
WaterlooClarke: TREC 2016 LiveQA Track

Alexandra Vtyurina
University of Waterloo

avtyurin@uwaterloo.ca

Charles L. A. Clarke
University of Waterloo

claclark@plg.uwaterloo.ca

ABSTRACT
The problem of question answering is becoming increasingly
popular. Previous question answering tracks included fac-
toid questions, list questions and complex questions[4]. An
effort had been put in modelling users behaviour, but the
important constraint that remained was that the questions
did not come from real users. The purpose of LiveQA track
is to overcome this limitation and to provide participants
with real world questions posted by users of a community
question answering (CQA) website. Running for the first
time in 2015, LiveQA track has attracted people from 14
institutions submitting 22 systems[1].

The source of questions for this track is Yahoo!Answers
(Y!A)1 – a CQA website, where users are invited to post
their questions on a variety of topics ranging from garden-
ing to relationship. During the challenge, the newly posted
questions from select topics were sent out to every partici-
pating system, that in turn would return a comprehensive
answer to the question within 60 seconds. The challenge was
running for 24 hours starting May 31st. All of the returned
answers were afterwards manually judged by NIST assessors
on a 5-level Likert scale.

Our approach in this competition was based largely on the
one our team submitted last year. We were selecting key-
words from submitted questions, and using them as a query
to a web search engine. The answer was selected based on
keywords frequency and proximity from the top 10 docu-
ments returned by the search engine. A difference from the
last year’s approach is that the final answer was constructed
out of top 5 ranked paragraphs, as opposed to a single para-
graph last year.

1. INTRODUCTION
The task of automatic question answering has appeared a
multiple times in TREC. There can be noted a general ten-

1https://answers.yahoo.com

dency of moving from simple questions, like factoid ques-
tions, towards more complex questions, like cQA[4]. Al-
though effort had been put in modelling real-users behaviour,
the questions were not coming from real users and the cor-
pora for answer selection was often limited.

LiveQA track brought the task to the new level by providing
real world questions, unlimited corpora usage and restrict-
ing the time in which an answer had to be provided. The
questions for this task were harvested from Y!A – a commu-
nity question answering website. Questions there consist of
two fields: title and body. Title is usually used as a short
description of the question, and the body allows to provide
more details if necessary. After posting a question, the asker
waits for another Y!A user to provide an answer. The wait-
ing time depends on the number of users willing to answer
the question at this time.

Y!A questions vary greatly across many topics and question
types. Y!A users are often seeking other people’s opinion,
advice about a problem they’re having. Some of them just
want to share their insights or emotions about newly ac-
quired knowledge or experience. In certain cases people do
not have a well defined information need, but they are look-
ing to start a conversation (see Table 1).

The questions were collected from the list of newly posted
(and not yet answered by human users) questions on Ya-
hoo! Answers. Each question was sent to every participat-
ing system and an answer was expected to arrive within a
60-seconds window. The answer was supposed to contain a
text snippet of length less than 1000 characters and the list
of resources, from which it was obtained. If the answer was
received after 1 minute, it did not count towards the total
score of the system. Participants could also choose not to
answer any question.

The evaluation of the answers given by participating systems
was done by human NIST assessors on a 5-level Likert scale.

2. EXPERIMENTAL SETUP
The experiment was running for the duration of 24 hours
starting May 31st. During this period of time the partici-
pating systems were supposed to be online. Yahoo! server
collected a newly posted question from Yahoo! Answers and
broadcasted it to all the registered systems at a rate of ap-
proximately 1 question per 60 seconds.



Title: Is my nose too big?
Body: Is my nose bad or horrible. I know it’s bigger but
just how bad is it
Title: Whats the meaning of life?
Body: i wanna know YOUR meaning of life!
Title: Emma Stone, Mila Kunis or Penelope Cruz? Who’s
most beautiful in your opinion?
Body: I can’t decide they are all gorgeousss <3 :)

Table 1: Various types of questions asked on Yahoo!
Answers

Every question consisted of 4 fields: qid - question identifier,
title - a question, formulated by a person, body - optional
detailed description of the question, and finally, category -
the category that the person chose for their question (if the
user skips the step of picking a category, it is defined auto-
matically).

A response to each question was expected upon 60 seconds
after sending. It was supposed to contain the following fields:
pid - participant id (uwaterlooclarke was used for this sub-
mission), qid - question identifier, answer - a text of length
of max 1000 characters, sources - a list of sources where
the answer was fetched from, local time - locally measured
time in ms it took to produce the answer, explanation - an
optional string containing additional information about the
answer. Responses that were received after the 60 seconds
were not judged.

3. GENERAL APPROACH
The two main assumptions that we made for this task were
first, an answer to virtually any question already exists on
the Internet, and second, modern day search engines per-
form well in retrieving relevant documents given a query –
the information sought will likely appear in the top 10 doc-
uments. In other words, we reformulate the initial task of
finding an answer to a question as follows:

1. given a question, form a descriptive query;

2. submit the query to a search engine;

3. select the best passage from the top 10 documents re-
turned.

One of the main challenges in the described approach is the
task of forming a descriptive query. As shown in Figure 1,
there are questions that contain irrelevant details, making
it hard to understand the primary intent of the asker. The
method we used for selecting query words relies on pointwise
KullbackâĂŞLeibler divergence score. After selecting query
words, we concatenated them and submitted the resulting
query to Bing! Search and examined the top 10 documents
returned. From them we extracted a set of candidate an-
swers and ranked them based on their length, keyword fre-
quency and proximity as described in[3].

