k ∈ Z.

Definition 2. Let n be a positive integer. We say that n is a prime number when
n ≥ 2 and n has no factor a ∈ Z with 1 < a < n. We say that n is composite when
n ≥ 2 and n is not prime, that is when n does have a factor a ∈ Z with 1 < a < n.

The study of primes are essential in number theory, as we have the following funda-
mental theorem: [2]

Theorem 1. (The Fundamental Theorem of Arithmetic, or The Unique Factor-
ization Theorem) Every integer n ≥ 2 can be written uniquely in the form n =∏ℓ

k=1 pk = p1p2 · · · pℓ where ℓ ∈ Z+ and the pk are primes with p1 ≤ p2 ≤ · · · ≤ pℓ.

That is, every integer can be uniquely expressed as a product of primes. Then for a
question on an arbitrary integer, k, a possible way to divide and conquer the problem is to
decompose the integer into a product of primes, and consider the question on individual
primes, and later piecing the results on individual primes together to form the desired
result.

However, the problem with the approach is that there are infinitely many prime numbers
such that when the arbitrary number, k, approaches infinity, the prime cases we need to
consider also approach infinity. We give the following theorem: [1]

1

Theorem 2 (Euclid). There are infinitely many prime numbers.

Proof. Assume that there are finitely many primes p1, . . . , pn say, and consider

m = p1 · · · pn + 1

Then m can be written as a product of primes, and pk | m for some k with 1 ≤ k ≤ n.
Hence pk | m− p1 · · · pn, and pk | 1, which is a contradiction.

This, in other words, means that for a general solution to a problem, we cannot rely on
some pre-calculated prime table to help us quickly decompose the number and precalculated
results for the problem.

Thus, one way to make this approach practical is to find a quick way to determine
whether a number is prime or not.

1.1 Näıve Primality Test - Trial Division

This is probably the most simplest way to determine whether a number is a prime or not.
The idea is simple.

For an given number n, we check if it is divisible by any integer from 2 to
√
N .

This way of determining the primality follows directly from the definition of prime
numbers. Note that here we don’t need to go to N because if there is a factor a of n = ab
such that a >

√
N , then b <

√
N . We would have detected the factor earlier.

1.1.1 Implementation

Maple Implementation

NaivePrimeTest := proc(n::integer)::boolean;

local i, TimeUsed, answer;

description "Naive Primality Test";

2

answer := true;

TimeUsed := time[real]();

if n < 2 then answer := false;

else

for i from 2 to floor(sqrt(n)) do

if irem(n, i) = 0 then

answer := false;

break;

end if;

end do;

end if;

print("Time used:", time[real]() - TimeUsed);

return answer;

end proc

Mathematica Implementation

NaivePrimeTest[num_] :=

num >= 2 && (Do[

If[Divisible[num, i], Return[False, And]], {i, 2,

Floor[Sqrt[num]]}]; True)

1.2 Näıve Primality Test Improved

We first show that every prime number greater than 3 can be written in the form of 6k±1.
[3]

Theorem 3. Every prime number greater than 3 can be written in the form of 6k±1.

Proof. Every number can be expressed in the form of (6k + i) for i = −1, 0, 1, · · · 4
for some integer k.
However, 2 divides (6k + 0) , (6k + 2) , (6k + 4), 3 divides (6k + 3).
This leaves us with (6k ± 1), in which contains all the prime numbers.

3

This gives us a slightly better way to test the primality of a number.

We first check whether a number is divisible by 2 or 3, then we check all the numbers
in the form of 6k ± 1 ≤

√
n.

1.2.1 Implementation

Maple Implementation

NaivePrimeTestImproved := proc(n::integer)::boolean;

local i, TimeUsed, answer, k;

description "Naive Primality Test";

answer := true;

if n < 2 then answer := false;

elif n = 2 or n = 3 then

return true;

elif irem(n, 2) = 0 or irem(n, 3) = 0 then

return false;

else

for k to floor(1/6*sqrt(n) + 1/6) do

if irem(n, 6*k + 1) = 0 or irem(n, 6*k - 1) = 0 then

answer := false; break;

end if;

end do;

end if;

return answer;

end proc

Mathematica Implementation

NaivePrimeTestImproved[num_] :=

(num == 2) || (num ==

3) || (num >= 2 && ! Divisible[num, 2] && !

