Minimal polynomial of a sparse matrix.
Minimal polynomial of a sparse matrix.
#ifndef DISABLE_COMMENTATOR
#define DISABLE_COMMENTATOR
#endif
#define __LB_VALENCE_REPORTING__ 1
#define __LB_CRA_REPORTING__ 1
#define __LB_CRA_TIMING__ 1
#define __LINBOX_HEURISTIC_CRA 1
#include <iostream>
template <class Field, class Polynomial>
std::ostream& printPolynomial (std::ostream& out, const Field &F, const Polynomial &v)
{
for (int i = (int)v.size () ; i-- ; ) {
F.write (out, v[(size_t)i]);
if (i > 0)
out << " x^" << i << " + ";
}
return out;
}
#include <linbox/blackbox/compose.h>
#include <linbox/solutions/minpoly.h>
int main (int argc, char **argv)
{
commentator().setMaxDetailLevel (-1);
commentator().setMaxDepth (-1);
commentator().setReportStream (std::clog);
int a = argc;
while(a--){
cerr << "argv[" << a << "] = " << argv[a] << endl;
}
if (argc < 2) {
cerr << "Usage: minpoly <matrix-file-in-SMS-format> [<p>]" << endl;
return -1;
}
ifstream input (argv[1]);
if (!input) { cerr << "Error opening matrix file " << argv[1] << endl; return -1; }
if (argc != 3) {
LinBox::Timer chrono;
Method::Auto M;
Givaro::ZRing<Integer> ZZ;
typedef SparseMatrix<Givaro::ZRing<Integer>> SpMat;
SpMat B (ZZ);
B.read (input);
if (B.rowdim() == B.coldim()) {
std::clog << "B is " << B.rowdim() << " by " << B.coldim() << endl;
chrono.start();
PAR_BLOCK {
minpoly (m_A, B, M);
}
chrono.stop();
} else {
BB2 BT(B);
if (B.rowdim() > B.coldim()) {
std::clog << "(B^T . B) is " << A.rowdim() << " by " << A.coldim() << endl;
chrono.start();
PAR_BLOCK {
minpoly (m_A, A, M);
}
chrono.stop();
} else {
std::clog << "(B . B^T) is " << A.rowdim() << " by " << A.coldim() << endl;
chrono.start();
PAR_BLOCK {
minpoly (m_A, A, M);
}
chrono.stop();
}
}
std::clog << "Minimal Polynomial, " << chrono << ", is: ";
printPolynomial (std::cout, ZZ, m_A) << std::endl;
}
else{
typedef Givaro::Modular<double> Field;
double q = atof(argv[2]);
Field F(q);
SparseMatrix<Field> B (F);
Method::Auto M;
B.read (input);
cout << "B is " << B.rowdim() << " by " << B.coldim() << endl;
minpoly (m_B, B, M);
cout << "Minimal Polynomial is ";
printPolynomial (std::cout, F, m_B) << std::endl;
}
return 0;
}
Blackbox of a product: , i.e .
Definition compose.h:67
Dense Polynomial representation using Givaro.
Definition dense-polynomial.h:50
transpose matrix without copying.
Definition transpose.h:56
linbox base configuration file
A Givaro::Modular ring is a representations of Z/mZ.
Namespace in which all linbox code resides.
Definition alt-blackbox-block-container.h:4
A SparseMatrix<_Field, _Storage> ....