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1 Original Proof
This is a reproduction of the proof of E3288 by Kee-Wai Lau on The American Mathematical Monthly Vol. 97, No. 4 (Apr.,
1990), pp. 344-345 (2 pages).

We would like to determine gcd(am + 1, an + 1).
First, let 2i and 2j be the largest number dividing m and n separately. i and j are the highest exponent of 2 here.
We claim that

d = gcd(am + 1, an + 1) =


agcd(m,n) + 1, i = j

1, i ̸= j and a even
2, i ̸= j and a odd

First, we let b = agcd(m,n), r = m/ gcd(m,n), and s = n/ gcd(m,n). Now, we can write d = gcd(am + 1, an + 1) =
gcd(br + 1, bs + 1) with gcd(r, s) = 1. Then, there exist positive integers e and f such that |er − fs| = 1.

If i = j, then gcd(m,n) contains 2i = 2j . Also, by the definition of i and j, the remaining r and s must be odd.
Without loss of generality, we assume that er − fs = 1, e is odd and f is even. Now, from br ≡ bs ≡ −1 mod d, we have
(br)e = ud − 1 and (bs)f = vd + 1, where u and v are integers. Thus, ud − 1 = (vd + 1)b. Rearrange the equation, we get
ud = vbd+ b+1. This implies that d | b+1. Also, since r and s are odd, we get (b+1) | (br +1) and (b+1) | (bs +1). This
implies (b+ 1) | d. Hence, we have d = b+ 1.

If i ̸= j, then r and s have different parity. Without loss of generality, we assume that r is even and s is odd. Then,
(br)s = yd− 1 and (bs)r = zd+ 1 where y and z are integers. Then, yd− 1 = zd+ 1. It implies d | 2. Also, since 2 | d only
if a is odd, the result follows.

2 Extension
Since a is arbitrary, a natural extension is to replace a by x.

We are trying to determine gcd(xm + 1, xn + 1) where xm + 1, xn + 1 ∈ Z[x].
We claim

d = gcd(xm + 1, xn + 1) =

{
xgcd(m,n) + 1, i = j

1, i ̸= j

Let b = xgcd(m,n), r = m/ gcd(m,n) ∈ Z, and s = n/ gcd(m,n) ∈ Z. Now, we can write d = gcd(xm + 1, xn + 1) =
gcd(br + 1, bs + 1) with gcd(r, s) = 1. Then, there exist positive integers e and f such that |er − fs| = 1.

If i = j, then gcd(m,n) contains 2i = 2j . Also, by the definition of i and j, the remaining r and s must be odd.
Without loss of generality, we assume that er − fs = 1, e is odd and f is even. Now, from br ≡ bs ≡ −1 mod d, we have
(br)e = ud − 1 and (bs)f = vd + 1, where u and v are polynomials. Thus, ud − 1 = (vd + 1)b. Rearrange the equation, we
get ud = vbd+ b+ 1. This implies that d | b+ 1. Also, since r and s are odd, we get (b+ 1) | (br + 1) and (b+ 1) | (bs + 1).
This implies (b+ 1) | d. Hence, we have d = b+ 1.

If i ̸= j, then r and s have different parity. Without loss of generality, we assume that r is even and s is odd. Then,
(br)s = yd − 1 and (bs)r = zd + 1 where y and z are polynomials. Then, yd − 1 = zd + 1. It implies d | 2. Since the
polynomials are both primitive, hence, d can only be 1.
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