Divisible[num, 3] && (Do[

If[Divisible[num, i] || Divisible[num, i + 2],

4

Return[False, Or]], {i, 5, Floor[Sqrt[num]] - 2, 6}]; True))

1.3 Wilson’s Theorem

Before we go into more sophisticated algorithms, let us not forget the simple but impractical
primality test by Wilson’s Theorem.

Theorem 4 (Wilson’s Theorem). For n ∈ N, n is a prime if and only if

(n− 1)! ≡ −1 mod n

This test is straightforward but practically useless as the running time is in the order
of O(n!).

1.3.1 Implementation

Maple Implementation

WilsonTheorem := proc(n::integer)::boolean;

description "Wilson’s Theorem Primality Test";

return evalb(mods((n - 1)!, n) = -1);

end proc

Mathematica Implementation

WilsonTheorem[n_] := Mod[(n - 1)!, n] == Mod[-1, n]

1.4 The Fermat Test

First, we need to recall several important theorems in number theory.[4]

5

Theorem 5 (Fermat’s little theorem).

aN−1 ≡ 1 mod N

for a prime N and any a ∈ Z which is coprime to N .

This theorem follows from the fact that the multiplicative group Z∗
N has an order of

ϕ(N) = N − 1 when N is prime.

If we loosen the restriction such that N is not a prime, we can define the order ordN(a)
of a modulo N as the smallest integer k ≥ 1 such that ak ≡ 1 mod N .

The following theorem, Euler’s theorem, generalized Fermat’s little theorem:[4]

Theorem 6 (Euler’s Theorem).

aϕ(N) ≡ 1 mod N

for any positive integer N and a ∈ Z which is coprime to N .

We have a property that ordN(a) | ϕ(N).

Since testing even numbers for primality is very easy. We shall turn our attention to
odd integers. We briefly describe an algorithm below:[4]

Algorithm 1 (Fermat Test).
Input: An odd integer N ≥ 5.
Output: Either “composite” or “possibly prime”.

1. choose a ∈ {2, · · · , N − 1} uniformly at random

2. compute b = aN−1 remN

3. If b ̸= 1 then return “composite” else return “possibly prime”

It would be very nice if checking primality is this easy. If the above algorithm returns
“composite”, then it is indeed a composite number. This is guaranteed by the Fermat’s
little theorem. But if the above algorithm returns “possibly prime”, then we don’t know
if it is really a prime or not. To see why, consider the following subgroup of (Z/NZ)∗:

LN =
{
u ∈ (Z/NZ)∗ | uN−1 = 1

}
6

If N is prime, then LN = (Z/NZ)∗. If LN ̸= (Z/NZ)∗. Then by Lagrange’s theorem,
we know that |LN | ≤ 1

2
|(Z/NZ)∗|. If a is chosen to be in (Z/NZ)∗ \ LN , then the Fermat

test will return “composite”. We call this a (and a mod N) a Fermat witness to the
compositeness of N . Similarly, if a ∈ LN , we call this a (and a mod N) a Fermat liar for
N .

This method has a serious flaw, that is, there exists composite numbers N such that
aN−1 remN = 1 for all a. That is, LN ̸= (Z/NZ)∗ but N is not a prime. These composite
numbers are called Carmichael numbers.

1.4.1 Proof of Correctness

We claim the following.[4]

If N is prime, then Algorithm 1 returns “possibly prime”. If N is composite and not
a Carmichael number, then it returns “composite” with probability at least 1/2.

Proof. • If N is prime:

The correctness of this algorithm is guaranteed by Fermat’s little theorem.

• If N is not prime:

– If gcd(a,N) > 1:

If gcd(a,N) > 1, then gcd(b,N) = gcd(aN−1, N) > 1. We write b = kg,N = k′g.
Note that b > N . We can apply Euclidean algorithm to write k = qk′+ r. If we
multiply both sides by g, then we get b remN = r. We note that gcd(b,N) =
gcd(N, r) > 1. Hence, r ̸= 1. The test would return “composite” as expected.

– If gcd(a,N) = 1:

IfN is composite but not Carmichael. As shown previously, |LN | ≤ 1
2
|(Z/NZ)∗| =

ϕ(N)/2. This shows that at least half of the possible choices of a (coprime to
N) are Fermat witnesses.

