Minimal polynomial of a sparse matrix.
Minimal polynomial of a sparse matrix.
#ifndef DISABLE_COMMENTATOR
#define DISABLE_COMMENTATOR
#endif
#define __LB_VALENCE_REPORTING__ 1
#define __LB_CRA_REPORTING__ 1
#define __LB_CRA_TIMING__ 1
#define __LINBOX_HEURISTIC_CRA 1
#include <iostream>
template <class Field, class Polynomial>
{
for (int i = (int)v.size () ; i-- ; ) {
F.write (out, v[(size_t)i]);
if (i > 0)
out << " x^" << i << " + ";
}
return out;
}
int main (
int argc,
char **argv)
{
int a = argc;
while(a--){
cerr << "argv[" << a << "] = " << argv[a] << endl;
}
if (argc < 2) {
cerr << "Usage: minpoly <matrix-file-in-SMS-format> [<p>]" << endl;
return -1;
}
ifstream input (argv[1]);
if (!input) { cerr << "Error opening matrix file " << argv[1] << endl; return -1; }
if (argc != 3) {
Givaro::ZRing<Integer> ZZ;
SpMat B (ZZ);
B.read (input);
if (B.rowdim() == B.coldim()) {
std::clog << "B is " << B.rowdim() << " by " << B.coldim() << endl;
chrono.start();
PAR_BLOCK {
}
chrono.stop();
} else {
BB2 BT(B);
if (B.rowdim() > B.coldim()) {
std::clog << "(B^T . B) is " << A.rowdim() << " by " << A.coldim() << endl;
chrono.start();
PAR_BLOCK {
}
chrono.stop();
} else {
std::clog << "(B . B^T) is " << A.rowdim() << " by " << A.coldim() << endl;
chrono.start();
PAR_BLOCK {
}
chrono.stop();
}
}
std::clog << "Minimal Polynomial, " << chrono << ", is: ";
}
else{
typedef Givaro::Modular<double>
Field;
double q = atof(argv[2]);
B.read (input);
cout << "B is " << B.rowdim() << " by " << B.coldim() << endl;
cout << "Minimal Polynomial is ";
}
return 0;
}
std::ostream & printPolynomial(std::ostream &out, const Field &F, const Polynomial &v)
Definition charpoly.C:47
Blackbox of a product: , i.e .
Definition compose.h:67
Dense Polynomial representation using Givaro.
Definition dense-polynomial.h:50
Definition sparse-matrix.h:47
transpose matrix without copying.
Definition transpose.h:56
Givaro::Modular< uint32_t > Field
Definition dot-product.C:49
linbox base configuration file
A Givaro::Modular ring is a representations of Z/mZ.
Namespace in which all linbox code resides.
Definition alt-blackbox-block-container.h:4
Givaro::Timer Timer
Definition timer.h:55
Polynomial & minpoly(Polynomial &P, const Blackbox &A, RingCategories::ModularTag tag, const Method::Wiedemann &M=Method::Wiedemann())
Definition wiedemann.h:88
A SparseMatrix<_Field, _Storage> ....
Commentator & commentator()
Definition commentator.h:998
PolynomialRing::Element Polynomial
Definition test-toeplitz.C:15
int main()
Definition test-tutorial.C:54