3.1 Query selection
Question posted on Y!A vary not only in their topicality and
intent, but also in their length and details provided. Some

Figure 1: An example of a long question, containing
a lot of detailed information

of the questions, for example Figure 1 contain much details
that are unnecessary for answering the question. But the
biggest challenge in trying to answer such questions is that
the real intent of the asker is hard to uncover due to the
noise created by the addition of extra words to the question.
In this work we implement a baseline for keyword selection:
we rank all question words by the pointwise KL-divergence
score and select the ones that scored the highest.

In order to use KL-divergence for query term extraction we
needed to have a background language model. Given that
the language used in online user-generated content differs
significantly from formal English [2], we needed to have an
example of the language used on Y!A. We crawled Yahoo!
Answers to collect a dataset of questions and answers from
all categories in order to see what type of language is used23.
For each question thread we collected question title, ques-
tion body, and answers (if any), posted by other people.
We removed web links from the obtained text and used the
rest of the text to build a language model for background
probability computation.

3.2 Answer extraction
For every question received we combined its title and body
together and removed the links from the resulting text. We
compared the words distributions in the question text and
the previously constructed language model and picked the
words with the greater divergence value, which means that
these words distinct the given question from the common
language. For every word in the text a corresponding KL-
divergence[3] value was computed, using the Yahoo! An-
swers language model constructed earlier. Afterwards, the

2All code used for this task is available at:
https://github.com/sashavtyurina/LiveQATrack
3https://github.com/yuvalpinter/LiveQAServerDemo



words were sorted based on their corresponding KLD score.
We also used NLTK4 to extract named entities from the
question text. These named entities as well as the 4 words
with the highest KLD score were put together in the order
of their occurrence in the initial question to form a resulting
query.

The query was submitted to the Bing Search API5 and the
top 10 returned documents were retrieved. We ignored pages
from Yahoo! Answers, as well as all non-html pages (for
example, pdf, doc, etc). For every web-page we allowed a
5 seconds time limit to load, otherwise it was ignored. We
used this set of web documents as a corpus to extract an
answer to the given question from.

After the web pages were retrieved, they underwent a pre-
processing step, during which only useful text was extracted
from each of them. First, we removed the contents of a pre-
defined list of tags (that are highly unlikely to contain the
useful text that we are after): style, script, table, label, ti-
tle, etc. From the remaining portion of the page the tags,
with contents of less than 10 words are removed. By doing
this we excluded ads, ”follow us” links, and other irrelevant
information.

After the preprocessing every web page becomes was trans-
formed into a clean text document. At this step we inserted
a pair of special symbols used to denote the beginning and
the end of each sentence. This was done in order to pro-
duce more readable results in the future. For every docu-
ment we found a set of m-covers (passages containing key-
words), using the terms from the query we previously sub-
mitted to Bing. If the length of a passage was greater than
the given limit (1000 characters), it was discarded. The
remaining passages were ranked according to the number
of query terms they contained and their proximity to each
other within the passage[3]. After the passages were scored,
at most the top 5 passages were concatenated by a newline
character and submitted as the final answer. The URLs,
corresponding to the documents from which the top 5 para-
graphs were retrieved were passed along as the resources of
the answer. If no passages passed the filtering, the answer
returned was “Try these links:” followed by the top 5 links
returned by Bing! Search.

4. CODE BASE
The code for this project was written in Python 3.5. The
server for communication with Y!A server was built with
Bottle framework6 for Python. Answer extraction module
was implemented in Python with the use of NumPy library7.
We also used NLTK for named entity extraction.

5. FUTURE WORK
We would like to improve the procedure of finding an answer
to a given question by analysing existing human-generated
question-answer pairs. We are hopeful that finding the ways
in which an answer is related to the question will help extract
more precise answers in the future.

4http://nltk.org/
5https://datamarket.azure.com/dataset/bing/search
6https://bottlepy.org/docs/dev/
7http://www.numpy.org/

It is not uncommon for community question answering ser-
vices to have an exceedingly long question descriptions. Peo-
ple often want to see an advice that is unique for their situ-
ation (see figure 1). Redundant details often obstruct ques-
tion focus, making it hard even for a human to understand.
We have started making first steps towards extracting key-
words from long questions.

6. CONCLUSIONS
The LiveQA track provides an opportunity for the partici-
pants to try their QA systems on real-world questions, col-
lected from Y!A. The approach we chose is mostly similar to
that of last year’s. It is based on selecting key terms from a
question, submitting them to a search engine and extracting
an answer from the top 10 retrieved documents.

7. REFERENCES
[1] E. Agichtein, D. Carmel, D. Harman, D. Pelleg, and

Y. Pinter. Overview of the trec 2015 liveqa track. In
The Twenty-Fourth Text REtrieval Conference (TREC
2015) Proceedings. National Institute of Standards and
Technology (NIST), 2015.

[2] E. Agichtein, C. Castillo, D. Donato, A. Gionis, and
G. Mishne. Finding high-quality content in social
media. In Proceedings of the 2008 International
Conference on Web Search and Data Mining, pages
183–194. ACM, 2008.

[3] S. Büttcher, C. L. Clarke, and G. V. Cormack.
Information retrieval: Implementing and evaluating
search engines. Mit Press, 2010.

[4] H. T. Dang, D. Kelly, and J. J. Lin. Overview of the
trec 2007 question answering track. In TREC,
volume 7, page 63, 2007.


