Short Proof of $\operatorname{GCD}\left(a^{m}+1, a^{n}+1\right)$

Benjamin Chen

May 28, 2024

1 Original Proof

This is a reproduction of the proof of E3288 by Kee-Wai Lau on The American Mathematical Monthly Vol. 97, No. 4 (Apr., 1990), pp. 344-345 (2 pages).

We would like to determine $\operatorname{gcd}\left(a^{m}+1, a^{n}+1\right)$.
First, let 2^{i} and 2^{j} be the largest number dividing m and n separately. i and j are the highest exponent of 2 here.
We claim that

$$
d=\operatorname{gcd}\left(a^{m}+1, a^{n}+1\right)= \begin{cases}a^{\operatorname{gcd}(m, n)}+1, & i=j \\ 1, & i \neq j \text { and } a \text { even } \\ 2, & i \neq j \text { and } a \text { odd }\end{cases}
$$

First, we let $b=a^{\operatorname{gcd}(m, n)}, r=m / \operatorname{gcd}(m, n)$, and $s=n / \operatorname{gcd}(m, n)$. Now, we can write $d=\operatorname{gcd}\left(a^{m}+1, a^{n}+1\right)=$ $\operatorname{gcd}\left(b^{r}+1, b^{s}+1\right)$ with $\operatorname{gcd}(r, s)=1$. Then, there exist positive integers e and f such that $|e r-f s|=1$.

If $i=j$, then $\operatorname{gcd}(m, n)$ contains $2^{i}=2^{j}$. Also, by the definition of i and j, the remaining r and s must be odd. Without loss of generality, we assume that $e r-f s=1, e$ is odd and f is even. Now, from $b^{r} \equiv b^{s} \equiv-1 \bmod d$, we have $\left(b^{r}\right)^{e}=u d-1$ and $\left(b^{s}\right)^{f}=v d+1$, where u and v are integers. Thus, $u d-1=(v d+1) b$. Rearrange the equation, we get $u d=v b d+b+1$. This implies that $d \mid b+1$. Also, since r and s are odd, we get $(b+1) \mid\left(b^{r}+1\right)$ and $(b+1) \mid\left(b^{s}+1\right)$. This implies $(b+1) \mid d$. Hence, we have $d=b+1$.

If $i \neq j$, then r and s have different parity. Without loss of generality, we assume that r is even and s is odd. Then, $\left(b^{r}\right)^{s}=y d-1$ and $\left(b^{s}\right)^{r}=z d+1$ where y and z are integers. Then, $y d-1=z d+1$. It implies $d \mid 2$. Also, since $2 \mid d$ only if a is odd, the result follows.

2 Extension

Since a is arbitrary, a natural extension is to replace a by x.
We are trying to determine $\operatorname{gcd}\left(x^{m}+1, x^{n}+1\right)$ where $x^{m}+1, x^{n}+1 \in \mathbb{Z}[x]$.
We claim

$$
d=\operatorname{gcd}\left(x^{m}+1, x^{n}+1\right)= \begin{cases}x^{\operatorname{gcd}(m, n)}+1, & i=j \\ 1, & i \neq j\end{cases}
$$

Let $b=x^{\operatorname{gcd}(m, n)}, r=m / \operatorname{gcd}(m, n) \in \mathbb{Z}$, and $s=n / \operatorname{gcd}(m, n) \in \mathbb{Z}$. Now, we can write $d=\operatorname{gcd}\left(x^{m}+1, x^{n}+1\right)=$ $\operatorname{gcd}\left(b^{r}+1, b^{s}+1\right)$ with $\operatorname{gcd}(r, s)=1$. Then, there exist positive integers e and f such that $|e r-f s|=1$.

If $i=j$, then $\operatorname{gcd}(m, n)$ contains $2^{i}=2^{j}$. Also, by the definition of i and j, the remaining r and s must be odd. Without loss of generality, we assume that $e r-f s=1, e$ is odd and f is even. Now, from $b^{r} \equiv b^{s} \equiv-1$ mod d, we have $\left(b^{r}\right)^{e}=u d-1$ and $\left(b^{s}\right)^{f}=v d+1$, where u and v are polynomials. Thus, $u d-1=(v d+1) b$. Rearrange the equation, we get $u d=v b d+b+1$. This implies that $d \mid b+1$. Also, since r and s are odd, we get $(b+1) \mid\left(b^{r}+1\right)$ and $(b+1) \mid\left(b^{s}+1\right)$. This implies $(b+1) \mid d$. Hence, we have $d=b+1$.

If $i \neq j$, then r and s have different parity. Without loss of generality, we assume that r is even and s is odd. Then, $\left(b^{r}\right)^{s}=y d-1$ and $\left(b^{s}\right)^{r}=z d+1$ where y and z are polynomials. Then, $y d-1=z d+1$. It implies $d \mid 2$. Since the polynomials are both primitive, hence, d can only be 1 .