7

1.4.2 Implementation

Maple Implementation

FermatTest := proc(n::integer)::string;

local a, b;

description "Fermat Test";

a := rand(2 .. n - 1)();

b := irem(a^(n - 1), n);

if b <> 1 then

return "composite";

else

return "possibly prime";

end if;

end proc

Mathematica Implementation

FermatTest[n_] :=

If[PowerMod[RandomInteger[{2, n - 1}], (n - 1), n] != 1, "composite",

"possibly prime"]

1.5 Strong Pseudoprimality Test

First, we wish to show the following lemma.

8

Lemma 1. If p is prime, e ∈ N, e ≥ 2. Let N = pe and a = 1 + pe−1, then
ordN(a) = p.

Proof. We recall a property of Galois field, GF (q), q = pm:

(x+ y)p
j

= xpj + yp
j

for j = 0, 1, · · · ,m. Hence, we have:

ap ≡ (1 + pe−1)p

≡ 1 + pe

≡ 1 mod pe

Since ordN(a) is defined to be the smallest integer k such that ak ≡ 1 mod N . This
implies that ordN(a) = 1 or p. Since a ̸≡ 1 mod N , ordN(a) = p.

With this lemma, we can prove the following claim.[4]

Lemma 2. Any Carmichael number is squarefree.

Proof. We prove by contradiction. Assume that there is a prime number p which
divides the Carmichael number N exactly e ≥ 2 times. By the Chinese Remainder
Theorem, there exists a ∈ Z with a ≡ 1 + pe−1 mod pe and a ≡ 1 mod N/pe. By
Lemma 1, a has order p modulo pe. Hence, a also has order p modulo N . By the
properties of Carmichael number, aN−1 ≡ 1 mod N . Then p divides N−1. However,
by our assumption, p also divides N . This is a contradiction.

It can be shown that N is a Carmichael number if and only if N is squarefree and
p − 1 divides N − 1 for any prime factors p of N , and that Carmichael numbers are odd
and have at least three prime factors. The first three Carmichael numbers are: 561 =
3 · 11 · 17, 1105 = 5 · 13 · 17, and 1729 = 7 · 13 · 19.

We propose the following algorithm.[4]

9

Algorithm 2 (Strong pseudoprimality test).
Input: An odd integer N ≥ 3.
Output: Either “composite”, or “probably prime”, or a proper factor of N .

1. choose a ∈ {2, · · · , N − 1} uniformly at random

2. d = gcd(a,N)
if d > 1 then return d

3. write N − 1 = 2vm with v,m ∈ N, v ≥ 1, and m odd
Compute b0 = am remN
if b0 = 1 then return “probably prime”

4. for i = 1, · · · , v do bi = b2i−1 remN

5. if bv = 1 then j = min {0 ≤ i < v : bi+1 = 1} else return “composite”

6. g = gcd(bj + 1, N)
if g = 1 or g = N then return “probably prime” else return g

1.5.1 Proof of Correctness

We can see that bi ≡ a2
im mod N . Especially, bv = a2

vm = aN−1 ≡ modN . We note that
if bi−1 = 1, then bi = 1.

• If N is composite but not Carmichael:

There is a probability of at least 1/2 such that a is a Fermat witness for N , bv ̸= 1.
This case is just the basic Fermat test. The algorithm returns “composite” in step 5.

• If N is a prime:

Fermat’s little theorem guarantees that bv = 1.

– If b0 = 1:

Then the algorithm correctly returns “probably prime” in step 3.

– If b0 ̸= 1:

We have bj ̸= 1 and b2j ≡ bj+1 = 1 mod N in step 6. We use a property in
integral domain R which states that a polynomial f has at most deg f roots in

10

R. We conclude that the polynomial x2 − 1 ∈ ZN [x] has at most two zeroes,
1,−1. This implies that bj = N−1. Hence, g = gcd(N,N) = N . The algorithm
also correctly returns “probably prime” in step 6.

• If N is a Carmichael number:

Let P be the set of prime divisors of N . Since N is squarefree, we have N =∏
p∈P p. Consider I =

{
i | 0 ≤ i ≤ v,∀u ∈ (Z/NZ)∗ , u2im = 1

}
. By the definition of

Carmichael number, v ∈ I. Since m is odd, then (−1)m = −1 ̸= 1. Hence, 0 /∈ I.
We can say that there exists some l < v such that I = {l + 1, l + 2, · · · , v}. Now,
consider the following subgroup of (Z/NZ)∗:

G =
{
u ∈ (Z/NZ)∗ | u2lm = ±1

}
⊆ (Z/NZ)∗

We now wish to show that G ̸= (Z/NZ)∗. Since l /∈ I, there exists some p ∈ P and
b ∈ Z coprime to p such that b2

lm ̸≡ 1 mod p. We take some such p and b. The
Chinese Remainder Theorem implies that there exists a c ∈ Z such that c ≡ b mod p
and c ≡ 1 mod N/p. Consequently, c2

lm ≡ b2
lm mod p and c2

lm ≡ b2
lm ≡ 1 mod N/p.

If G = (Z/NZ)∗, then b2
lm = ±1 + kN . Since b2

lm ≡ 1 mod N/p, then b2
lm =

1 + kN . However, this would force that b2
lm ≡ 1 mod p. A contradiction. Hence,

we have c mod N ∈ (Z/NZ)∗ \G. With G being a proper subgroup, G has at most
|(Z/NZ)∗| /2 = ϕ(N)/2 elements.

If a is chosen so that a mod N ∈ (Z/NZ)∗ \ G, then the algorithm will discover a
proper divisor of N . Consider the fact that bl+1 ≡ a2

l+1m ≡ 1 mod N implies that
for all p ∈ P , bl+1 ≡ a2

l+1m ≡ 1 mod p. This means that a2
lm mod p is ±1. Since

a /∈ G, bl mod N = a2
lm mod N ̸= ±1. Both the possibilities can occur. From our

previous work, we have shown that in step 5 j = l. Then, if bl = a2
lm ≡ −1 mod p,

bl + 1 ≡ 0 mod p. That is, p | bl + 1. Hence,

g = gcd(bl + 1, N) =
∏
p∈P

a2
lm≡−1 mod p

p

is a proper divisor of N . The probability is bounded by |(Z/NZ)∗ \G| ≥ ϕ(N)/2.

11

1.5.2 Implementation

Maple Implementation

numberOfFactor2 := proc(n::integer)

local v, m;

description "It writes n in the form of (2^v) * m";

m := n; v := 0;

while type(m, even) do ++v; m := 1/2*m; end do;

return v, m; end proc;

firstOccurenceIndex := proc(v::Vector, n::integer)::integer;

local i;

i := 1;

while v(i) <> n do ++i; end do;

return i;

end proc;

StrongPseudoprimalityTest := proc(n::integer)

local a, b, d, j, g, b0, v, m;

description "Strong Pseudoprimality Test.

Also known as Miller-Rabin primality test";

a := rand(2 .. n - 1)();

d := igcd(a, n);

if 1 < d then return d; end if;

v, m := numberOfFactor2(n - 1);

b0 := irem(a^m, n);

if b0 = 1 then return "probably prime"; end if;

b := Vector(v + 1, i -> b0^(2^(i - 1)) mod n);

if b(v + 1) = 1 then j := firstOccurenceIndex(b, 1) - 1;

else return "composite"; end if;

g := igcd(b(j) + 1, n);

if g = 1 or g = n then return "probably prime";

else return g;

end if;

end proc;

12

Mathematica Implementation

StrongPseudoprimalityTest[n_] :=

Module[{a = RandomInteger[{2, n - 1}], b, d, v, m, j, b0, g},

d = GCD[a, n]; If[d > 1, Return[d]];

m = NestWhile[#/2 &, n - 1, EvenQ];

v = IntegerExponent[n - 1, 2];

b0 = PowerMod[a, m, n]; If[b0 == 1, Return["probably prime"]];

b = Table[PowerMod[b0, 2^(i - 1), n], {i, 1, v + 1}];

If[b[[v + 1]] == 1, j = First[FirstPosition[b, 1]] - 1,

Return["composite"]];

g = GCD[b[[j]] + 1, n];

If[g == 1 \[Or] g == n, Return["probably prime"], Return[g]];

]

13

References

[1] Wentang Kuo. PMATH 440/740: ANALYTIC NUMBER THEORY NOTES. 2021.

[2] Stephen New. Lecture Notes for PMATH 340, Elementary Number Theory. 2020.

[3] Primality test. Primality test — Wikipedia, the free encyclopedia, 2022. [Online;
accessed 09-March-2022].

[4] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cambridge
University Press, 3rd edition, 2013.

14

	Introduction
	Naïve Primality Test - Trial Division
	Implementation

	Naïve Primality Test Improved
	Implementation

	Wilson's Theorem
	Implementation

	The Fermat Test
	Proof of Correctness
	Implementation

	Strong Pseudoprimality Test
	Proof of Correctness
	Implementation

	References

